-
1
-
-
76549115951
-
Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition
-
Finch C.E. Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc. Natl. Acad. Sci. U.S.A. 2010, 107(Suppl. 1):1718-1724.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, Issue.SUPPL. 1
, pp. 1718-1724
-
-
Finch, C.E.1
-
3
-
-
84875354777
-
2013 Alzheimer's disease facts and figures
-
Thies W., et al. 2013 Alzheimer's disease facts and figures. Alzheimers Dement. 2013, 9:208-245.
-
(2013)
Alzheimers Dement.
, vol.9
, pp. 208-245
-
-
Thies, W.1
-
4
-
-
84878864199
-
The hallmarks of aging
-
Lopez-Otin C., et al. The hallmarks of aging. Cell 2013, 153:1194-1217.
-
(2013)
Cell
, vol.153
, pp. 1194-1217
-
-
Lopez-Otin, C.1
-
5
-
-
79251527543
-
Tragedy and delight: the ethics of decelerated ageing
-
Gems D. Tragedy and delight: the ethics of decelerated ageing. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2011, 366:108-112.
-
(2011)
Philos. Trans. R. Soc. Lond. B: Biol. Sci.
, vol.366
, pp. 108-112
-
-
Gems, D.1
-
6
-
-
84903449781
-
Aging, disease, and longevity in mice
-
Lombard D.B., Miller R.A. Aging, disease, and longevity in mice. Annu. Rev. Gerontol. Geriatr. 2014, 34:93-138.
-
(2014)
Annu. Rev. Gerontol. Geriatr.
, vol.34
, pp. 93-138
-
-
Lombard, D.B.1
Miller, R.A.2
-
7
-
-
0004760134
-
Life span of individual yeast cells
-
Mortimer R.K., Johnston J.R. Life span of individual yeast cells. Nature 1959, 183:1751-1752.
-
(1959)
Nature
, vol.183
, pp. 1751-1752
-
-
Mortimer, R.K.1
Johnston, J.R.2
-
8
-
-
10944235398
-
Large-scale identification in yeast of conserved ageing genes
-
Kaeberlein M., Kennedy B.K. Large-scale identification in yeast of conserved ageing genes. Mech. Ageing Dev. 2005, 126:17-21.
-
(2005)
Mech. Ageing Dev.
, vol.126
, pp. 17-21
-
-
Kaeberlein, M.1
Kennedy, B.K.2
-
9
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S., et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
-
10
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M., et al. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999, 13:2570-2580.
-
(1999)
Genes Dev.
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
-
11
-
-
0031459980
-
Extrachromosomal rDNA circles: a cause of aging in yeast
-
Sinclair D.A., Guarente L. Extrachromosomal rDNA circles: a cause of aging in yeast. Cell 1997, 91:1033-1042.
-
(1997)
Cell
, vol.91
, pp. 1033-1042
-
-
Sinclair, D.A.1
Guarente, L.2
-
12
-
-
0033120871
-
Elimination of replication block protein Fob1 extends the life span of yeast mother cells
-
Defossez P.A., et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 1999, 3:447-455.
-
(1999)
Mol. Cell
, vol.3
, pp. 447-455
-
-
Defossez, P.A.1
-
13
-
-
74549184412
-
The polarisome is required for segregation and retrograde transport of protein aggregates
-
Liu B., et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 2010, 140:257-267.
-
(2010)
Cell
, vol.140
, pp. 257-267
-
-
Liu, B.1
-
14
-
-
84889583055
-
Actin dynamics affect mitochondrial quality control and aging in budding yeast
-
Higuchi R., et al. Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr. Biol. 2013, 23:2417-2422.
-
(2013)
Curr. Biol.
, vol.23
, pp. 2417-2422
-
-
Higuchi, R.1
-
15
-
-
0036842129
-
Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin
-
Suka N., et al. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat. Genet. 2002, 32:378-383.
-
(2002)
Nat. Genet.
, vol.32
, pp. 378-383
-
-
Suka, N.1
-
16
-
-
67149099680
-
Histone H4 lysine 16 acetylation regulates cellular lifespan
-
Dang W., et al. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 2009, 459:802-807.
-
(2009)
Nature
, vol.459
, pp. 802-807
-
-
Dang, W.1
-
17
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 2000, 273:793-798.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
18
-
-
84875881601
-
SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine
-
Jiang H., et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013, 496:110-113.
-
(2013)
Nature
, vol.496
, pp. 110-113
-
-
Jiang, H.1
-
19
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
Du J., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334:806-809.
-
(2011)
Science
, vol.334
, pp. 806-809
-
-
Du, J.1
-
20
-
-
84897565291
-
Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
-
Tan M., et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014, 19:605-617.
-
(2014)
Cell Metab.
, vol.19
, pp. 605-617
-
-
Tan, M.1
-
21
-
-
83055173304
-
The first identification of lysine malonylation substrates and its regulatory enzyme
-
M111.012658
-
Peng C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 2011, 10. M111.012658.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Peng, C.1
-
22
-
-
0034687694
-
Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
-
Tanner K.G., et al. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:14178-14182.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 14178-14182
-
-
Tanner, K.G.1
-
23
-
-
84886717428
-
Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes
-
Canto C., et al. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Mol. Aspects Med. 2013, 34:1168-1201.
-
(2013)
Mol. Aspects Med.
, vol.34
, pp. 1168-1201
-
-
Canto, C.1
-
24
-
-
17144429302
-
Calorie restriction, SIRT1 and metabolism: understanding longevity
-
Bordone L., Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 2005, 6:298-305.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 298-305
-
-
Bordone, L.1
Guarente, L.2
-
25
-
-
79955661471
-
Mammalian Sirt1: insights on its biological functions
-
Rahman S., Islam R. Mammalian Sirt1: insights on its biological functions. Cell Commun. Signal. 2011, 9:11.
-
(2011)
Cell Commun. Signal.
, vol.9
, pp. 11
-
-
Rahman, S.1
Islam, R.2
-
26
-
-
84886686038
-
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
-
Feldman J.L., et al. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 2013, 288:31350-31356.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 31350-31356
-
-
Feldman, J.L.1
-
27
-
-
34548471739
-
Cytoplasm-localized SIRT1 enhances apoptosis
-
Jin Q., et al. Cytoplasm-localized SIRT1 enhances apoptosis. J. Cell. Physiol. 2007, 213:88-97.
-
(2007)
J. Cell. Physiol.
, vol.213
, pp. 88-97
-
-
Jin, Q.1
-
28
-
-
78650048197
-
Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells
-
Byles V., et al. Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int. J. Biol. Sci. 2010, 6:599-612.
-
(2010)
Int. J. Biol. Sci.
, vol.6
, pp. 599-612
-
-
Byles, V.1
-
29
-
-
34250365395
-
Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
-
Tanno M., et al. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 2007, 282:6823-6832.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 6823-6832
-
-
Tanno, M.1
-
30
-
-
55749095213
-
Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation
-
Hisahara S., et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:15599-15604.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 15599-15604
-
-
Hisahara, S.1
-
31
-
-
45549096918
-
SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons
-
Li Y., et al. SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 2008, 8:38-48.
-
(2008)
Cell Metab.
, vol.8
, pp. 38-48
-
-
Li, Y.1
-
32
-
-
84855563516
-
Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
-
Jeong H., et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 2012, 18:159-165.
-
(2012)
Nat. Med.
, vol.18
, pp. 159-165
-
-
Jeong, H.1
-
33
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
Herranz D., et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010, 1:3.
-
(2010)
Nat. Commun.
, vol.1
, pp. 3
-
-
Herranz, D.1
-
34
-
-
84883476818
-
Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH
-
Satoh A., et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013, 18:416-430.
-
(2013)
Cell Metab.
, vol.18
, pp. 416-430
-
-
Satoh, A.1
-
35
-
-
34249669270
-
Sirt1 regulates aging and resistance to oxidative stress in the heart
-
Alcendor R.R., et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 2007, 100:1512-1521.
-
(2007)
Circ. Res.
, vol.100
, pp. 1512-1521
-
-
Alcendor, R.R.1
-
36
-
-
84886768309
-
Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner
-
Whitaker R., et al. Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging 2013, 5:682-691.
-
(2013)
Aging
, vol.5
, pp. 682-691
-
-
Whitaker, R.1
-
37
-
-
0037207475
-
The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
-
McBurney M.W., et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 2003, 23:38-54.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 38-54
-
-
McBurney, M.W.1
-
38
-
-
77955344258
-
SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
-
Satoh A., et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J. Neurosci. 2010, 30:10220-10232.
-
(2010)
J. Neurosci.
, vol.30
, pp. 10220-10232
-
-
Satoh, A.1
-
39
-
-
84892500218
-
SIRT1 but not its increased expression is essential for lifespan extension in caloric-restricted mice
-
Mercken E.M., et al. SIRT1 but not its increased expression is essential for lifespan extension in caloric-restricted mice. Aging Cell 2014, 13:193-196.
-
(2014)
Aging Cell
, vol.13
, pp. 193-196
-
-
Mercken, E.M.1
-
40
-
-
68949113934
-
SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol
-
Boily G., et al. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 2009, 28:2882-2893.
-
(2009)
Oncogene
, vol.28
, pp. 2882-2893
-
-
Boily, G.1
-
41
-
-
84891039686
-
SIRT3: as simple as it seems?
-
Lombard D.B., Zwaans B.M. SIRT3: as simple as it seems?. Gerontology 2014, 60:56-64.
-
(2014)
Gerontology
, vol.60
, pp. 56-64
-
-
Lombard, D.B.1
Zwaans, B.M.2
-
42
-
-
84874238886
-
SIRT3 reverses aging-associated degeneration
-
Brown K., et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 2013, 3:319-327.
-
(2013)
Cell Rep.
, vol.3
, pp. 319-327
-
-
Brown, K.1
-
43
-
-
69249229772
-
The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
-
Yang B., et al. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle 2009, 8:2662-2663.
-
(2009)
Cell Cycle
, vol.8
, pp. 2662-2663
-
-
Yang, B.1
-
44
-
-
41349090663
-
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
-
Michishita E., et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008, 452:492-496.
-
(2008)
Nature
, vol.452
, pp. 492-496
-
-
Michishita, E.1
-
45
-
-
69249221533
-
Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
-
Michishita E., et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 2009, 8:2664-2666.
-
(2009)
Cell Cycle
, vol.8
, pp. 2664-2666
-
-
Michishita, E.1
-
46
-
-
77956550868
-
Human SIRT6 promotes DNA end resection through CtIP deacetylation
-
Kaidi A., et al. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 2010, 329:1348-1353.
-
(2010)
Science
, vol.329
, pp. 1348-1353
-
-
Kaidi, A.1
-
47
-
-
84871676013
-
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
-
Dominy J.E., et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell 2012, 48:900-913.
-
(2012)
Mol. Cell
, vol.48
, pp. 900-913
-
-
Dominy, J.E.1
-
48
-
-
79959363092
-
SIRT6 promotes DNA repair under stress by activating PARP1
-
Mao Z., et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 2011, 332:1443-1446.
-
(2011)
Science
, vol.332
, pp. 1443-1446
-
-
Mao, Z.1
-
49
-
-
84888177631
-
The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals
-
Jedrusik-Bode M., et al. The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals. J. Cell Sci. 2013, 126:5166-5177.
-
(2013)
J. Cell Sci.
, vol.126
, pp. 5166-5177
-
-
Jedrusik-Bode, M.1
-
50
-
-
84891790963
-
A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on catalytic activity
-
Miteva Y., Cristea M. A proteomic perspective of Sirtuin 6 (SIRT6) phosphorylation and interactions and their dependence on catalytic activity. Mol. Cell. Proteomics 2014, 13:168-183.
-
(2014)
Mol. Cell. Proteomics
, vol.13
, pp. 168-183
-
-
Miteva, Y.1
Cristea, M.2
-
51
-
-
84886995483
-
Proteomic analysis of the SIRT6 interactome: novel links to genome maintenance and cellular stress signaling
-
Simeoni F., et al. Proteomic analysis of the SIRT6 interactome: novel links to genome maintenance and cellular stress signaling. Sci. Rep. 2013, 3:3085.
-
(2013)
Sci. Rep.
, vol.3
, pp. 3085
-
-
Simeoni, F.1
-
52
-
-
84878680994
-
Sirtuin 6: a review of biological effects and potential therapeutic properties
-
Beauharnois J.M., et al. Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol. Biosyst. 2013, 9:1789-1806.
-
(2013)
Mol. Biosyst.
, vol.9
, pp. 1789-1806
-
-
Beauharnois, J.M.1
-
53
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi Y., et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012, 483:218-221.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
-
54
-
-
2942536602
-
The paradox of the insulin/IGF-1 signaling pathway in longevity
-
Rincon M., et al. The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech. Ageing Dev. 2004, 125:397-403.
-
(2004)
Mech. Ageing Dev.
, vol.125
, pp. 397-403
-
-
Rincon, M.1
-
55
-
-
31044445366
-
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
-
Mostoslavsky R., et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006, 124:315-329.
-
(2006)
Cell
, vol.124
, pp. 315-329
-
-
Mostoslavsky, R.1
-
56
-
-
78449248442
-
SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
-
Xiao C., et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J. Biol. Chem. 2010, 285:36776-36784.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 36776-36784
-
-
Xiao, C.1
-
57
-
-
84869201195
-
The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
-
Sundaresan N.R., et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 2012, 18:1643-1650.
-
(2012)
Nat. Med.
, vol.18
, pp. 1643-1650
-
-
Sundaresan, N.R.1
-
58
-
-
79951794971
-
Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice
-
Miller R.A., et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A: Biol. Sci. Med. Sci. 2011, 66:191-201.
-
(2011)
J. Gerontol. A: Biol. Sci. Med. Sci.
, vol.66
, pp. 191-201
-
-
Miller, R.A.1
-
59
-
-
84881247539
-
Rapamycin extends murine lifespan but has limited effects on aging
-
Neff F., et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 2013, 123:3272-3291.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3272-3291
-
-
Neff, F.1
-
60
-
-
84881237963
-
Rapamycin, anti-aging, and avoiding the fate of Tithonus
-
Richardson A. Rapamycin, anti-aging, and avoiding the fate of Tithonus. J. Clin. Invest. 2013, 123:3204-3206.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3204-3206
-
-
Richardson, A.1
-
61
-
-
84874594425
-
The sirtuin family's role in aging and age-associated pathologies
-
Hall J.A., et al. The sirtuin family's role in aging and age-associated pathologies. J. Clin. Invest. 2013, 123:973-979.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 973-979
-
-
Hall, J.A.1
-
62
-
-
25844524877
-
Neurodegenerative diseases: an overview of environmental risk factors
-
Brown R.C., et al. Neurodegenerative diseases: an overview of environmental risk factors. Environ. Health Perspect. 2005, 113:1250-1256.
-
(2005)
Environ. Health Perspect.
, vol.113
, pp. 1250-1256
-
-
Brown, R.C.1
-
63
-
-
84893459319
-
SIRT1 in neurodevelopment and brain senescence
-
Herskovits A.Z., Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron 2014, 81:471-483.
-
(2014)
Neuron
, vol.81
, pp. 471-483
-
-
Herskovits, A.Z.1
Guarente, L.2
-
64
-
-
77955046461
-
SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
-
Donmez G., et al. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010, 142:320-332.
-
(2010)
Cell
, vol.142
, pp. 320-332
-
-
Donmez, G.1
-
65
-
-
77957001697
-
Acetylation of tau inhibits its degradation and contributes to tauopathy
-
Min S.W., et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010, 67:953-966.
-
(2010)
Neuron
, vol.67
, pp. 953-966
-
-
Min, S.W.1
-
66
-
-
79953087890
-
The acetylation of tau inhibits its function and promotes pathological tau aggregation
-
Cohen T.J., et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2011, 2:252.
-
(2011)
Nat. Commun.
, vol.2
, pp. 252
-
-
Cohen, T.J.1
-
67
-
-
84855929223
-
SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones
-
Donmez G., et al. SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J. Neurosci. 2012, 32:124-132.
-
(2012)
J. Neurosci.
, vol.32
, pp. 124-132
-
-
Donmez, G.1
-
68
-
-
53249114029
-
Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease
-
Pallos J., et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum. Mol. Genet. 2008, 17:3767-3775.
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 3767-3775
-
-
Pallos, J.1
-
69
-
-
84865704833
-
Integration of beta-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity
-
Parker J.A., et al. Integration of beta-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J. Neurosci. 2012, 32:12630-12640.
-
(2012)
J. Neurosci.
, vol.32
, pp. 12630-12640
-
-
Parker, J.A.1
-
70
-
-
84855544817
-
Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
-
Jiang M., et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat. Med. 2012, 18:153-158.
-
(2012)
Nat. Med.
, vol.18
, pp. 153-158
-
-
Jiang, M.1
-
71
-
-
84863794891
-
Trans-(-)-epsilon-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease
-
Fu J., et al. trans-(-)-epsilon-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem. 2012, 287:24460-24472.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 24460-24472
-
-
Fu, J.1
-
72
-
-
79952443408
-
Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity
-
Song W., et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat. Med. 2011, 17:377-382.
-
(2011)
Nat. Med.
, vol.17
, pp. 377-382
-
-
Song, W.1
-
73
-
-
0025073794
-
Effect of age on body composition and resting metabolic rate
-
Fukagawa N.K., et al. Effect of age on body composition and resting metabolic rate. Am. J. Physiol. 1990, 259:E233-E238.
-
(1990)
Am. J. Physiol.
, vol.259
-
-
Fukagawa, N.K.1
-
74
-
-
73449125077
-
Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation?
-
St-Onge M.P., Gallagher D. Body composition changes with aging: the cause or the result of alterations in metabolic rate and macronutrient oxidation?. Nutrition 2010, 26:152-155.
-
(2010)
Nutrition
, vol.26
, pp. 152-155
-
-
St-Onge, M.P.1
Gallagher, D.2
-
75
-
-
79551510805
-
Obesity and cancer risk: recent review and evidence
-
Basen-Engquist K., Chang M. Obesity and cancer risk: recent review and evidence. Curr. Oncol. Rep. 2011, 13:71-76.
-
(2011)
Curr. Oncol. Rep.
, vol.13
, pp. 71-76
-
-
Basen-Engquist, K.1
Chang, M.2
-
77
-
-
52949130217
-
Estimating the number of U.S. incident cancers attributable to obesity and the impact on temporal trends in incidence rates for obesity-related cancers
-
Polednak A.P. Estimating the number of U.S. incident cancers attributable to obesity and the impact on temporal trends in incidence rates for obesity-related cancers. Cancer Detect. Prev. 2008, 32:190-199.
-
(2008)
Cancer Detect. Prev.
, vol.32
, pp. 190-199
-
-
Polednak, A.P.1
-
78
-
-
75949102926
-
Biological mechanisms linking obesity and cancer risk: new perspectives
-
Roberts D.L., et al. Biological mechanisms linking obesity and cancer risk: new perspectives. Annu. Rev. Med. 2010, 61:301-316.
-
(2010)
Annu. Rev. Med.
, vol.61
, pp. 301-316
-
-
Roberts, D.L.1
-
79
-
-
84871782815
-
SIRT1 and energy metabolism
-
Li X. SIRT1 and energy metabolism. Acta Biochim. Biophys. Sin. 2013, 45:51-60.
-
(2013)
Acta Biochim. Biophys. Sin.
, vol.45
, pp. 51-60
-
-
Li, X.1
-
81
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A., et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009, 9:327-338.
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
-
82
-
-
78650533816
-
Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition
-
Wang R.H., et al. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int. J. Biol. Sci. 2010, 6:682-690.
-
(2010)
Int. J. Biol. Sci.
, vol.6
, pp. 682-690
-
-
Wang, R.H.1
-
83
-
-
77949506721
-
Hypothalamic Sirt1 regulates food intake in a rodent model system
-
Cakir I., et al. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS ONE 2009, 4:e8322.
-
(2009)
PLoS ONE
, vol.4
-
-
Cakir, I.1
-
84
-
-
77956644726
-
SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity
-
Ramadori G., et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010, 12:78-87.
-
(2010)
Cell Metab.
, vol.12
, pp. 78-87
-
-
Ramadori, G.1
-
85
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
Gerhart-Hines Z., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007, 26:1913-1923.
-
(2007)
EMBO J.
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
-
86
-
-
84893442805
-
Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
-
Gomes A.P., et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013, 155:1624-1638.
-
(2013)
Cell
, vol.155
, pp. 1624-1638
-
-
Gomes, A.P.1
-
87
-
-
84864615516
-
Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of PPARgamma
-
Qiang L., et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of PPARgamma. Cell 2012, 150:620-632.
-
(2012)
Cell
, vol.150
, pp. 620-632
-
-
Qiang, L.1
-
88
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma
-
Picard F., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004, 429:771-776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
-
89
-
-
38349112898
-
Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice
-
Ramsey K.M., et al. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 2008, 7:78-88.
-
(2008)
Aging Cell
, vol.7
, pp. 78-88
-
-
Ramsey, K.M.1
-
90
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan K.A., et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005, 2:105-117.
-
(2005)
Cell Metab.
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
-
91
-
-
80053920774
-
Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
Yoshino J., et al. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14:528-536.
-
(2011)
Cell Metab.
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
-
92
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
-
93
-
-
84894263431
-
Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex
-
Fan J., et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 2014, 53:534-548.
-
(2014)
Mol. Cell
, vol.53
, pp. 534-548
-
-
Fan, J.1
-
94
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Shimazu T., et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
-
(2010)
Cell Metab.
, vol.12
, pp. 654-661
-
-
Shimazu, T.1
-
95
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
Jing E., et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14608-14613.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14608-14613
-
-
Jing, E.1
-
96
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey M.D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 2011, 44:177-190.
-
(2011)
Mol. Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
-
97
-
-
84861589885
-
Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
-
Fernandez-Marcos P.J., et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci. Rep. 2012, 2:425.
-
(2012)
Sci. Rep.
, vol.2
, pp. 425
-
-
Fernandez-Marcos, P.J.1
-
98
-
-
74549142287
-
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
-
Zhong L., et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010, 140:280-293.
-
(2010)
Cell
, vol.140
, pp. 280-293
-
-
Zhong, L.1
-
99
-
-
77956315551
-
Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
Kim H.S., et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010, 12:224-236.
-
(2010)
Cell Metab.
, vol.12
, pp. 224-236
-
-
Kim, H.S.1
-
100
-
-
84884150671
-
Multiple regulatory layers of SREBP1/2 by SIRT6
-
Elhanati S., et al. Multiple regulatory layers of SREBP1/2 by SIRT6. Cell Rep. 2013, 4:905-912.
-
(2013)
Cell Rep.
, vol.4
, pp. 905-912
-
-
Elhanati, S.1
-
101
-
-
84884134120
-
Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6
-
Tao R., et al. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J. Lipid Res. 2013, 54:2745-2753.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 2745-2753
-
-
Tao, R.1
-
102
-
-
77953244349
-
SIRT6 protects against pathological damage caused by diet-induced obesity
-
Kanfi Y., et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 2010, 9:162-173.
-
(2010)
Aging Cell
, vol.9
, pp. 162-173
-
-
Kanfi, Y.1
-
103
-
-
84880585451
-
Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review
-
Barbaresko J., et al. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr. Rev. 2013, 71:511-527.
-
(2013)
Nutr. Rev.
, vol.71
, pp. 511-527
-
-
Barbaresko, J.1
-
104
-
-
84863544685
-
NF-kappaB in aging and disease
-
Tilstra J.S., et al. NF-kappaB in aging and disease. Aging Dis. 2011, 2:449-465.
-
(2011)
Aging Dis.
, vol.2
, pp. 449-465
-
-
Tilstra, J.S.1
-
105
-
-
77949887506
-
Mammalian sirtuins: biological insights and disease relevance
-
Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
-
(2010)
Annu. Rev. Pathol.
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
106
-
-
58149090925
-
SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
-
Kawahara T.L., et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009, 136:62-74.
-
(2009)
Cell
, vol.136
, pp. 62-74
-
-
Kawahara, T.L.1
-
107
-
-
85042594546
-
Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney
-
Jung K.J., et al. Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney. Inflamm. Res. 2009, 58:143-150.
-
(2009)
Inflamm. Res.
, vol.58
, pp. 143-150
-
-
Jung, K.J.1
-
108
-
-
84875545992
-
Hand osteoarthritis: new insights
-
Gabay O., Gabay C. Hand osteoarthritis: new insights. Joint Bone Spine 2013, 80:130-134.
-
(2013)
Joint Bone Spine
, vol.80
, pp. 130-134
-
-
Gabay, O.1
Gabay, C.2
-
109
-
-
84875332275
-
Identification of a SIRT1 mutation in a family with type 1 diabetes
-
Biason-Lauber A., et al. Identification of a SIRT1 mutation in a family with type 1 diabetes. Cell Metab. 2013, 17:448-455.
-
(2013)
Cell Metab.
, vol.17
, pp. 448-455
-
-
Biason-Lauber, A.1
-
110
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
111
-
-
84886904734
-
The emerging and diverse roles of sirtuins in cancer: a clinical perspective
-
Yuan H., et al. The emerging and diverse roles of sirtuins in cancer: a clinical perspective. Onco Targets Ther. 2013, 6:1399-1416.
-
(2013)
Onco Targets Ther.
, vol.6
, pp. 1399-1416
-
-
Yuan, H.1
-
112
-
-
65349096174
-
A c-Myc-SIRT1 feedback loop regulates cell growth and transformation
-
Yuan J., et al. A c-Myc-SIRT1 feedback loop regulates cell growth and transformation. J. Cell Biol. 2009, 185:203-211.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 203-211
-
-
Yuan, J.1
-
113
-
-
77955499804
-
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
-
Lim J.H., et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 2010, 38:864-878.
-
(2010)
Mol. Cell
, vol.38
, pp. 864-878
-
-
Lim, J.H.1
-
114
-
-
84861537556
-
Hepatitis B virus X (HBX) protein upregulates beta-catenin in a human hepatic cell line by sequestering SIRT1 deacetylase
-
Srisuttee R., et al. Hepatitis B virus X (HBX) protein upregulates beta-catenin in a human hepatic cell line by sequestering SIRT1 deacetylase. Oncol. Rep. 2012, 28:276-282.
-
(2012)
Oncol. Rep.
, vol.28
, pp. 276-282
-
-
Srisuttee, R.1
-
115
-
-
44849096876
-
The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
-
Firestein R., et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 2008, 3:e2020.
-
(2008)
PLoS ONE
, vol.3
-
-
Firestein, R.1
-
116
-
-
84879141103
-
Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min) mouse model
-
Leko V., et al. Enterocyte-specific inactivation of SIRT1 reduces tumor load in the APC(+/min) mouse model. PLoS ONE 2013, 8:e66283.
-
(2013)
PLoS ONE
, vol.8
-
-
Leko, V.1
-
117
-
-
84859113488
-
Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1alpha protein under hypoxic conditions
-
Laemmle A., et al. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1alpha protein under hypoxic conditions. PLoS ONE 2012, 7:e33433.
-
(2012)
PLoS ONE
, vol.7
-
-
Laemmle, A.1
-
118
-
-
84856384698
-
The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop
-
Menssen A., et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E187-E196.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
Menssen, A.1
-
119
-
-
80053377582
-
Sirt1 deacetylates c-Myc and promotes c-Myc/Max association
-
Mao B., et al. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int. J. Biochem. Cell Biol. 2011, 43:1573-1581.
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, pp. 1573-1581
-
-
Mao, B.1
-
120
-
-
79952501323
-
SIRT3 Opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
-
Finley L.W., et al. SIRT3 Opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 2011, 19:416-428.
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.1
-
121
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim H.S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.S.1
-
122
-
-
77951279075
-
Reactive oxygen species in cancer
-
Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44:479-496.
-
(2010)
Free Radic. Res.
, vol.44
, pp. 479-496
-
-
Liou, G.Y.1
Storz, P.2
-
123
-
-
84865576222
-
Metabolic regulation by SIRT3: implications for tumorigenesis
-
Finley L.W., Haigis M.C. Metabolic regulation by SIRT3: implications for tumorigenesis. Trends Mol. Med. 2012, 18:516-523.
-
(2012)
Trends Mol. Med.
, vol.18
, pp. 516-523
-
-
Finley, L.W.1
Haigis, M.C.2
-
124
-
-
79959819034
-
SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
-
Bell E.L., et al. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996.
-
(2011)
Oncogene
, vol.30
, pp. 2986-2996
-
-
Bell, E.L.1
-
125
-
-
84878679199
-
A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
-
Kaplon J., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498:109-112.
-
(2013)
Nature
, vol.498
, pp. 109-112
-
-
Kaplon, J.1
-
126
-
-
77956295588
-
P53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase
-
Li S., et al. p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase. PLoS ONE 2010, 5:e10486.
-
(2010)
PLoS ONE
, vol.5
-
-
Li, S.1
-
127
-
-
84887625811
-
Germline copy number variation of genes involved in chromatin remodelling in families suggestive of Li-Fraumeni syndrome with brain tumours
-
Aury-Landas J., et al. Germline copy number variation of genes involved in chromatin remodelling in families suggestive of Li-Fraumeni syndrome with brain tumours. Eur. J. Hum. Genet. 2013, 21:1369-1376.
-
(2013)
Eur. J. Hum. Genet.
, vol.21
, pp. 1369-1376
-
-
Aury-Landas, J.1
-
128
-
-
33750212896
-
Altered sirtuin expression is associated with node-positive breast cancer
-
Ashraf N., et al. Altered sirtuin expression is associated with node-positive breast cancer. Br. J. Cancer 2006, 95:1056-1061.
-
(2006)
Br. J. Cancer
, vol.95
, pp. 1056-1061
-
-
Ashraf, N.1
-
129
-
-
79953799195
-
Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
-
Alhazzazi T.Y., et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011, 117:1670-1678.
-
(2011)
Cancer
, vol.117
, pp. 1670-1678
-
-
Alhazzazi, T.Y.1
-
130
-
-
84878550317
-
SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer
-
Khongkow M., et al. SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis 2013, 34:1476-1486.
-
(2013)
Carcinogenesis
, vol.34
, pp. 1476-1486
-
-
Khongkow, M.1
-
131
-
-
84890570698
-
Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics
-
Liu Y., et al. Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein Cell 2013, 4:702-710.
-
(2013)
Protein Cell
, vol.4
, pp. 702-710
-
-
Liu, Y.1
-
132
-
-
84870874690
-
The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
-
Sebastian C., et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012, 151:1185-1199.
-
(2012)
Cell
, vol.151
, pp. 1185-1199
-
-
Sebastian, C.1
-
133
-
-
84869082071
-
Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin
-
Min L., et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat. Cell Biol. 2012, 14:1203-1211.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1203-1211
-
-
Min, L.1
-
134
-
-
80052908853
-
SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells
-
Van Meter M., et al. SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 2011, 10:3153-3158.
-
(2011)
Cell Cycle
, vol.10
, pp. 3153-3158
-
-
Van Meter, M.1
-
135
-
-
84876359638
-
SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
-
Jeong S.M., et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013, 23:450-463.
-
(2013)
Cancer Cell
, vol.23
, pp. 450-463
-
-
Jeong, S.M.1
-
136
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi A., et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013, 153:840-854.
-
(2013)
Cell
, vol.153
, pp. 840-854
-
-
Csibi, A.1
-
137
-
-
84894109588
-
SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma
-
Jeong S.M., et al. SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma. J. Biol. Chem. 2014, 289:4135-4144.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 4135-4144
-
-
Jeong, S.M.1
-
138
-
-
84863453769
-
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
-
Barber M.F., et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012, 487:114-118.
-
(2012)
Nature
, vol.487
, pp. 114-118
-
-
Barber, M.F.1
-
139
-
-
84893651437
-
Heart disease and stroke statistics 2014 update: a report from the American Heart Association
-
Go A.S., et al. Heart disease and stroke statistics 2014 update: a report from the American Heart Association. Circulation 2014, 129:e28-e292.
-
(2014)
Circulation
, vol.129
-
-
Go, A.S.1
-
140
-
-
0037458070
-
Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease
-
Lakatta E.G., Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 2003, 107:346-354.
-
(2003)
Circulation
, vol.107
, pp. 346-354
-
-
Lakatta, E.G.1
Levy, D.2
-
141
-
-
35549008884
-
SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
-
Mattagajasingh I., et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14855-14860.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 14855-14860
-
-
Mattagajasingh, I.1
-
142
-
-
49249100288
-
Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations
-
Csiszar A., et al. Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am. J. Physiol. Heart Circ. Physiol. 2008, 294:H2721-H2735.
-
(2008)
Am. J. Physiol. Heart Circ. Physiol.
, vol.294
-
-
Csiszar, A.1
-
143
-
-
47849088748
-
Emerging roles of SIRT1 in vascular endothelial homeostasis
-
Potente M., Dimmeler S. Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 2008, 7:2117-2122.
-
(2008)
Cell Cycle
, vol.7
, pp. 2117-2122
-
-
Potente, M.1
Dimmeler, S.2
-
144
-
-
35348980724
-
SIRT1 controls endothelial angiogenic functions during vascular growth
-
Potente M., et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007, 21:2644-2658.
-
(2007)
Genes Dev.
, vol.21
, pp. 2644-2658
-
-
Potente, M.1
-
145
-
-
79955926985
-
Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
-
Guarani V., et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 2011, 473:234-238.
-
(2011)
Nature
, vol.473
, pp. 234-238
-
-
Guarani, V.1
-
146
-
-
84860743760
-
FOXOs and sirtuins in vascular growth, maintenance, and aging
-
Oellerich M.F., Potente M. FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ. Res. 2012, 110:1238-1251.
-
(2012)
Circ. Res.
, vol.110
, pp. 1238-1251
-
-
Oellerich, M.F.1
Potente, M.2
-
147
-
-
33751288658
-
FOXOs in the maintenance of vascular homoeostasis
-
Paik J.H. FOXOs in the maintenance of vascular homoeostasis. Biochem. Soc. Trans. 2006, 34:731-734.
-
(2006)
Biochem. Soc. Trans.
, vol.34
, pp. 731-734
-
-
Paik, J.H.1
-
148
-
-
33846295218
-
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
-
Paik J.H., et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007, 128:309-323.
-
(2007)
Cell
, vol.128
, pp. 309-323
-
-
Paik, J.H.1
-
149
-
-
24644519938
-
Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization
-
Potente M., et al. Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 2005, 115:2382-2392.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 2382-2392
-
-
Potente, M.1
-
150
-
-
59649085554
-
Angiogenesis: a team effort coordinated by notch
-
Phng L.K., Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev. Cell 2009, 16:196-208.
-
(2009)
Dev. Cell
, vol.16
, pp. 196-208
-
-
Phng, L.K.1
Gerhardt, H.2
-
151
-
-
84879545572
-
2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin 1 in endothelium is atheroprotective
-
2+/calmodulin-dependent protein kinase kinase beta phosphorylation of Sirtuin 1 in endothelium is atheroprotective. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E2420-E2427.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
-
-
Wen, L.1
-
152
-
-
79955365919
-
Glucose metabolism and cardiac hypertrophy
-
Kolwicz S.C., Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res. 2011, 90:194-201.
-
(2011)
Cardiovasc. Res.
, vol.90
, pp. 194-201
-
-
Kolwicz, S.C.1
Tian, R.2
-
153
-
-
79955397959
-
Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation
-
Planavila A., et al. Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res. 2011, 90:276-284.
-
(2011)
Cardiovasc. Res.
, vol.90
, pp. 276-284
-
-
Planavila, A.1
-
154
-
-
80455128956
-
PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway
-
Oka S., et al. PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab. 2011, 14:598-611.
-
(2011)
Cell Metab.
, vol.14
, pp. 598-611
-
-
Oka, S.1
-
155
-
-
79960620082
-
The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy
-
Sundaresan N.R., et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal. 2011, 4:ra46.
-
(2011)
Sci. Signal.
, vol.4
-
-
Sundaresan, N.R.1
-
156
-
-
34250788809
-
AKT/PKB signaling: navigating downstream
-
Manning B.D., Cantley L.C. AKT/PKB signaling: navigating downstream. Cell 2007, 129:1261-1274.
-
(2007)
Cell
, vol.129
, pp. 1261-1274
-
-
Manning, B.D.1
Cantley, L.C.2
-
157
-
-
0037125980
-
Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice
-
Condorelli G., et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:12333-12338.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 12333-12338
-
-
Condorelli, G.1
-
158
-
-
0037020157
-
Akt signaling mediates postnatal heart growth in response to insulin and nutritional status
-
Shiojima I., et al. Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. J. Biol. Chem. 2002, 277:37670-37677.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 37670-37677
-
-
Shiojima, I.1
-
159
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
Sundaresan N.R., et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 2009, 119:2758-2771.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
-
160
-
-
77449120223
-
Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
-
Pillai V.B., et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 2010, 285:3133-3144.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3133-3144
-
-
Pillai, V.B.1
-
161
-
-
84880517634
-
The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
-
Mouchiroud L., et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 2013, 154:430-441.
-
(2013)
Cell
, vol.154
, pp. 430-441
-
-
Mouchiroud, L.1
-
162
-
-
79955591489
-
Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats
-
Braidy N., et al. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS ONE 2011, 6:e19194.
-
(2011)
PLoS ONE
, vol.6
-
-
Braidy, N.1
-
163
-
-
84896399265
-
Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence
-
Braidy N., et al. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence. Biogerontology 2014, 15:177-198.
-
(2014)
Biogerontology
, vol.15
, pp. 177-198
-
-
Braidy, N.1
-
164
-
-
84864401965
-
Age-associated changes in oxidative stress and NAD+ metabolism in human tissue
-
Massudi H., et al. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 2012, 7:e42357.
-
(2012)
PLoS ONE
, vol.7
-
-
Massudi, H.1
-
165
-
-
84862022077
-
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
-
Canto C., et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012, 15:838-847.
-
(2012)
Cell Metab.
, vol.15
, pp. 838-847
-
-
Canto, C.1
-
166
-
-
36049038217
-
The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity
-
Barbosa M.T., et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J. 2007, 21:3629-3639.
-
(2007)
FASEB J.
, vol.21
, pp. 3629-3639
-
-
Barbosa, M.T.1
-
167
-
-
84880068090
-
The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells
-
Sharma A., et al. The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J. Biol. Chem. 2013, 288:18439-18447.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 18439-18447
-
-
Sharma, A.1
-
168
-
-
84899562732
-
Drugs that modulate aging: the promising yet difficult path ahead
-
Kennedy B.K., Pennypacker J.K. Drugs that modulate aging: the promising yet difficult path ahead. Transl. Res. 2013, 163:456-465.
-
(2013)
Transl. Res.
, vol.163
, pp. 456-465
-
-
Kennedy, B.K.1
Pennypacker, J.K.2
-
169
-
-
79955433960
-
Metabolomic analysis of livers and serum from high-fat diet induced obese mice
-
Kim H.J., et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 2011, 10:722-731.
-
(2011)
J. Proteome Res.
, vol.10
, pp. 722-731
-
-
Kim, H.J.1
-
170
-
-
84865731753
-
The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease
-
Bai P., Canto C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 2012, 16:290-295.
-
(2012)
Cell Metab.
, vol.16
, pp. 290-295
-
-
Bai, P.1
Canto, C.2
-
171
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
Tissenbaum H.A., Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001, 410:227-230.
-
(2001)
Nature
, vol.410
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
172
-
-
0036007110
-
Model organisms as a guide to mammalian aging
-
Tissenbaum H.A., Guarente L. Model organisms as a guide to mammalian aging. Dev. Cell 2002, 2:9-19.
-
(2002)
Dev. Cell
, vol.2
, pp. 9-19
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
173
-
-
80053134340
-
Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes
-
Viswanathan M., Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011, 477:E1-E2.
-
(2011)
Nature
, vol.477
-
-
Viswanathan, M.1
Guarente, L.2
-
174
-
-
80053460544
-
The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO
-
Rizki G., et al. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet. 2011, 7:e1002235.
-
(2011)
PLoS Genet.
, vol.7
-
-
Rizki, G.1
-
175
-
-
33744976074
-
C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span
-
Berdichevsky A., et al. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 2006, 125:1165-1177.
-
(2006)
Cell
, vol.125
, pp. 1165-1177
-
-
Berdichevsky, A.1
-
176
-
-
84875874024
-
Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1
-
Ludewig A.H., et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5522-5527.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5522-5527
-
-
Ludewig, A.H.1
-
177
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B., Helfand S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15998-16003.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
178
-
-
84871695502
-
DSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner
-
Banerjee K.K., et al. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2012, 2:1485-1491.
-
(2012)
Cell Rep.
, vol.2
, pp. 1485-1491
-
-
Banerjee, K.K.1
-
179
-
-
84877648303
-
Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila
-
Hoffmann J., et al. Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila. Aging 2013, 5:315-327.
-
(2013)
Aging
, vol.5
, pp. 315-327
-
-
Hoffmann, J.1
-
180
-
-
80053168829
-
Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
-
Burnett C., et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011, 477:482-485.
-
(2011)
Nature
, vol.477
, pp. 482-485
-
-
Burnett, C.1
-
181
-
-
10744232772
-
Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly
-
Rose G., et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp. Gerontol. 2003, 38:1065-1070.
-
(2003)
Exp. Gerontol.
, vol.38
, pp. 1065-1070
-
-
Rose, G.1
-
182
-
-
19944433088
-
A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages
-
Bellizzi D., et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 2005, 85:258-263.
-
(2005)
Genomics
, vol.85
, pp. 258-263
-
-
Bellizzi, D.1
-
183
-
-
70350365059
-
Human longevity and 11p15.5: a study in 1321 centenarians
-
Lescai F., et al. Human longevity and 11p15.5: a study in 1321 centenarians. Eur. J. Hum. Genet. 2009, 17:1515-1519.
-
(2009)
Eur. J. Hum. Genet.
, vol.17
, pp. 1515-1519
-
-
Lescai, F.1
-
184
-
-
33847057698
-
The Treviso Longeva (Trelong) study: a biomedical, demographic, economic and social investigation on people 70 years and over in a typical town of North-East of Italy
-
Gallucci M., et al. The Treviso Longeva (Trelong) study: a biomedical, demographic, economic and social investigation on people 70 years and over in a typical town of North-East of Italy. Arch. Gerontol. Geriatr. 2007, 44(Suppl. 1):173-192.
-
(2007)
Arch. Gerontol. Geriatr.
, vol.44
, Issue.SUPPL. 1
, pp. 173-192
-
-
Gallucci, M.1
-
185
-
-
69949156564
-
Genetic variation in healthy oldest-old
-
Halaschek-Wiener J., et al. Genetic variation in healthy oldest-old. PLoS ONE 2009, 4:e6641.
-
(2009)
PLoS ONE
, vol.4
-
-
Halaschek-Wiener, J.1
-
186
-
-
84899069949
-
Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study 'Treviso Longeva (TRELONG)'
-
Albani D., et al. Modulation of human longevity by SIRT3 single nucleotide polymorphisms in the prospective study 'Treviso Longeva (TRELONG)'. Age 2014, 36:469-478.
-
(2014)
Age
, vol.36
, pp. 469-478
-
-
Albani, D.1
-
188
-
-
84885355365
-
Calorie restriction and sirtuins revisited
-
Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013, 27:2072-2085.
-
(2013)
Genes Dev.
, vol.27
, pp. 2072-2085
-
-
Guarente, L.1
-
189
-
-
24944559665
-
HST2 mediates SIR2-independent life-span extension by calorie restriction
-
Lamming D.W., et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 2005, 309:1861-1864.
-
(2005)
Science
, vol.309
, pp. 1861-1864
-
-
Lamming, D.W.1
-
190
-
-
0034703217
-
Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Lin S.J., et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289:2126-2128.
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
-
191
-
-
34347354447
-
Sir2 and calorie restriction in yeast: a skeptical perspective
-
Kaeberlein M., Powers R.W. Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev. 2007, 6:128-140.
-
(2007)
Ageing Res. Rev.
, vol.6
, pp. 128-140
-
-
Kaeberlein, M.1
Powers, R.W.2
-
192
-
-
84863524526
-
Replicative and chronological aging in Saccharomyces cerevisiae
-
Longo V.D., et al. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 2012, 16:18-31.
-
(2012)
Cell Metab.
, vol.16
, pp. 18-31
-
-
Longo, V.D.1
-
193
-
-
33846423520
-
Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans
-
Hansen M., et al. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 2007, 6:95-110.
-
(2007)
Aging Cell
, vol.6
, pp. 95-110
-
-
Hansen, M.1
-
194
-
-
28244475950
-
Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO
-
Wang Y., Tissenbaum H.A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 2006, 127:48-56.
-
(2006)
Mech. Ageing Dev.
, vol.127
, pp. 48-56
-
-
Wang, Y.1
Tissenbaum, H.A.2
-
195
-
-
84887212584
-
Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans
-
Mair W., et al. Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans. PLoS ONE 2009, 4:e4535.
-
(2009)
PLoS ONE
, vol.4
-
-
Mair, W.1
-
196
-
-
33751203889
-
Dietary deprivation extends lifespan in Caenorhabditis elegans
-
Lee G.D., et al. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 2006, 5:515-524.
-
(2006)
Aging Cell
, vol.5
, pp. 515-524
-
-
Lee, G.D.1
-
197
-
-
33751250243
-
Lifespan extension in Caenorhabditis elegans by complete removal of food
-
Kaeberlein T.L., et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 2006, 5:487-494.
-
(2006)
Aging Cell
, vol.5
, pp. 487-494
-
-
Kaeberlein, T.L.1
-
198
-
-
63549108476
-
Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans
-
Greer E.L., Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 2009, 8:113-127.
-
(2009)
Aging Cell
, vol.8
, pp. 113-127
-
-
Greer, E.L.1
Brunet, A.2
-
199
-
-
67649356581
-
DSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster
-
Bauer J.H., et al. dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging 2009, 1:38-48.
-
(2009)
Aging
, vol.1
, pp. 38-48
-
-
Bauer, J.H.1
-
200
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008, 22:1753-1757.
-
(2008)
Genes Dev.
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
-
201
-
-
80555142897
-
Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
-
Schenk S., et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 2011, 121:4281-4288.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4281-4288
-
-
Schenk, S.1
-
202
-
-
72849130743
-
Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
-
Cohen D.E., et al. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 2009, 23:2812-2817.
-
(2009)
Genes Dev.
, vol.23
, pp. 2812-2817
-
-
Cohen, D.E.1
-
203
-
-
84876256827
-
Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues
-
Lu M., et al. Neuronal Sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. J. Biol. Chem. 2013, 288:10722-10735.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 10722-10735
-
-
Lu, M.1
-
204
-
-
77951157657
-
Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney
-
Kume S., et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 2010, 120:1043-1055.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1043-1055
-
-
Kume, S.1
-
205
-
-
45549098657
-
SirT1 regulates energy metabolism and response to caloric restriction in mice
-
Boily G., et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 2008, 3:e1759.
-
(2008)
PLoS ONE
, vol.3
-
-
Boily, G.1
-
206
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
-
Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 2009, 1:771-783.
-
(2009)
Aging
, vol.1
, pp. 771-783
-
-
Palacios, O.M.1
-
207
-
-
17144424946
-
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
-
Shi T., et al. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 2005, 280:13560-13567.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 13560-13567
-
-
Shi, T.1
-
208
-
-
73949123433
-
Calorie restriction alters mitochondrial protein acetylation
-
Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
-
(2009)
Aging Cell
, vol.8
, pp. 604-606
-
-
Schwer, B.1
-
209
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
-
210
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
-
211
-
-
65249087389
-
SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
Nakagawa T., et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
-
212
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Qiu X., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
-
(2010)
Cell Metab.
, vol.12
, pp. 662-667
-
-
Qiu, X.1
-
213
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
Tao R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010, 40:893-904.
-
(2010)
Mol. Cell
, vol.40
, pp. 893-904
-
-
Tao, R.1
-
214
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
Hebert A.S., et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 2012, 49:186-199.
-
(2012)
Mol. Cell
, vol.49
, pp. 186-199
-
-
Hebert, A.S.1
-
215
-
-
77952549960
-
Resveratrol, sirtuins, and the promise of a DR mimetic
-
Baur J.A. Resveratrol, sirtuins, and the promise of a DR mimetic. Mech. Ageing Dev. 2010, 131:261-269.
-
(2010)
Mech. Ageing Dev.
, vol.131
, pp. 261-269
-
-
Baur, J.A.1
-
216
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
-
217
-
-
48349144852
-
Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
-
Pearson K.J., et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008, 8:157-168.
-
(2008)
Cell Metab.
, vol.8
, pp. 157-168
-
-
Pearson, K.J.1
-
218
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
-
Pacholec M., et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 2010, 285:8340-8351.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8340-8351
-
-
Pacholec, M.1
-
219
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price N.L., et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15:675-690.
-
(2012)
Cell Metab.
, vol.15
, pp. 675-690
-
-
Price, N.L.1
-
220
-
-
84918791665
-
Resveratrol does not benefit patients with non-alcoholic fatty liver disease
-
Chachay V.S., et al. Resveratrol does not benefit patients with non-alcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2014, 10.1016/j.cgh.2014.02.024.
-
(2014)
Clin. Gastroenterol. Hepatol.
-
-
Chachay, V.S.1
-
221
-
-
84859909860
-
SRT1720 improves survival and healthspan of obese mice
-
Minor R.K., et al. SRT1720 improves survival and healthspan of obese mice. Sci. Rep. 2011, 1:70.
-
(2011)
Sci. Rep.
, vol.1
, pp. 70
-
-
Minor, R.K.1
-
222
-
-
84895925833
-
The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet
-
Mitchell S.J., et al. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 2014, 6:836-843.
-
(2014)
Cell Rep.
, vol.6
, pp. 836-843
-
-
Mitchell, S.J.1
-
223
-
-
84874721105
-
Evidence for a common mechanism of SIRT1 regulation by allosteric activators
-
Hubbard B.P., et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 2013, 339:1216-1219.
-
(2013)
Science
, vol.339
, pp. 1216-1219
-
-
Hubbard, B.P.1
|