메뉴 건너뛰기




Volumn 30, Issue 7, 2014, Pages 271-286

Sirtuins: Guardians of mammalian healthspan

Author keywords

Age associated disease; Aging; Longevity; Mitochondria; SIRT1; SIRT3; SIRT6

Indexed keywords

SIRTUIN 1; SIRTUIN 3; SIRTUIN 6; SIRTUIN;

EID: 84903451392     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2014.04.007     Document Type: Review
Times cited : (253)

References (223)
  • 1
    • 76549115951 scopus 로고    scopus 로고
    • Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition
    • Finch C.E. Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc. Natl. Acad. Sci. U.S.A. 2010, 107(Suppl. 1):1718-1724.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , Issue.SUPPL. 1 , pp. 1718-1724
    • Finch, C.E.1
  • 2
    • 84871511126 scopus 로고    scopus 로고
    • Deaths: preliminary data for 2011
    • Hoyert D.L., Xu J. Deaths: preliminary data for 2011. Natl. Vital Stat. Rep. 2012, 61:1-52.
    • (2012) Natl. Vital Stat. Rep. , vol.61 , pp. 1-52
    • Hoyert, D.L.1    Xu, J.2
  • 3
    • 84875354777 scopus 로고    scopus 로고
    • 2013 Alzheimer's disease facts and figures
    • Thies W., et al. 2013 Alzheimer's disease facts and figures. Alzheimers Dement. 2013, 9:208-245.
    • (2013) Alzheimers Dement. , vol.9 , pp. 208-245
    • Thies, W.1
  • 4
    • 84878864199 scopus 로고    scopus 로고
    • The hallmarks of aging
    • Lopez-Otin C., et al. The hallmarks of aging. Cell 2013, 153:1194-1217.
    • (2013) Cell , vol.153 , pp. 1194-1217
    • Lopez-Otin, C.1
  • 5
    • 79251527543 scopus 로고    scopus 로고
    • Tragedy and delight: the ethics of decelerated ageing
    • Gems D. Tragedy and delight: the ethics of decelerated ageing. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2011, 366:108-112.
    • (2011) Philos. Trans. R. Soc. Lond. B: Biol. Sci. , vol.366 , pp. 108-112
    • Gems, D.1
  • 7
    • 0004760134 scopus 로고
    • Life span of individual yeast cells
    • Mortimer R.K., Johnston J.R. Life span of individual yeast cells. Nature 1959, 183:1751-1752.
    • (1959) Nature , vol.183 , pp. 1751-1752
    • Mortimer, R.K.1    Johnston, J.R.2
  • 8
    • 10944235398 scopus 로고    scopus 로고
    • Large-scale identification in yeast of conserved ageing genes
    • Kaeberlein M., Kennedy B.K. Large-scale identification in yeast of conserved ageing genes. Mech. Ageing Dev. 2005, 126:17-21.
    • (2005) Mech. Ageing Dev. , vol.126 , pp. 17-21
    • Kaeberlein, M.1    Kennedy, B.K.2
  • 9
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S., et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1
  • 10
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M., et al. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999, 13:2570-2580.
    • (1999) Genes Dev. , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1
  • 11
    • 0031459980 scopus 로고    scopus 로고
    • Extrachromosomal rDNA circles: a cause of aging in yeast
    • Sinclair D.A., Guarente L. Extrachromosomal rDNA circles: a cause of aging in yeast. Cell 1997, 91:1033-1042.
    • (1997) Cell , vol.91 , pp. 1033-1042
    • Sinclair, D.A.1    Guarente, L.2
  • 12
    • 0033120871 scopus 로고    scopus 로고
    • Elimination of replication block protein Fob1 extends the life span of yeast mother cells
    • Defossez P.A., et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 1999, 3:447-455.
    • (1999) Mol. Cell , vol.3 , pp. 447-455
    • Defossez, P.A.1
  • 13
    • 74549184412 scopus 로고    scopus 로고
    • The polarisome is required for segregation and retrograde transport of protein aggregates
    • Liu B., et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 2010, 140:257-267.
    • (2010) Cell , vol.140 , pp. 257-267
    • Liu, B.1
  • 14
    • 84889583055 scopus 로고    scopus 로고
    • Actin dynamics affect mitochondrial quality control and aging in budding yeast
    • Higuchi R., et al. Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr. Biol. 2013, 23:2417-2422.
    • (2013) Curr. Biol. , vol.23 , pp. 2417-2422
    • Higuchi, R.1
  • 15
    • 0036842129 scopus 로고    scopus 로고
    • Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
    • Suka N., et al. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat. Genet. 2002, 32:378-383.
    • (2002) Nat. Genet. , vol.32 , pp. 378-383
    • Suka, N.1
  • 16
    • 67149099680 scopus 로고    scopus 로고
    • Histone H4 lysine 16 acetylation regulates cellular lifespan
    • Dang W., et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 2009, 459:802-807.
    • (2009) Nature , vol.459 , pp. 802-807
    • Dang, W.1
  • 17
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 2000, 273:793-798.
    • (2000) Biochem. Biophys. Res. Commun. , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 18
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine
    • Jiang H., et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013, 496:110-113.
    • (2013) Nature , vol.496 , pp. 110-113
    • Jiang, H.1
  • 19
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334:806-809.
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1
  • 20
    • 84897565291 scopus 로고    scopus 로고
    • Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
    • Tan M., et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014, 19:605-617.
    • (2014) Cell Metab. , vol.19 , pp. 605-617
    • Tan, M.1
  • 21
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111.012658
    • Peng C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 2011, 10. M111.012658.
    • (2011) Mol. Cell. Proteomics , vol.10
    • Peng, C.1
  • 22
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner K.G., et al. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:14178-14182.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 14178-14182
    • Tanner, K.G.1
  • 23
    • 84886717428 scopus 로고    scopus 로고
    • Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes
    • Canto C., et al. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol. Aspects Med. 2013, 34:1168-1201.
    • (2013) Mol. Aspects Med. , vol.34 , pp. 1168-1201
    • Canto, C.1
  • 24
    • 17144429302 scopus 로고    scopus 로고
    • Calorie restriction, SIRT1 and metabolism: understanding longevity
    • Bordone L., Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 2005, 6:298-305.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 298-305
    • Bordone, L.1    Guarente, L.2
  • 25
    • 79955661471 scopus 로고    scopus 로고
    • Mammalian Sirt1: insights on its biological functions
    • Rahman S., Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun. Signal. 2011, 9:11.
    • (2011) Cell Commun. Signal. , vol.9 , pp. 11
    • Rahman, S.1    Islam, R.2
  • 26
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman J.L., et al. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 2013, 288:31350-31356.
    • (2013) J. Biol. Chem. , vol.288 , pp. 31350-31356
    • Feldman, J.L.1
  • 27
    • 34548471739 scopus 로고    scopus 로고
    • Cytoplasm-localized SIRT1 enhances apoptosis
    • Jin Q., et al. Cytoplasm-localized SIRT1 enhances apoptosis. J. Cell. Physiol. 2007, 213:88-97.
    • (2007) J. Cell. Physiol. , vol.213 , pp. 88-97
    • Jin, Q.1
  • 28
    • 78650048197 scopus 로고    scopus 로고
    • Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells
    • Byles V., et al. Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int. J. Biol. Sci. 2010, 6:599-612.
    • (2010) Int. J. Biol. Sci. , vol.6 , pp. 599-612
    • Byles, V.1
  • 29
    • 34250365395 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
    • Tanno M., et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 2007, 282:6823-6832.
    • (2007) J. Biol. Chem. , vol.282 , pp. 6823-6832
    • Tanno, M.1
  • 30
    • 55749095213 scopus 로고    scopus 로고
    • Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
    • Hisahara S., et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15599-15604.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 15599-15604
    • Hisahara, S.1
  • 31
    • 45549096918 scopus 로고    scopus 로고
    • SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons
    • Li Y., et al. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 2008, 8:38-48.
    • (2008) Cell Metab. , vol.8 , pp. 38-48
    • Li, Y.1
  • 32
    • 84855563516 scopus 로고    scopus 로고
    • Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
    • Jeong H., et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 2012, 18:159-165.
    • (2012) Nat. Med. , vol.18 , pp. 159-165
    • Jeong, H.1
  • 33
    • 78650758398 scopus 로고    scopus 로고
    • Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
    • Herranz D., et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010, 1:3.
    • (2010) Nat. Commun. , vol.1 , pp. 3
    • Herranz, D.1
  • 34
    • 84883476818 scopus 로고    scopus 로고
    • Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH
    • Satoh A., et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013, 18:416-430.
    • (2013) Cell Metab. , vol.18 , pp. 416-430
    • Satoh, A.1
  • 35
    • 34249669270 scopus 로고    scopus 로고
    • Sirt1 regulates aging and resistance to oxidative stress in the heart
    • Alcendor R.R., et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 2007, 100:1512-1521.
    • (2007) Circ. Res. , vol.100 , pp. 1512-1521
    • Alcendor, R.R.1
  • 36
    • 84886768309 scopus 로고    scopus 로고
    • Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner
    • Whitaker R., et al. Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging 2013, 5:682-691.
    • (2013) Aging , vol.5 , pp. 682-691
    • Whitaker, R.1
  • 37
    • 0037207475 scopus 로고    scopus 로고
    • The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
    • McBurney M.W., et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 2003, 23:38-54.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 38-54
    • McBurney, M.W.1
  • 38
    • 77955344258 scopus 로고    scopus 로고
    • SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
    • Satoh A., et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J. Neurosci. 2010, 30:10220-10232.
    • (2010) J. Neurosci. , vol.30 , pp. 10220-10232
    • Satoh, A.1
  • 39
    • 84892500218 scopus 로고    scopus 로고
    • SIRT1 but not its increased expression is essential for lifespan extension in caloric-restricted mice
    • Mercken E.M., et al. SIRT1 but not its increased expression is essential for lifespan extension in caloric-restricted mice. Aging Cell 2014, 13:193-196.
    • (2014) Aging Cell , vol.13 , pp. 193-196
    • Mercken, E.M.1
  • 40
    • 68949113934 scopus 로고    scopus 로고
    • SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol
    • Boily G., et al. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 2009, 28:2882-2893.
    • (2009) Oncogene , vol.28 , pp. 2882-2893
    • Boily, G.1
  • 41
    • 84891039686 scopus 로고    scopus 로고
    • SIRT3: as simple as it seems?
    • Lombard D.B., Zwaans B.M. SIRT3: as simple as it seems?. Gerontology 2014, 60:56-64.
    • (2014) Gerontology , vol.60 , pp. 56-64
    • Lombard, D.B.1    Zwaans, B.M.2
  • 42
    • 84874238886 scopus 로고    scopus 로고
    • SIRT3 reverses aging-associated degeneration
    • Brown K., et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013, 3:319-327.
    • (2013) Cell Rep. , vol.3 , pp. 319-327
    • Brown, K.1
  • 43
    • 69249229772 scopus 로고    scopus 로고
    • The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
    • Yang B., et al. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 2009, 8:2662-2663.
    • (2009) Cell Cycle , vol.8 , pp. 2662-2663
    • Yang, B.1
  • 44
    • 41349090663 scopus 로고    scopus 로고
    • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
    • Michishita E., et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008, 452:492-496.
    • (2008) Nature , vol.452 , pp. 492-496
    • Michishita, E.1
  • 45
    • 69249221533 scopus 로고    scopus 로고
    • Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
    • Michishita E., et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 2009, 8:2664-2666.
    • (2009) Cell Cycle , vol.8 , pp. 2664-2666
    • Michishita, E.1
  • 46
    • 77956550868 scopus 로고    scopus 로고
    • Human SIRT6 promotes DNA end resection through CtIP deacetylation
    • Kaidi A., et al. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010, 329:1348-1353.
    • (2010) Science , vol.329 , pp. 1348-1353
    • Kaidi, A.1
  • 47
    • 84871676013 scopus 로고    scopus 로고
    • The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
    • Dominy J.E., et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 2012, 48:900-913.
    • (2012) Mol. Cell , vol.48 , pp. 900-913
    • Dominy, J.E.1
  • 48
    • 79959363092 scopus 로고    scopus 로고
    • SIRT6 promotes DNA repair under stress by activating PARP1
    • Mao Z., et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011, 332:1443-1446.
    • (2011) Science , vol.332 , pp. 1443-1446
    • Mao, Z.1
  • 49
    • 84888177631 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals
    • Jedrusik-Bode M., et al. The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals. J. Cell Sci. 2013, 126:5166-5177.
    • (2013) J. Cell Sci. , vol.126 , pp. 5166-5177
    • Jedrusik-Bode, M.1
  • 50
    • 84891790963 scopus 로고    scopus 로고
    • A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on catalytic activity
    • Miteva Y., Cristea M. A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on catalytic activity. Mol. Cell. Proteomics 2014, 13:168-183.
    • (2014) Mol. Cell. Proteomics , vol.13 , pp. 168-183
    • Miteva, Y.1    Cristea, M.2
  • 51
    • 84886995483 scopus 로고    scopus 로고
    • Proteomic analysis of the SIRT6 interactome: novel links to genome maintenance and cellular stress signaling
    • Simeoni F., et al. Proteomic analysis of the SIRT6 interactome: novel links to genome maintenance and cellular stress signaling. Sci. Rep. 2013, 3:3085.
    • (2013) Sci. Rep. , vol.3 , pp. 3085
    • Simeoni, F.1
  • 52
    • 84878680994 scopus 로고    scopus 로고
    • Sirtuin 6: a review of biological effects and potential therapeutic properties
    • Beauharnois J.M., et al. Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol. Biosyst. 2013, 9:1789-1806.
    • (2013) Mol. Biosyst. , vol.9 , pp. 1789-1806
    • Beauharnois, J.M.1
  • 53
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates lifespan in male mice
    • Kanfi Y., et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012, 483:218-221.
    • (2012) Nature , vol.483 , pp. 218-221
    • Kanfi, Y.1
  • 54
    • 2942536602 scopus 로고    scopus 로고
    • The paradox of the insulin/IGF-1 signaling pathway in longevity
    • Rincon M., et al. The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech. Ageing Dev. 2004, 125:397-403.
    • (2004) Mech. Ageing Dev. , vol.125 , pp. 397-403
    • Rincon, M.1
  • 55
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky R., et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006, 124:315-329.
    • (2006) Cell , vol.124 , pp. 315-329
    • Mostoslavsky, R.1
  • 56
    • 78449248442 scopus 로고    scopus 로고
    • SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
    • Xiao C., et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J. Biol. Chem. 2010, 285:36776-36784.
    • (2010) J. Biol. Chem. , vol.285 , pp. 36776-36784
    • Xiao, C.1
  • 57
    • 84869201195 scopus 로고    scopus 로고
    • The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
    • Sundaresan N.R., et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 2012, 18:1643-1650.
    • (2012) Nat. Med. , vol.18 , pp. 1643-1650
    • Sundaresan, N.R.1
  • 58
    • 79951794971 scopus 로고    scopus 로고
    • Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice
    • Miller R.A., et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A: Biol. Sci. Med. Sci. 2011, 66:191-201.
    • (2011) J. Gerontol. A: Biol. Sci. Med. Sci. , vol.66 , pp. 191-201
    • Miller, R.A.1
  • 59
    • 84881247539 scopus 로고    scopus 로고
    • Rapamycin extends murine lifespan but has limited effects on aging
    • Neff F., et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 2013, 123:3272-3291.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3272-3291
    • Neff, F.1
  • 60
    • 84881237963 scopus 로고    scopus 로고
    • Rapamycin, anti-aging, and avoiding the fate of Tithonus
    • Richardson A. Rapamycin, anti-aging, and avoiding the fate of Tithonus. J. Clin. Invest. 2013, 123:3204-3206.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3204-3206
    • Richardson, A.1
  • 61
    • 84874594425 scopus 로고    scopus 로고
    • The sirtuin family's role in aging and age-associated pathologies
    • Hall J.A., et al. The sirtuin family's role in aging and age-associated pathologies. J. Clin. Invest. 2013, 123:973-979.
    • (2013) J. Clin. Invest. , vol.123 , pp. 973-979
    • Hall, J.A.1
  • 62
    • 25844524877 scopus 로고    scopus 로고
    • Neurodegenerative diseases: an overview of environmental risk factors
    • Brown R.C., et al. Neurodegenerative diseases: an overview of environmental risk factors. Environ. Health Perspect. 2005, 113:1250-1256.
    • (2005) Environ. Health Perspect. , vol.113 , pp. 1250-1256
    • Brown, R.C.1
  • 63
    • 84893459319 scopus 로고    scopus 로고
    • SIRT1 in neurodevelopment and brain senescence
    • Herskovits A.Z., Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron 2014, 81:471-483.
    • (2014) Neuron , vol.81 , pp. 471-483
    • Herskovits, A.Z.1    Guarente, L.2
  • 64
    • 77955046461 scopus 로고    scopus 로고
    • SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
    • Donmez G., et al. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010, 142:320-332.
    • (2010) Cell , vol.142 , pp. 320-332
    • Donmez, G.1
  • 65
    • 77957001697 scopus 로고    scopus 로고
    • Acetylation of tau inhibits its degradation and contributes to tauopathy
    • Min S.W., et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010, 67:953-966.
    • (2010) Neuron , vol.67 , pp. 953-966
    • Min, S.W.1
  • 66
    • 79953087890 scopus 로고    scopus 로고
    • The acetylation of tau inhibits its function and promotes pathological tau aggregation
    • Cohen T.J., et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2011, 2:252.
    • (2011) Nat. Commun. , vol.2 , pp. 252
    • Cohen, T.J.1
  • 67
    • 84855929223 scopus 로고    scopus 로고
    • SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones
    • Donmez G., et al. SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J. Neurosci. 2012, 32:124-132.
    • (2012) J. Neurosci. , vol.32 , pp. 124-132
    • Donmez, G.1
  • 68
    • 53249114029 scopus 로고    scopus 로고
    • Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease
    • Pallos J., et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 2008, 17:3767-3775.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 3767-3775
    • Pallos, J.1
  • 69
    • 84865704833 scopus 로고    scopus 로고
    • Integration of beta-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity
    • Parker J.A., et al. Integration of beta-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J. Neurosci. 2012, 32:12630-12640.
    • (2012) J. Neurosci. , vol.32 , pp. 12630-12640
    • Parker, J.A.1
  • 70
    • 84855544817 scopus 로고    scopus 로고
    • Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
    • Jiang M., et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat. Med. 2012, 18:153-158.
    • (2012) Nat. Med. , vol.18 , pp. 153-158
    • Jiang, M.1
  • 71
    • 84863794891 scopus 로고    scopus 로고
    • Trans-(-)-epsilon-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease
    • Fu J., et al. trans-(-)-epsilon-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem. 2012, 287:24460-24472.
    • (2012) J. Biol. Chem. , vol.287 , pp. 24460-24472
    • Fu, J.1
  • 72
    • 79952443408 scopus 로고    scopus 로고
    • Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity
    • Song W., et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med. 2011, 17:377-382.
    • (2011) Nat. Med. , vol.17 , pp. 377-382
    • Song, W.1
  • 73
    • 0025073794 scopus 로고
    • Effect of age on body composition and resting metabolic rate
    • Fukagawa N.K., et al. Effect of age on body composition and resting metabolic rate. Am. J. Physiol. 1990, 259:E233-E238.
    • (1990) Am. J. Physiol. , vol.259
    • Fukagawa, N.K.1
  • 74
    • 73449125077 scopus 로고    scopus 로고
    • Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation?
    • St-Onge M.P., Gallagher D. Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation?. Nutrition 2010, 26:152-155.
    • (2010) Nutrition , vol.26 , pp. 152-155
    • St-Onge, M.P.1    Gallagher, D.2
  • 75
    • 79551510805 scopus 로고    scopus 로고
    • Obesity and cancer risk: recent review and evidence
    • Basen-Engquist K., Chang M. Obesity and cancer risk: recent review and evidence. Curr. Oncol. Rep. 2011, 13:71-76.
    • (2011) Curr. Oncol. Rep. , vol.13 , pp. 71-76
    • Basen-Engquist, K.1    Chang, M.2
  • 77
    • 52949130217 scopus 로고    scopus 로고
    • Estimating the number of U.S. incident cancers attributable to obesity and the impact on temporal trends in incidence rates for obesity-related cancers
    • Polednak A.P. Estimating the number of U.S. incident cancers attributable to obesity and the impact on temporal trends in incidence rates for obesity-related cancers. Cancer Detect. Prev. 2008, 32:190-199.
    • (2008) Cancer Detect. Prev. , vol.32 , pp. 190-199
    • Polednak, A.P.1
  • 78
    • 75949102926 scopus 로고    scopus 로고
    • Biological mechanisms linking obesity and cancer risk: new perspectives
    • Roberts D.L., et al. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu. Rev. Med. 2010, 61:301-316.
    • (2010) Annu. Rev. Med. , vol.61 , pp. 301-316
    • Roberts, D.L.1
  • 79
    • 84871782815 scopus 로고    scopus 로고
    • SIRT1 and energy metabolism
    • Li X. SIRT1 and energy metabolism. Acta Biochim. Biophys. Sin. 2013, 45:51-60.
    • (2013) Acta Biochim. Biophys. Sin. , vol.45 , pp. 51-60
    • Li, X.1
  • 81
    • 63449112017 scopus 로고    scopus 로고
    • Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
    • Purushotham A., et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009, 9:327-338.
    • (2009) Cell Metab. , vol.9 , pp. 327-338
    • Purushotham, A.1
  • 82
    • 78650533816 scopus 로고    scopus 로고
    • Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition
    • Wang R.H., et al. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int. J. Biol. Sci. 2010, 6:682-690.
    • (2010) Int. J. Biol. Sci. , vol.6 , pp. 682-690
    • Wang, R.H.1
  • 83
    • 77949506721 scopus 로고    scopus 로고
    • Hypothalamic Sirt1 regulates food intake in a rodent model system
    • Cakir I., et al. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS ONE 2009, 4:e8322.
    • (2009) PLoS ONE , vol.4
    • Cakir, I.1
  • 84
    • 77956644726 scopus 로고    scopus 로고
    • SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity
    • Ramadori G., et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010, 12:78-87.
    • (2010) Cell Metab. , vol.12 , pp. 78-87
    • Ramadori, G.1
  • 85
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • Gerhart-Hines Z., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007, 26:1913-1923.
    • (2007) EMBO J. , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1
  • 86
    • 84893442805 scopus 로고    scopus 로고
    • Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
    • Gomes A.P., et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013, 155:1624-1638.
    • (2013) Cell , vol.155 , pp. 1624-1638
    • Gomes, A.P.1
  • 87
    • 84864615516 scopus 로고    scopus 로고
    • Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of PPARgamma
    • Qiang L., et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of PPARgamma. Cell 2012, 150:620-632.
    • (2012) Cell , vol.150 , pp. 620-632
    • Qiang, L.1
  • 88
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
    • Picard F., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004, 429:771-776.
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1
  • 89
    • 38349112898 scopus 로고    scopus 로고
    • Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice
    • Ramsey K.M., et al. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 2008, 7:78-88.
    • (2008) Aging Cell , vol.7 , pp. 78-88
    • Ramsey, K.M.1
  • 90
    • 25144454432 scopus 로고    scopus 로고
    • Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
    • Moynihan K.A., et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005, 2:105-117.
    • (2005) Cell Metab. , vol.2 , pp. 105-117
    • Moynihan, K.A.1
  • 91
    • 80053920774 scopus 로고    scopus 로고
    • Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
    • Yoshino J., et al. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14:528-536.
    • (2011) Cell Metab. , vol.14 , pp. 528-536
    • Yoshino, J.1
  • 92
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1
  • 93
    • 84894263431 scopus 로고    scopus 로고
    • Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex
    • Fan J., et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 2014, 53:534-548.
    • (2014) Mol. Cell , vol.53 , pp. 534-548
    • Fan, J.1
  • 94
    • 78649509214 scopus 로고    scopus 로고
    • SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
    • Shimazu T., et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
    • (2010) Cell Metab. , vol.12 , pp. 654-661
    • Shimazu, T.1
  • 95
    • 80052291180 scopus 로고    scopus 로고
    • Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
    • Jing E., et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14608-14613.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14608-14613
    • Jing, E.1
  • 96
    • 82455212901 scopus 로고    scopus 로고
    • SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
    • Hirschey M.D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 2011, 44:177-190.
    • (2011) Mol. Cell , vol.44 , pp. 177-190
    • Hirschey, M.D.1
  • 97
    • 84861589885 scopus 로고    scopus 로고
    • Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
    • Fernandez-Marcos P.J., et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci. Rep. 2012, 2:425.
    • (2012) Sci. Rep. , vol.2 , pp. 425
    • Fernandez-Marcos, P.J.1
  • 98
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
    • Zhong L., et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010, 140:280-293.
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1
  • 99
    • 77956315551 scopus 로고    scopus 로고
    • Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
    • Kim H.S., et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010, 12:224-236.
    • (2010) Cell Metab. , vol.12 , pp. 224-236
    • Kim, H.S.1
  • 100
    • 84884150671 scopus 로고    scopus 로고
    • Multiple regulatory layers of SREBP1/2 by SIRT6
    • Elhanati S., et al. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep. 2013, 4:905-912.
    • (2013) Cell Rep. , vol.4 , pp. 905-912
    • Elhanati, S.1
  • 101
    • 84884134120 scopus 로고    scopus 로고
    • Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6
    • Tao R., et al. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J. Lipid Res. 2013, 54:2745-2753.
    • (2013) J. Lipid Res. , vol.54 , pp. 2745-2753
    • Tao, R.1
  • 102
    • 77953244349 scopus 로고    scopus 로고
    • SIRT6 protects against pathological damage caused by diet-induced obesity
    • Kanfi Y., et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 2010, 9:162-173.
    • (2010) Aging Cell , vol.9 , pp. 162-173
    • Kanfi, Y.1
  • 103
    • 84880585451 scopus 로고    scopus 로고
    • Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review
    • Barbaresko J., et al. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr. Rev. 2013, 71:511-527.
    • (2013) Nutr. Rev. , vol.71 , pp. 511-527
    • Barbaresko, J.1
  • 104
    • 84863544685 scopus 로고    scopus 로고
    • NF-kappaB in aging and disease
    • Tilstra J.S., et al. NF-kappaB in aging and disease. Aging Dis. 2011, 2:449-465.
    • (2011) Aging Dis. , vol.2 , pp. 449-465
    • Tilstra, J.S.1
  • 105
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: biological insights and disease relevance
    • Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
    • (2010) Annu. Rev. Pathol. , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 106
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • Kawahara T.L., et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009, 136:62-74.
    • (2009) Cell , vol.136 , pp. 62-74
    • Kawahara, T.L.1
  • 107
    • 85042594546 scopus 로고    scopus 로고
    • Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney
    • Jung K.J., et al. Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney. Inflamm. Res. 2009, 58:143-150.
    • (2009) Inflamm. Res. , vol.58 , pp. 143-150
    • Jung, K.J.1
  • 108
    • 84875545992 scopus 로고    scopus 로고
    • Hand osteoarthritis: new insights
    • Gabay O., Gabay C. Hand osteoarthritis: new insights. Joint Bone Spine 2013, 80:130-134.
    • (2013) Joint Bone Spine , vol.80 , pp. 130-134
    • Gabay, O.1    Gabay, C.2
  • 109
    • 84875332275 scopus 로고    scopus 로고
    • Identification of a SIRT1 mutation in a family with type 1 diabetes
    • Biason-Lauber A., et al. Identification of a SIRT1 mutation in a family with type 1 diabetes. Cell Metab. 2013, 17:448-455.
    • (2013) Cell Metab. , vol.17 , pp. 448-455
    • Biason-Lauber, A.1
  • 110
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 111
    • 84886904734 scopus 로고    scopus 로고
    • The emerging and diverse roles of sirtuins in cancer: a clinical perspective
    • Yuan H., et al. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther. 2013, 6:1399-1416.
    • (2013) Onco Targets Ther. , vol.6 , pp. 1399-1416
    • Yuan, H.1
  • 112
    • 65349096174 scopus 로고    scopus 로고
    • A c-Myc-SIRT1 feedback loop regulates cell growth and transformation
    • Yuan J., et al. A c-Myc-SIRT1 feedback loop regulates cell growth and transformation. J. Cell Biol. 2009, 185:203-211.
    • (2009) J. Cell Biol. , vol.185 , pp. 203-211
    • Yuan, J.1
  • 113
    • 77955499804 scopus 로고    scopus 로고
    • Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
    • Lim J.H., et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 2010, 38:864-878.
    • (2010) Mol. Cell , vol.38 , pp. 864-878
    • Lim, J.H.1
  • 114
    • 84861537556 scopus 로고    scopus 로고
    • Hepatitis B virus X (HBX) protein upregulates beta-catenin in a human hepatic cell line by sequestering SIRT1 deacetylase
    • Srisuttee R., et al. Hepatitis B virus X (HBX) protein upregulates beta-catenin in a human hepatic cell line by sequestering SIRT1 deacetylase. Oncol. Rep. 2012, 28:276-282.
    • (2012) Oncol. Rep. , vol.28 , pp. 276-282
    • Srisuttee, R.1
  • 115
    • 44849096876 scopus 로고    scopus 로고
    • The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • Firestein R., et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 2008, 3:e2020.
    • (2008) PLoS ONE , vol.3
    • Firestein, R.1
  • 116
    • 84879141103 scopus 로고    scopus 로고
    • Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min) mouse model
    • Leko V., et al. Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min) mouse model. PLoS ONE 2013, 8:e66283.
    • (2013) PLoS ONE , vol.8
    • Leko, V.1
  • 117
    • 84859113488 scopus 로고    scopus 로고
    • Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1alpha protein under hypoxic conditions
    • Laemmle A., et al. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1alpha protein under hypoxic conditions. PLoS ONE 2012, 7:e33433.
    • (2012) PLoS ONE , vol.7
    • Laemmle, A.1
  • 118
    • 84856384698 scopus 로고    scopus 로고
    • The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop
    • Menssen A., et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E187-E196.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109
    • Menssen, A.1
  • 119
    • 80053377582 scopus 로고    scopus 로고
    • Sirt1 deacetylates c-Myc and promotes c-Myc/Max association
    • Mao B., et al. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int. J. Biochem. Cell Biol. 2011, 43:1573-1581.
    • (2011) Int. J. Biochem. Cell Biol. , vol.43 , pp. 1573-1581
    • Mao, B.1
  • 120
    • 79952501323 scopus 로고    scopus 로고
    • SIRT3 Opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
    • Finley L.W., et al. SIRT3 Opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 2011, 19:416-428.
    • (2011) Cancer Cell , vol.19 , pp. 416-428
    • Finley, L.W.1
  • 121
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim H.S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.S.1
  • 122
    • 77951279075 scopus 로고    scopus 로고
    • Reactive oxygen species in cancer
    • Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44:479-496.
    • (2010) Free Radic. Res. , vol.44 , pp. 479-496
    • Liou, G.Y.1    Storz, P.2
  • 123
    • 84865576222 scopus 로고    scopus 로고
    • Metabolic regulation by SIRT3: implications for tumorigenesis
    • Finley L.W., Haigis M.C. Metabolic regulation by SIRT3: implications for tumorigenesis. Trends Mol. Med. 2012, 18:516-523.
    • (2012) Trends Mol. Med. , vol.18 , pp. 516-523
    • Finley, L.W.1    Haigis, M.C.2
  • 124
    • 79959819034 scopus 로고    scopus 로고
    • SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
    • Bell E.L., et al. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996.
    • (2011) Oncogene , vol.30 , pp. 2986-2996
    • Bell, E.L.1
  • 125
    • 84878679199 scopus 로고    scopus 로고
    • A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
    • Kaplon J., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498:109-112.
    • (2013) Nature , vol.498 , pp. 109-112
    • Kaplon, J.1
  • 126
    • 77956295588 scopus 로고    scopus 로고
    • P53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase
    • Li S., et al. p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase. PLoS ONE 2010, 5:e10486.
    • (2010) PLoS ONE , vol.5
    • Li, S.1
  • 127
    • 84887625811 scopus 로고    scopus 로고
    • Germline copy number variation of genes involved in chromatin remodelling in families suggestive of Li-Fraumeni syndrome with brain tumours
    • Aury-Landas J., et al. Germline copy number variation of genes involved in chromatin remodelling in families suggestive of Li-Fraumeni syndrome with brain tumours. Eur. J. Hum. Genet. 2013, 21:1369-1376.
    • (2013) Eur. J. Hum. Genet. , vol.21 , pp. 1369-1376
    • Aury-Landas, J.1
  • 128
    • 33750212896 scopus 로고    scopus 로고
    • Altered sirtuin expression is associated with node-positive breast cancer
    • Ashraf N., et al. Altered sirtuin expression is associated with node-positive breast cancer. Br. J. Cancer 2006, 95:1056-1061.
    • (2006) Br. J. Cancer , vol.95 , pp. 1056-1061
    • Ashraf, N.1
  • 129
    • 79953799195 scopus 로고    scopus 로고
    • Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
    • Alhazzazi T.Y., et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011, 117:1670-1678.
    • (2011) Cancer , vol.117 , pp. 1670-1678
    • Alhazzazi, T.Y.1
  • 130
    • 84878550317 scopus 로고    scopus 로고
    • SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer
    • Khongkow M., et al. SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 2013, 34:1476-1486.
    • (2013) Carcinogenesis , vol.34 , pp. 1476-1486
    • Khongkow, M.1
  • 131
    • 84890570698 scopus 로고    scopus 로고
    • Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics
    • Liu Y., et al. Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein Cell 2013, 4:702-710.
    • (2013) Protein Cell , vol.4 , pp. 702-710
    • Liu, Y.1
  • 132
    • 84870874690 scopus 로고    scopus 로고
    • The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
    • Sebastian C., et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012, 151:1185-1199.
    • (2012) Cell , vol.151 , pp. 1185-1199
    • Sebastian, C.1
  • 133
    • 84869082071 scopus 로고    scopus 로고
    • Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin
    • Min L., et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat. Cell Biol. 2012, 14:1203-1211.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1203-1211
    • Min, L.1
  • 134
    • 80052908853 scopus 로고    scopus 로고
    • SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells
    • Van Meter M., et al. SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 2011, 10:3153-3158.
    • (2011) Cell Cycle , vol.10 , pp. 3153-3158
    • Van Meter, M.1
  • 135
    • 84876359638 scopus 로고    scopus 로고
    • SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
    • Jeong S.M., et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013, 23:450-463.
    • (2013) Cancer Cell , vol.23 , pp. 450-463
    • Jeong, S.M.1
  • 136
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi A., et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013, 153:840-854.
    • (2013) Cell , vol.153 , pp. 840-854
    • Csibi, A.1
  • 137
    • 84894109588 scopus 로고    scopus 로고
    • SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma
    • Jeong S.M., et al. SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma. J. Biol. Chem. 2014, 289:4135-4144.
    • (2014) J. Biol. Chem. , vol.289 , pp. 4135-4144
    • Jeong, S.M.1
  • 138
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • Barber M.F., et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012, 487:114-118.
    • (2012) Nature , vol.487 , pp. 114-118
    • Barber, M.F.1
  • 139
    • 84893651437 scopus 로고    scopus 로고
    • Heart disease and stroke statistics 2014 update: a report from the American Heart Association
    • Go A.S., et al. Heart disease and stroke statistics 2014 update: a report from the American Heart Association. Circulation 2014, 129:e28-e292.
    • (2014) Circulation , vol.129
    • Go, A.S.1
  • 140
    • 0037458070 scopus 로고    scopus 로고
    • Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease
    • Lakatta E.G., Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 2003, 107:346-354.
    • (2003) Circulation , vol.107 , pp. 346-354
    • Lakatta, E.G.1    Levy, D.2
  • 141
    • 35549008884 scopus 로고    scopus 로고
    • SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
    • Mattagajasingh I., et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14855-14860.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 14855-14860
    • Mattagajasingh, I.1
  • 142
    • 49249100288 scopus 로고    scopus 로고
    • Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations
    • Csiszar A., et al. Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am. J. Physiol. Heart Circ. Physiol. 2008, 294:H2721-H2735.
    • (2008) Am. J. Physiol. Heart Circ. Physiol. , vol.294
    • Csiszar, A.1
  • 143
    • 47849088748 scopus 로고    scopus 로고
    • Emerging roles of SIRT1 in vascular endothelial homeostasis
    • Potente M., Dimmeler S. Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 2008, 7:2117-2122.
    • (2008) Cell Cycle , vol.7 , pp. 2117-2122
    • Potente, M.1    Dimmeler, S.2
  • 144
    • 35348980724 scopus 로고    scopus 로고
    • SIRT1 controls endothelial angiogenic functions during vascular growth
    • Potente M., et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007, 21:2644-2658.
    • (2007) Genes Dev. , vol.21 , pp. 2644-2658
    • Potente, M.1
  • 145
    • 79955926985 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
    • Guarani V., et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 2011, 473:234-238.
    • (2011) Nature , vol.473 , pp. 234-238
    • Guarani, V.1
  • 146
    • 84860743760 scopus 로고    scopus 로고
    • FOXOs and sirtuins in vascular growth, maintenance, and aging
    • Oellerich M.F., Potente M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ. Res. 2012, 110:1238-1251.
    • (2012) Circ. Res. , vol.110 , pp. 1238-1251
    • Oellerich, M.F.1    Potente, M.2
  • 147
    • 33751288658 scopus 로고    scopus 로고
    • FOXOs in the maintenance of vascular homoeostasis
    • Paik J.H. FOXOs in the maintenance of vascular homoeostasis. Biochem. Soc. Trans. 2006, 34:731-734.
    • (2006) Biochem. Soc. Trans. , vol.34 , pp. 731-734
    • Paik, J.H.1
  • 148
    • 33846295218 scopus 로고    scopus 로고
    • FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
    • Paik J.H., et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007, 128:309-323.
    • (2007) Cell , vol.128 , pp. 309-323
    • Paik, J.H.1
  • 149
    • 24644519938 scopus 로고    scopus 로고
    • Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization
    • Potente M., et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 2005, 115:2382-2392.
    • (2005) J. Clin. Invest. , vol.115 , pp. 2382-2392
    • Potente, M.1
  • 150
    • 59649085554 scopus 로고    scopus 로고
    • Angiogenesis: a team effort coordinated by notch
    • Phng L.K., Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev. Cell 2009, 16:196-208.
    • (2009) Dev. Cell , vol.16 , pp. 196-208
    • Phng, L.K.1    Gerhardt, H.2
  • 151
    • 84879545572 scopus 로고    scopus 로고
    • 2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin 1 in endothelium is atheroprotective
    • 2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E2420-E2427.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110
    • Wen, L.1
  • 152
    • 79955365919 scopus 로고    scopus 로고
    • Glucose metabolism and cardiac hypertrophy
    • Kolwicz S.C., Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res. 2011, 90:194-201.
    • (2011) Cardiovasc. Res. , vol.90 , pp. 194-201
    • Kolwicz, S.C.1    Tian, R.2
  • 153
    • 79955397959 scopus 로고    scopus 로고
    • Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation
    • Planavila A., et al. Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res. 2011, 90:276-284.
    • (2011) Cardiovasc. Res. , vol.90 , pp. 276-284
    • Planavila, A.1
  • 154
    • 80455128956 scopus 로고    scopus 로고
    • PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway
    • Oka S., et al. PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab. 2011, 14:598-611.
    • (2011) Cell Metab. , vol.14 , pp. 598-611
    • Oka, S.1
  • 155
    • 79960620082 scopus 로고    scopus 로고
    • The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy
    • Sundaresan N.R., et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal. 2011, 4:ra46.
    • (2011) Sci. Signal. , vol.4
    • Sundaresan, N.R.1
  • 156
    • 34250788809 scopus 로고    scopus 로고
    • AKT/PKB signaling: navigating downstream
    • Manning B.D., Cantley L.C. AKT/PKB signaling: navigating downstream. Cell 2007, 129:1261-1274.
    • (2007) Cell , vol.129 , pp. 1261-1274
    • Manning, B.D.1    Cantley, L.C.2
  • 157
    • 0037125980 scopus 로고    scopus 로고
    • Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice
    • Condorelli G., et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:12333-12338.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 12333-12338
    • Condorelli, G.1
  • 158
    • 0037020157 scopus 로고    scopus 로고
    • Akt signaling mediates postnatal heart growth in response to insulin and nutritional status
    • Shiojima I., et al. Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. J. Biol. Chem. 2002, 277:37670-37677.
    • (2002) J. Biol. Chem. , vol.277 , pp. 37670-37677
    • Shiojima, I.1
  • 159
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • Sundaresan N.R., et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 2009, 119:2758-2771.
    • (2009) J. Clin. Invest. , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1
  • 160
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
    • Pillai V.B., et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 2010, 285:3133-3144.
    • (2010) J. Biol. Chem. , vol.285 , pp. 3133-3144
    • Pillai, V.B.1
  • 161
    • 84880517634 scopus 로고    scopus 로고
    • The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
    • Mouchiroud L., et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 2013, 154:430-441.
    • (2013) Cell , vol.154 , pp. 430-441
    • Mouchiroud, L.1
  • 162
    • 79955591489 scopus 로고    scopus 로고
    • Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats
    • Braidy N., et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE 2011, 6:e19194.
    • (2011) PLoS ONE , vol.6
    • Braidy, N.1
  • 163
    • 84896399265 scopus 로고    scopus 로고
    • Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence
    • Braidy N., et al. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence. Biogerontology 2014, 15:177-198.
    • (2014) Biogerontology , vol.15 , pp. 177-198
    • Braidy, N.1
  • 164
    • 84864401965 scopus 로고    scopus 로고
    • Age-associated changes in oxidative stress and NAD+ metabolism in human tissue
    • Massudi H., et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 2012, 7:e42357.
    • (2012) PLoS ONE , vol.7
    • Massudi, H.1
  • 165
    • 84862022077 scopus 로고    scopus 로고
    • The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
    • Canto C., et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012, 15:838-847.
    • (2012) Cell Metab. , vol.15 , pp. 838-847
    • Canto, C.1
  • 166
    • 36049038217 scopus 로고    scopus 로고
    • The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity
    • Barbosa M.T., et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 2007, 21:3629-3639.
    • (2007) FASEB J. , vol.21 , pp. 3629-3639
    • Barbosa, M.T.1
  • 167
    • 84880068090 scopus 로고    scopus 로고
    • The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
    • Sharma A., et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 2013, 288:18439-18447.
    • (2013) J. Biol. Chem. , vol.288 , pp. 18439-18447
    • Sharma, A.1
  • 168
    • 84899562732 scopus 로고    scopus 로고
    • Drugs that modulate aging: the promising yet difficult path ahead
    • Kennedy B.K., Pennypacker J.K. Drugs that modulate aging: the promising yet difficult path ahead. Transl. Res. 2013, 163:456-465.
    • (2013) Transl. Res. , vol.163 , pp. 456-465
    • Kennedy, B.K.1    Pennypacker, J.K.2
  • 169
    • 79955433960 scopus 로고    scopus 로고
    • Metabolomic analysis of livers and serum from high-fat diet induced obese mice
    • Kim H.J., et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 2011, 10:722-731.
    • (2011) J. Proteome Res. , vol.10 , pp. 722-731
    • Kim, H.J.1
  • 170
    • 84865731753 scopus 로고    scopus 로고
    • The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease
    • Bai P., Canto C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 2012, 16:290-295.
    • (2012) Cell Metab. , vol.16 , pp. 290-295
    • Bai, P.1    Canto, C.2
  • 171
    • 0035826271 scopus 로고    scopus 로고
    • Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
    • Tissenbaum H.A., Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001, 410:227-230.
    • (2001) Nature , vol.410 , pp. 227-230
    • Tissenbaum, H.A.1    Guarente, L.2
  • 172
    • 0036007110 scopus 로고    scopus 로고
    • Model organisms as a guide to mammalian aging
    • Tissenbaum H.A., Guarente L. Model organisms as a guide to mammalian aging. Dev. Cell 2002, 2:9-19.
    • (2002) Dev. Cell , vol.2 , pp. 9-19
    • Tissenbaum, H.A.1    Guarente, L.2
  • 173
    • 80053134340 scopus 로고    scopus 로고
    • Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes
    • Viswanathan M., Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011, 477:E1-E2.
    • (2011) Nature , vol.477
    • Viswanathan, M.1    Guarente, L.2
  • 174
    • 80053460544 scopus 로고    scopus 로고
    • The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO
    • Rizki G., et al. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet. 2011, 7:e1002235.
    • (2011) PLoS Genet. , vol.7
    • Rizki, G.1
  • 175
    • 33744976074 scopus 로고    scopus 로고
    • C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span
    • Berdichevsky A., et al. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006, 125:1165-1177.
    • (2006) Cell , vol.125 , pp. 1165-1177
    • Berdichevsky, A.1
  • 176
    • 84875874024 scopus 로고    scopus 로고
    • Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1
    • Ludewig A.H., et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5522-5527.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5522-5527
    • Ludewig, A.H.1
  • 177
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B., Helfand S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15998-16003.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 178
    • 84871695502 scopus 로고    scopus 로고
    • DSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner
    • Banerjee K.K., et al. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2012, 2:1485-1491.
    • (2012) Cell Rep. , vol.2 , pp. 1485-1491
    • Banerjee, K.K.1
  • 179
    • 84877648303 scopus 로고    scopus 로고
    • Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila
    • Hoffmann J., et al. Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila. Aging 2013, 5:315-327.
    • (2013) Aging , vol.5 , pp. 315-327
    • Hoffmann, J.1
  • 180
    • 80053168829 scopus 로고    scopus 로고
    • Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
    • Burnett C., et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011, 477:482-485.
    • (2011) Nature , vol.477 , pp. 482-485
    • Burnett, C.1
  • 181
    • 10744232772 scopus 로고    scopus 로고
    • Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly
    • Rose G., et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp. Gerontol. 2003, 38:1065-1070.
    • (2003) Exp. Gerontol. , vol.38 , pp. 1065-1070
    • Rose, G.1
  • 182
    • 19944433088 scopus 로고    scopus 로고
    • A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages
    • Bellizzi D., et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 2005, 85:258-263.
    • (2005) Genomics , vol.85 , pp. 258-263
    • Bellizzi, D.1
  • 183
    • 70350365059 scopus 로고    scopus 로고
    • Human longevity and 11p15.5: a study in 1321 centenarians
    • Lescai F., et al. Human longevity and 11p15.5: a study in 1321 centenarians. Eur. J. Hum. Genet. 2009, 17:1515-1519.
    • (2009) Eur. J. Hum. Genet. , vol.17 , pp. 1515-1519
    • Lescai, F.1
  • 184
    • 33847057698 scopus 로고    scopus 로고
    • The Treviso Longeva (Trelong) study: a biomedical, demographic, economic and social investigation on people 70 years and over in a typical town of North-East of Italy
    • Gallucci M., et al. The Treviso Longeva (Trelong) study: a biomedical, demographic, economic and social investigation on people 70 years and over in a typical town of North-East of Italy. Arch. Gerontol. Geriatr. 2007, 44(Suppl. 1):173-192.
    • (2007) Arch. Gerontol. Geriatr. , vol.44 , Issue.SUPPL. 1 , pp. 173-192
    • Gallucci, M.1
  • 185
    • 69949156564 scopus 로고    scopus 로고
    • Genetic variation in healthy oldest-old
    • Halaschek-Wiener J., et al. Genetic variation in healthy oldest-old. PLoS ONE 2009, 4:e6641.
    • (2009) PLoS ONE , vol.4
    • Halaschek-Wiener, J.1
  • 186
    • 84899069949 scopus 로고    scopus 로고
    • Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study 'Treviso Longeva (TRELONG)'
    • Albani D., et al. Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study 'Treviso Longeva (TRELONG)'. Age 2014, 36:469-478.
    • (2014) Age , vol.36 , pp. 469-478
    • Albani, D.1
  • 188
    • 84885355365 scopus 로고    scopus 로고
    • Calorie restriction and sirtuins revisited
    • Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013, 27:2072-2085.
    • (2013) Genes Dev. , vol.27 , pp. 2072-2085
    • Guarente, L.1
  • 189
    • 24944559665 scopus 로고    scopus 로고
    • HST2 mediates SIR2-independent life-span extension by calorie restriction
    • Lamming D.W., et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 2005, 309:1861-1864.
    • (2005) Science , vol.309 , pp. 1861-1864
    • Lamming, D.W.1
  • 190
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin S.J., et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289:2126-2128.
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1
  • 191
    • 34347354447 scopus 로고    scopus 로고
    • Sir2 and calorie restriction in yeast: a skeptical perspective
    • Kaeberlein M., Powers R.W. Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev. 2007, 6:128-140.
    • (2007) Ageing Res. Rev. , vol.6 , pp. 128-140
    • Kaeberlein, M.1    Powers, R.W.2
  • 192
    • 84863524526 scopus 로고    scopus 로고
    • Replicative and chronological aging in Saccharomyces cerevisiae
    • Longo V.D., et al. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 2012, 16:18-31.
    • (2012) Cell Metab. , vol.16 , pp. 18-31
    • Longo, V.D.1
  • 193
    • 33846423520 scopus 로고    scopus 로고
    • Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans
    • Hansen M., et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007, 6:95-110.
    • (2007) Aging Cell , vol.6 , pp. 95-110
    • Hansen, M.1
  • 194
    • 28244475950 scopus 로고    scopus 로고
    • Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO
    • Wang Y., Tissenbaum H.A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 2006, 127:48-56.
    • (2006) Mech. Ageing Dev. , vol.127 , pp. 48-56
    • Wang, Y.1    Tissenbaum, H.A.2
  • 195
    • 84887212584 scopus 로고    scopus 로고
    • Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans
    • Mair W., et al. Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans. PLoS ONE 2009, 4:e4535.
    • (2009) PLoS ONE , vol.4
    • Mair, W.1
  • 196
    • 33751203889 scopus 로고    scopus 로고
    • Dietary deprivation extends lifespan in Caenorhabditis elegans
    • Lee G.D., et al. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 2006, 5:515-524.
    • (2006) Aging Cell , vol.5 , pp. 515-524
    • Lee, G.D.1
  • 197
    • 33751250243 scopus 로고    scopus 로고
    • Lifespan extension in Caenorhabditis elegans by complete removal of food
    • Kaeberlein T.L., et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 2006, 5:487-494.
    • (2006) Aging Cell , vol.5 , pp. 487-494
    • Kaeberlein, T.L.1
  • 198
    • 63549108476 scopus 로고    scopus 로고
    • Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans
    • Greer E.L., Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 2009, 8:113-127.
    • (2009) Aging Cell , vol.8 , pp. 113-127
    • Greer, E.L.1    Brunet, A.2
  • 199
    • 67649356581 scopus 로고    scopus 로고
    • DSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster
    • Bauer J.H., et al. dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging 2009, 1:38-48.
    • (2009) Aging , vol.1 , pp. 38-48
    • Bauer, J.H.1
  • 200
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008, 22:1753-1757.
    • (2008) Genes Dev. , vol.22 , pp. 1753-1757
    • Chen, D.1
  • 201
    • 80555142897 scopus 로고    scopus 로고
    • Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
    • Schenk S., et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 2011, 121:4281-4288.
    • (2011) J. Clin. Invest. , vol.121 , pp. 4281-4288
    • Schenk, S.1
  • 202
    • 72849130743 scopus 로고    scopus 로고
    • Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
    • Cohen D.E., et al. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 2009, 23:2812-2817.
    • (2009) Genes Dev. , vol.23 , pp. 2812-2817
    • Cohen, D.E.1
  • 203
    • 84876256827 scopus 로고    scopus 로고
    • Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues
    • Lu M., et al. Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. J. Biol. Chem. 2013, 288:10722-10735.
    • (2013) J. Biol. Chem. , vol.288 , pp. 10722-10735
    • Lu, M.1
  • 204
    • 77951157657 scopus 로고    scopus 로고
    • Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
    • Kume S., et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 2010, 120:1043-1055.
    • (2010) J. Clin. Invest. , vol.120 , pp. 1043-1055
    • Kume, S.1
  • 205
    • 45549098657 scopus 로고    scopus 로고
    • SirT1 regulates energy metabolism and response to caloric restriction in mice
    • Boily G., et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 2008, 3:e1759.
    • (2008) PLoS ONE , vol.3
    • Boily, G.1
  • 206
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
    • Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 2009, 1:771-783.
    • (2009) Aging , vol.1 , pp. 771-783
    • Palacios, O.M.1
  • 207
    • 17144424946 scopus 로고    scopus 로고
    • SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
    • Shi T., et al. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 2005, 280:13560-13567.
    • (2005) J. Biol. Chem. , vol.280 , pp. 13560-13567
    • Shi, T.1
  • 208
    • 73949123433 scopus 로고    scopus 로고
    • Calorie restriction alters mitochondrial protein acetylation
    • Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
    • (2009) Aging Cell , vol.8 , pp. 604-606
    • Schwer, B.1
  • 209
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
    • (2011) Mol. Cell , vol.41 , pp. 139-149
    • Hallows, W.C.1
  • 210
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1
  • 211
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T., et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1
  • 212
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • Qiu X., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
    • (2010) Cell Metab. , vol.12 , pp. 662-667
    • Qiu, X.1
  • 213
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • Tao R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010, 40:893-904.
    • (2010) Mol. Cell , vol.40 , pp. 893-904
    • Tao, R.1
  • 214
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert A.S., et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 2012, 49:186-199.
    • (2012) Mol. Cell , vol.49 , pp. 186-199
    • Hebert, A.S.1
  • 215
    • 77952549960 scopus 로고    scopus 로고
    • Resveratrol, sirtuins, and the promise of a DR mimetic
    • Baur J.A. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech. Ageing Dev. 2010, 131:261-269.
    • (2010) Mech. Ageing Dev. , vol.131 , pp. 261-269
    • Baur, J.A.1
  • 216
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342.
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1
  • 217
    • 48349144852 scopus 로고    scopus 로고
    • Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
    • Pearson K.J., et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008, 8:157-168.
    • (2008) Cell Metab. , vol.8 , pp. 157-168
    • Pearson, K.J.1
  • 218
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
    • Pacholec M., et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 2010, 285:8340-8351.
    • (2010) J. Biol. Chem. , vol.285 , pp. 8340-8351
    • Pacholec, M.1
  • 219
    • 84860477354 scopus 로고    scopus 로고
    • SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
    • Price N.L., et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15:675-690.
    • (2012) Cell Metab. , vol.15 , pp. 675-690
    • Price, N.L.1
  • 220
    • 84918791665 scopus 로고    scopus 로고
    • Resveratrol does not benefit patients with non-alcoholic fatty liver disease
    • Chachay V.S., et al. Resveratrol does not benefit patients with non-alcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2014, 10.1016/j.cgh.2014.02.024.
    • (2014) Clin. Gastroenterol. Hepatol.
    • Chachay, V.S.1
  • 221
    • 84859909860 scopus 로고    scopus 로고
    • SRT1720 improves survival and healthspan of obese mice
    • Minor R.K., et al. SRT1720 improves survival and healthspan of obese mice. Sci. Rep. 2011, 1:70.
    • (2011) Sci. Rep. , vol.1 , pp. 70
    • Minor, R.K.1
  • 222
    • 84895925833 scopus 로고    scopus 로고
    • The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet
    • Mitchell S.J., et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 2014, 6:836-843.
    • (2014) Cell Rep. , vol.6 , pp. 836-843
    • Mitchell, S.J.1
  • 223
    • 84874721105 scopus 로고    scopus 로고
    • Evidence for a common mechanism of SIRT1 regulation by allosteric activators
    • Hubbard B.P., et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 2013, 339:1216-1219.
    • (2013) Science , vol.339 , pp. 1216-1219
    • Hubbard, B.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.