-
1
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
77949887506
-
Mammalian sirtuins: biological insights and disease relevance
-
Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
-
(2010)
Annu. Rev. Pathol.
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
3
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
Du J., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334:806-809.
-
(2011)
Science
, vol.334
, pp. 806-809
-
-
Du, J.1
-
4
-
-
83055173304
-
The first identification of lysine malonylation substrates and its regulatory enzyme
-
M111.012658
-
Peng C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 2011, 10. M111.012658.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Peng, C.1
-
5
-
-
37549067781
-
Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases
-
Smith B.C., Denu J.M. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 2007, 282:37256-37265.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 37256-37265
-
-
Smith, B.C.1
Denu, J.M.2
-
6
-
-
35648935529
-
N-lysine propionylation controls the activity of propionyl-CoA synthetase
-
Garrity J., et al. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem. 2007, 282:30239-30245.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30239-30245
-
-
Garrity, J.1
-
7
-
-
79954582107
-
Control of protein function by reversible Nvarepsilon-lysine acetylation in bacteria
-
Thao S., Escalante-Semerena J.C. Control of protein function by reversible Nvarepsilon-lysine acetylation in bacteria. Curr. Opin. Microbiol. 2011, 14:200-204.
-
(2011)
Curr. Opin. Microbiol.
, vol.14
, pp. 200-204
-
-
Thao, S.1
Escalante-Semerena, J.C.2
-
8
-
-
34248640428
-
Lysine propionylation and butyrylation are novel post-translational modifications in histones
-
Chen Y., et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 2007, 6:812-819.
-
(2007)
Mol. Cell. Proteomics
, vol.6
, pp. 812-819
-
-
Chen, Y.1
-
9
-
-
79551584971
-
Regulation of intermediary metabolism by protein acetylation
-
Guan K.L., Xiong Y. Regulation of intermediary metabolism by protein acetylation. Trends Biochem. Sci. 2011, 36:108-116.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 108-116
-
-
Guan, K.L.1
Xiong, Y.2
-
10
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation
-
Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
-
(2009)
Science
, vol.324
, pp. 1076-1080
-
-
Wellen, K.E.1
-
11
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
Zhao S., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
-
12
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C., et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
-
13
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
Chen D., et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008, 22:1753-1757.
-
(2008)
Genes Dev.
, vol.22
, pp. 1753-1757
-
-
Chen, D.1
-
14
-
-
77953289374
-
Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose
-
Tong L., Denu J.M. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 2010, 1804:1617-1625.
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 1617-1625
-
-
Tong, L.1
Denu, J.M.2
-
15
-
-
33746992118
-
Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
-
Kim S.C., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
-
(2006)
Mol. Cell
, vol.23
, pp. 607-618
-
-
Kim, S.C.1
-
16
-
-
84860192261
-
Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1
-
Scott I., et al. Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1. Biochem. J. 2012, 443:655-661.
-
(2012)
Biochem. J.
, vol.443
, pp. 655-661
-
-
Scott, I.1
-
17
-
-
10944224581
-
Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis
-
Bakin R.E., Jung M.O. Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis. J. Biol. Chem. 2004, 279:51218-51225.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 51218-51225
-
-
Bakin, R.E.1
Jung, M.O.2
-
18
-
-
78649328799
-
Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling
-
Verdin E., et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010, 35:669-675.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 669-675
-
-
Verdin, E.1
-
19
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard D.B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
-
20
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
-
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
21
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956, 123:309-314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
22
-
-
79251517382
-
Regulation of cancer cell metabolism
-
Cairns R.A., et al. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11:85-95.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 85-95
-
-
Cairns, R.A.1
-
23
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
24
-
-
80053922625
-
Metabolic flux and the regulation of mammalian cell growth
-
Locasale J.W., Cantley L.C. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 2011, 14:443-451.
-
(2011)
Cell Metab.
, vol.14
, pp. 443-451
-
-
Locasale, J.W.1
Cantley, L.C.2
-
25
-
-
40749163248
-
The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
-
Christofk H.R., et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452:230-233.
-
(2008)
Nature
, vol.452
, pp. 230-233
-
-
Christofk, H.R.1
-
26
-
-
84856087055
-
Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis
-
Zhang W.C., et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 2012, 148:259-272.
-
(2012)
Cell
, vol.148
, pp. 259-272
-
-
Zhang, W.C.1
-
27
-
-
80052258995
-
Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
-
Locasale J.W., et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 2011, 43:869-874.
-
(2011)
Nat. Genet.
, vol.43
, pp. 869-874
-
-
Locasale, J.W.1
-
28
-
-
80051923932
-
Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
-
Possemato R., et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011, 476:346-350.
-
(2011)
Nature
, vol.476
, pp. 346-350
-
-
Possemato, R.1
-
29
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
30
-
-
0000203136
-
The citrate cleavage enzyme. I. Distribution and purification
-
Srere P.A. The citrate cleavage enzyme. I. Distribution and purification. J. Biol. Chem. 1959, 234:2544-2547.
-
(1959)
J. Biol. Chem.
, vol.234
, pp. 2544-2547
-
-
Srere, P.A.1
-
31
-
-
77955281020
-
Glutamine addiction: a new therapeutic target in cancer
-
Wise D.R., Thompson C.B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 2010, 35:427-433.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 427-433
-
-
Wise, D.R.1
Thompson, C.B.2
-
32
-
-
84863012559
-
Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK
-
Lin Y.Y., et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 2012, 482:251-255.
-
(2012)
Nature
, vol.482
, pp. 251-255
-
-
Lin, Y.Y.1
-
33
-
-
73949123433
-
Calorie restriction alters mitochondrial protein acetylation
-
Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
-
(2009)
Aging Cell
, vol.8
, pp. 604-606
-
-
Schwer, B.1
-
34
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey M.D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 2011, 44:177-190.
-
(2011)
Mol. Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
-
35
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick A.A., et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 2011, 433:505-514.
-
(2011)
Biochem J.
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
-
36
-
-
53149113000
-
Ethanol intoxication increases hepatic N-lysyl protein acetylation
-
Picklo M.J. Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochem. Biophys. Res. Commun. 2008, 376:615-619.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.376
, pp. 615-619
-
-
Picklo, M.J.1
-
37
-
-
80052450371
-
The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching
-
Yang L., et al. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J. Proteome Res. 2011, 10:4134-4149.
-
(2011)
J. Proteome Res.
, vol.10
, pp. 4134-4149
-
-
Yang, L.1
-
38
-
-
48349110303
-
A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice
-
Barger J.L., et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PloS ONE 2008, 3:e2264.
-
(2008)
PloS ONE
, vol.3
-
-
Barger, J.L.1
-
39
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
-
40
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
-
41
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
-
Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 2009, 1:771-783.
-
(2009)
Aging
, vol.1
, pp. 771-783
-
-
Palacios, O.M.1
-
42
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
-
43
-
-
58149345928
-
Endurance exercise as a countermeasure for aging
-
Lanza I.R., et al. Endurance exercise as a countermeasure for aging. Diabetes 2008, 57:2933-2942.
-
(2008)
Diabetes
, vol.57
, pp. 2933-2942
-
-
Lanza, I.R.1
-
44
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim H.S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.S.1
-
45
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn B.H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14447-14452.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
-
46
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
Cimen H., et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010, 49:304-311.
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
-
47
-
-
79959819034
-
SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
-
Bell E.L., et al. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996.
-
(2011)
Oncogene
, vol.30
, pp. 2986-2996
-
-
Bell, E.L.1
-
48
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
Finley L.W., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PloS ONE 2011, 6:e23295.
-
(2011)
PloS ONE
, vol.6
-
-
Finley, L.W.1
-
49
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
Jing E., et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14608-14613.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14608-14613
-
-
Jing, E.1
-
50
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
-
51
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
Schlicker C., et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382:790-801.
-
(2008)
J. Mol. Biol.
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
-
52
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability
-
Wise D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19611-19616.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 19611-19616
-
-
Wise, D.R.1
-
53
-
-
84855987831
-
Reductive carboxylation supports growth in tumour cells with defective mitochondria
-
Mullen A.R., et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012, 481:385-388.
-
(2012)
Nature
, vol.481
, pp. 385-388
-
-
Mullen, A.R.1
-
54
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo C.M., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012, 481:380-384.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
-
55
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Shimazu T., et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
-
(2010)
Cell Metab.
, vol.12
, pp. 654-661
-
-
Shimazu, T.1
-
56
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
Hallows W.C., et al. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10230-10235.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10230-10235
-
-
Hallows, W.C.1
-
57
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Schwer B., et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10224-10229.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10224-10229
-
-
Schwer, B.1
-
58
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Qiu X., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
-
(2010)
Cell Metab.
, vol.12
, pp. 662-667
-
-
Qiu, X.1
-
59
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
Tao R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010, 40:893-904.
-
(2010)
Mol. Cell
, vol.40
, pp. 893-904
-
-
Tao, R.1
-
60
-
-
77951279075
-
Reactive oxygen species in cancer
-
Liou G.Y., Storz P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44:479-496.
-
(2010)
Free Radic. Res.
, vol.44
, pp. 479-496
-
-
Liou, G.Y.1
Storz, P.2
-
61
-
-
79952501323
-
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
-
Finley L.W., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 2011, 19:416-428.
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.1
-
62
-
-
79957952535
-
Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning
-
Semenza G.L. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim. Biophys. Acta 2011, 1813:1263-1268.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1263-1268
-
-
Semenza, G.L.1
-
63
-
-
43649093915
-
Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
-
Kaelin W.G., Ratcliffe P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30:393-402.
-
(2008)
Mol. Cell
, vol.30
, pp. 393-402
-
-
Kaelin, W.G.1
Ratcliffe, P.J.2
-
64
-
-
78649364332
-
Hypoxia-inducible factors and the response to hypoxic stress
-
Majmundar A.J., et al. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 2010, 40:294-309.
-
(2010)
Mol. Cell
, vol.40
, pp. 294-309
-
-
Majmundar, A.J.1
-
65
-
-
84255198350
-
The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+)
-
Gerhart-Hines Z., et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol. Cell 2011, 44:851-863.
-
(2011)
Mol. Cell
, vol.44
, pp. 851-863
-
-
Gerhart-Hines, Z.1
-
66
-
-
79955960768
-
Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
-
Cai L., et al. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42:426-437.
-
(2011)
Mol. Cell
, vol.42
, pp. 426-437
-
-
Cai, L.1
-
67
-
-
79953799195
-
Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
-
Alhazzazi T.Y., et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011, 117:1670-1678.
-
(2011)
Cancer
, vol.117
, pp. 1670-1678
-
-
Alhazzazi, T.Y.1
-
68
-
-
79957441575
-
SIRT3 and cancer: tumor promoter or suppressor?
-
Alhazzazi T.Y., et al. SIRT3 and cancer: tumor promoter or suppressor?. Biochim. Biophys. Acta 2011, 1816:80-88.
-
(2011)
Biochim. Biophys. Acta
, vol.1816
, pp. 80-88
-
-
Alhazzazi, T.Y.1
-
69
-
-
80052242132
-
Targeting cancer metabolism: a therapeutic window opens
-
Vander Heiden M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 2011, 10:671-684.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
70
-
-
69949101473
-
Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
-
Schafer Z.T., et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461:109-113.
-
(2009)
Nature
, vol.461
, pp. 109-113
-
-
Schafer, Z.T.1
|