메뉴 건너뛰기




Volumn 18, Issue 9, 2012, Pages 516-523

Metabolic regulation by SIRT3: Implications for tumorigenesis

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A SYNTHETASE; CYTOCHROME C OXIDASE; GLUTAMATE DEHYDROGENASE; HYDROXYMETHYLGLUTARYL COENZYME A SYNTHASE; HYPOXIA INDUCIBLE FACTOR 1ALPHA; ISOCITRATE DEHYDROGENASE 2; LONG CHAIN ACYL COENZYME A DEHYDROGENASE; MANGANESE SUPEROXIDE DISMUTASE; MITOCHONDRIAL DEACETYLASE; MITOCHONDRIAL ENZYME; ORNITHINE CARBAMOYLTRANSFERASE; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SIRTUIN 3; SUCCINATE DEHYDROGENASE; SUCCINATE DEHYDROGENASE (UBIQUINONE); UBIQUINOL CYTOCHROME C REDUCTASE; UNCLASSIFIED DRUG;

EID: 84865576222     PISSN: 14714914     EISSN: 1471499X     Source Type: Journal    
DOI: 10.1016/j.molmed.2012.05.004     Document Type: Review
Times cited : (107)

References (70)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: biological insights and disease relevance
    • Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
    • (2010) Annu. Rev. Pathol. , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 3
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334:806-809.
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1
  • 4
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111.012658
    • Peng C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 2011, 10. M111.012658.
    • (2011) Mol. Cell. Proteomics , vol.10
    • Peng, C.1
  • 5
    • 37549067781 scopus 로고    scopus 로고
    • Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases
    • Smith B.C., Denu J.M. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 2007, 282:37256-37265.
    • (2007) J. Biol. Chem. , vol.282 , pp. 37256-37265
    • Smith, B.C.1    Denu, J.M.2
  • 6
    • 35648935529 scopus 로고    scopus 로고
    • N-lysine propionylation controls the activity of propionyl-CoA synthetase
    • Garrity J., et al. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem. 2007, 282:30239-30245.
    • (2007) J. Biol. Chem. , vol.282 , pp. 30239-30245
    • Garrity, J.1
  • 7
    • 79954582107 scopus 로고    scopus 로고
    • Control of protein function by reversible Nvarepsilon-lysine acetylation in bacteria
    • Thao S., Escalante-Semerena J.C. Control of protein function by reversible Nvarepsilon-lysine acetylation in bacteria. Curr. Opin. Microbiol. 2011, 14:200-204.
    • (2011) Curr. Opin. Microbiol. , vol.14 , pp. 200-204
    • Thao, S.1    Escalante-Semerena, J.C.2
  • 8
    • 34248640428 scopus 로고    scopus 로고
    • Lysine propionylation and butyrylation are novel post-translational modifications in histones
    • Chen Y., et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 2007, 6:812-819.
    • (2007) Mol. Cell. Proteomics , vol.6 , pp. 812-819
    • Chen, Y.1
  • 9
    • 79551584971 scopus 로고    scopus 로고
    • Regulation of intermediary metabolism by protein acetylation
    • Guan K.L., Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem. Sci. 2011, 36:108-116.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 108-116
    • Guan, K.L.1    Xiong, Y.2
  • 10
    • 66249105703 scopus 로고    scopus 로고
    • ATP-citrate lyase links cellular metabolism to histone acetylation
    • Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
    • (2009) Science , vol.324 , pp. 1076-1080
    • Wellen, K.E.1
  • 11
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • Zhao S., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.1
  • 12
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Canto C., et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Canto, C.1
  • 13
    • 46249100836 scopus 로고    scopus 로고
    • Tissue-specific regulation of SIRT1 by calorie restriction
    • Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008, 22:1753-1757.
    • (2008) Genes Dev. , vol.22 , pp. 1753-1757
    • Chen, D.1
  • 14
    • 77953289374 scopus 로고    scopus 로고
    • Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose
    • Tong L., Denu J.M. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 2010, 1804:1617-1625.
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 1617-1625
    • Tong, L.1    Denu, J.M.2
  • 15
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • Kim S.C., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
    • (2006) Mol. Cell , vol.23 , pp. 607-618
    • Kim, S.C.1
  • 16
    • 84860192261 scopus 로고    scopus 로고
    • Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1
    • Scott I., et al. Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem. J. 2012, 443:655-661.
    • (2012) Biochem. J. , vol.443 , pp. 655-661
    • Scott, I.1
  • 17
    • 10944224581 scopus 로고    scopus 로고
    • Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis
    • Bakin R.E., Jung M.O. Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis. J. Biol. Chem. 2004, 279:51218-51225.
    • (2004) J. Biol. Chem. , vol.279 , pp. 51218-51225
    • Bakin, R.E.1    Jung, M.O.2
  • 18
    • 78649328799 scopus 로고    scopus 로고
    • Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling
    • Verdin E., et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010, 35:669-675.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 669-675
    • Verdin, E.1
  • 19
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • Lombard D.B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8807-8814
    • Lombard, D.B.1
  • 20
    • 23844558266 scopus 로고    scopus 로고
    • A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
    • Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 359-407
    • Wallace, D.C.1
  • 21
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science 1956, 123:309-314.
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 22
    • 79251517382 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism
    • Cairns R.A., et al. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11:85-95.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 85-95
    • Cairns, R.A.1
  • 23
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1
  • 24
    • 80053922625 scopus 로고    scopus 로고
    • Metabolic flux and the regulation of mammalian cell growth
    • Locasale J.W., Cantley L.C. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 2011, 14:443-451.
    • (2011) Cell Metab. , vol.14 , pp. 443-451
    • Locasale, J.W.1    Cantley, L.C.2
  • 25
    • 40749163248 scopus 로고    scopus 로고
    • The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
    • Christofk H.R., et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452:230-233.
    • (2008) Nature , vol.452 , pp. 230-233
    • Christofk, H.R.1
  • 26
    • 84856087055 scopus 로고    scopus 로고
    • Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis
    • Zhang W.C., et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 2012, 148:259-272.
    • (2012) Cell , vol.148 , pp. 259-272
    • Zhang, W.C.1
  • 27
    • 80052258995 scopus 로고    scopus 로고
    • Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
    • Locasale J.W., et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 2011, 43:869-874.
    • (2011) Nat. Genet. , vol.43 , pp. 869-874
    • Locasale, J.W.1
  • 28
    • 80051923932 scopus 로고    scopus 로고
    • Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
    • Possemato R., et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011, 476:346-350.
    • (2011) Nature , vol.476 , pp. 346-350
    • Possemato, R.1
  • 29
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
    • (2008) Cell Metab. , vol.7 , pp. 11-20
    • DeBerardinis, R.J.1
  • 30
    • 0000203136 scopus 로고
    • The citrate cleavage enzyme. I. Distribution and purification
    • Srere P.A. The citrate cleavage enzyme. I. Distribution and purification. J. Biol. Chem. 1959, 234:2544-2547.
    • (1959) J. Biol. Chem. , vol.234 , pp. 2544-2547
    • Srere, P.A.1
  • 31
    • 77955281020 scopus 로고    scopus 로고
    • Glutamine addiction: a new therapeutic target in cancer
    • Wise D.R., Thompson C.B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 2010, 35:427-433.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 427-433
    • Wise, D.R.1    Thompson, C.B.2
  • 32
    • 84863012559 scopus 로고    scopus 로고
    • Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK
    • Lin Y.Y., et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 2012, 482:251-255.
    • (2012) Nature , vol.482 , pp. 251-255
    • Lin, Y.Y.1
  • 33
    • 73949123433 scopus 로고    scopus 로고
    • Calorie restriction alters mitochondrial protein acetylation
    • Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
    • (2009) Aging Cell , vol.8 , pp. 604-606
    • Schwer, B.1
  • 34
    • 82455212901 scopus 로고    scopus 로고
    • SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
    • Hirschey M.D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 2011, 44:177-190.
    • (2011) Mol. Cell , vol.44 , pp. 177-190
    • Hirschey, M.D.1
  • 35
    • 78751513117 scopus 로고    scopus 로고
    • Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
    • Kendrick A.A., et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 2011, 433:505-514.
    • (2011) Biochem J. , vol.433 , pp. 505-514
    • Kendrick, A.A.1
  • 36
    • 53149113000 scopus 로고    scopus 로고
    • Ethanol intoxication increases hepatic N-lysyl protein acetylation
    • Picklo M.J. Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochem. Biophys. Res. Commun. 2008, 376:615-619.
    • (2008) Biochem. Biophys. Res. Commun. , vol.376 , pp. 615-619
    • Picklo, M.J.1
  • 37
    • 80052450371 scopus 로고    scopus 로고
    • The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching
    • Yang L., et al. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J. Proteome Res. 2011, 10:4134-4149.
    • (2011) J. Proteome Res. , vol.10 , pp. 4134-4149
    • Yang, L.1
  • 38
    • 48349110303 scopus 로고    scopus 로고
    • A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice
    • Barger J.L., et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PloS ONE 2008, 3:e2264.
    • (2008) PloS ONE , vol.3
    • Barger, J.L.1
  • 39
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
    • (2011) Mol. Cell , vol.41 , pp. 139-149
    • Hallows, W.C.1
  • 40
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1
  • 41
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
    • Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 2009, 1:771-783.
    • (2009) Aging , vol.1 , pp. 771-783
    • Palacios, O.M.1
  • 42
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1
  • 43
    • 58149345928 scopus 로고    scopus 로고
    • Endurance exercise as a countermeasure for aging
    • Lanza I.R., et al. Endurance exercise as a countermeasure for aging. Diabetes 2008, 57:2933-2942.
    • (2008) Diabetes , vol.57 , pp. 2933-2942
    • Lanza, I.R.1
  • 44
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim H.S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.S.1
  • 45
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn B.H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14447-14452.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 14447-14452
    • Ahn, B.H.1
  • 46
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • Cimen H., et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010, 49:304-311.
    • (2010) Biochemistry , vol.49 , pp. 304-311
    • Cimen, H.1
  • 47
    • 79959819034 scopus 로고    scopus 로고
    • SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
    • Bell E.L., et al. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996.
    • (2011) Oncogene , vol.30 , pp. 2986-2996
    • Bell, E.L.1
  • 48
    • 80051716282 scopus 로고    scopus 로고
    • Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
    • Finley L.W., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PloS ONE 2011, 6:e23295.
    • (2011) PloS ONE , vol.6
    • Finley, L.W.1
  • 49
    • 80052291180 scopus 로고    scopus 로고
    • Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
    • Jing E., et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14608-14613.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14608-14613
    • Jing, E.1
  • 50
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1
  • 51
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • Schlicker C., et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382:790-801.
    • (2008) J. Mol. Biol. , vol.382 , pp. 790-801
    • Schlicker, C.1
  • 52
    • 83755178091 scopus 로고    scopus 로고
    • Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability
    • Wise D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19611-19616.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 19611-19616
    • Wise, D.R.1
  • 53
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen A.R., et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012, 481:385-388.
    • (2012) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1
  • 54
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo C.M., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012, 481:380-384.
    • (2012) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1
  • 55
    • 78649509214 scopus 로고    scopus 로고
    • SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
    • Shimazu T., et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
    • (2010) Cell Metab. , vol.12 , pp. 654-661
    • Shimazu, T.1
  • 56
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows W.C., et al. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10230-10235.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10230-10235
    • Hallows, W.C.1
  • 57
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B., et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10224-10229.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10224-10229
    • Schwer, B.1
  • 58
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • Qiu X., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
    • (2010) Cell Metab. , vol.12 , pp. 662-667
    • Qiu, X.1
  • 59
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • Tao R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010, 40:893-904.
    • (2010) Mol. Cell , vol.40 , pp. 893-904
    • Tao, R.1
  • 60
    • 77951279075 scopus 로고    scopus 로고
    • Reactive oxygen species in cancer
    • Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44:479-496.
    • (2010) Free Radic. Res. , vol.44 , pp. 479-496
    • Liou, G.Y.1    Storz, P.2
  • 61
    • 79952501323 scopus 로고    scopus 로고
    • SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
    • Finley L.W., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 2011, 19:416-428.
    • (2011) Cancer Cell , vol.19 , pp. 416-428
    • Finley, L.W.1
  • 62
    • 79957952535 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning
    • Semenza G.L. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim. Biophys. Acta 2011, 1813:1263-1268.
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1263-1268
    • Semenza, G.L.1
  • 63
    • 43649093915 scopus 로고    scopus 로고
    • Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
    • Kaelin W.G., Ratcliffe P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30:393-402.
    • (2008) Mol. Cell , vol.30 , pp. 393-402
    • Kaelin, W.G.1    Ratcliffe, P.J.2
  • 64
    • 78649364332 scopus 로고    scopus 로고
    • Hypoxia-inducible factors and the response to hypoxic stress
    • Majmundar A.J., et al. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 2010, 40:294-309.
    • (2010) Mol. Cell , vol.40 , pp. 294-309
    • Majmundar, A.J.1
  • 65
    • 84255198350 scopus 로고    scopus 로고
    • The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+)
    • Gerhart-Hines Z., et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol. Cell 2011, 44:851-863.
    • (2011) Mol. Cell , vol.44 , pp. 851-863
    • Gerhart-Hines, Z.1
  • 66
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • Cai L., et al. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42:426-437.
    • (2011) Mol. Cell , vol.42 , pp. 426-437
    • Cai, L.1
  • 67
    • 79953799195 scopus 로고    scopus 로고
    • Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
    • Alhazzazi T.Y., et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011, 117:1670-1678.
    • (2011) Cancer , vol.117 , pp. 1670-1678
    • Alhazzazi, T.Y.1
  • 68
    • 79957441575 scopus 로고    scopus 로고
    • SIRT3 and cancer: tumor promoter or suppressor?
    • Alhazzazi T.Y., et al. SIRT3 and cancer: tumor promoter or suppressor?. Biochim. Biophys. Acta 2011, 1816:80-88.
    • (2011) Biochim. Biophys. Acta , vol.1816 , pp. 80-88
    • Alhazzazi, T.Y.1
  • 69
    • 80052242132 scopus 로고    scopus 로고
    • Targeting cancer metabolism: a therapeutic window opens
    • Vander Heiden M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 2011, 10:671-684.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 671-684
    • Vander Heiden, M.G.1
  • 70
    • 69949101473 scopus 로고    scopus 로고
    • Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
    • Schafer Z.T., et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461:109-113.
    • (2009) Nature , vol.461 , pp. 109-113
    • Schafer, Z.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.