-
1
-
-
44449161481
-
The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
-
Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412: 179-190
-
(2008)
Biochem J
, vol.412
, pp. 179-190
-
-
Huang, J.1
Manning, B.D.2
-
2
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
Dibble CC et al (2012) TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 47: 535-546
-
(2012)
Mol Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
-
3
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648-657
-
(2002)
Nat Cell Biol
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
4
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
-
Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151-162
-
(2002)
Mol Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
5
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577-590
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
6
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30: 214-226
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
7
-
-
3142594193
-
The LKB1 tumor suppressor negatively regulates mTOR signaling
-
Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91-99
-
(2004)
Cancer Cell
, vol.6
, pp. 91-99
-
-
Shaw, R.J.1
Bardeesy, N.2
Manning, B.D.3
Lopez, L.4
Kosmatka, M.5
Depinho, R.A.6
Cantley, L.C.7
-
8
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149: 274-293
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
9
-
-
77954235821
-
Targeting mTOR: Prospects for mTOR complex 2 inhibitors in cancer therapy
-
Sparks CA, Guertin DA (2010) Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29: 3733-3744
-
(2010)
Oncogene
, vol.29
, pp. 3733-3744
-
-
Sparks, C.A.1
Guertin, D.A.2
-
10
-
-
0036251153
-
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125-1131
-
(2002)
J Clin Invest
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
11
-
-
84856471735
-
SREBPs: Metabolic integrators in physiology and metabolism
-
Jeon TI, Osborne TF (2011) SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 23: 65-72
-
(2011)
Trends Endocrinol Metab
, vol.23
, pp. 65-72
-
-
Jeon, T.I.1
Osborne, T.F.2
-
12
-
-
0030907175
-
Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells
-
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99: 846-854
-
(1997)
J Clin Invest
, vol.99
, pp. 846-854
-
-
Shimano, H.1
Horton, J.D.2
Shimomura, I.3
Hammer, R.E.4
Brown, M.S.5
Goldstein, J.L.6
-
13
-
-
0032104180
-
Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2
-
Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101: 2331-2339
-
(1998)
J Clin Invest
, vol.101
, pp. 2331-2339
-
-
Horton, J.D.1
Shimomura, I.2
Brown, M.S.3
Hammer, R.E.4
Goldstein, J.L.5
Shimano, H.6
-
14
-
-
0142027805
-
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes
-
Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA 100: 12027-12032
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 12027-12032
-
-
Horton, J.D.1
Shah, N.A.2
Warrington, J.A.3
Anderson, N.N.4
Park, S.W.5
Brown, M.S.6
Goldstein, J.L.7
-
15
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Düvel K et al (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39: 171-183
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Düvel, K.1
-
16
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL, Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8: 224-236
-
(2008)
Cell Metab
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
Santos, C.R.2
Griffiths, B.3
Cully, M.4
Wu, M.5
Leevers, S.6
Griffiths, J.R.7
Chung, Y.L.8
Schulze, A.9
-
17
-
-
35248816945
-
The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes
-
Brown NF, Stefanovic-Racic M, Sipula IJ, Perdomo G (2007) The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism 56: 1500-1507
-
(2007)
Metabolism
, vol.56
, pp. 1500-1507
-
-
Brown, N.F.1
Stefanovic-Racic, M.2
Sipula, I.J.3
Perdomo, G.4
-
18
-
-
79960960007
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies JL et al (2011) Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 14: 21-32
-
(2011)
Cell Metab
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
-
19
-
-
77649264504
-
Bifurcation of insulin signaling pathway in rat liver: MTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
-
Li S, Brown MS, Goldstein JL (2010) Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci USA 107: 3441-3446
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 3441-3446
-
-
Li, S.1
Brown, M.S.2
Goldstein, J.L.3
-
20
-
-
80052031072
-
Role of S6K1 in regulation of SREBP1c expression in the liver
-
Li S, Ogawa W, Emi A, Hayashi K, Senga Y, Nomura K, Hara K, Yu D, Kasuga M (2011) Role of S6K1 in regulation of SREBP1c expression in the liver. Biochem Biophys Res Commun 412: 197-202
-
(2011)
Biochem Biophys Res Commun
, vol.412
, pp. 197-202
-
-
Li, S.1
Ogawa, W.2
Emi, A.3
Hayashi, K.4
Senga, Y.5
Nomura, K.6
Hara, K.7
Yu, D.8
Kasuga, M.9
-
21
-
-
84867067610
-
Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase
-
Owen JL, Zhang Y, Bae SH, Farooqi MS, Liang G, Hammer RE, Goldstein JL, Brown MS (2012) Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc Natl Acad Sci USA 109: 16184-16189
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 16184-16189
-
-
Owen, J.L.1
Zhang, Y.2
Bae, S.H.3
Farooqi, M.S.4
Liang, G.5
Hammer, R.E.6
Goldstein, J.L.7
Brown, M.S.8
-
22
-
-
80053083941
-
The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile
-
Wang BT, Ducker GS, Barczak AJ, Barbeau R, Erle DJ, Shokat KM (2011) The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc Natl Acad Sci USA 108: 15201-15206
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 15201-15206
-
-
Wang, B.T.1
Ducker, G.S.2
Barczak, A.J.3
Barbeau, R.4
Erle, D.J.5
Shokat, K.M.6
-
23
-
-
84865065336
-
The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice
-
Liu X, Yuan H, Niu Y, Niu W, Fu L (2012) The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice. Biochim Biophys Acta 1822: 1716-1726
-
(1822)
Biochim Biophys Acta
, pp. 1716-1726
-
-
Liu, X.1
Yuan, H.2
Niu, Y.3
Niu, W.4
Fu, L.5
-
24
-
-
80053927531
-
Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c
-
Wan M, Leavens KF, Saleh D, Easton RM, Guertin DA, Peterson TR, Kaestner KH, Sabatini DM, Birnbaum MJ (2011) Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c. Cell Metab 14: 516-527
-
(2011)
Cell Metab
, vol.14
, pp. 516-527
-
-
Wan, M.1
Leavens, K.F.2
Saleh, D.3
Easton, R.M.4
Guertin, D.A.5
Peterson, T.R.6
Kaestner, K.H.7
Sabatini, D.M.8
Birnbaum, M.J.9
-
25
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146: 408-420
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
-
26
-
-
79953177846
-
Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
-
Kenerson HL, Yeh MM, Yeung RS (2011) Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 6: e18075
-
(2011)
PLoS ONE
, vol.6
-
-
Kenerson, H.L.1
Yeh, M.M.2
Yeung, R.S.3
-
27
-
-
59749091850
-
A complex interplay between Akt. TSC2 and the two mTOR complexes
-
Huang J, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37: 217-222
-
(2009)
Biochem Soc Trans
, vol.37
, pp. 217-222
-
-
Huang, J.1
Manning, B.D.2
-
28
-
-
0034235363
-
Regulation of sterol regulatory-element binding protein 1 gene expression in liver: Role of insulin and protein kinase B/cAkt
-
Fleischmann M, Iynedjian PB (2000) Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem J 349: 13-17
-
(2000)
Biochem J
, vol.349
, pp. 13-17
-
-
Fleischmann, M.1
Iynedjian, P.B.2
-
29
-
-
70350417158
-
Akt2 is required for hepatic lipid accumulation in models of insulin resistance
-
Leavens KF, Easton RM, Shulman GI, Previs SF, Birnbaum MJ (2009) Akt2 is required for hepatic lipid accumulation in models of insulin resistance. Cell Metab 10: 405-418
-
(2009)
Cell Metab
, vol.10
, pp. 405-418
-
-
Leavens, K.F.1
Easton, R.M.2
Shulman, G.I.3
Previs, S.F.4
Birnbaum, M.J.5
-
30
-
-
10744228468
-
Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement
-
Ono H et al (2003) Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 52: 2905-2913
-
(2003)
Diabetes
, vol.52
, pp. 2905-2913
-
-
Ono, H.1
-
31
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
Hagiwara A et al (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15: 725-738
-
(2012)
Cell Metab
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
-
32
-
-
65549140251
-
A phosphorylation cascade controls the degradation of active SREBP1
-
Bengoechea-Alonso MT, Ericsson J (2009) A phosphorylation cascade controls the degradation of active SREBP1. J Biol Chem 284: 5885-5895
-
(2009)
J Biol Chem
, vol.284
, pp. 5885-5895
-
-
Bengoechea-Alonso, M.T.1
Ericsson, J.2
-
33
-
-
77958030867
-
Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer
-
Luyimbazi D et al (2010) Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Mol Cancer Ther 9: 2770-2784
-
(2010)
Mol Cancer Ther
, vol.9
, pp. 2770-2784
-
-
Luyimbazi, D.1
-
34
-
-
77649216053
-
EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
-
Guo D et al (2009) EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2: ra82
-
(2009)
Sci Signal
, vol.2
-
-
Guo, D.1
-
35
-
-
0037154264
-
Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin
-
Huffman TA, Mothe-Satney I, Lawrence JC Jr (2002) Insulin-stimulated phosphorylation of lipin mediated by the mammalian target of rapamycin. Proc Natl Acad Sci USA 99: 1047-1052
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 1047-1052
-
-
Huffman, T.A.1
Mothe-Satney, I.2
Lawrence Jr., J.C.3
-
36
-
-
0029958652
-
Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2
-
Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M (1996) Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem 271: 26461-26464
-
(1996)
J Biol Chem
, vol.271
, pp. 26461-26464
-
-
Sato, R.1
Inoue, J.2
Kawabe, Y.3
Kodama, T.4
Takano, T.5
Maeda, M.6
-
37
-
-
0034613175
-
Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene
-
Amemiya-Kudo M et al (2000) Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J Biol Chem 275: 31078-31085
-
(2000)
J Biol Chem
, vol.275
, pp. 31078-31085
-
-
Amemiya-Kudo, M.1
-
38
-
-
77149154335
-
Adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation
-
Vila-Bedmar R, Lorenzo M, Fernández-Veledo S (2010) Adenosine 5'-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 151: 980-992
-
(2010)
Endocrinology
, vol.151
, pp. 980-992
-
-
Vila-Bedmar, R.1
Lorenzo, M.2
Fernández-Veledo, S.3
-
39
-
-
77952893054
-
S6K1 plays a critical role in early adipocyte differentiation
-
Carnevalli LS et al (2010) S6K1 plays a critical role in early adipocyte differentiation. Dev Cell 18: 763-774
-
(2010)
Dev Cell
, vol.18
, pp. 763-774
-
-
Carnevalli, L.S.1
-
40
-
-
1242329177
-
Inhibition of insulin signaling and adipogenesis by rapamycin: Effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1
-
El-Chaâr D, Gagnon A, Sorisky A (2004) Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. Int J Obes Relat Metab Disord 28: 191-198
-
(2004)
Int J Obes Relat Metab Disord
, vol.28
, pp. 191-198
-
-
El-Chaâr, D.1
Gagnon, A.2
Sorisky, A.3
-
41
-
-
0028885873
-
Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells
-
Yeh WC, Bierer BE, McKnight SL (1995) Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci USA 92: 11086-11090
-
(1995)
Proc Natl Acad Sci USA
, vol.92
, pp. 11086-11090
-
-
Yeh, W.C.1
Bierer, B.E.2
McKnight, S.L.3
-
42
-
-
0034181368
-
Rapamycin inhibits human adipocyte differentiation in primary culture
-
Bell A, Grunder L, Sorisky A (2000) Rapamycin inhibits human adipocyte differentiation in primary culture. Obes Res 8: 249-254
-
(2000)
Obes Res
, vol.8
, pp. 249-254
-
-
Bell, A.1
Grunder, L.2
Sorisky, A.3
-
43
-
-
0034823939
-
Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion
-
Gagnon A, Lau S, Sorisky A (2001) Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion. J Cell Physiol 189: 14-22
-
(2001)
J Cell Physiol
, vol.189
, pp. 14-22
-
-
Gagnon, A.1
Lau, S.2
Sorisky, A.3
-
44
-
-
4043082005
-
Regulation of adipocyte differentiation and insulin action with rapamycin
-
Cho HJ, Park J, Lee HW, Lee YS, Kim JB (2004) Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 321: 942-948
-
(2004)
Biochem Biophys Res Commun
, vol.321
, pp. 942-948
-
-
Cho, H.J.1
Park, J.2
Lee, H.W.3
Lee, Y.S.4
Kim, J.B.5
-
45
-
-
67650523945
-
Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
-
Zhang HH, Huang J, Düvel K, Boback B, Wu S, Squillace RM, Wu CL, Manning BD (2009) Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS ONE 4: e6189
-
(2009)
PLoS ONE
, vol.4
-
-
Zhang, H.H.1
Huang, J.2
Düvel, K.3
Boback, B.4
Wu, S.5
Squillace, R.M.6
Wu, C.L.7
Manning, B.D.8
-
47
-
-
54849431380
-
Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
-
Polak P, Cybulski N, Feige JN, Auwerx J, Rüegg MA, Hall MN (2008) Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8: 399-410
-
(2008)
Cell Metab
, vol.8
, pp. 399-410
-
-
Polak, P.1
Cybulski, N.2
Feige, J.N.3
Auwerx, J.4
Rüegg, M.A.5
Hall, M.N.6
-
48
-
-
33846806078
-
Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2
-
Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, Sonenberg N (2007) Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest 117: 387-396
-
(2007)
J Clin Invest
, vol.117
, pp. 387-396
-
-
Le Bacquer, O.1
Petroulakis, E.2
Paglialunga, S.3
Poulin, F.4
Richard, D.5
Cianflone, K.6
Sonenberg, N.7
-
49
-
-
4544220704
-
Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
-
Um SH et al (2004) Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431: 200-205
-
(2004)
Nature
, vol.431
, pp. 200-205
-
-
Um, S.H.1
-
50
-
-
0036007024
-
C/EBPalpha induces adipogenesis through PPARgamma: A unified pathway
-
Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16: 22-26
-
(2002)
Genes Dev
, vol.16
, pp. 22-26
-
-
Rosen, E.D.1
Hsu, C.H.2
Wang, X.3
Sakai, S.4
Freeman, M.W.5
Gonzalez, F.J.6
Spiegelman, B.M.7
-
51
-
-
7044234995
-
Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis
-
Kim JE, Chen J (2004) Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53: 2748-2756
-
(2004)
Diabetes
, vol.53
, pp. 2748-2756
-
-
Kim, J.E.1
Chen, J.2
-
52
-
-
39949084497
-
Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells
-
Yu W et al (2008) Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol Cell Biochem 310: 11-18
-
(2008)
Mol Cell Biochem
, vol.310
, pp. 11-18
-
-
Yu, W.1
-
53
-
-
84864692282
-
DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity
-
Laplante M, Horvat S, Festuccia WT, Birsoy K, Prevorsek Z, Efeyan A, Sabatini DM (2012) DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab 16: 202-212
-
(2012)
Cell Metab
, vol.16
, pp. 202-212
-
-
Laplante, M.1
Horvat, S.2
Festuccia, W.T.3
Birsoy, K.4
Prevorsek, Z.5
Efeyan, A.6
Sabatini, D.M.7
-
54
-
-
0036691215
-
Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients
-
Morrisett JD et al (2002) Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 43: 1170-1180
-
(2002)
J Lipid Res
, vol.43
, pp. 1170-1180
-
-
Morrisett, J.D.1
-
55
-
-
47249114832
-
Mammalian target of rapamycin inhibitor dyslipidemia in kidney transplant recipients
-
Kasiske BL, de Mattos A, Flechner SM, Gallon L, Meier-Kriesche HU, Weir MR, Wilkinson A (2008) Mammalian target of rapamycin inhibitor dyslipidemia in kidney transplant recipients. Am J Transplant 8: 1384-1392
-
(2008)
Am J Transplant
, vol.8
, pp. 1384-1392
-
-
Kasiske, B.L.1
De Mattos, A.2
Flechner, S.M.3
Gallon, L.4
Meier-Kriesche, H.U.5
Weir, M.R.6
Wilkinson, A.7
-
56
-
-
65649109038
-
Amino acid-sensing mTOR signaling is involved in modulation of lipolysis by chronic insulin treatment in adipocytes
-
Zhang C, Yoon MS, Chen J (2009) Amino acid-sensing mTOR signaling is involved in modulation of lipolysis by chronic insulin treatment in adipocytes. Am J Physiol Endocrinol Metab 296: E862-E868
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
-
-
Zhang, C.1
Yoon, M.S.2
Chen, J.3
-
57
-
-
77951166692
-
Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage
-
Chakrabarti P, English T, Shi J, Smas CM, Kandror KV (2010) Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59: 775-781
-
(2010)
Diabetes
, vol.59
, pp. 775-781
-
-
Chakrabarti, P.1
English, T.2
Shi, J.3
Smas, C.M.4
Kandror, K.V.5
-
58
-
-
78651067054
-
MTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes
-
Soliman GA, Acosta-Jaquez HA, Fingar DC (2010) mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45: 1089-1100
-
(2010)
Lipids
, vol.45
, pp. 1089-1100
-
-
Soliman, G.A.1
Acosta-Jaquez, H.A.2
Fingar, D.C.3
-
59
-
-
73949124173
-
Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
-
Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA 106: 19860-19865
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 19860-19865
-
-
Zhang, Y.1
Goldman, S.2
Baerga, R.3
Zhao, Y.4
Komatsu, M.5
Jin, S.6
-
60
-
-
84858020291
-
FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling
-
Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F (2012) FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15: 279-291
-
(2012)
Cell Metab
, vol.15
, pp. 279-291
-
-
Zechner, R.1
Zimmermann, R.2
Eichmann, T.O.3
Kohlwein, S.D.4
Haemmerle, G.5
Lass, A.6
Madeo, F.7
-
61
-
-
77953200528
-
Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
-
Kumar A, Lawrence JC Jr, Jung DY, Ko HJ, Keller SR, Kim JK, Magnuson MA, Harris TE (2010) Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59: 1397-1406
-
(2010)
Diabetes
, vol.59
, pp. 1397-1406
-
-
Kumar, A.1
Lawrence Jr., J.C.2
Jung, D.Y.3
Ko, H.J.4
Keller, S.R.5
Kim, J.K.6
Magnuson, M.A.7
Harris, T.E.8
-
63
-
-
44449173928
-
Cyclosporine A and rapamycin induce in vitro cholesteryl ester transfer protein activity, and suppress lipoprotein lipase activity in human plasma
-
Tory R, Sachs-Barrable K, Hill JS, Wasan KM (2008) Cyclosporine A and rapamycin induce in vitro cholesteryl ester transfer protein activity, and suppress lipoprotein lipase activity in human plasma. Int J Pharm 358: 219-223
-
(2008)
Int J Pharm
, vol.358
, pp. 219-223
-
-
Tory, R.1
Sachs-Barrable, K.2
Hill, J.S.3
Wasan, K.M.4
-
64
-
-
84861422827
-
Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion
-
Blanchard PG et al (2012) Major involvement of mTOR in the PPARγ-induced stimulation of adipose tissue lipid uptake and fat accretion. J Lipid Res 53: 1117-1125
-
(2012)
J Lipid Res
, vol.53
, pp. 1117-1125
-
-
Blanchard, P.G.1
-
65
-
-
0036310982
-
The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation
-
Peng T, Golub TR, Sabatini DM (2002) The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol Cell Biol 22: 5575-5584
-
(2002)
Mol Cell Biol
, vol.22
, pp. 5575-5584
-
-
Peng, T.1
Golub, T.R.2
Sabatini, D.M.3
-
66
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458: 1131-1135
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
67
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
Singh R et al (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119: 3329-3339
-
(2009)
J Clin Invest
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
-
68
-
-
34249697628
-
S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase
-
Aguilar V et al (2007) S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. Cell Metab 5: 476-487
-
(2007)
Cell Metab
, vol.5
, pp. 476-487
-
-
Aguilar, V.1
-
69
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450: 736-740
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
70
-
-
74049088121
-
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
-
Risson V et al (2009) Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 187: 859-874
-
(2009)
J Cell Biol
, vol.187
, pp. 859-874
-
-
Risson, V.1
-
71
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger CF et al (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8: 411-424
-
(2008)
Cell Metab
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
-
72
-
-
33748752151
-
The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
-
Schieke SM, Phillips D, McCoy JP, Aponte AM, Shen RF, Balaban RS, Finkel T (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281: 27643-27652
-
(2006)
J Biol Chem
, vol.281
, pp. 27643-27652
-
-
Schieke, S.M.1
Phillips, D.2
McCoy, J.P.3
Aponte, A.M.4
Shen, R.F.5
Balaban, R.S.6
Finkel, T.7
-
73
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM (2010) mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468: 1100-1104
-
(2010)
Nature
, vol.468
, pp. 1100-1104
-
-
Sengupta, S.1
Peterson, T.R.2
Laplante, M.3
Oh, S.4
Sabatini, D.M.5
-
74
-
-
84862829663
-
S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver
-
Kim KK, Pyo S, Um SH (2012) S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology 55: 1727-1737
-
(2012)
Hepatology
, vol.55
, pp. 1727-1737
-
-
Kim, K.K.1
Pyo, S.2
Um, S.H.3
-
75
-
-
33646140851
-
Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs
-
Aggarwal D, Fernandez ML, Soliman GA (2006) Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs. Metabolism 55: 794-802
-
(2006)
Metabolism
, vol.55
, pp. 794-802
-
-
Aggarwal, D.1
Fernandez, M.L.2
Soliman, G.A.3
-
76
-
-
34548431331
-
Insulin inhibition of apolipoprotein B mRNA translation is mediated via the PI-3 kinase/mTOR signaling cascade but does not involve internal ribosomal entry site (IRES) initiation
-
Sidiropoulos KG, Meshkani R, Avramoglu-Kohen R, Adeli K (2007) Insulin inhibition of apolipoprotein B mRNA translation is mediated via the PI-3 kinase/mTOR signaling cascade but does not involve internal ribosomal entry site (IRES) initiation. Arch Biochem Biophys 465: 380-388
-
(2007)
Arch Biochem Biophys
, vol.465
, pp. 380-388
-
-
Sidiropoulos, K.G.1
Meshkani, R.2
Avramoglu-Kohen, R.3
Adeli, K.4
-
77
-
-
13444256227
-
Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: Role of upstream stimulatory factor
-
Nowak M et al (2005) Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: role of upstream stimulatory factor. Mol Cell Biol 25: 1537-1548
-
(2005)
Mol Cell Biol
, vol.25
, pp. 1537-1548
-
-
Nowak, M.1
-
78
-
-
0029965098
-
SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I
-
Streicher R, Kotzka J, Müller-Wieland D, Siemeister G, Munck M, Avci H, Krone W (1996) SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I. J Biol Chem 271: 7128-7133
-
(1996)
J Biol Chem
, vol.271
, pp. 7128-7133
-
-
Streicher, R.1
Kotzka, J.2
Müller-Wieland, D.3
Siemeister, G.4
Munck, M.5
Avci, H.6
Krone, W.7
-
79
-
-
84859717544
-
Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice
-
Ai D et al (2012) Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 122: 1262-1270
-
(2012)
J Clin Invest
, vol.122
, pp. 1262-1270
-
-
Ai, D.1
-
80
-
-
14244256097
-
Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: Possible involvement in obesity-linked insulin resistance
-
Khamzina L, Veilleux A, Bergeron S, Marette A (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146: 1473-1481
-
(2005)
Endocrinology
, vol.146
, pp. 1473-1481
-
-
Khamzina, L.1
Veilleux, A.2
Bergeron, S.3
Marette, A.4
-
81
-
-
63449111894
-
A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance
-
Newgard CB et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9: 311-326
-
(2009)
Cell Metab
, vol.9
, pp. 311-326
-
-
Newgard, C.B.1
-
82
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
Lamming DW et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335: 1638-1643
-
(2012)
Science
, vol.335
, pp. 1638-1643
-
-
Lamming, D.W.1
-
83
-
-
84868005485
-
AMP-activated protein kinase: A target for drugs both ancient and modern
-
Hardie DG, Ross FA, Hawley SA (2012) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19: 1222-1236
-
(2012)
Chem Biol
, vol.19
, pp. 1222-1236
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
84
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098-1101
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
85
-
-
70350545722
-
Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
-
Dibble CC, Asara JM, Manning BD (2009) Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol 29: 5657-5670
-
(2009)
Mol Cell Biol
, vol.29
, pp. 5657-5670
-
-
Dibble, C.C.1
Asara, J.M.2
Manning, B.D.3
-
86
-
-
75749105049
-
MTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
-
Julien LA, Carriere A, Moreau J, Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30: 908-921
-
(2010)
Mol Cell Biol
, vol.30
, pp. 908-921
-
-
Julien, L.A.1
Carriere, A.2
Moreau, J.3
Roux, P.P.4
-
87
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22: 159-168
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
Bagley, A.F.6
Markhard, A.L.7
Sabatini, D.M.8
|