메뉴 건너뛰기




Volumn 5, Issue 8, 2015, Pages 1-21

The opposing actions of target of rapamycin and AMP-Activated protein kinase in cell growth control

Author keywords

[No Author keywords available]

Indexed keywords

ADENYLATE KINASE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; STRESS ACTIVATED PROTEIN KINASE 1; TARGET OF RAPAMYCIN KINASE; TRANSCRIPTION FACTOR; GROWTH FACTOR;

EID: 84940021561     PISSN: None     EISSN: 21571422     Source Type: Journal    
DOI: 10.1101/cshperspect.a019141     Document Type: Article
Times cited : (114)

References (220)
  • 1
    • 34848880141 scopus 로고    scopus 로고
    • Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: A role for oxidant stress
    • An Z, Wang H, Song P, Zhang M, Geng X, Zou MH. 2007. Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: A role for oxidant stress. J Biol Chem 282: 26793–26801.
    • (2007) J Biol Chem , vol.282 , pp. 26793-26801
    • An, Z.1    Wang, H.2    Song, P.3    Zhang, M.4    Geng, X.5    Zou, M.H.6
  • 2
    • 78650316639 scopus 로고    scopus 로고
    • Metformin for aging and cancer prevention
    • Anisimov VN. 2010. Metformin for aging and cancer prevention. Aging 2: 760–774.
    • (2010) Aging , vol.2 , pp. 760-774
    • Anisimov, V.N.1
  • 3
    • 10644282295 scopus 로고    scopus 로고
    • The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. Elegans
    • Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R. 2004. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18: 3004–3009.
    • (2004) Genes Dev , vol.18 , pp. 3004-3009
    • Apfeld, J.1    O’Connor, G.2    McDonagh, T.3    Distefano, P.S.4    Curtis, R.5
  • 4
    • 0033870805 scopus 로고    scopus 로고
    • Sip2p and its partner snf1p kinase affect aging in S. Cerevisiae
    • Ashrafi K, Lin SS, Manchester JK, Gordon JI. 2000. Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 14: 1872–1885.
    • (2000) Genes Dev , vol.14 , pp. 1872-1885
    • Ashrafi, K.1    Lin, S.S.2    Manchester, J.K.3    Gordon, J.I.4
  • 5
    • 34548216870 scopus 로고    scopus 로고
    • The TSC/Rheb/TOR signaling pathway in fission yeast and mammalian cells: Temperature sensitive and constitutive active mutants of TOR
    • Aspuria PJ, Sato T, Tamanoi F. 2007. The TSC/Rheb/TOR signaling pathway in fission yeast and mammalian cells: Temperature sensitive and constitutive active mutants of TOR. Cell Cycle 6: 1692–1695.
    • (2007) Cell Cycle , vol.6 , pp. 1692-1695
    • Aspuria, P.J.1    Sato, T.2    Tamanoi, F.3
  • 6
    • 50349090461 scopus 로고    scopus 로고
    • Convergent energy and stress signaling
    • Baena-Gonzalez E, Sheen J. 2008. Convergent energy and stress signaling. Trends Plant Sci 13: 474–482.
    • (2008) Trends Plant Sci , vol.13 , pp. 474-482
    • Baena-Gonzalez, E.1    Sheen, J.2
  • 8
    • 84870938954 scopus 로고    scopus 로고
    • SnapShot: MTORC1 signaling at the lysosomal surface
    • Bar-Peled L, Sabatini DM. 2012. SnapShot: mTORC1 signaling at the lysosomal surface. Cell 151: 1390–1390 e1391.
    • (2012) Cell 151 , pp. 1390
    • Bar-Peled, L.1    Sabatini, D.M.2
  • 9
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. 2012. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150: 1196–1208.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 11
    • 0031016272 scopus 로고    scopus 로고
    • The structure of a domain common to archaebacteria and the homocystinuria disease protein
    • Bateman A. 1997. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22: 12–13.
    • (1997) Trends Biochem Sci , vol.22 , pp. 12-13
    • Bateman, A.1
  • 12
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck T, Hall MN. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689–692.
    • (1999) Nature , vol.402 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 13
    • 0019967856 scopus 로고
    • Modulation of rat liver 3-hydroxy-3-methylglutaryl-CoA reductase activity by reversible phosphorylation
    • Beg ZH, Brewer HB Jr., 1982. Modulation of rat liver 3-hydroxy-3-methylglutaryl-CoA reductase activity by reversible phosphorylation. Fed Proc 41: 2634–2638.
    • (1982) Fed Proc , vol.41 , pp. 2634-2638
    • Beg, Z.H.1    Brewer, H.B.2
  • 14
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • Ben-Sahra I, Howell JJ, Asara JM, Manning BD. 2013. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339: 1323– 1328.
    • (2013) Science 339: 1323– , pp. 1328
    • Ben-Sahra, I.1    Howell, J.J.2    Asara, J.M.3    Manning, B.D.4
  • 15
    • 65649091377 scopus 로고    scopus 로고
    • Protein kinase B activity is required for the effects of insulin on lipid metabolism in adipocytes
    • Berggreen C, Gormand A, Omar B, Degerman E, Goransson O. 2009. Protein kinase B activity is required for the effects of insulin on lipid metabolism in adipocytes. Am J Physiol Endocrinol Metab 296: E635–E646.
    • (2009) Am J Physiol Endocrinol Metab , vol.296 , pp. E635-E646
    • Berggreen, C.1    Gormand, A.2    Omar, B.3    Degerman, E.4    Goransson, O.5
  • 17
    • 84890149646 scopus 로고    scopus 로고
    • Where is mTOR and what is it doing there?
    • Betz C, Hall MN. 2013. Where is mTOR and what is it doing there? J Cell Biol 203: 563–574.
    • (2013) J Cell Biol , vol.203 , pp. 563-574
    • Betz, C.1    Hall, M.N.2
  • 18
    • 84881098989 scopus 로고    scopus 로고
    • Feature article: MTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology
    • Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN. 2013. Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci 110: 12526– 12534.
    • (2013) Proc Natl Acad Sci 110: 12526– , pp. 12534
    • Betz, C.1    Stracka, D.2    Prescianotto-Baschong, C.3    Frieden, M.4    Demaurex, N.5    Hall, M.N.6
  • 21
    • 0028899789 scopus 로고
    • Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes
    • Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. 1995. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270: 2320–2326.
    • (1995) J Biol Chem , vol.270 , pp. 2320-2326
    • Blommaart, E.F.1    Luiken, J.J.2    Blommaart, P.J.3    Van Woerkom, G.M.4    Meijer, A.J.5
  • 22
    • 0037025356 scopus 로고    scopus 로고
    • AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (MTOR) signaling
    • Bolster DR, Crozier SJ, Kimball SR, Jefferson LS. 2002. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277: 23977–23980.
    • (2002) J Biol Chem , vol.277 , pp. 23977-23980
    • Bolster, D.R.1    Crozier, S.J.2    Kimball, S.R.3    Jefferson, L.S.4
  • 26
    • 79961176457 scopus 로고    scopus 로고
    • Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling
    • Budanov AV. 2011. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 15: 1679–1690.
    • (2011) Antioxid Redox Signal , vol.15 , pp. 1679-1690
    • Budanov, A.V.1
  • 27
    • 48449101433 scopus 로고    scopus 로고
    • p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
    • Budanov AV, Karin M. 2008. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134: 451–460.
    • (2008) Cell , vol.134 , pp. 451-460
    • Budanov, A.V.1    Karin, M.2
  • 31
    • 0028598672 scopus 로고
    • RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex
    • Chiu MI, Katz H, Berlin V. 1994. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci 91: 12574–12578.
    • (1994) Proc Natl Acad Sci , vol.91 , pp. 12574-12578
    • Chiu, M.I.1    Katz, H.2    Berlin, V.3
  • 32
    • 2942580733 scopus 로고    scopus 로고
    • Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids
    • Clark H, Carling D, Saggerson D. 2004. Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids. Eur J Biochem 271: 2215–2224.
    • (2004) Eur J Biochem , vol.271 , pp. 2215-2224
    • Clark, H.1    Carling, D.2    Saggerson, D.3
  • 33
    • 56349168452 scopus 로고    scopus 로고
    • Autophagy and aging: Keeping that old broom working
    • Cuervo AM. 2008. Autophagy and aging: Keeping that old broom working. Trends Genet 24: 604–612.
    • (2008) Trends Genet , vol.24 , pp. 604-612
    • Cuervo, A.M.1
  • 34
    • 33646926969 scopus 로고    scopus 로고
    • Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways
    • Curtis R, O’Connor G, DiStefano PS. 2006. Aging networks in Caenorhabditis elegans: AMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5: 119–126.
    • (2006) Aging Cell , vol.5 , pp. 119-126
    • Curtis, R.1    O’Connor, G.2    Distefano, P.S.3
  • 35
    • 70449900928 scopus 로고    scopus 로고
    • TOR complex 2: A signaling pathway of its own
    • Cybulski N, Hall MN. 2009. TOR complex 2: A signaling pathway of its own. Trends Biochem Sci 34: 620–627.
    • (2009) Trends Biochem Sci , vol.34 , pp. 620-627
    • Cybulski, N.1    Hall, M.N.2
  • 36
    • 84863535512 scopus 로고    scopus 로고
    • P70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake
    • Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB. 2012. p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metab 16: 104–112.
    • Cell Metab , vol.16 , pp. 104-112
    • Dagon, Y.1    Hur, E.2    Zheng, B.3    Wellenstein, K.4    Cantley, L.C.5    Kahn, B.B.6
  • 37
    • 18544375193 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin
    • Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC, Nellist M, Yeung RS, Halley DJ, Nicosia SV, et al. 2002. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277: 35364–35370.
    • (2002) J Biol Chem , vol.277 , pp. 35364-35370
    • Dan, H.C.1    Sun, M.2    Yang, L.3    Feldman, R.I.4    Sui, X.M.5    Ou, C.C.6    Nellist, M.7    Yeung, R.S.8    Halley, D.J.9    Nicosia, S.V.10
  • 38
    • 0029561919 scopus 로고    scopus 로고
    • Studies using bacterially expressed human protein phosphatase-2C a and native bovine protein phosphatase-2AC
    • 0 -AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C a and native bovine protein phosphatase-2AC. FEBS Lett 377: 421–425.
    • FEBS Lett , vol.377 , pp. 421-425
    • Davies, S.P.1    Helps, N.R.2    Cohen, P.T.3    Hardie, D.G.4
  • 39
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades C, Doumpas N, Teleman AA. 2014. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156: 786–799.
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1    Doumpas, N.2    Teleman, A.A.3
  • 40
    • 38349056675 scopus 로고    scopus 로고
    • Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
    • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. 2008. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22: 239–251.
    • (2008) Genes Dev , vol.22 , pp. 239-251
    • Deyoung, M.P.1    Horak, P.2    Sofer, A.3    Sgroi, D.4    Ellisen, L.W.5
  • 41
    • 53549113031 scopus 로고    scopus 로고
    • The role of TOR in autophagy regulation from yeast to plants and mammals
    • Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL. 2008. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4: 851–865.
    • (2008) Autophagy , vol.4 , pp. 851-865
    • Diaz-Troya, S.1    Perez-Perez, M.E.2    Florencio, F.J.3    Crespo, J.L.4
  • 43
    • 0029808294 scopus 로고    scopus 로고
    • Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases
    • Di Como CJ, Arndt KT. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10: 1904–1916.
    • (1996) Genes Dev , vol.10 , pp. 1904-1916
    • Di Como, C.J.1    Arndt, K.T.2
  • 44
    • 79960014848 scopus 로고    scopus 로고
    • ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding
    • Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR. 2011. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 7: 737–747.
    • (2011) Autophagy , vol.7 , pp. 737-747
    • Dunlop, E.A.1    Hunt, D.K.2    Acosta-Jaquez, H.A.3    Fingar, D.C.4    Tee, A.R.5
  • 45
    • 84856453804 scopus 로고    scopus 로고
    • Regulation of TOR by small GTPases
    • Duran RV, Hall MN. 2012. Regulation of TOR by small GTPases. EMBO Rep 13: 121–128.
    • (2012) EMBO Rep , vol.13 , pp. 121-128
    • Duran, R.V.1    Hall, M.N.2
  • 50
    • 0026712359 scopus 로고
    • N-terminal mutations modulate yeast SNF1 protein kinase function
    • Estruch F, Treitel MA, Yang X, Carlson M. 1992. N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics 132: 639–650.
    • (1992) Genetics , vol.132 , pp. 639-650
    • Estruch, F.1    Treitel, M.A.2    Yang, X.3    Carlson, M.4
  • 52
    • 77952163120 scopus 로고    scopus 로고
    • Regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment
    • Feng Z. 2010. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2: a001057.
    • (2010) Cold Spring Harb Perspect Biol , vol.2 , pp. 53
    • Feng, Z.1
  • 53
    • 0033607176 scopus 로고    scopus 로고
    • Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes
    • Foretz M, Guichard C, Ferre P, Foufelle F. 1999. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci 96: 12737–12742.
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 12737-12742
    • Foretz, M.1    Guichard, C.2    Ferre, P.3    Foufelle, F.4
  • 54
    • 0030869792 scopus 로고    scopus 로고
    • Insulin inhibition of 50 adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation
    • 0 adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 46: 1270–1274.
    • (1997) Metabolism , vol.46 , pp. 1270-1274
    • Gamble, J.1    Lopaschuk, G.D.2
  • 55
    • 0034982971 scopus 로고    scopus 로고
    • TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth
    • Gao X, Pan D. 2001. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev 15: 1383–1392.
    • (2001) Genes Dev , vol.15 , pp. 1383-1392
    • Gao, X.1    Pan, D.2
  • 59
    • 35848963394 scopus 로고    scopus 로고
    • Regulation of RNA polymerase III transcription during mammalian cell growth
    • Goodfellow SJ, White RJ. 2007. Regulation of RNA polymerase III transcription during mammalian cell growth. Cell Cycle 6: 2323–2326.
    • (2007) Cell Cycle , vol.6 , pp. 2323-2326
    • Goodfellow, S.J.1    White, R.J.2
  • 60
    • 84885168009 scopus 로고    scopus 로고
    • AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
    • Gowans GJ, Hawley SA, Ross FA, Hardie DG. 2013. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18: 556–566.
    • (2013) Cell Metab , vol.18 , pp. 556-566
    • Gowans, G.J.1    Hawley, S.A.2    Ross, F.A.3    Hardie, D.G.4
  • 62
    • 0028092988 scopus 로고
    • Critical phosphorylation sites for acetyl-CoA carboxylase activity
    • Ha J, Daniel S, Broyles SS, Kim KH. 1994. Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem 269: 22162–22168.
    • (1994) J Biol Chem , vol.269 , pp. 22162-22168
    • Ha, J.1    Daniel, S.2    Broyles, S.S.3    Kim, K.H.4
  • 63
    • 25444524850 scopus 로고    scopus 로고
    • Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity
    • Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. 2005. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280: 32081–32089.
    • (2005) J Biol Chem , vol.280 , pp. 32081-32089
    • Hahn-Windgassen, A.1    Nogueira, V.2    Chen, C.C.3    Skeen, J.E.4    Sonenberg, N.5    Hay, N.6
  • 64
    • 40149105890 scopus 로고    scopus 로고
    • A role for autophagy in the extension of lifespan by dietary restriction in C. Elegans
    • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C. 2008. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4: e24.
    • (2008) Plos Genet , pp. 4
    • Hansen, M.1    Chandra, A.2    Mitic, L.L.3    Onken, B.4    Driscoll, M.5    Kenyon, C.6
  • 65
    • 0032486268 scopus 로고    scopus 로고
    • Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism
    • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273: 14484–14494.
    • (1998) J Biol Chem , vol.273 , pp. 14484-14494
    • Hara, K.1    Yonezawa, K.2    Weng, Q.P.3    Kozlowski, M.T.4    Belham, C.5    Avruch, J.6
  • 67
    • 79251592842 scopus 로고    scopus 로고
    • Cell biology. Why starving cells eat themselves
    • Hardie DG. 2011. Cell biology. Why starving cells eat themselves. Science 331: 410–411.
    • (2011) Science , vol.331 , pp. 410-411
    • Hardie, D.G.1
  • 68
    • 84919621076 scopus 로고    scopus 로고
    • AMPK—Sensing energy while talking to other signaling pathways
    • Hardie DG. 2014. AMPK—Sensing energy while talking to other signaling pathways. Cell Metab 20: 1–14.
    • (2014) Cell Metab , vol.20 , pp. 1-14
    • Hardie, D.G.1
  • 69
    • 84907545906 scopus 로고    scopus 로고
    • AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis
    • Hardie DG. 2015. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 33: 1–7.
    • (2015) Curr Opin Cell Biol , vol.33 , pp. 1-7
    • Hardie, D.G.1
  • 71
    • 0029910018 scopus 로고    scopus 로고
    • Characterization of the AMPactivated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase
    • Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. 1996. Characterization of the AMPactivated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271: 27879–27887.
    • (1996) J Biol Chem , vol.271 , pp. 27879-27887
    • Hawley, S.A.1    Davison, M.2    Woods, A.3    Davies, S.P.4    Beri, R.K.5    Carling, D.6    Hardie, D.G.7
  • 73
    • 84897534723 scopus 로고    scopus 로고
    • Phosphorylation by Akt within the ST loop of AMPK-a1 down-regulates its activation in tumour cells
    • Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG. 2014. Phosphorylation by Akt within the ST loop of AMPK-a1 down-regulates its activation in tumour cells. Biochem J 459: 275–287.
    • (2014) Biochem J , vol.459 , pp. 275-287
    • Hawley, S.A.1    Ross, F.A.2    Gowans, G.J.3    Tibarewal, P.4    Leslie, N.R.5    Hardie, D.G.6
  • 75
    • 38449110592 scopus 로고    scopus 로고
    • SNF1/AMPK pathways in yeast
    • Hedbacker K, Carlson M. 2008. SNF1/AMPK pathways in yeast. Front Biosci 13: 2408–2420.
    • (2008) Front Biosci , vol.13 , pp. 2408-2420
    • Hedbacker, K.1    Carlson, M.2
  • 76
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • Heitman J, Movva NR, Hall MN. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909.
    • (1991) Science , vol.253 , pp. 905-909
    • Heitman, J.1    Movva, N.R.2    Hall, M.N.3
  • 77
    • 0032704115 scopus 로고    scopus 로고
    • Chronic activation of 50 -AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle
    • 0 -AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol 87: 1990–1995.
    • (1999) J Appl Physiol , vol.87 , pp. 1990-1995
    • Holmes, B.F.1    Kurth-Kraczek, E.J.2    Winder, W.W.3
  • 78
    • 34447128162 scopus 로고    scopus 로고
    • Regulation of snf1 protein kinase in response to environmental stress
    • Hong SP, Carlson M. 2007. Regulation of snf1 protein kinase in response to environmental stress. J Biol Chem 282: 16838–16845.
    • (2007) J Biol Chem , vol.282 , pp. 16838-16845
    • Hong, S.P.1    Carlson, M.2
  • 79
    • 33646828975 scopus 로고    scopus 로고
    • Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase a-subunits in heart via hierarchical phosphorylation of Ser485/491
    • Horman S, Vertommen D, Heath R, Neumann D, Mouton V, Woods A, Schlattner U, Wallimann T, Carling D, Hue L, et al. 2006. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase a-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem 281: 5335–5340.
    • (2006) J Biol Chem , vol.281 , pp. 5335-5340
    • Horman, S.1    Vertommen, D.2    Heath, R.3    Neumann, D.4    Mouton, V.5    Woods, A.6    Schlattner, U.7    Wallimann, T.8    Carling, D.9    Hue, L.10
  • 82
    • 84912123676 scopus 로고    scopus 로고
    • Growing knowledge of the mTOR signaling network
    • Huang K, Fingar DC. 2014. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 36: 79–90.
    • (2014) Semin Cell Dev Biol , vol.36 , pp. 79-90
    • Huang, K.1    Fingar, D.C.2
  • 83
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
    • Huang J, Manning BD. 2008. The TSC1-TSC2 complex: A molecular switchboard controlling cell growth. Biochem J 412: 179–190.
    • (2008) Biochem J , vol.412 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 85
    • 84908031923 scopus 로고    scopus 로고
    • State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae
    • Hughes Hallett JE, Luo X, Capaldi AP. 2014. State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae. Genetics 198: 773– 786.
    • (2014) Genetics 198: 773– , pp. 786
    • Hughes Hallett, J.E.1    Luo, X.2    Capaldi, A.P.3
  • 87
    • 84859366546 scopus 로고    scopus 로고
    • mTOR signaling regulates the processing of pre-rRNA in human cells
    • Iadevaia V, Zhang Z, Jan E, Proud CG. 2012. mTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Res 40: 2527–2539.
    • (2012) Nucleic Acids Res , vol.40 , pp. 2527-2539
    • Iadevaia, V.1    Zhang, Z.2    Jan, E.3    Proud, C.G.4
  • 88
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, Wu J, Guan KL. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.
    • (2002) Nat Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 89
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K, Li Y, Xu T, Guan KL. 2003a. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834.
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3    Guan, K.L.4
  • 90
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL. 2003b. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 91
    • 33748153690 scopus 로고    scopus 로고
    • TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
    • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, et al. 2006. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126: 955–968.
    • (2006) Cell , vol.126 , pp. 955-968
    • Inoki, K.1    Ouyang, H.2    Zhu, T.3    Lindvall, C.4    Wang, Y.5    Zhang, X.6    Yang, Q.7    Bennett, C.8    Harada, Y.9    Stankunas, K.10
  • 92
    • 84862908818 scopus 로고    scopus 로고
    • AMPK and mTOR in cellular energy homeostasis and drug targets
    • Inoki K, Kim J, Guan KL. 2012. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52: 381–400.
    • (2012) Annu Rev Pharmacol Toxicol , vol.52 , pp. 381-400
    • Inoki, K.1    Kim, J.2    Guan, K.L.3
  • 93
    • 0035930339 scopus 로고    scopus 로고
    • TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway
    • Jacinto E, Guo B, Arndt KT, Schmelzle T, Hall MN. 2001. TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell 8: 1017–1026.
    • (2001) Mol Cell , vol.8 , pp. 1017-1026
    • Jacinto, E.1    Guo, B.2    Arndt, K.T.3    Schmelzle, T.4    Hall, M.N.5
  • 95
    • 4544311861 scopus 로고    scopus 로고
    • The TOR pathway interacts with the insulin signaling pathway to regulate C. Elegans larval development, metabolism and life span
    • Jia K, Chen D, Riddle DL. 2004. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131: 3897–3906.
    • (2004) Development , vol.131 , pp. 3897-3906
    • Jia, K.1    Chen, D.2    Riddle, D.L.3
  • 97
    • 80053430528 scopus 로고    scopus 로고
    • ULK1 inhibits the kinase activity of mTORC1 and cell proliferation
    • Jung CH, Seo M, Otto NM, Kim DH. 2011. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 7: 1212–1221.
    • (2011) Autophagy , vol.7 , pp. 1212-1221
    • Jung, C.H.1    Seo, M.2    Otto, N.M.3    Kim, D.H.4
  • 100
    • 77955287244 scopus 로고    scopus 로고
    • mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1
    • Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ. 2010. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci 107: 11823–11828.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 11823-11828
    • Kantidakis, T.1    Ramsbottom, B.A.2    Birch, J.L.3    Dowding, S.N.4    White, R.J.5
  • 104
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132–141.
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 106
    • 33846498082 scopus 로고    scopus 로고
    • Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes
    • Kohda TA, Tanaka K, Konomi M, Sato M, Osumi M, Yamamoto M. 2007. Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes. Genes Cells 12: 155–170.
    • (2007) Genes Cells , vol.12 , pp. 155-170
    • Kohda, T.A.1    Tanaka, K.2    Konomi, M.3    Sato, M.4    Osumi, M.5    Yamamoto, M.6
  • 109
    • 84856695667 scopus 로고    scopus 로고
    • S6K links cell fate, cell cycle and nutrient response in C. Elegans germline stem/ progenitor cells
    • Korta DZ, Tuck S, Hubbard EJ. 2012. S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/ progenitor cells. Development 139: 859–870.
    • (2012) Development , vol.139 , pp. 859-870
    • Korta, D.Z.1    Tuck, S.2    Hubbard, E.J.3
  • 110
    • 0141925771 scopus 로고    scopus 로고
    • Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart
    • Kovacic S, Soltys CL, Barr AJ, Shiojima I, Walsh K, Dyck JR. 2003. Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J Biol Chem 278: 39422–39427.
    • (2003) J Biol Chem , vol.278 , pp. 39422-39427
    • Kovacic, S.1    Soltys, C.L.2    Barr, A.J.3    Shiojima, I.4    Walsh, K.5    Dyck, J.R.6
  • 114
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149: 274–293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 118
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. 2011. Autophagy in immunity and inflammation. Nature 469: 323–335.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 119
    • 79953755370 scopus 로고    scopus 로고
    • AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
    • Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, et al. 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13: 376–388.
    • (2011) Cell Metab , vol.13 , pp. 376-388
    • Li, Y.1    Xu, S.2    Mihaylova, M.M.3    Zheng, B.4    Hou, X.5    Jiang, B.6    Park, O.7    Luo, Z.8    Lefai, E.9    Shyy, J.Y.10
  • 120
    • 43949102406 scopus 로고    scopus 로고
    • SNF4Ag, the Drosophila AMPK g subunit is required for regulation of developmental and stress-induced autophagy
    • Lippai M, Csikos G, Maroy P, Lukacsovich T, Juhasz G, Sass M. 2008. SNF4Ag, the Drosophila AMPK g subunit is required for regulation of developmental and stress-induced autophagy. Autophagy 4: 476–486.
    • (2008) Autophagy , vol.4 , pp. 476-486
    • Lippai, M.1    Csikos, G.2    Maroy, P.3    Lukacsovich, T.4    Juhasz, G.5    Sass, M.6
  • 121
    • 77955608570 scopus 로고    scopus 로고
    • TOR is a negative regulator of autophagy in Arabidopsis thaliana
    • Liu Y, Bassham DC. 2010. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE 5: e11883.
    • (2010) Plos ONE , pp. 5
    • Liu, Y.1    Bassham, D.C.2
  • 122
    • 67651174518 scopus 로고    scopus 로고
    • Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle
    • Ljubicic V, Hood DA. 2009. Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle. Aging Cell 8: 394–404.
    • (2009) Aging Cell , vol.8 , pp. 394-404
    • Ljubicic, V.1    Hood, D.A.2
  • 125
    • 0037015269 scopus 로고    scopus 로고
    • TOR deficiency in C. Elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation
    • Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J. 2002. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 12: 1448–1461.
    • (2002) Curr Biol , vol.12 , pp. 1448-1461
    • Long, X.1    Spycher, C.2    Han, Z.S.3    Rose, A.M.4    Muller, F.5    Avruch, J.6
  • 128
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTORmediated translational control
    • Ma XM, Blenis J. 2009. Molecular mechanisms of mTORmediated translational control. Nat Rev Mol Cell Biol 10: 307–318.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 130
    • 33646901357 scopus 로고    scopus 로고
    • Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals
    • Mahfouz MM, Kim S, Delauney AJ, Verma DP. 2006. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18: 477–490.
    • (2006) Plant Cell , vol.18 , pp. 477-490
    • Mahfouz, M.M.1    Kim, S.2    Delauney, A.J.3    Verma, D.P.4
  • 131
    • 0036342294 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
    • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. 2002. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.
    • (2002) Mol Cell , vol.10 , pp. 151-162
    • Manning, B.D.1    Tee, A.R.2    Logsdon, M.N.3    Blenis, J.4    Cantley, L.C.5
  • 133
    • 33750044901 scopus 로고    scopus 로고
    • Ribosome biogenesis and cell growth: MTOR coordinates transcription by all three classes of nuclear RNA polymerases
    • Mayer C, Grummt I. 2006. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25: 6384–6391.
    • (2006) Oncogene , vol.25 , pp. 6384-6391
    • Mayer, C.1    Grummt, I.2
  • 134
    • 0037144584 scopus 로고    scopus 로고
    • Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress response element)-regulated genes
    • Mayordomo I, Estruch F, Sanz P. 2002. Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (stress response element)-regulated genes. J Biol Chem 277: 35650–35656.
    • (2002) J Biol Chem , vol.277 , pp. 35650-35656
    • Mayordomo, I.1    Estruch, F.2    Sanz, P.3
  • 138
    • 0027932717 scopus 로고
    • Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase
    • Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F, Witters LA, Kemp BE. 1994. Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem 269: 2361–2364.
    • (1994) J Biol Chem , vol.269 , pp. 2361-2364
    • Mitchelhill, K.I.1    Stapleton, D.2    Gao, G.3    House, C.4    Michell, B.5    Katsis, F.6    Witters, L.A.7    Kemp, B.E.8
  • 139
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. 2008. Autophagy fights disease through cellular self-digestion. Nature 451: 1069–1075.
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 140
    • 33748747706 scopus 로고    scopus 로고
    • Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro
    • Momcilovic M, Hong SP, Carlson M. 2006. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281: 25336–25343.
    • (2006) J Biol Chem , vol.281 , pp. 25336-25343
    • Momcilovic, M.1    Hong, S.P.2    Carlson, M.3
  • 142
    • 0023789884 scopus 로고
    • Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase
    • Munday MR, Campbell DG, Carling D, Hardie DG. 1988. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem 175: 331–338.
    • (1988) Eur J Biochem , vol.175 , pp. 331-338
    • Munday, M.R.1    Campbell, D.G.2    Carling, D.3    Hardie, D.G.4
  • 143
    • 0033559856 scopus 로고    scopus 로고
    • AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: Evidence that sn-glycerol-3-phosphate acyltransferase is a novel target
    • Muoio DM, Seefeld K, Witters LA, Coleman RA. 1999. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: Evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J 338: 783–791.
    • (1999) Biochem J , vol.338 , pp. 783-791
    • Muoio, D.M.1    Seefeld, K.2    Witters, L.A.3    Coleman, R.A.4
  • 144
    • 79960746886 scopus 로고    scopus 로고
    • Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells
    • Ning J, Xi G, Clemmons DR. 2011. Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 152: 3143–3154.
    • (2011) Endocrinology , vol.152 , pp. 3143-3154
    • Ning, J.1    Xi, G.2    Clemmons, D.R.3
  • 145
    • 77952876250 scopus 로고    scopus 로고
    • Methylglyoxal activates Gcn2 to phosphorylate eIF2a independently of the TOR pathway in Saccharomyces cerevisiae
    • Nomura W, Maeta K, Kita K, Izawa S, Inoue Y. 2010. Methylglyoxal activates Gcn2 to phosphorylate eIF2a independently of the TOR pathway in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86: 1887–1894.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1887-1894
    • Nomura, W.1    Maeta, K.2    Kita, K.3    Izawa, S.4    Inoue, Y.5
  • 147
    • 79960470913 scopus 로고    scopus 로고
    • mTOR complex 2 signaling and functions
    • Oh WJ, Jacinto E. 2011. mTOR complex 2 signaling and functions. Cell Cycle 10: 2305–2316.
    • (2011) Cell Cycle , vol.10 , pp. 2305-2316
    • Oh, W.J.1    Jacinto, E.2
  • 148
    • 0034312279 scopus 로고    scopus 로고
    • Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin
    • Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. 2000. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14: 2689–2694.
    • (2000) Genes Dev , vol.14 , pp. 2689-2694
    • Oldham, S.1    Montagne, J.2    Radimerski, T.3    Thomas, G.4    Hafen, E.5
  • 149
    • 33751191872 scopus 로고    scopus 로고
    • Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae
    • Orlova M, Kanter E, Krakovich D, Kuchin S. 2006. Nitrogen availability and TOR regulate the Snf1 protein kinase in Saccharomyces cerevisiae. Eukaryot Cell 5: 1831–1837.
    • (2006) Eukaryot Cell , vol.5 , pp. 1831-1837
    • Orlova, M.1    Kanter, E.2    Krakovich, D.3    Kuchin, S.4
  • 150
    • 0037705403 scopus 로고    scopus 로고
    • Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum
    • Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH. 2003. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J Biol Chem 278: 17636–17645.
    • (2003) J Biol Chem , vol.278 , pp. 17636-17645
    • Otto, G.P.1    Wu, M.Y.2    Kazgan, N.3    Erson, O.R.4    Kessin, R.H.5
  • 151
    • 0036796288 scopus 로고    scopus 로고
    • A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion
    • Pan DA, Hardie DG. 2002. A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem J 367: 179–186.
    • (2002) Biochem J , vol.367 , pp. 179-186
    • Pan, D.A.1    Hardie, D.G.2
  • 153
    • 84878353147 scopus 로고    scopus 로고
    • Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
    • Panchaud N, Peli-Gulli MP, De Virgilio C. 2013. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 6: ra42.
    • (2013) Sci Signal 6: Ra42
    • Panchaud, N.1    Peli-Gulli, M.P.2    De Virgilio, C.3
  • 155
    • 33645512801 scopus 로고    scopus 로고
    • Bcl-2 inhibition of autophagy: A new route to cancer?
    • Pattingre S, Levine B. 2006. Bcl-2 inhibition of autophagy: A new route to cancer? Cancer Res 66: 2885–2888.
    • (2006) Cancer Res , vol.66 , pp. 2885-2888
    • Pattingre, S.1    Levine, B.2
  • 157
    • 84907525131 scopus 로고    scopus 로고
    • Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling
    • Peng M, Yin N, Li MO. 2014. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 159: 122–133.
    • (2014) Cell , vol.159 , pp. 122-133
    • Peng, M.1    Yin, N.2    Li, M.O.3
  • 159
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
    • Petit CS, Roczniak-Ferguson A, Ferguson SM. 2013. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J Cell Biol 202: 1107–1122.
    • (2013) J Cell Biol , vol.202 , pp. 1107-1122
    • Petit, C.S.1    Roczniak-Ferguson, A.2    Ferguson, S.M.3
  • 160
    • 33846290287 scopus 로고    scopus 로고
    • SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control?
    • Polge C, Thomas M. 2007. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12: 20–28.
    • (2007) Trends Plant Sci , vol.12 , pp. 20-28
    • Polge, C.1    Thomas, M.2
  • 162
    • 2442605728 scopus 로고    scopus 로고
    • TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae
    • Reinke A, Anderson S, McCaffery JM, Yates J 3rd, Aronova S, Chu S, Fairclough S, Iverson C, Wedaman KP, Powers T. 2004. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 279: 14752–14762.
    • (2004) J Biol Chem , vol.279 , pp. 14752-14762
    • Reinke, A.1    Erson, S.2    McCaffery, J.M.3    Yates, J.4    Aronova, S.5    Chu, S.6    Fairclough, S.7    Iverson, C.8    Wedaman, K.P.9    Powers, T.10
  • 163
    • 84874655800 scopus 로고    scopus 로고
    • The multifaceted role of mTORC1 in the control of lipid metabolism
    • Ricoult SJ, Manning BD. 2013. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep 14: 242–251.
    • (2013) EMBO Rep , vol.14 , pp. 242-251
    • Ricoult, S.J.1    Manning, B.D.2
  • 165
    • 84878085907 scopus 로고    scopus 로고
    • The FOX transcription factor Hcm1 regulates oxidative metabolism in response to early nutrient limitation in yeast. Role of Snf1 and Tor1/ Sch9 kinases
    • Rodriguez-Colman MJ, Sorolla MA, Vall-Llaura N, Tamarit J, Ros J, Cabiscol E. 2013. The FOX transcription factor Hcm1 regulates oxidative metabolism in response to early nutrient limitation in yeast. Role of Snf1 and Tor1/ Sch9 kinases. Biochim Biophys Acta 1833: 2004–2015.
    • (2013) Biochim Biophys Acta , vol.1833 , pp. 2004-2015
    • Rodriguez-Colman, M.J.1    Sorolla, M.A.2    Vall-Llaura, N.3    Tamarit, J.4    Ros, J.5    Cabiscol, E.6
  • 166
    • 4544333055 scopus 로고    scopus 로고
    • TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors
    • Rohde JR, Campbell S, Zurita-Martinez SA, Cutler NS, Ashe M, Cardenas ME. 2004. TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors. Mol Cell Biol 24: 8332–8341.
    • (2004) Mol Cell Biol , vol.24 , pp. 8332-8341
    • Rohde, J.R.1    Campbell, S.2    Zurita-Martinez, S.A.3    Cutler, N.S.4    Ashe, M.5    Cardenas, M.E.6
  • 167
    • 79955588701 scopus 로고    scopus 로고
    • Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase
    • Ruiz A, Xu X, Carlson M. 2011. Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase. Proc Natl Acad Sci 108: 6349–6354.
    • (2011) Proc Natl Acad Sci , vol.108 , pp. 6349-6354
    • Ruiz, A.1    Xu, X.2    Carlson, M.3
  • 168
    • 0028239893 scopus 로고
    • RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs
    • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. 1994. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.
    • (1994) Cell , vol.78 , pp. 35-43
    • Sabatini, D.M.1    Erdjument-Bromage, H.2    Lui, M.3    Tempst, P.4    Snyder, S.H.5
  • 170
    • 18244362311 scopus 로고    scopus 로고
    • Novel role of the small GTPase Rheb: Its implication in endocytic pathway independent of the activation of mammalian target of rapamycin
    • Saito K, Araki Y, Kontani K, Nishina H, Katada T. 2005. Novel role of the small GTPase Rheb: Its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J Biochem 137: 423– 430.
    • (2005) J Biochem 137: 423– , pp. 430
    • Saito, K.1    Araki, Y.2    Kontani, K.3    Nishina, H.4    Katada, T.5
  • 174
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141: 290–303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 176
    • 34748850786 scopus 로고    scopus 로고
    • Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress
    • Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. 2007. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6: 280–293.
    • (2007) Cell Metab , vol.6 , pp. 280-293
    • Schulz, T.J.1    Zarse, K.2    Voigt, A.3    Urban, N.4    Birringer, M.5    Ristow, M.6
  • 177
    • 4344563878 scopus 로고    scopus 로고
    • Role and regulation of starvation-induced autophagy in the Drosophila fat body
    • Scott RC, Schuldiner O, Neufeld TP. 2004. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7: 167–178.
    • (2004) Dev Cell , vol.7 , pp. 167-178
    • Scott, R.C.1    Schuldiner, O.2    Neufeld, T.P.3
  • 178
    • 33845874899 scopus 로고    scopus 로고
    • Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death
    • Scott RC, Juhasz G, Neufeld TP. 2007. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17: 1–11.
    • (2007) Curr Biol , vol.17 , pp. 1-11
    • Scott, R.C.1    Juhasz, G.2    Neufeld, T.P.3
  • 180
    • 79958212150 scopus 로고    scopus 로고
    • Conservation of structural and functional elements of TSC1 and TSC2: A bioinformatic comparison across animal models
    • Serfontein J, Nisbet RE, Howe CJ, de Vries PJ. 2011. Conservation of structural and functional elements of TSC1 and TSC2: A bioinformatic comparison across animal models. Behav Genet 41: 349–356.
    • (2011) Behav Genet , vol.41 , pp. 349-356
    • Serfontein, J.1    Nisbet, R.E.2    Howe, C.J.3    De Vries, P.J.4
  • 183
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: The mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M, Hall MN. 2014. Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15: 155–162.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 185
    • 46749133868 scopus 로고    scopus 로고
    • Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration
    • Spasic MR, Callaerts P, Norga KK. 2008. Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J Neurosci 28: 6419– 6429.
    • (2008) J Neurosci 28: 6419– , pp. 6429
    • Spasic, M.R.1    Callaerts, P.2    Norga, K.K.3
  • 187
    • 0033180353 scopus 로고    scopus 로고
    • Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 50 -AMP
    • 0 -AMP. Plant J 19: 433–439.
    • (1999) Plant J , vol.19 , pp. 433-439
    • Sugden, C.1    Crawford, R.M.2    Halford, N.G.3    Hardie, D.G.4
  • 188
    • 82755166963 scopus 로고    scopus 로고
    • The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis
    • Suttangkakul A, Li F, Chung T, Vierstra RD. 2011. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23: 3761–3779.
    • (2011) Plant Cell , vol.23 , pp. 3761-3779
    • Suttangkakul, A.1    Li, F.2    Chung, T.3    Vierstra, R.D.4
  • 189
    • 84864292157 scopus 로고    scopus 로고
    • TORC1 of fission yeast is rapamycin-sensitive
    • Takahara T, Maeda T. 2012. TORC1 of fission yeast is rapamycin-sensitive. Genes Cells 17: 698–708.
    • (2012) Genes Cells , vol.17 , pp. 698-708
    • Takahara, T.1    Maeda, T.2
  • 190
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. 2003. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13: 1259–1268.
    • (2003) Curr Biol , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3    Cantley, L.C.4    Blenis, J.5
  • 191
    • 33750334034 scopus 로고    scopus 로고
    • Function of the Dictyostelium discoideum Atg1 kinase during autophagy and development
    • Tekinay T, Wu MY, Otto GP, Anderson OR, Kessin RH. 2006. Function of the Dictyostelium discoideum Atg1 kinase during autophagy and development. Eukaryot Cell 5: 1797–1806.
    • (2006) Eukaryot Cell , vol.5 , pp. 1797-1806
    • Tekinay, T.1    Wu, M.Y.2    Otto, G.P.3    Erson, O.R.4    Kessin, R.H.5
  • 192
    • 2442611708 scopus 로고    scopus 로고
    • Snf1-related protein kinase 1 is needed for growth in a normal day–night light cycle
    • Thelander M, Olsson T, Ronne H. 2004. Snf1-related protein kinase 1 is needed for growth in a normal day–night light cycle. EMBO J 23: 1900–1910.
    • (2004) EMBO J , vol.23 , pp. 1900-1910
    • Thelander, M.1    Olsson, T.2    Ronne, H.3
  • 195
    • 0034646618 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake
    • Urano J, Tabancay AP, Yang W, Tamanoi F. 2000. The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem 275: 11198–11206.
    • (2000) J Biol Chem , vol.275 , pp. 11198-11206
    • Urano, J.1    Tabancay, A.P.2    Yang, W.3    Tamanoi, F.4
  • 196
    • 73149091660 scopus 로고    scopus 로고
    • Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator
    • Usaite R, Jewett MC, Oliveira AP, Yates JR 3rd, Olsson L, Nielsen J. 2009. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 5: 319.
    • (2009) Mol Syst Biol , vol.5 , pp. 319
    • Usaite, R.1    Jewett, M.C.2    Oliveira, A.P.3    Yates, J.R.4    Olsson, L.5    Nielsen, J.6
  • 197
    • 84865000275 scopus 로고    scopus 로고
    • AMPK phosphorylation by Ssp1 is required for proper sexual differentiation in fission yeast
    • Valbuena N, Moreno S. 2012. AMPK phosphorylation by Ssp1 is required for proper sexual differentiation in fission yeast. J Cell Sci 125: 2655–2664.
    • (2012) J Cell Sci , vol.125 , pp. 2655-2664
    • Valbuena, N.1    Moreno, S.2
  • 198
    • 84907809393 scopus 로고    scopus 로고
    • Insulin inhibits AMPK activity and phosphorylates AMPK Ser(485/491) through Akt in hepatocytes, myotubes and incubated rat skeletal muscle
    • Valentine RJ, Coughlan KA, Ruderman NB, Saha AK. 2014. Insulin inhibits AMPK activity and phosphorylates AMPK Ser(485/491) through Akt in hepatocytes, myotubes and incubated rat skeletal muscle. Arch Biochem Biophys 562: 62–69.
    • (2014) Arch Biochem Biophys , vol.562 , pp. 62-69
    • Valentine, R.J.1    Coughlan, K.A.2    Ruderman, N.B.3    Saha, A.K.4
  • 201
    • 0142252552 scopus 로고    scopus 로고
    • Analysis of the small GTPase gene superfamily of Arabidopsis
    • Vernoud V, Horton AC, Yang Z, Nielsen E. 2003. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131: 1191–1208.
    • (2003) Plant Physiol , vol.131 , pp. 1191-1208
    • Vernoud, V.1    Horton, A.C.2    Yang, Z.3    Nielsen, E.4
  • 202
    • 0027210562 scopus 로고
    • General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia
    • Wang GL, Semenza GL. 1993. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci 90: 4304–4308.
    • (1993) Proc Natl Acad Sci , vol.90 , pp. 4304-4308
    • Wang, G.L.1    Semenza, G.L.2
  • 203
    • 0034898851 scopus 로고    scopus 로고
    • Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p
    • Wang Z, Wilson WA, Fujino MA, Roach PJ. 2001. Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21: 5742–5752.
    • (2001) Mol Cell Biol , vol.21 , pp. 5742-5752
    • Wang, Z.1    Wilson, W.A.2    Fujino, M.A.3    Roach, P.J.4
  • 205
    • 0026782061 scopus 로고
    • Insulin activation of acetyl CoA carboxylase accompanied by inhibition of the 50 AMP-activated protein kinase
    • 0 AMP-activated protein kinase. J Biol Chem 267: 2864– 2867.
    • (1992) J Biol Chem 267: 2864– , pp. 2867
    • Witters, L.A.1    Kemp, B.E.2
  • 206
    • 0028070457 scopus 로고
    • Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo
    • Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D. 1994. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269: 19509– 19515.
    • (1994) J Biol Chem 269: 19509– , pp. 19515
    • Woods, A.1    Munday, M.R.2    Scott, J.3    Yang, X.4    Carlson, M.5    Carling, D.6
  • 208
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124: 471–484.
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 210
    • 0018963044 scopus 로고
    • Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge
    • Yeh LA, Lee KH, Kim KH. 1980. Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J Biol Chem 255: 2308– 2314.
    • (1980) J Biol Chem 255: 2308– , pp. 2314
    • Yeh, L.A.1    Lee, K.H.2    Kim, K.H.3
  • 211
    • 78349245944 scopus 로고    scopus 로고
    • Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae
    • Yeh YY, Wrasman K, Herman PK. 2010. Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 185: 871– 882.
    • (2010) Genetics 185: 871– , pp. 882
    • Yeh, Y.Y.1    Wrasman, K.2    Herman, P.K.3
  • 213
    • 51349095898 scopus 로고    scopus 로고
    • Restoration of chaperonemediated autophagy in aging liver improves cellular maintenance and hepatic function
    • Zhang C, Cuervo AM. 2008. Restoration of chaperonemediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14: 959– 965.
    • (2008) Nat Med 14: 959– , pp. 965
    • Zhang, C.1    Cuervo, A.M.2
  • 214
    • 0034312315 scopus 로고    scopus 로고
    • Regulation of cellular growth by the Drosophila target of rapamycin dTOR
    • Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. 2000. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14: 2712–2724.
    • (2000) Genes Dev , vol.14 , pp. 2712-2724
    • Zhang, H.1    Stallock, J.P.2    Ng, J.C.3    Reinhard, C.4    Neufeld, T.P.5
  • 215
    • 0038141979 scopus 로고    scopus 로고
    • Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
    • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. 2003. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5: 578–581.
    • (2003) Nat Cell Biol , vol.5 , pp. 578-581
    • Zhang, Y.1    Gao, X.2    Saucedo, L.J.3    Ru, B.4    Edgar, B.A.5    Pan, D.6
  • 217
    • 84885142437 scopus 로고    scopus 로고
    • AMP as a low-energy charge signal autonomously initiates assembly of AXINAMPK-LKB1 complex for AMPK activation
    • Zhang YL, Guo H, Zhang CS, Lin SY, Yin Z, Peng Y, Luo H, Shi Y, Lian G, Zhang C, et al. 2013. AMP as a low-energy charge signal autonomously initiates assembly of AXINAMPK-LKB1 complex for AMPK activation. Cell Metab 18: 546–555.
    • (2013) Cell Metab , vol.18 , pp. 546-555
    • Zhang, Y.L.1    Guo, H.2    Zhang, C.S.3    Lin, S.Y.4    Yin, Z.5    Peng, Y.6    Luo, H.7    Shi, Y.8    Lian, G.9    Zhang, C.10
  • 218
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal v-ATPaseragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
    • Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, et al. 2014. The lysosomal v-ATPaseragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20: 526–540.
    • (2014) Cell Metab , vol.20 , pp. 526-540
    • Zhang, C.S.1    Jiang, B.2    Li, M.3    Zhu, M.4    Peng, Y.5    Zhang, Y.L.6    Wu, Y.Q.7    Li, T.Y.8    Liang, Y.9    Lu, Z.10
  • 219
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V, Stracka D, Oppliger W, Hall MN. 2011. Activation of mTORC2 by association with the ribosome. Cell 144: 757–768.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.