메뉴 건너뛰기




Volumn 35, Issue 14, 2015, Pages 2479-2494

Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; GUANOSINE TRIPHOSPHATASE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MEMBRANE PROTEIN; RHEB PROTEIN; SLC38A9 PROTEIN; SMALL INTERFERING RNA; UNCLASSIFIED DRUG; AMINO ACID TRANSPORTER; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MONOMERIC GUANINE NUCLEOTIDE BINDING PROTEIN; MULTIPROTEIN COMPLEX; NEUROPEPTIDE; PROTEIN BINDING; RHEB PROTEIN, HUMAN; SLC38A9 PROTEIN, HUMAN; TARGET OF RAPAMYCIN KINASE;

EID: 84932638310     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00125-15     Document Type: Article
Times cited : (206)

References (54)
  • 1
    • 34347220473 scopus 로고    scopus 로고
    • Defining the role of mTOR in cancer
    • Guertin DA, Sabatini DM. 2007. Defining the role of mTOR in cancer. Cancer Cell 12:9-22. http://dx.doi.org/10.1016/j.ccr.2007.05.008.
    • (2007) Cancer Cell , vol.12 , pp. 9-22
    • Guertin, D.A.1    Sabatini, D.M.2
  • 2
    • 0037178786 scopus 로고    scopus 로고
    • mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175. http://dx.doi.org/10.1016/S0092-8674(02)00808-5.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1    Sarbassov, D.D.2    Ali, S.M.3    King, J.E.4    Latek, R.R.5    Erdjument-Bromage, H.6    Tempst, P.7    Sabatini, D.M.8
  • 3
    • 0037623417 scopus 로고    scopus 로고
    • GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
    • Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM. 2003. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895-904. http://dx.doi.org/10.1016/S1097-2765(03)00114-X.
    • (2003) Mol Cell , vol.11 , pp. 895-904
    • Kim, D.H.1    Sarbassov, D.D.2    Ali, S.M.3    Latek, R.R.4    Guntur, K.V.5    Erdjument-Bromage, H.6    Tempst, P.7    Sabatini, D.M.8
  • 4
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S, Peterson TR, Sabatini DM. 2010. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40: 310-322. http://dx.doi.org/10.1016/j.molcel.2010.09.026.
    • (2010) Mol Cell , vol.40 , pp. 310-322
    • Sengupta, S.1    Peterson, T.R.2    Sabatini, D.M.3
  • 6
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K, Li Y, Xu T, Guan KL. 2003. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829-1834. http://dx.doi.org/10.1101/gad.1110003.
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 7
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. 2003. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259-1268. http://dx.doi.org/10.1016/S0960-9822(03)00506-2.
    • (2003) Curr Biol , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 8
    • 84880529632 scopus 로고    scopus 로고
    • Rheb and Rags come together at the lysosome to activate mTORC1
    • Groenewoud MJ, Zwartkruis FJ. 2013. Rheb and Rags come together at the lysosome to activate mTORC1. Biochem Soc Trans 41:951-955. http://dx.doi.org/10.1042/BST20130037.
    • (2013) Biochem Soc Trans , vol.41 , pp. 951-955
    • Groenewoud, M.J.1    Zwartkruis, F.J.2
  • 10
    • 18244362311 scopus 로고    scopus 로고
    • Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin
    • Saito K, Araki Y, Kontani K, Nishina H, Katada T. 2005. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J Biochem 137:423-430. http://dx.doi.org/10.1093/jb/mvi046.
    • (2005) J Biochem , vol.137 , pp. 423-430
    • Saito, K.1    Araki, Y.2    Kontani, K.3    Nishina, H.4    Katada, T.5
  • 11
    • 33646143793 scopus 로고    scopus 로고
    • Localization of Rheb to the endomembrane is critical for its signaling function
    • Buerger C, DeVries B, Stambolic V. 2006. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun 344:869-880. http://dx.doi.org/10.1016/j.bbrc.2006.03.220.
    • (2006) Biochem Biophys Res Commun , vol.344 , pp. 869-880
    • Buerger, C.1    DeVries, B.2    Stambolic, V.3
  • 12
    • 0041356888 scopus 로고    scopus 로고
    • Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner
    • Castro AF, Rebhun JF, Clark GJ, Quilliam LA. 2003. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner. J Biol Chem 278: 32493-32496. http://dx.doi.org/10.1074/jbc.C300226200.
    • (2003) J Biol Chem , vol.278 , pp. 32493-32496
    • Castro, A.F.1    Rebhun, J.F.2    Clark, G.J.3    Quilliam, L.A.4
  • 13
    • 18044381192 scopus 로고    scopus 로고
    • Rheb binds and regulates the mTOR kinase
    • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. 2005. Rheb binds and regulates the mTOR kinase. Curr Biol 15:702-713. http://dx.doi.org/10.1016/j.cub.2005.02.053.
    • (2005) Curr Biol , vol.15 , pp. 702-713
    • Long, X.1    Lin, Y.2    Ortiz-Vega, S.3    Yonezawa, K.4    Avruch, J.5
  • 15
    • 0032486268 scopus 로고    scopus 로고
    • Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
    • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273: 14484-14494. http://dx.doi.org/10.1074/jbc.273.23.14484.
    • (1998) J Biol Chem , vol.273 , pp. 14484-14494
    • Hara, K.1    Yonezawa, K.2    Weng, Q.P.3    Kozlowski, M.T.4    Belham, C.5    Avruch, J.6
  • 16
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303. http://dx.doi.org/10.1016/j.cell.2010.02.024.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 17
    • 44449141488 scopus 로고    scopus 로고
    • Activation and function of the mTORC1 pathway in mast cells
    • Kim MS, Kuehn HS, Metcalfe DD, Gilfillan AM. 2008. Activation and function of the mTORC1 pathway in mast cells. J Immunol 180:4586-4595. http://dx.doi.org/10.4049/jimmunol.180.7.4586.
    • (2008) J Immunol , vol.180 , pp. 4586-4595
    • Kim, M.S.1    Kuehn, H.S.2    Metcalfe, D.D.3    Gilfillan, A.M.4
  • 18
    • 0035831451 scopus 로고    scopus 로고
    • Novel G proteins, RagCand Rag D, interact with GTP-binding proteins, RagAand Rag B
    • Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. 2001. Novel G proteins, RagCand Rag D, interact with GTP-binding proteins, RagAand Rag B. J Biol Chem 276:7246-7257. http://dx.doi.org/10.1074/jbc.M004389200.
    • (2001) J Biol Chem , vol.276 , pp. 7246-7257
    • Sekiguchi, T.1    Hirose, E.2    Nakashima, N.3    Ii, M.4    Nishimoto, T.5
  • 19
    • 0028849086 scopus 로고
    • Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases
    • Schurmann A, Brauers A, Massmann S, Becker W, Joost HG. 1995. Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases. J Biol Chem 270:28982-28988. http://dx.doi.org/10.1074/jbc.270.48.28982.
    • (1995) J Biol Chem , vol.270 , pp. 28982-28988
    • Schurmann, A.1    Brauers, A.2    Massmann, S.3    Becker, W.4    Joost, H.G.5
  • 20
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM. 2013. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52:495-505. http://dx.doi.org/10.1016/j.molcel.2013.09.016.
    • (2013) Mol Cell , vol.52 , pp. 495-505
    • Tsun, Z.Y.1    Bar-Peled, L.2    Chantranupong, L.3    Zoncu, R.4    Wang, T.5    Kim, C.6    Spooner, E.7    Sabatini, D.M.8
  • 22
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
    • Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S. 2012. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410-424. http://dx.doi.org/10.1016/j.cell.2012.02.044.
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1    Jeong, S.J.2    Park, M.C.3    Kim, G.4    Kwon, N.H.5    Kim, H.K.6    Ha, S.H.7    Ryu, S.H.8    Kim, S.9
  • 23
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. 2012. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196-1208. http://dx.doi.org/10.1016/j.cell.2012.07.032.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 24
    • 80555143078 scopus 로고    scopus 로고
    • mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678-683. http://dx.doi.org/10.1126/science.1207056.
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3    Wang, S.4    Sancak, Y.5    Sabatini, D.M.6
  • 27
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends C, Sowa ME, Gygi SP, Harper JW. 2010. Network organization of the human autophagy system. Nature 466:68-76. http://dx.doi.org/10.1038/nature09204.
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1    Sowa, M.E.2    Gygi, S.P.3    Harper, J.W.4
  • 28
    • 67649634849 scopus 로고    scopus 로고
    • Defining the human deubiquitinating enzyme interaction landscape
    • Sowa ME, Bennett EJ, Gygi SP, Harper JW. 2009. Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389-403. http://dx.doi.org/10.1016/j.cell.2009.04.042.
    • (2009) Cell , vol.138 , pp. 389-403
    • Sowa, M.E.1    Bennett, E.J.2    Gygi, S.P.3    Harper, J.W.4
  • 30
    • 21244480367 scopus 로고    scopus 로고
    • The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
    • Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG. 2005. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 280:18717-18727. http://dx.doi.org/10.1074/jbc.M414499200.
    • (2005) J Biol Chem , vol.280 , pp. 18717-18727
    • Smith, E.M.1    Finn, S.G.2    Tee, A.R.3    Browne, G.J.4    Proud, C.G.5
  • 31
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades C, Doumpas N, Teleman AA. 2014. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156:786-799. http://dx.doi.org/10.1016/j.cell.2014.01.024.
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1    Doumpas, N.2    Teleman, A.A.3
  • 32
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes
    • Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567-580. http://dx.doi.org/10.1006/jmbi.2000.4315.
    • (2001) J Mol Biol , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    von Heijne, G.3    Sonnhammer, E.L.4
  • 34
    • 84875161720 scopus 로고    scopus 로고
    • Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects
    • Schioth HB, Roshanbin S, Hagglund MG, Fredriksson R. 2013. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med 34:571-585. http://dx.doi.org/10.1016/j.mam.2012.07.012.
    • (2013) Mol Aspects Med , vol.34 , pp. 571-585
    • Schioth, H.B.1    Roshanbin, S.2    Hagglund, M.G.3    Fredriksson, R.4
  • 35
    • 84886596375 scopus 로고
    • Influence of cycloheximide on the synthesis and utilization of amino acids in suspension cultures
    • Fletcher JS, Beevers H. 1971. Influence of cycloheximide on the synthesis and utilization of amino acids in suspension cultures. Plant Physiol 48: 261-264. http://dx.doi.org/10.1104/pp.48.3.261.
    • (1971) Plant Physiol , vol.48 , pp. 261-264
    • Fletcher, J.S.1    Beevers, H.2
  • 36
    • 0013844191 scopus 로고
    • Action of cycloheximide on amino acid metabolism in Saccharomyces elipsoideus
    • Widuczynski I, Stoppani AO. 1965. Action of cycloheximide on amino acid metabolism in Saccharomyces elipsoideus. Biochim Biophys Acta 104:413-426. http://dx.doi.org/10.1016/0304-4165(65)90347-8.
    • (1965) Biochim Biophys Acta , vol.104 , pp. 413-426
    • Widuczynski, I.1    Stoppani, A.O.2
  • 37
    • 0037662713 scopus 로고    scopus 로고
    • Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability
    • Beugnet A, Tee AR, Taylor PM, Proud CG. 2003. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 372:555-566. http://dx.doi.org/10.1042/BJ20021266.
    • (2003) Biochem J , vol.372 , pp. 555-566
    • Beugnet, A.1    Tee, A.R.2    Taylor, P.M.3    Proud, C.G.4
  • 39
    • 0032528917 scopus 로고    scopus 로고
    • Amino acid availability regulates p70 S6 kinase and multiple translation factors
    • Wang X, Campbell LE, Miller CM, Proud CG. 1998. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334(Part 1):261-267.
    • (1998) Biochem J , vol.334 , pp. 261-267
    • Wang, X.1    Campbell, L.E.2    Miller, C.M.3    Proud, C.G.4
  • 40
    • 80053614972 scopus 로고    scopus 로고
    • SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation?
    • Pinilla J, Aledo JC, Cwiklinski E, Hyde R, Taylor PM, Hundal HS. 2011. SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci 3:1289-1299. http://dx.doi.org/10.2741/332.
    • (2011) Front Biosci , vol.3 , pp. 1289-1299
    • Pinilla, J.1    Aledo, J.C.2    Cwiklinski, E.3    Hyde, R.4    Taylor, P.M.5    Hundal, H.S.6
  • 42
    • 0037636773 scopus 로고    scopus 로고
    • Lysosomal amino acid transporter LYAAT-1 in the rat central nervous system: an in situ hybridization and immunohistochemical study
    • Agulhon C, Rostaing P, Ravassard P, Sagne C, Triller A, Giros B. 2003. Lysosomal amino acid transporter LYAAT-1 in the rat central nervous system: an in situ hybridization and immunohistochemical study. J Comp Neurol 462:71-89. http://dx.doi.org/10.1002/cne.10712.
    • (2003) J Comp Neurol , vol.462 , pp. 71-89
    • Agulhon, C.1    Rostaing, P.2    Ravassard, P.3    Sagne, C.4    Triller, A.5    Giros, B.6
  • 43
    • 84871260456 scopus 로고    scopus 로고
    • Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes
    • Ogmundsdottir MH, Heublein S, Kazi S, Reynolds B, Visvalingam SM, Shaw MK, Goberdhan DC. 2012. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS One 7:e36616. http://dx.doi.org/10.1371/journal.pone.0036616.
    • (2012) PLoS One , vol.7
    • Ogmundsdottir, M.H.1    Heublein, S.2    Kazi, S.3    Reynolds, B.4    Visvalingam, S.M.5    Shaw, M.K.6    Goberdhan, D.C.7
  • 44
    • 78649772767 scopus 로고    scopus 로고
    • Amino acid derivatives are substrates or nontransported inhibitors of the amino acid transporter PAT2 (slc36a2)
    • Edwards N, Anderson CM, Gatfield KM, Jevons MP, Ganapathy V, Thwaites DT. 2011. Amino acid derivatives are substrates or nontransported inhibitors of the amino acid transporter PAT2 (slc36a2). Biochim Biophys Acta 1808:260-270. http://dx.doi.org/10.1016/j.bbamem.2010.07.032.
    • (2011) Biochim Biophys Acta , vol.1808 , pp. 260-270
    • Edwards, N.1    Anderson, C.M.2    Gatfield, K.M.3    Jevons, M.P.4    Ganapathy, V.5    Thwaites, D.T.6
  • 45
    • 0034595870 scopus 로고    scopus 로고
    • Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A
    • Sugawara M, Nakanishi T, Fei YJ, Huang W, Ganapathy ME, Leibach FH, Ganapathy V. 2000. Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem 275:16473-16477. http://dx.doi.org/10.1074/jbc.C000205200.
    • (2000) J Biol Chem , vol.275 , pp. 16473-16477
    • Sugawara, M.1    Nakanishi, T.2    Fei, Y.J.3    Huang, W.4    Ganapathy, M.E.5    Leibach, F.H.6    Ganapathy, V.7
  • 47
    • 0035830588 scopus 로고    scopus 로고
    • Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A
    • Hatanaka T, Huang W, Ling R, Prasad PD, Sugawara M, Leibach FH, Ganapathy V. 2001. Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A. Biochim Biophys Acta 1510:10-17. http://dx.doi.org/10.1016/S0005-2736(00)00390-4.
    • (2001) Biochim Biophys Acta , vol.1510 , pp. 10-17
    • Hatanaka, T.1    Huang, W.2    Ling, R.3    Prasad, P.D.4    Sugawara, M.5    Leibach, F.H.6    Ganapathy, V.7
  • 48
    • 0034695035 scopus 로고    scopus 로고
    • Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle
    • Sugawara M, Nakanishi T, Fei YJ, Martindale RG, Ganapathy ME, Leibach FH, Ganapathy V. 2000. Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim Biophys Acta 1509:7-13. http://dx.doi.org/10.1016/S0005-2736(00)00349-7.
    • (2000) Biochim Biophys Acta , vol.1509 , pp. 7-13
    • Sugawara, M.1    Nakanishi, T.2    Fei, Y.J.3    Martindale, R.G.4    Ganapathy, M.E.5    Leibach, F.H.6    Ganapathy, V.7
  • 49
    • 0033598956 scopus 로고    scopus 로고
    • Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission
    • Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH. 1999. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769-780. http://dx.doi.org/10.1016/S0092-8674(00)81674-8.
    • (1999) Cell , vol.99 , pp. 769-780
    • Chaudhry, F.A.1    Reimer, R.J.2    Krizaj, D.3    Barber, D.4    Storm-Mathisen, J.5    Copenhagen, D.R.6    Edwards, R.H.7
  • 51
    • 0034635496 scopus 로고    scopus 로고
    • Cloning and functional identification of a neuronal glutamine transporter
    • Varoqui H, Zhu H, Yao D, Ming H, Erickson JD. 2000. Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 275:4049-4054. http://dx.doi.org/10.1074/jbc.275.6.4049.
    • (2000) J Biol Chem , vol.275 , pp. 4049-4054
    • Varoqui, H.1    Zhu, H.2    Yao, D.3    Ming, H.4    Erickson, J.D.5
  • 53
    • 0024523485 scopus 로고
    • Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH
    • Heuser J. 1989. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J Cell Biol 108:855-864. http://dx.doi.org/10.1083/jcb.108.3.855.
    • (1989) J Cell Biol , vol.108 , pp. 855-864
    • Heuser, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.