메뉴 건너뛰기




Volumn 14, Issue 3, 2013, Pages 242-251

The multifaceted role of mTORC1 in the control of lipid metabolism

Author keywords

adipocytes; Akt; insulin; liver; mTOR

Indexed keywords

CCAAT ENHANCER BINDING PROTEIN ALPHA; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA;

EID: 84874655800     PISSN: 1469221X     EISSN: 14693178     Source Type: Journal    
DOI: 10.1038/embor.2013.5     Document Type: Review
Times cited : (214)

References (88)
  • 1
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
    • Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412: 179-190
    • (2008) Biochem J , vol.412 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 2
    • 84865371057 scopus 로고    scopus 로고
    • TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
    • Dibble CC et al (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47: 535-546
    • (2012) Mol Cell , vol.47 , pp. 535-546
    • Dibble, C.C.1
  • 3
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648-657
    • (2002) Nat Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 4
    • 0036342294 scopus 로고    scopus 로고
    • Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
    • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151-162
    • (2002) Mol Cell , vol.10 , pp. 151-162
    • Manning, B.D.1    Tee, A.R.2    Logsdon, M.N.3    Blenis, J.4    Cantley, L.C.5
  • 5
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577-590
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 8
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149: 274-293
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 9
    • 77954235821 scopus 로고    scopus 로고
    • Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
    • Sparks CA, Guertin DA (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29: 3733-3744
    • (2010) Oncogene , vol.29 , pp. 3733-3744
    • Sparks, C.A.1    Guertin, D.A.2
  • 10
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125-1131
    • (2002) J Clin Invest , vol.109 , pp. 1125-1131
    • Horton, J.D.1    Goldstein, J.L.2    Brown, M.S.3
  • 11
    • 84856471735 scopus 로고    scopus 로고
    • SREBPs: Metabolic integrators in physiology and metabolism
    • Jeon TI, Osborne TF (2011) SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 23: 65-72
    • (2011) Trends Endocrinol Metab , vol.23 , pp. 65-72
    • Jeon, T.I.1    Osborne, T.F.2
  • 12
    • 0030907175 scopus 로고    scopus 로고
    • Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells
    • Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99: 846-854
    • (1997) J Clin Invest , vol.99 , pp. 846-854
    • Shimano, H.1    Horton, J.D.2    Shimomura, I.3    Hammer, R.E.4    Brown, M.S.5    Goldstein, J.L.6
  • 13
    • 0032104180 scopus 로고    scopus 로고
    • Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2
    • Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101: 2331-2339
    • (1998) J Clin Invest , vol.101 , pp. 2331-2339
    • Horton, J.D.1    Shimomura, I.2    Brown, M.S.3    Hammer, R.E.4    Goldstein, J.L.5    Shimano, H.6
  • 15
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Düvel K et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39: 171-183
    • (2010) Mol Cell , vol.39 , pp. 171-183
    • Düvel, K.1
  • 17
    • 35248816945 scopus 로고    scopus 로고
    • The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes
    • Brown NF, Stefanovic-Racic M, Sipula IJ, Perdomo G (2007) The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism 56: 1500-1507
    • (2007) Metabolism , vol.56 , pp. 1500-1507
    • Brown, N.F.1    Stefanovic-Racic, M.2    Sipula, I.J.3    Perdomo, G.4
  • 18
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies JL et al (2011) Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 14: 21-32
    • (2011) Cell Metab , vol.14 , pp. 21-32
    • Yecies, J.L.1
  • 19
    • 77649264504 scopus 로고    scopus 로고
    • Bifurcation of insulin signaling pathway in rat liver: MTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
    • Li S, Brown MS, Goldstein JL (2010) Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci USA 107: 3441-3446
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 3441-3446
    • Li, S.1    Brown, M.S.2    Goldstein, J.L.3
  • 22
    • 80053083941 scopus 로고    scopus 로고
    • The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile
    • Wang BT, Ducker GS, Barczak AJ, Barbeau R, Erle DJ, Shokat KM (2011) The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc Natl Acad Sci USA 108: 15201-15206
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 15201-15206
    • Wang, B.T.1    Ducker, G.S.2    Barczak, A.J.3    Barbeau, R.4    Erle, D.J.5    Shokat, K.M.6
  • 23
    • 84865065336 scopus 로고
    • The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice
    • Liu X, Yuan H, Niu Y, Niu W, Fu L (2012) The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice. Biochim Biophys Acta 1822: 1716-1726
    • (1822) Biochim Biophys Acta , pp. 1716-1726
    • Liu, X.1    Yuan, H.2    Niu, Y.3    Niu, W.4    Fu, L.5
  • 25
    • 79961165137 scopus 로고    scopus 로고
    • MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson TR et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146: 408-420
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1
  • 26
    • 79953177846 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
    • Kenerson HL, Yeh MM, Yeung RS (2011) Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 6: e18075
    • (2011) PLoS ONE , vol.6
    • Kenerson, H.L.1    Yeh, M.M.2    Yeung, R.S.3
  • 27
    • 59749091850 scopus 로고    scopus 로고
    • A complex interplay between Akt. TSC2 and the two mTOR complexes
    • Huang J, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37: 217-222
    • (2009) Biochem Soc Trans , vol.37 , pp. 217-222
    • Huang, J.1    Manning, B.D.2
  • 28
    • 0034235363 scopus 로고    scopus 로고
    • Regulation of sterol regulatory-element binding protein 1 gene expression in liver: Role of insulin and protein kinase B/cAkt
    • Fleischmann M, Iynedjian PB (2000) Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem J 349: 13-17
    • (2000) Biochem J , vol.349 , pp. 13-17
    • Fleischmann, M.1    Iynedjian, P.B.2
  • 29
  • 30
    • 10744228468 scopus 로고    scopus 로고
    • Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement
    • Ono H et al (2003) Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 52: 2905-2913
    • (2003) Diabetes , vol.52 , pp. 2905-2913
    • Ono, H.1
  • 31
    • 84860454425 scopus 로고    scopus 로고
    • Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
    • Hagiwara A et al (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15: 725-738
    • (2012) Cell Metab , vol.15 , pp. 725-738
    • Hagiwara, A.1
  • 32
    • 65549140251 scopus 로고    scopus 로고
    • A phosphorylation cascade controls the degradation of active SREBP1
    • Bengoechea-Alonso MT, Ericsson J (2009) A phosphorylation cascade controls the degradation of active SREBP1. J Biol Chem 284: 5885-5895
    • (2009) J Biol Chem , vol.284 , pp. 5885-5895
    • Bengoechea-Alonso, M.T.1    Ericsson, J.2
  • 33
    • 77958030867 scopus 로고    scopus 로고
    • Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer
    • Luyimbazi D et al (2010) Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Mol Cancer Ther 9: 2770-2784
    • (2010) Mol Cancer Ther , vol.9 , pp. 2770-2784
    • Luyimbazi, D.1
  • 34
    • 77649216053 scopus 로고    scopus 로고
    • EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
    • Guo D et al (2009) EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2: ra82
    • (2009) Sci Signal , vol.2
    • Guo, D.1
  • 35
    • 0037154264 scopus 로고    scopus 로고
    • Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin
    • Huffman TA, Mothe-Satney I, Lawrence JC Jr (2002) Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci USA 99: 1047-1052
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 1047-1052
    • Huffman, T.A.1    Mothe-Satney, I.2    Lawrence Jr., J.C.3
  • 36
    • 0029958652 scopus 로고    scopus 로고
    • Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2
    • Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M (1996) Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem 271: 26461-26464
    • (1996) J Biol Chem , vol.271 , pp. 26461-26464
    • Sato, R.1    Inoue, J.2    Kawabe, Y.3    Kodama, T.4    Takano, T.5    Maeda, M.6
  • 37
    • 0034613175 scopus 로고    scopus 로고
    • Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene
    • Amemiya-Kudo M et al (2000) Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J Biol Chem 275: 31078-31085
    • (2000) J Biol Chem , vol.275 , pp. 31078-31085
    • Amemiya-Kudo, M.1
  • 38
    • 77149154335 scopus 로고    scopus 로고
    • Adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation
    • Vila-Bedmar R, Lorenzo M, Fernández-Veledo S (2010) Adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 151: 980-992
    • (2010) Endocrinology , vol.151 , pp. 980-992
    • Vila-Bedmar, R.1    Lorenzo, M.2    Fernández-Veledo, S.3
  • 39
    • 77952893054 scopus 로고    scopus 로고
    • S6K1 plays a critical role in early adipocyte differentiation
    • Carnevalli LS et al (2010) S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 18: 763-774
    • (2010) Dev Cell , vol.18 , pp. 763-774
    • Carnevalli, L.S.1
  • 40
    • 1242329177 scopus 로고    scopus 로고
    • Inhibition of insulin signaling and adipogenesis by rapamycin: Effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1
    • El-Chaâr D, Gagnon A, Sorisky A (2004) Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. Int J Obes Relat Metab Disord 28: 191-198
    • (2004) Int J Obes Relat Metab Disord , vol.28 , pp. 191-198
    • El-Chaâr, D.1    Gagnon, A.2    Sorisky, A.3
  • 41
    • 0028885873 scopus 로고
    • Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells
    • Yeh WC, Bierer BE, McKnight SL (1995) Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci USA 92: 11086-11090
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 11086-11090
    • Yeh, W.C.1    Bierer, B.E.2    McKnight, S.L.3
  • 42
    • 0034181368 scopus 로고    scopus 로고
    • Rapamycin inhibits human adipocyte differentiation in primary culture
    • Bell A, Grunder L, Sorisky A (2000) Rapamycin inhibits human adipocyte differentiation in primary culture. Obes Res 8: 249-254
    • (2000) Obes Res , vol.8 , pp. 249-254
    • Bell, A.1    Grunder, L.2    Sorisky, A.3
  • 43
    • 0034823939 scopus 로고    scopus 로고
    • Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion
    • Gagnon A, Lau S, Sorisky A (2001) Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion. J Cell Physiol 189: 14-22
    • (2001) J Cell Physiol , vol.189 , pp. 14-22
    • Gagnon, A.1    Lau, S.2    Sorisky, A.3
  • 44
    • 4043082005 scopus 로고    scopus 로고
    • Regulation of adipocyte differentiation and insulin action with rapamycin
    • Cho HJ, Park J, Lee HW, Lee YS, Kim JB (2004) Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 321: 942-948
    • (2004) Biochem Biophys Res Commun , vol.321 , pp. 942-948
    • Cho, H.J.1    Park, J.2    Lee, H.W.3    Lee, Y.S.4    Kim, J.B.5
  • 47
    • 54849431380 scopus 로고    scopus 로고
    • Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
    • Polak P, Cybulski N, Feige JN, Auwerx J, Rüegg MA, Hall MN (2008) Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8: 399-410
    • (2008) Cell Metab , vol.8 , pp. 399-410
    • Polak, P.1    Cybulski, N.2    Feige, J.N.3    Auwerx, J.4    Rüegg, M.A.5    Hall, M.N.6
  • 49
    • 4544220704 scopus 로고    scopus 로고
    • Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
    • Um SH et al (2004) Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431: 200-205
    • (2004) Nature , vol.431 , pp. 200-205
    • Um, S.H.1
  • 51
    • 7044234995 scopus 로고    scopus 로고
    • Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis
    • Kim JE, Chen J (2004) Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53: 2748-2756
    • (2004) Diabetes , vol.53 , pp. 2748-2756
    • Kim, J.E.1    Chen, J.2
  • 52
    • 39949084497 scopus 로고    scopus 로고
    • Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells
    • Yu W et al (2008) Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol Cell Biochem 310: 11-18
    • (2008) Mol Cell Biochem , vol.310 , pp. 11-18
    • Yu, W.1
  • 54
    • 0036691215 scopus 로고    scopus 로고
    • Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients
    • Morrisett JD et al (2002) Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 43: 1170-1180
    • (2002) J Lipid Res , vol.43 , pp. 1170-1180
    • Morrisett, J.D.1
  • 56
    • 65649109038 scopus 로고    scopus 로고
    • Amino acid-sensing mTOR signaling is involved in modulation of lipolysis by chronic insulin treatment in adipocytes
    • Zhang C, Yoon MS, Chen J (2009) Amino acid-sensing mTOR signaling is involved in modulation of lipolysis by chronic insulin treatment in adipocytes. Am J Physiol Endocrinol Metab 296: E862-E868
    • (2009) Am J Physiol Endocrinol Metab , vol.296
    • Zhang, C.1    Yoon, M.S.2    Chen, J.3
  • 57
    • 77951166692 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage
    • Chakrabarti P, English T, Shi J, Smas CM, Kandror KV (2010) Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59: 775-781
    • (2010) Diabetes , vol.59 , pp. 775-781
    • Chakrabarti, P.1    English, T.2    Shi, J.3    Smas, C.M.4    Kandror, K.V.5
  • 58
    • 78651067054 scopus 로고    scopus 로고
    • MTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes
    • Soliman GA, Acosta-Jaquez HA, Fingar DC (2010) mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45: 1089-1100
    • (2010) Lipids , vol.45 , pp. 1089-1100
    • Soliman, G.A.1    Acosta-Jaquez, H.A.2    Fingar, D.C.3
  • 59
    • 73949124173 scopus 로고    scopus 로고
    • Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
    • Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 106: 19860-19865
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 19860-19865
    • Zhang, Y.1    Goldman, S.2    Baerga, R.3    Zhao, Y.4    Komatsu, M.5    Jin, S.6
  • 61
    • 77953200528 scopus 로고    scopus 로고
    • Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
    • Kumar A, Lawrence JC Jr, Jung DY, Ko HJ, Keller SR, Kim JK, Magnuson MA, Harris TE (2010) Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59: 1397-1406
    • (2010) Diabetes , vol.59 , pp. 1397-1406
    • Kumar, A.1    Lawrence Jr., J.C.2    Jung, D.Y.3    Ko, H.J.4    Keller, S.R.5    Kim, J.K.6    Magnuson, M.A.7    Harris, T.E.8
  • 63
    • 44449173928 scopus 로고    scopus 로고
    • Cyclosporine A and rapamycin induce in vitro cholesteryl ester transfer protein activity, and suppress lipoprotein lipase activity in human plasma
    • Tory R, Sachs-Barrable K, Hill JS, Wasan KM (2008) Cyclosporine A and rapamycin induce in vitro cholesteryl ester transfer protein activity, and suppress lipoprotein lipase activity in human plasma. Int J Pharm 358: 219-223
    • (2008) Int J Pharm , vol.358 , pp. 219-223
    • Tory, R.1    Sachs-Barrable, K.2    Hill, J.S.3    Wasan, K.M.4
  • 64
    • 84861422827 scopus 로고    scopus 로고
    • Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion
    • Blanchard PG et al (2012) Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion. J Lipid Res 53: 1117-1125
    • (2012) J Lipid Res , vol.53 , pp. 1117-1125
    • Blanchard, P.G.1
  • 65
    • 0036310982 scopus 로고    scopus 로고
    • The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation
    • Peng T, Golub TR, Sabatini DM (2002) The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 22: 5575-5584
    • (2002) Mol Cell Biol , vol.22 , pp. 5575-5584
    • Peng, T.1    Golub, T.R.2    Sabatini, D.M.3
  • 67
    • 70449448312 scopus 로고    scopus 로고
    • Autophagy regulates adipose mass and differentiation in mice
    • Singh R et al (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119: 3329-3339
    • (2009) J Clin Invest , vol.119 , pp. 3329-3339
    • Singh, R.1
  • 68
    • 34249697628 scopus 로고    scopus 로고
    • S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase
    • Aguilar V et al (2007) S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. Cell Metab 5: 476-487
    • (2007) Cell Metab , vol.5 , pp. 476-487
    • Aguilar, V.1
  • 69
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450: 736-740
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1    Rodgers, J.T.2    Arlow, D.H.3    Vazquez, F.4    Mootha, V.K.5    Puigserver, P.6
  • 70
    • 74049088121 scopus 로고    scopus 로고
    • Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
    • Risson V et al (2009) Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 187: 859-874
    • (2009) J Cell Biol , vol.187 , pp. 859-874
    • Risson, V.1
  • 71
    • 54849426651 scopus 로고    scopus 로고
    • Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
    • Bentzinger CF et al (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8: 411-424
    • (2008) Cell Metab , vol.8 , pp. 411-424
    • Bentzinger, C.F.1
  • 72
    • 33748752151 scopus 로고    scopus 로고
    • The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
    • Schieke SM, Phillips D, McCoy JP, Aponte AM, Shen RF, Balaban RS, Finkel T (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281: 27643-27652
    • (2006) J Biol Chem , vol.281 , pp. 27643-27652
    • Schieke, S.M.1    Phillips, D.2    McCoy, J.P.3    Aponte, A.M.4    Shen, R.F.5    Balaban, R.S.6    Finkel, T.7
  • 73
    • 78650848337 scopus 로고    scopus 로고
    • MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM (2010) mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468: 1100-1104
    • (2010) Nature , vol.468 , pp. 1100-1104
    • Sengupta, S.1    Peterson, T.R.2    Laplante, M.3    Oh, S.4    Sabatini, D.M.5
  • 74
    • 84862829663 scopus 로고    scopus 로고
    • S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver
    • Kim KK, Pyo S, Um SH (2012) S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology 55: 1727-1737
    • (2012) Hepatology , vol.55 , pp. 1727-1737
    • Kim, K.K.1    Pyo, S.2    Um, S.H.3
  • 75
    • 33646140851 scopus 로고    scopus 로고
    • Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs
    • Aggarwal D, Fernandez ML, Soliman GA (2006) Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs. Metabolism 55: 794-802
    • (2006) Metabolism , vol.55 , pp. 794-802
    • Aggarwal, D.1    Fernandez, M.L.2    Soliman, G.A.3
  • 76
    • 34548431331 scopus 로고    scopus 로고
    • Insulin inhibition of apolipoprotein B mRNA translation is mediated via the PI-3 kinase/mTOR signaling cascade but does not involve internal ribosomal entry site (IRES) initiation
    • Sidiropoulos KG, Meshkani R, Avramoglu-Kohen R, Adeli K (2007) Insulin inhibition of apolipoprotein B mRNA translation is mediated via the PI-3 kinase/mTOR signaling cascade but does not involve internal ribosomal entry site (IRES) initiation. Arch Biochem Biophys 465: 380-388
    • (2007) Arch Biochem Biophys , vol.465 , pp. 380-388
    • Sidiropoulos, K.G.1    Meshkani, R.2    Avramoglu-Kohen, R.3    Adeli, K.4
  • 77
    • 13444256227 scopus 로고    scopus 로고
    • Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: Role of upstream stimulatory factor
    • Nowak M et al (2005) Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: role of upstream stimulatory factor. Mol Cell Biol 25: 1537-1548
    • (2005) Mol Cell Biol , vol.25 , pp. 1537-1548
    • Nowak, M.1
  • 78
    • 0029965098 scopus 로고    scopus 로고
    • SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I
    • Streicher R, Kotzka J, Müller-Wieland D, Siemeister G, Munck M, Avci H, Krone W (1996) SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I. J Biol Chem 271: 7128-7133
    • (1996) J Biol Chem , vol.271 , pp. 7128-7133
    • Streicher, R.1    Kotzka, J.2    Müller-Wieland, D.3    Siemeister, G.4    Munck, M.5    Avci, H.6    Krone, W.7
  • 79
    • 84859717544 scopus 로고    scopus 로고
    • Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice
    • Ai D et al (2012) Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 122: 1262-1270
    • (2012) J Clin Invest , vol.122 , pp. 1262-1270
    • Ai, D.1
  • 80
    • 14244256097 scopus 로고    scopus 로고
    • Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: Possible involvement in obesity-linked insulin resistance
    • Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146: 1473-1481
    • (2005) Endocrinology , vol.146 , pp. 1473-1481
    • Khamzina, L.1    Veilleux, A.2    Bergeron, S.3    Marette, A.4
  • 81
    • 63449111894 scopus 로고    scopus 로고
    • A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
    • Newgard CB et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9: 311-326
    • (2009) Cell Metab , vol.9 , pp. 311-326
    • Newgard, C.B.1
  • 82
    • 84859117806 scopus 로고    scopus 로고
    • Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
    • Lamming DW et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335: 1638-1643
    • (2012) Science , vol.335 , pp. 1638-1643
    • Lamming, D.W.1
  • 83
    • 84868005485 scopus 로고    scopus 로고
    • AMP-activated protein kinase: A target for drugs both ancient and modern
    • Hardie DG, Ross FA, Hawley SA (2012) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19: 1222-1236
    • (2012) Chem Biol , vol.19 , pp. 1222-1236
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 84
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098-1101
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 85
    • 70350545722 scopus 로고    scopus 로고
    • Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
    • Dibble CC, Asara JM, Manning BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29: 5657-5670
    • (2009) Mol Cell Biol , vol.29 , pp. 5657-5670
    • Dibble, C.C.1    Asara, J.M.2    Manning, B.D.3
  • 86
    • 75749105049 scopus 로고    scopus 로고
    • MTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
    • Julien LA, Carriere A, Moreau J, Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30: 908-921
    • (2010) Mol Cell Biol , vol.30 , pp. 908-921
    • Julien, L.A.1    Carriere, A.2    Moreau, J.3    Roux, P.P.4
  • 88


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.