-
1
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin DA, Sabatini DM. 2007. Defining the role of mTOR in cancer. Cancer Cell 12:9-22. http://dx.doi.org/10.1016/j.ccr.2007.05.008.
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
2
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175. http://dx.doi.org/10.1016/S0092-8674(02)00808-5.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
3
-
-
0037623417
-
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM. 2003. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895-904. http://dx.doi.org/10.1016/S1097-2765(03)00114-X.
-
(2003)
Mol Cell
, vol.11
, pp. 895-904
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
Latek, R.R.4
Guntur, K.V.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
4
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S, Peterson TR, Sabatini DM. 2010. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 40: 310-322. http://dx.doi.org/10.1016/j.molcel.2010.09.026.
-
(2010)
Mol Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
5
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM, Kwiatkowski DJ, Murphy LO, Manning BD. 2012. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47: 535-546. http://dx.doi.org/10.1016/j.molcel.2012.06.009.
-
(2012)
Mol Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
Qin, W.4
Klekota, J.5
Asara, J.M.6
Finan, P.M.7
Kwiatkowski, D.J.8
Murphy, L.O.9
Manning, B.D.10
-
6
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K, Li Y, Xu T, Guan KL. 2003. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829-1834. http://dx.doi.org/10.1101/gad.1110003.
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
7
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. 2003. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13:1259-1268. http://dx.doi.org/10.1016/S0960-9822(03)00506-2.
-
(2003)
Curr Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
8
-
-
84880529632
-
Rheb and Rags come together at the lysosome to activate mTORC1
-
Groenewoud MJ, Zwartkruis FJ. 2013. Rheb and Rags come together at the lysosome to activate mTORC1. Biochem Soc Trans 41:951-955. http://dx.doi.org/10.1042/BST20130037.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 951-955
-
-
Groenewoud, M.J.1
Zwartkruis, F.J.2
-
9
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501. http://dx.doi.org/10.1126/science.1157535.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
10
-
-
18244362311
-
Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin
-
Saito K, Araki Y, Kontani K, Nishina H, Katada T. 2005. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J Biochem 137:423-430. http://dx.doi.org/10.1093/jb/mvi046.
-
(2005)
J Biochem
, vol.137
, pp. 423-430
-
-
Saito, K.1
Araki, Y.2
Kontani, K.3
Nishina, H.4
Katada, T.5
-
11
-
-
33646143793
-
Localization of Rheb to the endomembrane is critical for its signaling function
-
Buerger C, DeVries B, Stambolic V. 2006. Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun 344:869-880. http://dx.doi.org/10.1016/j.bbrc.2006.03.220.
-
(2006)
Biochem Biophys Res Commun
, vol.344
, pp. 869-880
-
-
Buerger, C.1
DeVries, B.2
Stambolic, V.3
-
12
-
-
0041356888
-
Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner
-
Castro AF, Rebhun JF, Clark GJ, Quilliam LA. 2003. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin-and farnesylation-dependent manner. J Biol Chem 278: 32493-32496. http://dx.doi.org/10.1074/jbc.C300226200.
-
(2003)
J Biol Chem
, vol.278
, pp. 32493-32496
-
-
Castro, A.F.1
Rebhun, J.F.2
Clark, G.J.3
Quilliam, L.A.4
-
13
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. 2005. Rheb binds and regulates the mTOR kinase. Curr Biol 15:702-713. http://dx.doi.org/10.1016/j.cub.2005.02.053.
-
(2005)
Curr Biol
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
14
-
-
84872141223
-
mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging
-
Yadav RB, Burgos P, Parker AW, Iadevaia V, Proud CG, Allen RA, O'Connell JP, Jeshtadi A, Stubbs CD, Botchway SW. 2013. mTOR direct interactions with Rheb-GTPase and raptor: sub-cellular localization using fluorescence lifetime imaging. BMC Cell Biol 14:3. http://dx.doi.org/10.1186/1471-2121-14-3.
-
(2013)
BMC Cell Biol
, vol.14
, pp. 3
-
-
Yadav, R.B.1
Burgos, P.2
Parker, A.W.3
Iadevaia, V.4
Proud, C.G.5
Allen, R.A.6
O'Connell, J.P.7
Jeshtadi, A.8
Stubbs, C.D.9
Botchway, S.W.10
-
15
-
-
0032486268
-
Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
-
Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273: 14484-14494. http://dx.doi.org/10.1074/jbc.273.23.14484.
-
(1998)
J Biol Chem
, vol.273
, pp. 14484-14494
-
-
Hara, K.1
Yonezawa, K.2
Weng, Q.P.3
Kozlowski, M.T.4
Belham, C.5
Avruch, J.6
-
16
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303. http://dx.doi.org/10.1016/j.cell.2010.02.024.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
17
-
-
44449141488
-
Activation and function of the mTORC1 pathway in mast cells
-
Kim MS, Kuehn HS, Metcalfe DD, Gilfillan AM. 2008. Activation and function of the mTORC1 pathway in mast cells. J Immunol 180:4586-4595. http://dx.doi.org/10.4049/jimmunol.180.7.4586.
-
(2008)
J Immunol
, vol.180
, pp. 4586-4595
-
-
Kim, M.S.1
Kuehn, H.S.2
Metcalfe, D.D.3
Gilfillan, A.M.4
-
18
-
-
0035831451
-
Novel G proteins, RagCand Rag D, interact with GTP-binding proteins, RagAand Rag B
-
Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. 2001. Novel G proteins, RagCand Rag D, interact with GTP-binding proteins, RagAand Rag B. J Biol Chem 276:7246-7257. http://dx.doi.org/10.1074/jbc.M004389200.
-
(2001)
J Biol Chem
, vol.276
, pp. 7246-7257
-
-
Sekiguchi, T.1
Hirose, E.2
Nakashima, N.3
Ii, M.4
Nishimoto, T.5
-
19
-
-
0028849086
-
Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases
-
Schurmann A, Brauers A, Massmann S, Becker W, Joost HG. 1995. Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases. J Biol Chem 270:28982-28988. http://dx.doi.org/10.1074/jbc.270.48.28982.
-
(1995)
J Biol Chem
, vol.270
, pp. 28982-28988
-
-
Schurmann, A.1
Brauers, A.2
Massmann, S.3
Becker, W.4
Joost, H.G.5
-
20
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM. 2013. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52:495-505. http://dx.doi.org/10.1016/j.molcel.2013.09.016.
-
(2013)
Mol Cell
, vol.52
, pp. 495-505
-
-
Tsun, Z.Y.1
Bar-Peled, L.2
Chantranupong, L.3
Zoncu, R.4
Wang, T.5
Kim, C.6
Spooner, E.7
Sabatini, D.M.8
-
21
-
-
84878357685
-
A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. 2013. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340:1100-1106. http://dx.doi.org/10.1126/science.1232044.
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
Chen, W.W.4
Ottina, K.A.5
Grabiner, B.C.6
Spear, E.D.7
Carter, S.L.8
Meyerson, M.9
Sabatini, D.M.10
-
22
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S. 2012. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410-424. http://dx.doi.org/10.1016/j.cell.2012.02.044.
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
Ha, S.H.7
Ryu, S.H.8
Kim, S.9
-
23
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. 2012. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196-1208. http://dx.doi.org/10.1016/j.cell.2012.07.032.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
24
-
-
80555143078
-
mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678-683. http://dx.doi.org/10.1126/science.1207056.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
25
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KV, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G. 2015. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:477-481. http://dx.doi.org/10.1038/nature14107.
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
de Araujo, M.E.4
Galluccio, M.5
Kandasamy, R.K.6
Snijder, B.7
Fauster, A.8
Rudashevskaya, E.L.9
Bruckner, M.10
Scorzoni, S.11
Filipek, P.A.12
Huber, K.V.13
Bigenzahn, J.W.14
Heinz, L.X.15
Kraft, C.16
Bennett, K.L.17
Indiveri, C.18
Huber, L.A.19
Superti-Furga, G.20
more..
-
26
-
-
84922743269
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM. 2015. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188-194. http://dx.doi.org/10.1126/science.1257132.
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
Yuan, E.D.7
Jones, T.D.8
Chantranupong, L.9
Comb, W.10
Wang, T.11
Bar-Peled, L.12
Zoncu, R.13
Straub, C.14
Kim, C.15
Park, J.16
Sabatini, B.L.17
Sabatini, D.M.18
-
27
-
-
77954237882
-
Network organization of the human autophagy system
-
Behrends C, Sowa ME, Gygi SP, Harper JW. 2010. Network organization of the human autophagy system. Nature 466:68-76. http://dx.doi.org/10.1038/nature09204.
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
28
-
-
67649634849
-
Defining the human deubiquitinating enzyme interaction landscape
-
Sowa ME, Bennett EJ, Gygi SP, Harper JW. 2009. Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389-403. http://dx.doi.org/10.1016/j.cell.2009.04.042.
-
(2009)
Cell
, vol.138
, pp. 389-403
-
-
Sowa, M.E.1
Bennett, E.J.2
Gygi, S.P.3
Harper, J.W.4
-
29
-
-
78650466243
-
A tissue-specific atlas of mouse protein phosphorylation and expression
-
Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP. 2010. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174-1189. http://dx.doi.org/10.1016/j.cell.2010.12.001.
-
(2010)
Cell
, vol.143
, pp. 1174-1189
-
-
Huttlin, E.L.1
Jedrychowski, M.P.2
Elias, J.E.3
Goswami, T.4
Rad, R.5
Beausoleil, S.A.6
Villen, J.7
Haas, W.8
Sowa, M.E.9
Gygi, S.P.10
-
30
-
-
21244480367
-
The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
-
Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG. 2005. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J Biol Chem 280:18717-18727. http://dx.doi.org/10.1074/jbc.M414499200.
-
(2005)
J Biol Chem
, vol.280
, pp. 18717-18727
-
-
Smith, E.M.1
Finn, S.G.2
Tee, A.R.3
Browne, G.J.4
Proud, C.G.5
-
31
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
Demetriades C, Doumpas N, Teleman AA. 2014. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156:786-799. http://dx.doi.org/10.1016/j.cell.2014.01.024.
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
32
-
-
0035910270
-
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes
-
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567-580. http://dx.doi.org/10.1006/jmbi.2000.4315.
-
(2001)
J Mol Biol
, vol.305
, pp. 567-580
-
-
Krogh, A.1
Larsson, B.2
von Heijne, G.3
Sonnhammer, E.L.4
-
33
-
-
79953316595
-
Lysosomal positioning coordinates cellular nutrient responses
-
Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, Jahreiss L, Sarkar S, Futter M, Menzies FM, O'Kane CJ, Deretic V, Rubinsztein DC. 2011. Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 13:453-460. http://dx.doi.org/10.1038/ncb2204.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 453-460
-
-
Korolchuk, V.I.1
Saiki, S.2
Lichtenberg, M.3
Siddiqi, F.H.4
Roberts, E.A.5
Imarisio, S.6
Jahreiss, L.7
Sarkar, S.8
Futter, M.9
Menzies, F.M.10
O'Kane, C.J.11
Deretic, V.12
Rubinsztein, D.C.13
-
34
-
-
84875161720
-
Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects
-
Schioth HB, Roshanbin S, Hagglund MG, Fredriksson R. 2013. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med 34:571-585. http://dx.doi.org/10.1016/j.mam.2012.07.012.
-
(2013)
Mol Aspects Med
, vol.34
, pp. 571-585
-
-
Schioth, H.B.1
Roshanbin, S.2
Hagglund, M.G.3
Fredriksson, R.4
-
35
-
-
84886596375
-
Influence of cycloheximide on the synthesis and utilization of amino acids in suspension cultures
-
Fletcher JS, Beevers H. 1971. Influence of cycloheximide on the synthesis and utilization of amino acids in suspension cultures. Plant Physiol 48: 261-264. http://dx.doi.org/10.1104/pp.48.3.261.
-
(1971)
Plant Physiol
, vol.48
, pp. 261-264
-
-
Fletcher, J.S.1
Beevers, H.2
-
36
-
-
0013844191
-
Action of cycloheximide on amino acid metabolism in Saccharomyces elipsoideus
-
Widuczynski I, Stoppani AO. 1965. Action of cycloheximide on amino acid metabolism in Saccharomyces elipsoideus. Biochim Biophys Acta 104:413-426. http://dx.doi.org/10.1016/0304-4165(65)90347-8.
-
(1965)
Biochim Biophys Acta
, vol.104
, pp. 413-426
-
-
Widuczynski, I.1
Stoppani, A.O.2
-
37
-
-
0037662713
-
Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability
-
Beugnet A, Tee AR, Taylor PM, Proud CG. 2003. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 372:555-566. http://dx.doi.org/10.1042/BJ20021266.
-
(2003)
Biochem J
, vol.372
, pp. 555-566
-
-
Beugnet, A.1
Tee, A.R.2
Taylor, P.M.3
Proud, C.G.4
-
38
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO. 2009. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136:521-534. http://dx.doi.org/10.1016/j.cell.2008.11.044.
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
Myer, V.E.11
MacKeigan, J.P.12
Porter, J.A.13
Wang, Y.K.14
Cantley, L.C.15
Finan, P.M.16
Murphy, L.O.17
-
39
-
-
0032528917
-
Amino acid availability regulates p70 S6 kinase and multiple translation factors
-
Wang X, Campbell LE, Miller CM, Proud CG. 1998. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334(Part 1):261-267.
-
(1998)
Biochem J
, vol.334
, pp. 261-267
-
-
Wang, X.1
Campbell, L.E.2
Miller, C.M.3
Proud, C.G.4
-
40
-
-
80053614972
-
SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation?
-
Pinilla J, Aledo JC, Cwiklinski E, Hyde R, Taylor PM, Hundal HS. 2011. SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci 3:1289-1299. http://dx.doi.org/10.2741/332.
-
(2011)
Front Biosci
, vol.3
, pp. 1289-1299
-
-
Pinilla, J.1
Aledo, J.C.2
Cwiklinski, E.3
Hyde, R.4
Taylor, P.M.5
Hundal, H.S.6
-
41
-
-
0035912839
-
Identification and characterization of a lysosomal transporter for small neutral amino acids
-
Sagne C, Agulhon C, Ravassard P, Darmon M, Hamon M, El Mestikawy S, Gasnier B, Giros B. 2001. Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc Natl Acad Sci U S A 98:7206-7211. http://dx.doi.org/10.1073/pnas.121183498.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 7206-7211
-
-
Sagne, C.1
Agulhon, C.2
Ravassard, P.3
Darmon, M.4
Hamon, M.5
El Mestikawy, S.6
Gasnier, B.7
Giros, B.8
-
42
-
-
0037636773
-
Lysosomal amino acid transporter LYAAT-1 in the rat central nervous system: an in situ hybridization and immunohistochemical study
-
Agulhon C, Rostaing P, Ravassard P, Sagne C, Triller A, Giros B. 2003. Lysosomal amino acid transporter LYAAT-1 in the rat central nervous system: an in situ hybridization and immunohistochemical study. J Comp Neurol 462:71-89. http://dx.doi.org/10.1002/cne.10712.
-
(2003)
J Comp Neurol
, vol.462
, pp. 71-89
-
-
Agulhon, C.1
Rostaing, P.2
Ravassard, P.3
Sagne, C.4
Triller, A.5
Giros, B.6
-
43
-
-
84871260456
-
Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes
-
Ogmundsdottir MH, Heublein S, Kazi S, Reynolds B, Visvalingam SM, Shaw MK, Goberdhan DC. 2012. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS One 7:e36616. http://dx.doi.org/10.1371/journal.pone.0036616.
-
(2012)
PLoS One
, vol.7
-
-
Ogmundsdottir, M.H.1
Heublein, S.2
Kazi, S.3
Reynolds, B.4
Visvalingam, S.M.5
Shaw, M.K.6
Goberdhan, D.C.7
-
44
-
-
78649772767
-
Amino acid derivatives are substrates or nontransported inhibitors of the amino acid transporter PAT2 (slc36a2)
-
Edwards N, Anderson CM, Gatfield KM, Jevons MP, Ganapathy V, Thwaites DT. 2011. Amino acid derivatives are substrates or nontransported inhibitors of the amino acid transporter PAT2 (slc36a2). Biochim Biophys Acta 1808:260-270. http://dx.doi.org/10.1016/j.bbamem.2010.07.032.
-
(2011)
Biochim Biophys Acta
, vol.1808
, pp. 260-270
-
-
Edwards, N.1
Anderson, C.M.2
Gatfield, K.M.3
Jevons, M.P.4
Ganapathy, V.5
Thwaites, D.T.6
-
45
-
-
0034595870
-
Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A
-
Sugawara M, Nakanishi T, Fei YJ, Huang W, Ganapathy ME, Leibach FH, Ganapathy V. 2000. Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem 275:16473-16477. http://dx.doi.org/10.1074/jbc.C000205200.
-
(2000)
J Biol Chem
, vol.275
, pp. 16473-16477
-
-
Sugawara, M.1
Nakanishi, T.2
Fei, Y.J.3
Huang, W.4
Ganapathy, M.E.5
Leibach, F.H.6
Ganapathy, V.7
-
47
-
-
0035830588
-
Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A
-
Hatanaka T, Huang W, Ling R, Prasad PD, Sugawara M, Leibach FH, Ganapathy V. 2001. Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A. Biochim Biophys Acta 1510:10-17. http://dx.doi.org/10.1016/S0005-2736(00)00390-4.
-
(2001)
Biochim Biophys Acta
, vol.1510
, pp. 10-17
-
-
Hatanaka, T.1
Huang, W.2
Ling, R.3
Prasad, P.D.4
Sugawara, M.5
Leibach, F.H.6
Ganapathy, V.7
-
48
-
-
0034695035
-
Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle
-
Sugawara M, Nakanishi T, Fei YJ, Martindale RG, Ganapathy ME, Leibach FH, Ganapathy V. 2000. Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. Biochim Biophys Acta 1509:7-13. http://dx.doi.org/10.1016/S0005-2736(00)00349-7.
-
(2000)
Biochim Biophys Acta
, vol.1509
, pp. 7-13
-
-
Sugawara, M.1
Nakanishi, T.2
Fei, Y.J.3
Martindale, R.G.4
Ganapathy, M.E.5
Leibach, F.H.6
Ganapathy, V.7
-
49
-
-
0033598956
-
Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission
-
Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH. 1999. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769-780. http://dx.doi.org/10.1016/S0092-8674(00)81674-8.
-
(1999)
Cell
, vol.99
, pp. 769-780
-
-
Chaudhry, F.A.1
Reimer, R.J.2
Krizaj, D.3
Barber, D.4
Storm-Mathisen, J.5
Copenhagen, D.R.6
Edwards, R.H.7
-
50
-
-
0035664859
-
Cloning and functional characterization of a new subtype of the amino acid transport system
-
Nakanishi T, Kekuda R, Fei YJ, Hatanaka T, Sugawara M, Martindale RG, Leibach FH, Prasad PD, Ganapathy V. 2001. Cloning and functional characterization of a new subtype of the amino acid transport system. N Am J Physiol Cell Physiol 281:C1757-C1768.
-
(2001)
N Am J Physiol Cell Physiol
, vol.281
, pp. C1757-C1768
-
-
Nakanishi, T.1
Kekuda, R.2
Fei, Y.J.3
Hatanaka, T.4
Sugawara, M.5
Martindale, R.G.6
Leibach, F.H.7
Prasad, P.D.8
Ganapathy, V.9
-
51
-
-
0034635496
-
Cloning and functional identification of a neuronal glutamine transporter
-
Varoqui H, Zhu H, Yao D, Ming H, Erickson JD. 2000. Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 275:4049-4054. http://dx.doi.org/10.1074/jbc.275.6.4049.
-
(2000)
J Biol Chem
, vol.275
, pp. 4049-4054
-
-
Varoqui, H.1
Zhu, H.2
Yao, D.3
Ming, H.4
Erickson, J.D.5
-
52
-
-
79957984261
-
Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons
-
Hagglund MG, Sreedharan S, Nilsson VC, Shaik JH, Almkvist IM, Backlin S, Wrange O, Fredriksson R. 2011. Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem 286:20500-20511. http://dx.doi.org/10.1074/jbc.M110.162404.
-
(2011)
J Biol Chem
, vol.286
, pp. 20500-20511
-
-
Hagglund, M.G.1
Sreedharan, S.2
Nilsson, V.C.3
Shaik, J.H.4
Almkvist, I.M.5
Backlin, S.6
Wrange, O.7
Fredriksson, R.8
-
53
-
-
0024523485
-
Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH
-
Heuser J. 1989. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J Cell Biol 108:855-864. http://dx.doi.org/10.1083/jcb.108.3.855.
-
(1989)
J Cell Biol
, vol.108
, pp. 855-864
-
-
Heuser, J.1
-
54
-
-
35148838537
-
Drugtarget network
-
Yildirim MA, Goh KI, Cusick ME, Barabasi AL, Vidal M. 2007. Drugtarget network. Nat Biotechnol 25:1119-1126. http://dx.doi.org/10.1038/nbt1338.
-
(2007)
Nat Biotechnol
, vol.25
, pp. 1119-1126
-
-
Yildirim, M.A.1
Goh, K.I.2
Cusick, M.E.3
Barabasi, A.L.4
Vidal, M.5
|