-
1
-
-
0342819025
-
Helical microtubules of graphitic carbon
-
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56-58 (1991).
-
(1991)
Nature
, vol.354
, pp. 56-58
-
-
Iijima, S.1
-
2
-
-
56849087698
-
Semiconductor nanowire devices
-
Hayden, O., Agarwal, R. & Lu, W. Semiconductor nanowire devices. Nano Today 3, 12-22 (2008).
-
(2008)
Nano Today
, vol.3
, pp. 12-22
-
-
Hayden, O.1
Agarwal, R.2
Lu, W.3
-
3
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
-
5
-
-
84863855836
-
2 p-FETs with chemically doped contacts
-
2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788-3792 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 3788-3792
-
-
Fang, H.1
-
6
-
-
84877295157
-
2 field effect transistors
-
2 field effect transistors. Nano Lett. 13, 1983-1990 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 1983-1990
-
-
Liu, W.1
-
7
-
-
84943167066
-
A subthermionic tunnel field-effect transistor with an atomically thin channel
-
Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91-95 (2015).
-
(2015)
Nature
, vol.526
, pp. 91-95
-
-
Sarkar, D.1
-
10
-
-
79551634368
-
Two-dimensional nanosheets produced by liquid exfoliation of layered materials
-
Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568-571 (2011).
-
(2011)
Science
, vol.331
, pp. 568-571
-
-
Coleman, J.N.1
-
12
-
-
84946490789
-
2D semiconductor FETs - Projections and design for sub-10 nm VLSI
-
Cao, W., Kang, J., Sarkar, D., Liu, W. & Banerjee, K. 2D semiconductor FETs - Projections and design for sub-10 nm VLSI. IEEE Trans. Electron Dev. 62, 3459-3469 (2015).
-
(2015)
IEEE Trans. Electron Dev.
, vol.62
, pp. 3459-3469
-
-
Cao, W.1
Kang, J.2
Sarkar, D.3
Liu, W.4
Banerjee, K.5
-
13
-
-
84899415979
-
2 field-effect transistor for next-generation label-free biosensors
-
2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8, 3992-4003 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 3992-4003
-
-
Sarkar, D.1
-
14
-
-
84870438813
-
2 transistors
-
2 transistors. ACS Nano 6, 10070-10075 (2012).
-
(2012)
ACS Nano
, vol.6
, pp. 10070-10075
-
-
Lembke, D.1
Kis, A.2
-
19
-
-
84881167566
-
Van der Waals heterostructures
-
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425 (2013).
-
(2013)
Nature
, vol.499
, pp. 419-425
-
-
Geim, A.K.1
Grigorieva, I.V.2
-
20
-
-
84901193930
-
Black phosphorus field-effect transistors
-
Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372-377 (2014).
-
(2014)
Nature Nanotech.
, vol.9
, pp. 372-377
-
-
Li, L.1
-
21
-
-
84924668338
-
Silicene field-effect transistors operating at room temperature
-
Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nature Nanotech. 10, 227-231 (2015).
-
(2015)
Nature Nanotech.
, vol.10
, pp. 227-231
-
-
Tao, L.1
-
26
-
-
84879112432
-
Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films
-
Liu, H. et al. Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640-2646 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 2640-2646
-
-
Liu, H.1
-
27
-
-
0000216412
-
Spatial variation of currents and fields due to localized scatterers in metallic conduction
-
Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223-231 (1957).
-
(1957)
IBM J. Res. Dev.
, vol.1
, pp. 223-231
-
-
Landauer, R.1
-
28
-
-
0001657711
-
A possible method for studying Fermi surfaces
-
Sharvin, Y. V. A possible method for studying Fermi surfaces. Sov. Phys. JETP 21, 655-656 (1965).
-
(1965)
Sov. Phys. JETP
, vol.21
, pp. 655-656
-
-
Sharvin, Y.V.1
-
29
-
-
84926042922
-
2D crystal semiconductors: Intimate contacts
-
Jena, D., Banerjee, K. & Xing, G. H. 2D crystal semiconductors: Intimate contacts. Nature Mater. 13, 1076-1078 (2014).
-
(2014)
Nature Mater.
, vol.13
, pp. 1076-1078
-
-
Jena, D.1
Banerjee, K.2
Xing, G.H.3
-
30
-
-
84864688450
-
Determination of work function of graphene under a metal electrode and its role in contact resistance
-
Song, S. M., Park, J. K., Sul, O. J. & Cho, B. J. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett. 12, 3887-3892 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 3887-3892
-
-
Song, S.M.1
Park, J.K.2
Sul, O.J.3
Cho, B.J.4
-
31
-
-
84887299269
-
One-dimensional electrical contact to a two-dimensional material
-
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614-617 (2013).
-
(2013)
Science
, vol.342
, pp. 614-617
-
-
Wang, L.1
-
32
-
-
84905737252
-
Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors
-
Kang, J., Liu, W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4, 031005 (2014).
-
(2014)
Phys. Rev. X
, vol.4
-
-
Kang, J.1
Liu, W.2
Sarkar, D.3
Jena, D.4
Banerjee, K.5
-
33
-
-
77958004238
-
Contact resistance for 'end-contacted' metal-graphene and metal-nanotube interfaces from quantum mechanics
-
Matsuda, Y., Deng, W.-Q. & Goddard, W. A. Contact resistance for 'end-contacted' metal-graphene and metal-nanotube interfaces from quantum mechanics. J. Phys. Chem. C 114, 17845-17850 (2010).
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 17845-17850
-
-
Matsuda, Y.1
Deng, W.-Q.2
Goddard, W.A.3
-
34
-
-
84876117532
-
A computational study of metal-contacts to beyond-graphene 2D semiconductor materials
-
Kang, J., Sarkar, D., Liu, W., Jena, D. & Banerjee, K. A computational study of metal-contacts to beyond-graphene 2D semiconductor materials. IEEE Int. Electron Dev. Meet. 407-410 (2012).
-
(2012)
IEEE Int. Electron Dev. Meet.
, pp. 407-410
-
-
Kang, J.1
Sarkar, D.2
Liu, W.3
Jena, D.4
Banerjee, K.5
-
35
-
-
84894358129
-
2 field-effect-transistor with record low contact-resistance
-
2 field-effect-transistor with record low contact-resistance. IEEE Int. Electron Dev. Meet. 19.4.1-19.4.4 (2013).
-
(2013)
IEEE Int. Electron Dev. Meet.
, pp. 19.4.1-19.4.4
-
-
Liu, W.1
-
36
-
-
84865358059
-
Metal-to-multilayer-graphene contact - Part II: Analysis of contact resistance
-
Khatami, Y., Li, H., Xu, C. & Banerjee, K. Metal-to-multilayer-graphene contact - Part II: analysis of contact resistance. IEEE Trans. Electron. Dev. 59, 2453-2460 (2012).
-
(2012)
IEEE Trans. Electron. Dev.
, vol.59
, pp. 2453-2460
-
-
Khatami, Y.1
Li, H.2
Xu, C.3
Banerjee, K.4
-
37
-
-
84865386025
-
Metal-to-multilayer-graphene contact - Part I: Contact resistance modeling
-
Khatami, Y., Li, H., Xu, C. & Banerjee, K. Metal-to-multilayer-graphene contact - Part I: contact resistance modeling. IEEE Trans. Electron. Dev. 59, 2444-2452 (2012).
-
(2012)
IEEE Trans. Electron. Dev.
, vol.59
, pp. 2444-2452
-
-
Khatami, Y.1
Li, H.2
Xu, C.3
Banerjee, K.4
-
38
-
-
84899431697
-
Understanding the electrical impact of edge contacts in few-layer graphene
-
Chu, T. & Chen, Z. Understanding the electrical impact of edge contacts in few-layer graphene. ACS Nano 8, 3584-3589 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 3584-3589
-
-
Chu, T.1
Chen, Z.2
-
39
-
-
84947757663
-
Contact resistance reduction on graphene through n-type doping and one-dimensional edge contact
-
T14.14
-
Park, H.-Y. et al. Contact resistance reduction on graphene through n-type doping and one-dimensional edge contact. MRS Spring Meeting T14.14 (2015).
-
(2015)
MRS Spring Meeting
-
-
Park, H.-Y.1
-
40
-
-
84860428511
-
Atomic-scale model for the contact resistance of the nickel-graphene interface
-
Stokbro, K., Engelund, M. & Blom, A. Atomic-scale model for the contact resistance of the nickel-graphene interface. Phys. Rev. B 85, 165442 (2012).
-
(2012)
Phys. Rev. B
, vol.85
-
-
Stokbro, K.1
Engelund, M.2
Blom, A.3
-
44
-
-
84904008520
-
What does annealing do to metal-graphene contacts?
-
Leong, W. S., Nai, C. T. & Thong, J. T. L. What does annealing do to metal-graphene contacts? Nano Lett. 14, 3840-3847 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 3840-3847
-
-
Leong, W.S.1
Nai, C.T.2
Thong, J.T.L.3
-
46
-
-
78650874522
-
Carbon-based nanomaterials as contacts to graphene nanoribbons
-
Ouyang, Y. & Guo, J. Carbon-based nanomaterials as contacts to graphene nanoribbons. Appl. Phys. Lett. 97, 263115 (2010).
-
(2010)
Appl. Phys. Lett.
, vol.97
-
-
Ouyang, Y.1
Guo, J.2
-
47
-
-
84883347770
-
Proposal for all-graphene monolithic logic circuits
-
Kang, J., Sarkar, D., Khatami, Y. & Banerjee, K. Proposal for all-graphene monolithic logic circuits. Appl. Phys. Lett. 103, 083113 (2013).
-
(2013)
Appl. Phys. Lett.
, vol.103
-
-
Kang, J.1
Sarkar, D.2
Khatami, Y.3
Banerjee, K.4
-
48
-
-
77957724999
-
Transmission through a boundary between monolayer and bilayer graphene
-
Nakanishi, T., Koshino, M. & Ando, T. Transmission through a boundary between monolayer and bilayer graphene. Phys. Rev. B 82, 125428 (2010).
-
(2010)
Phys. Rev. B
, vol.82
-
-
Nakanishi, T.1
Koshino, M.2
Ando, T.3
-
49
-
-
85027951220
-
2 transistors
-
2 transistors. Nature Mater. 13, 1128-1134 (2014).
-
(2014)
Nature Mater.
, vol.13
, pp. 1128-1134
-
-
Kappera, R.1
-
53
-
-
83555163728
-
Electrical contacts to one- and two-dimensional nanomaterials
-
Leonard, F. & Talin, A. A. Electrical contacts to one- and two-dimensional nanomaterials. Nature Nanotech. 6, 773-783 (2011).
-
(2011)
Nature Nanotech.
, vol.6
, pp. 773-783
-
-
Leonard, F.1
Talin, A.A.2
-
54
-
-
4244137736
-
Temperature and current effects on small-geometry-contact resistance
-
Banerjee, K., Amerasekera, A., Dixit, G. & Hu, C. Temperature and current effects on small-geometry-contact resistance. IEEE Int. Electron Dev. Meet. 115-118 (1997).
-
(1997)
IEEE Int. Electron Dev. Meet.
, pp. 115-118
-
-
Banerjee, K.1
Amerasekera, A.2
Dixit, G.3
Hu, C.4
-
55
-
-
3743067479
-
Theory of surface states
-
Heine, V. Theory of surface states. Phys. Rev. 138, A1689-A1696 (1965).
-
(1965)
Phys. Rev.
, vol.138
, pp. A1689-A1696
-
-
Heine, V.1
-
56
-
-
0000962354
-
Effects of electron confinement on thermionic emission current in a modulation doped heterostructure
-
Anwar, A., Nabet, B., Culp, J. & Castro, F. Effects of electron confinement on thermionic emission current in a modulation doped heterostructure. J. Appl. Phys. 85, 2663-2666 (1999).
-
(1999)
J. Appl. Phys.
, vol.85
, pp. 2663-2666
-
-
Anwar, A.1
Nabet, B.2
Culp, J.3
Castro, F.4
-
57
-
-
26344479937
-
Impurity band conduction. Experiment and theory. The metal-insulator transition in an impurity band
-
Mott, N. F. Impurity band conduction. Experiment and theory. The metal-insulator transition in an impurity band. J. Phys. Colloq. 37, C4-301-C4-306 (1976).
-
(1976)
J. Phys. Colloq.
, vol.37
, pp. C4301-C4306
-
-
Mott, N.F.1
-
58
-
-
84880154581
-
2 transistors with ferromagnetic contacts
-
2 transistors with ferromagnetic contacts. Nano Lett. 13, 3106-3110 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 3106-3110
-
-
Chen, J.-R.1
-
59
-
-
84859524063
-
2 field-effect transistors and the effect of ambient on their performances
-
2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100, 123104 (2012).
-
(2012)
Appl. Phys. Lett.
, vol.100
-
-
Qiu, H.1
-
60
-
-
84893465925
-
High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts
-
Dankert, A., Langouche, L., Kamalakar, M. V. & Dash, S. P. High-performance molybdenum disulfide field-effect transistors with spin tunnel contacts. ACS Nano 8, 476-482 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 476-482
-
-
Dankert, A.1
Langouche, L.2
Kamalakar, M.V.3
Dash, S.P.4
-
61
-
-
84936161443
-
2 and permalloy
-
2 and permalloy. Sci. Rep. 4, 6928 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 6928
-
-
Wang, W.1
-
62
-
-
84906712045
-
Study on the resistance distribution at the contact between molybdenum disulfide and metals
-
Guo, Y. et al. Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano 8, 7771-7779 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 7771-7779
-
-
Guo, Y.1
-
64
-
-
84902275085
-
2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts
-
2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14, 3594-3601 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 3594-3601
-
-
Chuang, H.-J.1
-
65
-
-
84898060562
-
Phosphorene: An unexplored 2D semiconductor with a high hole mobility
-
Liu, H. et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033-4041 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 4033-4041
-
-
Liu, H.1
-
70
-
-
0043012025
-
Electrical characteristics of metal/semiconductor nanocontacts using light emission in a scanning tunneling microscope
-
Maurel, C., Coratger, R., Ajustron, F., Beauvillain, J. & Gerard, P. Electrical characteristics of metal/semiconductor nanocontacts using light emission in a scanning tunneling microscope. J. Appl. Phys. 94, 1979-1982 (2003).
-
(2003)
J. Appl. Phys.
, vol.94
, pp. 1979-1982
-
-
Maurel, C.1
Coratger, R.2
Ajustron, F.3
Beauvillain, J.4
Gerard, P.5
-
72
-
-
84905728302
-
Plasmonic internal photoemission for accurate device in situ measurement of metal-organic semiconductor injection barriers
-
Dhanker, R., Chopra, N. & Giebink, N. C. Plasmonic internal photoemission for accurate device in situ measurement of metal-organic semiconductor injection barriers. Adv. Funct. Mater. 24, 4775-4781 (2014).
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 4775-4781
-
-
Dhanker, R.1
Chopra, N.2
Giebink, N.C.3
-
76
-
-
36449000058
-
Barrier inhomogeneities at Schottky contacts
-
Werner, J. H. & Güttler, H. H. Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522-1533 (1991).
-
(1991)
J. Appl. Phys.
, vol.69
, pp. 1522-1533
-
-
Werner, J.H.1
Güttler, H.H.2
-
77
-
-
84890843138
-
Barrier inhomogeneities at vertically stacked graphene-based heterostructures
-
Lin, Y.-F. et al. Barrier inhomogeneities at vertically stacked graphene-based heterostructures. Nanoscale 6, 795-799 (2013).
-
(2013)
Nanoscale
, vol.6
, pp. 795-799
-
-
Lin, Y.-F.1
-
79
-
-
84903435941
-
Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments
-
McDonnell, S. et al. Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments. ACS Nano 8, 6265-6272 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 6265-6272
-
-
McDonnell, S.1
-
81
-
-
84921813856
-
2 devices with nickel-etched-graphene electrodes
-
2 devices with nickel-etched-graphene electrodes. ACS Nano 9, 869-877 (2015).
-
(2015)
ACS Nano
, vol.9
, pp. 869-877
-
-
Leong, W.S.1
-
82
-
-
84896376786
-
x contacts
-
x contacts. Nano Lett. 14, 1337-1342 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 1337-1342
-
-
Chuang, S.1
-
83
-
-
84898614268
-
Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide
-
Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262-267 (2014).
-
(2014)
Nature Nanotech.
, vol.9
, pp. 262-267
-
-
Baugher, B.W.H.1
Churchill, H.O.H.2
Yang, Y.3
Jarillo-Herrero, P.4
-
84
-
-
84907880386
-
2 heterojunction p-n diodes
-
2 heterojunction p-n diodes. Nano Lett. 14, 5590-5597 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 5590-5597
-
-
Cheng, R.1
-
85
-
-
84926231397
-
Atomically thin p-n junctions with van der Waals heterointerfaces
-
Lee, C.-H. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676-681 (2014).
-
(2014)
Nature Nanotech.
, vol.9
, pp. 676-681
-
-
Lee, C.-H.1
-
86
-
-
2542481867
-
High-mobility field-effect transistors based on transition metal dichalcogenides
-
Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301-3303 (2004).
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 3301-3303
-
-
Podzorov, V.1
Gershenson, M.E.2
Kloc, C.3
Zeis, R.4
Bucher, E.5
-
87
-
-
0020140815
-
Contact resistance and methods for its determination
-
Cohen, S. S. Contact resistance and methods for its determination. Thin Sol. Film. 104, 361-379 (1983).
-
(1983)
Thin Sol. Film.
, vol.104
, pp. 361-379
-
-
Cohen, S.S.1
-
88
-
-
0001672081
-
Models for contacts to planar devices
-
Berger, H. H. Models for contacts to planar devices. Solid State Electron. 15, 145-158 (1972).
-
(1972)
Solid State Electron.
, vol.15
, pp. 145-158
-
-
Berger, H.H.1
-
89
-
-
6144254353
-
A transmission line model for silicided diffusions: Impact on the performance of VLSI circuits
-
Scott, D. B., Hunter, W. R. & Shichijo, H. A transmission line model for silicided diffusions: Impact on the performance of VLSI circuits. IEEE J. Solid-State Circuits 17, 281-291 (1982).
-
(1982)
IEEE J. Solid-State Circuits
, vol.17
, pp. 281-291
-
-
Scott, D.B.1
Hunter, W.R.2
Shichijo, H.3
-
90
-
-
77952329312
-
Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance
-
Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. IEEE Int. Electron Dev. Meet. 1-4 (2009).
-
(2009)
IEEE Int. Electron Dev. Meet.
, pp. 1-4
-
-
Nagashio, K.1
Nishimura, T.2
Kita, K.3
Toriumi, A.4
-
91
-
-
79952445612
-
The origins and limits of metal-graphene junction resistance
-
Xia, F., Perebeinos, V., Lin, Y., Wu, Y. & Avouris, P. The origins and limits of metal-graphene junction resistance. Nature Nanotech. 6, 179-184 (2011).
-
(2011)
Nature Nanotech.
, vol.6
, pp. 179-184
-
-
Xia, F.1
Perebeinos, V.2
Lin, Y.3
Wu, Y.4
Avouris, P.5
-
92
-
-
84893478331
-
Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers
-
Liu, H. et al. Switching mechanism in single-layer molybdenum disulfide transistors: An insight into current flow across Schottky barriers. ACS Nano 8, 1031-1038 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 1031-1038
-
-
Liu, H.1
-
95
-
-
84910125463
-
2
-
2. Nano Lett. 14, 6275-6280 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 6275-6280
-
-
Yang, L.1
-
96
-
-
84930476811
-
2 using a van der Waals heterostructure device platform
-
2 using a van der Waals heterostructure device platform. Nature Nanotech. 10, 534-540 (2015).
-
(2015)
Nature Nanotech.
, vol.10
, pp. 534-540
-
-
Cui, X.1
-
97
-
-
84919714974
-
2 layers
-
2 layers. ACS Nano 8, 12836-12842 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 12836-12842
-
-
Li, S.-L.1
-
101
-
-
84879650910
-
2 transistors with graphene electrodes
-
2 transistors with graphene electrodes. Small 9, 3295-3300 (2013).
-
(2013)
Small
, vol.9
, pp. 3295-3300
-
-
Yoon, J.1
-
103
-
-
84902277236
-
2 hybrid technology for large-scale two-dimensional electronics
-
2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055-3063 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 3055-3063
-
-
Yu, L.1
-
107
-
-
84907903211
-
2 field effect transistors
-
2 field effect transistors. Nanotechnology 25, 435201 (2014).
-
(2014)
Nanotechnology
, vol.25
-
-
Gong, K.1
-
110
-
-
33750860386
-
Giant magnetoresistance of (001)Fe/(0001)Cr magnetic superlattices
-
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(0001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472-2475 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 2472-2475
-
-
Baibich, M.N.1
-
111
-
-
0009906761
-
Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor
-
Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790-R4793 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. R4790-R4793
-
-
Schmidt, G.1
Ferrand, D.2
Molenkamp, L.W.3
Filip, A.T.4
Van Wees, B.J.5
-
112
-
-
0034670796
-
Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem
-
Rashba, E. I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267-R16270 (2000).
-
(2000)
Phys. Rev. B
, vol.62
, pp. R16267-R16270
-
-
Rashba, E.I.1
-
113
-
-
0035509039
-
Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor
-
Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).
-
(2001)
Phys. Rev. B
, vol.64
-
-
Fert, A.1
Jaffrès, H.2
-
114
-
-
0037299223
-
Spin injection and detection in magnetic nanostructures
-
Takahashi, S. & Maekawa, S. Spin injection and detection in magnetic nanostructures. Phys. Rev. B 67, 052409 (2003).
-
(2003)
Phys. Rev. B
, vol.67
-
-
Takahashi, S.1
Maekawa, S.2
-
115
-
-
77957924558
-
Tunneling spin injection into single layer graphene
-
Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).
-
(2010)
Phys. Rev. Lett.
, vol.105
-
-
Han, W.1
-
116
-
-
34547635051
-
Electronic spin transport and spin precession in single graphene layers at room temperature
-
Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571-574 (2007).
-
(2007)
Nature
, vol.448
, pp. 571-574
-
-
Tombros, N.1
Jozsa, C.2
Popinciuc, M.3
Jonkman, H.T.4
Van Wees, B.J.5
-
117
-
-
84870030744
-
Spintronics with graphene
-
Seneor, P. et al. Spintronics with graphene. MRS Bull. 37, 1245-1254 (2012).
-
(2012)
MRS Bull.
, vol.37
, pp. 1245-1254
-
-
Seneor, P.1
-
118
-
-
0037105181
-
Electron spin injection at a Schottky contact
-
Albrecht, J. D. & Smith, D. L. Electron spin injection at a Schottky contact. Phys. Rev. B 66, 113303 (2002).
-
(2002)
Phys. Rev. B
, vol.66
-
-
Albrecht, J.D.1
Smith, D.L.2
-
119
-
-
84908406991
-
2 by covalent functionalization
-
2 by covalent functionalization. ACS Nano 8, 10808-10814 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 10808-10814
-
-
Zhao, P.1
-
120
-
-
84981528630
-
2 by silicon nitride thin films with tunable fixed charge density
-
2 by silicon nitride thin films with tunable fixed charge density. APL Mater. 2, 092504 (2014).
-
(2014)
APL Mater.
, vol.2
-
-
Chen, K.1
-
121
-
-
84877256117
-
Degenerate n-doping of few-layer transition metal dichalcogenides by potassium
-
Fang, H. et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991-1995 (2013).
-
(2013)
Nano Lett.
, vol.13
, pp. 1991-1995
-
-
Fang, H.1
-
122
-
-
61749091308
-
Chemical doping and electron-hole conduction asymmetry in graphene devices
-
Farmer, D. B. et al. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 9, 388-392 (2009).
-
(2009)
Nano Lett.
, vol.9
, pp. 388-392
-
-
Farmer, D.B.1
-
123
-
-
84929193312
-
Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing
-
Sarkar, D. et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: Implications for doping and gas-sensing. Nano Lett. 15, 2852-2862 (2015).
-
(2015)
Nano Lett.
, vol.15
, pp. 2852-2862
-
-
Sarkar, D.1
-
124
-
-
84905454703
-
2 measured by ultrafast spectroscopy
-
2 measured by ultrafast spectroscopy. Phys. Rev. B 90, 041414 (2014).
-
(2014)
Phys. Rev. B
, vol.90
-
-
Mai, C.1
-
125
-
-
84892164267
-
2
-
2. Nano Lett. 14, 202-206 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 202-206
-
-
Mai, C.1
-
128
-
-
84908431378
-
Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling
-
Du, Y., Liu, H., Deng, Y. & Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 8, 10035-10042 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 10035-10042
-
-
Du, Y.1
Liu, H.2
Deng, Y.3
Ye, P.D.4
|