-
1
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
DOI 10.1038/35001622
-
Imai S, Armstrong CM, Kaeberlein M and Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacety-lase. Nature 2000, 403:795-800. (Pubitemid 30111843)
-
(2000)
Nature
, vol.403
, Issue.6771
, pp. 795-800
-
-
Imai, S.-I.1
Armstrong, C.M.2
Kaeberlein, M.3
Guarente, L.4
-
2
-
-
0034705129
-
The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
-
DOI 10.1073/pnas.110148297
-
Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L and Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 2000, 97:5807-5811. (Pubitemid 30367480)
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.11
, pp. 5807-5811
-
-
Landry, J.1
Sutton, A.2
Tafrov, S.T.3
Heller, R.C.4
Stebbins, J.5
Pillus, L.6
Sternglanz, R.7
-
3
-
-
12944283150
-
+-dependent protein deacetylase activity in the Sir2 protein family
-
DOI 10.1073/pnas.97.12.6658
-
+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 2000, 97:6658-6663. (Pubitemid 30412770)
-
(2000)
Proceedings of the National Academy of Sciences of the United States of America
, vol.97
, Issue.12
, pp. 6658-6663
-
-
Smith, J.S.1
Brachmann, C.B.2
Celic, I.3
Kenna, M.A.4
Muhammad, S.5
Starai, V.J.6
Avalos, J.L.7
Escalante-Semerena, J.C.8
Grubmeyer, C.9
Wolberger, C.10
Boeke, J.D.11
-
4
-
-
33748316536
-
SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells
-
DOI 10.1016/j.cell.2006.06.057, PII S0092867406010208
-
Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ and Valenzuela DM, et al. SIRT4 inhibits glutamate dehydro-genase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126:941-954. (Pubitemid 44321935)
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
Murphy, AndrewJ.6
Valenzuela, D.M.7
Yancopoulos, G.D.8
Karow, M.9
Blander, G.10
Wolberger, C.11
Prolla, T.A.12
Weindruch, R.13
Alt, F.W.14
Guarente, L.15
-
5
-
-
0034193776
-
Sir2 links chromatin silencing, metabolism, and aging
-
Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 2000, 14:1021-1026. (Pubitemid 30324417)
-
(2000)
Genes and Development
, vol.14
, Issue.9
, pp. 1021-1026
-
-
Guarente, L.1
-
6
-
-
35348972430
-
Genetic links between diet and lifespan: Shared mechanisms from yeast to humans
-
DOI 10.1038/nrg2188, PII NRG2188
-
Bishop NA and Guarente L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 2007, 8:835-844. (Pubitemid 47609089)
-
(2007)
Nature Reviews Genetics
, vol.8
, Issue.11
, pp. 835-844
-
-
Bishop, N.A.1
Guarente, L.2
-
7
-
-
77949887506
-
Mammalian sirtuins: Biological insights and disease relevance
-
Haigis MC and Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010, 5:253-295.
-
(2010)
Annu Rev Pathol
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
8
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
DOI 10.1006/bbrc.2000.3000
-
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 2000, 273:793-798. (Pubitemid 30599063)
-
(2000)
Biochemical and Biophysical Research Communications
, vol.273
, Issue.2
, pp. 793-798
-
-
Frye, R.A.1
-
9
-
-
79953898189
-
Sirtuin 1 in lipid metabolism and obesity
-
Schug TT and Li X. Sirtuin 1 in lipid metabolism and obesity. Ann Med 2011, 43:198-211.
-
(2011)
Ann Med
, vol.43
, pp. 198-211
-
-
Schug, T.T.1
Li, X.2
-
10
-
-
79960141848
-
Mammalian sirtuins and energy metabolism
-
Li X and Kazgan N. Mammalian sirtuins and energy metabolism. Int J Biol Sci 2011, 7:575-587.
-
(2011)
Int J Biol Sci
, vol.7
, pp. 575-587
-
-
Li, X.1
Kazgan, N.2
-
13
-
-
17144429302
-
Calorie restriction, SIRT1 and metabolism: Understanding longevity
-
DOI 10.1038/nrm1616
-
Bordone L and Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005, 6:298-305. (Pubitemid 40516896)
-
(2005)
Nature Reviews Molecular Cell Biology
, vol.6
, Issue.4
, pp. 298-305
-
-
Bordone, L.1
Guarente, L.2
-
14
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
-
DOI 10.1038/nature03354
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM and Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005, 434:113-118. (Pubitemid 40349395)
-
(2005)
Nature
, vol.434
, Issue.7029
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
15
-
-
46249100836
-
Tissue-specific regulation of SIRT1 by calorie restriction
-
DOI 10.1101/gad.1650608
-
Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW and Guarente L. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev 2008, 22:1753-1757. (Pubitemid 351915500)
-
(2008)
Genes and Development
, vol.22
, Issue.13
, pp. 1753-1757
-
-
Chen, D.1
Bruno, J.2
Easlon, E.3
Lin, S.-J.4
Cheng, H.-L.5
Alt, F.W.6
Guarente, L.7
-
16
-
-
77952288176
-
+-dependent protein deacetylase, via activation of PPARalpha in mice
-
+-dependent protein deacetylase, via activation of PPARalpha in mice. Mol Cell Bio 2010, 339:285-292.
-
(2010)
Mol Cell Bio
, vol.339
, pp. 285-292
-
-
Hayashida, S.1
Arimoto, A.2
Kuramoto, Y.3
Kozako, T.4
Honda, S.5
Shimeno, H.6
Soeda, S.7
-
17
-
-
0024604870
-
Estimation of the mitochondrial redox state in human skeletal muscle during exercise
-
Graham TE and Saltin B. Estimation of the mitochondrial redox state in human skeletal muscle during exercise. J Appl Physiol 1989, 66:561-566. (Pubitemid 19072900)
-
(1989)
Journal of Applied Physiology
, vol.66
, Issue.2
, pp. 561-566
-
-
Graham, T.E.1
Saltin, B.2
-
18
-
-
73449125908
-
Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse
-
Chabi B, Adhihetty PJ, O'Leary MF, Menzies KJ and Hood DA. Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. J Appl Physiol 2009, 107:1730-1735.
-
(2009)
J Appl Physiol
, vol.107
, pp. 1730-1735
-
-
Chabi, B.1
Adhihetty, P.J.2
O'Leary, M.F.3
Menzies, K.J.4
Hood, D.A.5
-
19
-
-
67349276169
-
+ metabolism and SIRT1 activity
-
+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
Elliott, P.J.7
-
20
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M and Zierath JR, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010, 11:213-219.
-
(2010)
Cell Metab
, vol.11
, pp. 213-219
-
-
Canto, C.1
Jiang, L.Q.2
Deshmukh, A.S.3
Mataki, C.4
Coste, A.5
Lagouge, M.6
Zierath, J.R.7
-
21
-
-
80053920774
-
Nicotinamide mononucleo-tide, a key NAD(+) intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice
-
Yoshino J, Mills KF, Yoon MJ and Imai S. Nicotinamide mononucleo-tide, a key NAD(+) intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice. Cell Metab 2011, 14:528-536.
-
(2011)
Cell Metab
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
Mills, K.F.2
Yoon, M.J.3
Imai, S.4
-
22
-
-
79955433960
-
Metabolomic analysis of livers and serum from high-fat diet induced obese mice
-
Kim HJ, Kim JH, Noh S, Hur HJ, Sung MJ, Hwang JT and Park JH, et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J Proteome Res 2011, 10:722-731.
-
(2011)
J Proteome Res
, vol.10
, pp. 722-731
-
-
Kim, H.J.1
Kim, J.H.2
Noh, S.3
Hur, H.J.4
Sung, M.J.5
Hwang, J.T.6
Park, J.H.7
-
23
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL and Watson PA, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 2011, 433:505-514.
-
(2011)
Biochem J
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
Choudhury, M.2
Rahman, S.M.3
McCurdy, C.E.4
Friederich, M.5
Van Hove, J.L.6
Watson, P.A.7
-
24
-
-
79954576666
-
Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene
-
Tao R, Wei D, Gao H, Liu Y, DePinho RA and Dong XC. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J Biol Chem 2011, 286:14681-14690.
-
(2011)
J Biol Chem
, vol.286
, pp. 14681-14690
-
-
Tao, R.1
Wei, D.2
Gao, H.3
Liu, Y.4
Depinho, R.A.5
Dong, X.C.6
-
25
-
-
35549002189
-
Nampt/PBEF/Visfatin Regulates Insulin Secretion in β Cells as a Systemic NAD Biosynthetic Enzyme
-
DOI 10.1016/j.cmet.2007.09.003, PII S155041310700263X
-
Revollo JR, Korner A, Mills KF, Satoh A, Wang T, Garten A and Dasgupta B, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007, 6:363-375. (Pubitemid 350011996)
-
(2007)
Cell Metabolism
, vol.6
, Issue.5
, pp. 363-375
-
-
Revollo, J.R.1
Korner, A.2
Mills, K.F.3
Satoh, A.4
Wang, T.5
Garten, A.6
Dasgupta, B.7
Sasaki, Y.8
Wolberger, C.9
Townsend, R.R.10
Milbrandt, J.11
Kiess, W.12
Imai, S.-i.13
-
26
-
-
10944270187
-
The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells
-
DOI 10.1074/jbc.M408388200
-
Revollo JR, Grimm AA and Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 2004, 279:50754-50763. (Pubitemid 40017813)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.49
, pp. 50754-50763
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.-I.3
-
27
-
-
67749089440
-
Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters
-
Zhang T, Berrocal JG, Frizzell KM, Gamble MJ, DuMond ME, Krishnakumar R and Yang T, et al. Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem 2009, 284:20408-20417.
-
(2009)
J Biol Chem
, vol.284
, pp. 20408-20417
-
-
Zhang, T.1
Berrocal, J.G.2
Frizzell, K.M.3
Gamble, M.J.4
Dumond, M.E.5
Krishnakumar, R.6
Yang, T.7
-
28
-
-
84859856755
-
NAMPT pathway is involved in the FOXO3a-mediated regulation of GADD45A expression
-
Thakur BK, Lippka Y, Dittrich T, Chandra P, Skokowa J and Welte K. NAMPT pathway is involved in the FOXO3a-mediated regulation of GADD45A expression. Biochem Biophys Res Commun 2012, 420:714-720.
-
(2012)
Biochem Biophys Res Commun
, vol.420
, pp. 714-720
-
-
Thakur, B.K.1
Lippka, Y.2
Dittrich, T.3
Chandra, P.4
Skokowa, J.5
Welte, K.6
-
29
-
-
59649125761
-
NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway
-
Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G and Brechlin AM, et al. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med 2009, 15:151-158.
-
(2009)
Nat Med
, vol.15
, pp. 151-158
-
-
Skokowa, J.1
Lan, D.2
Thakur, B.K.3
Wang, F.4
Gupta, K.5
Cario, G.6
Brechlin, A.M.7
-
30
-
-
22144459034
-
+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation
-
DOI 10.1161/01.RES.0000173298.38808.27
-
+-dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res 2005, 97:25-34. (Pubitemid 40982319)
-
(2005)
Circulation Research
, vol.97
, Issue.1
, pp. 25-34
-
-
Van Der Veer, E.1
Nong, Z.2
O'Neil, C.3
Urquhart, B.4
Freeman, D.5
Pickering, J.G.6
-
31
-
-
34249696938
-
Extension of human cell lifespan by nicotinamide phosphoribosyltransferase
-
DOI 10.1074/jbc.C700018200
-
van der Veer E, Ho C, O'Neil C, Barbosa N, Scott R, Cregan SP and Pickering JG. Extension of human cell lifespan by nicotinamide phos-phoribosyltransferase. J Biol Chem 2007, 282:10841-10845. (Pubitemid 47100731)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.15
, pp. 10841-10845
-
-
Van Der Veer, E.1
Ho, C.2
O'Neil, C.3
Barbosa, N.4
Scott, R.5
Cregan, S.P.6
Pickering, J.G.7
-
32
-
-
38349112898
-
Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice
-
Ramsey KM, Mills KF, Satoh A and Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging cell 2008, 7:78-88.
-
(2008)
Aging Cell
, vol.7
, pp. 78-88
-
-
Ramsey, K.M.1
Mills, K.F.2
Satoh, A.3
Imai, S.4
-
33
-
-
79952537492
-
Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway
-
Wang P, Xu TY, Guan YF, Tian WW, Viollet B, Rui YC and Zhai QW, et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann Neurol 2011, 69:360-374.
-
(2011)
Ann Neurol
, vol.69
, pp. 360-374
-
-
Wang, P.1
Xu, T.Y.2
Guan, Y.F.3
Tian, W.W.4
Viollet, B.5
Rui, Y.C.6
Zhai, Q.W.7
-
34
-
-
84862022077
-
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
-
Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y and Fernandez-Marcos PJ, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 2012, 15:838-847.
-
(2012)
Cell Metab
, vol.15
, pp. 838-847
-
-
Canto, C.1
Houtkooper, R.H.2
Pirinen, E.3
Youn, D.Y.4
Oosterveer, M.H.5
Cen, Y.6
Fernandez-Marcos, P.J.7
-
35
-
-
30044443515
-
+ depletion and reduced Sir2α deacetylase activity
-
DOI 10.1074/jbc.M506162200
-
Pillai JB, Isbatan A, Imai S and Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 2005, 280:43121-43130. (Pubitemid 43049278)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.52
, pp. 43121-43130
-
-
Pillai, J.B.1
Isbatan, A.2
Imai, S.-I.3
Gupta, M.P.4
-
36
-
-
66749091490
-
SIRT1/PARP-1 functional interplay
-
Sassone-Corsi P. SIRT1/PARP-1 functional interplay. Cell Cycle 2009, 8:1649.
-
(2009)
Cell Cycle
, vol.8
, pp. 1649
-
-
Sassone-Corsi, P.1
-
37
-
-
79953752384
-
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
-
Bai P, Canto C, Oudart H, Brunyanszki A, Cen Y, Thomas C and Yamamoto H, et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 2011, 13:461-468.
-
(2011)
Cell Metab
, vol.13
, pp. 461-468
-
-
Bai, P.1
Canto, C.2
Oudart, H.3
Brunyanszki, A.4
Cen, Y.5
Thomas, C.6
Yamamoto, H.7
-
38
-
-
33748309231
-
Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38
-
DOI 10.1016/j.bbrc.2006.08.066, PII S0006291X06018523
-
Aksoy P, Escande C, White TA, Thompson M, Soares S, Benech JC and Chini EN. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. Biochem Biophys Res Commun 2006, 349:353-359. (Pubitemid 44331799)
-
(2006)
Biochemical and Biophysical Research Communications
, vol.349
, Issue.1
, pp. 353-359
-
-
Aksoy, P.1
Escande, C.2
White, T.A.3
Thompson, M.4
Soares, S.5
Benech, J.C.6
Chini, E.N.7
-
39
-
-
36049038217
-
The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity
-
DOI 10.1096/fj.07-8290com
-
Barbosa MT, Soares SM, Novak CM, Sinclair D, Levine JA, Aksoy P and Chini EN. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J 2007, 21:3629-3639. (Pubitemid 350080945)
-
(2007)
FASEB Journal
, vol.21
, Issue.13
, pp. 3629-3639
-
-
Barbosa, M.T.P.1
Soares, S.M.2
Novak, C.M.3
Sinclair, D.4
Levine, J.A.5
Aksoy, P.6
Chini, E.N.7
-
41
-
-
54249107873
-
The ups and downs of SIRT1
-
Kwon HS and Ott M. The ups and downs of SIRT1. Trends Biochem Sci 2008, 33:517-525.
-
(2008)
Trends Biochem Sci
, vol.33
, pp. 517-525
-
-
Kwon, H.S.1
Ott, M.2
-
42
-
-
84871811519
-
The ways and means that fine tune Sirt1 activity
-
in press
-
Revollo JR and Li X. The ways and means that fine tune Sirt1 activity. Trends Biochem Sci 2012 (in press).
-
(2012)
Trends Biochem Sci
-
-
Revollo, J.R.1
Li, X.2
-
43
-
-
0025768055
-
The role of the liver in metabolic homeostasis: Implications for inborn errors of metabolism
-
van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis 1991, 14:407-420.
-
(1991)
J Inherit Metab Dis
, vol.14
, pp. 407-420
-
-
Van Den Berghe, G.1
-
44
-
-
56249100986
-
A Fasting Inducible Switch Modulates Gluconeogenesis Via Activator/coactivator exchange
-
Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S and Milne J, et al. A fasting inducible switch modulates gluconeogenesis via activa-tor/coactivator exchange. Nature 2008, 456:269-273.
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
Dentin, R.2
Chen, D.3
Hedrick, S.4
Ravnskjaer, K.5
Schenk, S.6
Milne, J.7
-
45
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X and Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009, 9:327-338.
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
46
-
-
77953292242
-
Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5
-
Dominy JE, Jr, Lee Y, Gerhart-Hines Z and Puigserver P. Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta 2010, 1804:1676-1683.
-
(2010)
Biochim Biophys Acta
, vol.1804
, pp. 1676-1683
-
-
Dominy, Jr.J.E.1
Lee, Y.2
Gerhart-Hines, Z.3
Puigserver, P.4
-
47
-
-
20144365700
-
Nuclear trapping of the forkhead transcription factor FoxO1 via sirt-dependent deacetylation promotes expression of glucogenetic genes
-
DOI 10.1074/jbc.M412357200
-
Frescas D, Valenti L and Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 2005, 280:20589-20595. (Pubitemid 40776761)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.21
, pp. 20589-20595
-
-
Frescas, D.1
Valenti, L.2
Accili, D.3
-
49
-
-
78650533816
-
Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition
-
Wang RH, Li C and Deng CX. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int J Biol Sci 2010, 6:682-690.
-
(2010)
Int J Biol Sci
, vol.6
, pp. 682-690
-
-
Wang, R.H.1
Li, C.2
Deng, C.X.3
-
50
-
-
79955661493
-
Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticu-lum stress and insulin resistance in the liver
-
Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X and Donmez G, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticu-lum stress and insulin resistance in the liver. FASEB J 2011, 25:1664-1679.
-
(2011)
FASEB J
, vol.25
, pp. 1664-1679
-
-
Li, Y.1
Xu, S.2
Giles, A.3
Nakamura, K.4
Lee, J.W.5
Hou, X.6
Donmez, G.7
-
51
-
-
34948883324
-
SIRT1 Deacetylates and Positively Regulates the Nuclear Receptor LXR
-
DOI 10.1016/j.molcel.2007.07.032, PII S109727650700620X
-
Li X, Zhang S, Blander G, Tse JG, Krieger M and Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007, 28:91-106. (Pubitemid 47531974)
-
(2007)
Molecular Cell
, vol.28
, Issue.1
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
52
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D and Tsang S, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 2009, 10:392-404.
-
(2009)
Cell Metab
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
Miao, J.4
Fang, S.5
Kanamaluru, D.6
Tsang, S.7
-
53
-
-
84860009972
-
Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1alpha/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice
-
Purushotham A, Xu Q, Lu J, Foley JF, Yan X, Kim DH and Kemper JK, et al. Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1alpha/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol Cell Biol 2012, 32:1226-1236.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1226-1236
-
-
Purushotham, A.1
Xu, Q.2
Lu, J.3
Foley, J.F.4
Yan, X.5
Kim, D.H.6
Kemper, J.K.7
-
54
-
-
0029562554
-
The RXR heterodimers and orphan receptors
-
DOI 10.1016/0092-8674(95)90200-7
-
Mangelsdorf DJ and Evans RM. The RXR heterodimers and orphan receptors. Cell 1995, 83:841-850. (Pubitemid 26006526)
-
(1995)
Cell
, vol.83
, Issue.6
, pp. 841-850
-
-
Mangelsdorf, D.J.1
Evans, R.M.2
-
55
-
-
77951210885
-
A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
-
Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY and Wang L, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 2010, 285:12604-12611.
-
(2010)
J Biol Chem
, vol.285
, pp. 12604-12611
-
-
Lee, J.1
Padhye, A.2
Sharma, A.3
Song, G.4
Miao, J.5
Mo, Y.Y.6
Wang, L.7
-
57
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A and Boss O, et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 2010, 24:1403-1417.
-
(2010)
Genes Dev
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
Yang, F.2
Jiang, K.3
Ji, J.Y.4
Watts, J.L.5
Purushotham, A.6
Boss, O.7
-
58
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M and Wu SY, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 2010, 285:33959-33970.
-
(2010)
J Biol Chem
, vol.285
, pp. 33959-33970
-
-
Ponugoti, B.1
Kim, D.H.2
Xiao, Z.3
Smith, Z.4
Miao, J.5
Zang, M.6
Wu, S.Y.7
-
59
-
-
72749086098
-
Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: What a long, strange tRIP it's been
-
Osborne TF and Espenshade PJ. Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev 2009, 23:2578-2591.
-
(2009)
Genes Dev
, vol.23
, pp. 2578-2591
-
-
Osborne, T.F.1
Espenshade, P.J.2
-
60
-
-
50649097541
-
Fat and beyond: The diverse biology of PPARgamma
-
Tontonoz P and Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 2008, 77:289-312.
-
(2008)
Annu Rev Biochem
, vol.77
, pp. 289-312
-
-
Tontonoz, P.1
Spiegelman, B.M.2
-
61
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ
-
DOI 10.1038/nature02583
-
Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R and Leid M, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004, 429:771-776. (Pubitemid 38833129)
-
(2004)
Nature
, vol.429
, Issue.6993
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
De Oliveira, R.M.6
Leid, M.7
McBurney, M.W.8
Guarente, L.9
-
62
-
-
84864678390
-
High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction
-
Chalkiadaki A and Guarente L. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab 2012, 16:180-188.
-
(2012)
Cell Metab
, vol.16
, pp. 180-188
-
-
Chalkiadaki, A.1
Guarente, L.2
-
63
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
DOI 10.1038/nature01960
-
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG and Zipkin RE, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425:191-196. (Pubitemid 37150899)
-
(2003)
Nature
, vol.425
, Issue.6954
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
Wood, J.G.6
Zipkin, R.E.7
Chung, P.8
Kisielewski, A.9
Zhang, L.-L.10
Scherer, B.11
Sinclair, D.A.12
-
64
-
-
70350524083
-
Resveratrol is not a direct activator of SIRT1 enzyme activity
-
Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L and Wang M. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 2009, 74:619-624.
-
(2009)
Chem Biol Drug des
, vol.74
, pp. 619-624
-
-
Beher, D.1
Wu, J.2
Cumine, S.3
Kim, K.W.4
Lu, S.C.5
Atangan, L.6
Wang, M.7
-
65
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
-
Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS and Griffith D, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010, 285:8340-8351.
-
(2010)
J Biol Chem
, vol.285
, pp. 8340-8351
-
-
Pacholec, M.1
Bleasdale, J.E.2
Chrunyk, B.3
Cunningham, D.4
Flynn, D.5
Garofalo, R.S.6
Griffith, D.7
-
66
-
-
84863011114
-
Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
-
Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H and Ke H, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 2012, 148:421-433.
-
(2012)
Cell
, vol.148
, pp. 421-433
-
-
Park, S.J.1
Ahmad, F.2
Philp, A.3
Baar, K.4
Williams, T.5
Luo, H.6
Ke, H.7
-
67
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ and Agarwal B, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012, 15:675-690.
-
(2012)
Cell Metab
, vol.15
, pp. 675-690
-
-
Price, N.L.1
Gomes, A.P.2
Ling, A.J.3
Duarte, F.V.4
Martin-Montalvo, A.5
North, B.J.6
Agarwal, B.7
-
68
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
DOI 10.1038/nature05354, PII NATURE05354
-
Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A and Prabhu VV, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342. (Pubitemid 44764104)
-
(2006)
Nature
, vol.444
, Issue.7117
, pp. 337-342
-
-
Baur, J.A.1
Pearson, K.J.2
Price, N.L.3
Jamieson, H.A.4
Lerin, C.5
Kalra, A.6
Prabhu, V.V.7
Allard, J.S.8
Lopez-Lluch, G.9
Lewis, K.10
Pistell, P.J.11
Poosala, S.12
Becker, K.G.13
Boss, O.14
Gwinn, D.15
Wang, M.16
Ramaswamy, S.17
Fishbein, K.W.18
Spencer, R.G.19
Lakatta, E.G.20
Le Couteur, D.21
Shaw, R.J.22
Navas, P.23
Puigserver, P.24
Ingram, D.K.25
De Cabo, R.26
Sinclair, D.A.27
more..
-
69
-
-
33845399894
-
Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α
-
DOI 10.1016/j.cell.2006.11.013, PII S0092867406014280
-
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F and Messadeq N, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127:1109-1122. (Pubitemid 44894520)
-
(2006)
Cell
, vol.127
, Issue.6
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
Meziane, H.4
Lerin, C.5
Daussin, F.6
Messadeq, N.7
Milne, J.8
Lambert, P.9
Elliott, P.10
Geny, B.11
Laakso, M.12
Puigserver, P.13
Auwerx, J.14
-
70
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
DOI 10.1038/nature06261, PII NATURE06261
-
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ and Jin L, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007, 450:712-716. (Pubitemid 350207685)
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
Bemis, J.E.11
Xie, R.12
Disch, J.S.13
Ng, P.Y.14
Nunes, J.J.15
Lynch, A.V.16
Yang, H.17
Galonek, H.18
Israelian, K.19
Choy, W.20
Iffland, A.21
Lavu, S.22
Medvedik, O.23
Sinclair, D.A.24
Olefsky, J.M.25
Jirousek, M.R.26
Elliott, P.J.27
Westphal, C.H.28
more..
-
71
-
-
34248372084
-
Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages
-
DOI 10.1073/pnas.0610615104
-
Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N and Hamilton DL, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA 2007, 104:4401-4406. (Pubitemid 47186238)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.11
, pp. 4401-4406
-
-
Timmons, J.A.1
Wennmalm, K.2
Larsson, O.3
Walden, T.B.4
Lassmann, T.5
Petrovic, N.6
Hamilton, D.L.7
Gimeno, R.E.8
Wahlestedt, C.9
Baar, K.10
Nedergaard, J.11
Cannon, B.12
-
72
-
-
77956644726
-
SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity
-
Ramadori G, Fujikawa T, Fukuda M, Anderson J, Morgan DA, Mostoslavsky R and Stuart RC, et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab 2010, 12:78-87.
-
(2010)
Cell Metab
, vol.12
, pp. 78-87
-
-
Ramadori, G.1
Fujikawa, T.2
Fukuda, M.3
Anderson, J.4
Morgan, D.A.5
Mostoslavsky, R.6
Stuart, R.C.7
-
73
-
-
84864615516
-
Brown remodeling of white adipose tissue by SirT1-dependent dea-cetylation of Ppargamma
-
Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y and Rosenbaum M, et al. Brown remodeling of white adipose tissue by SirT1-dependent dea-cetylation of Ppargamma. Cell 2012, 150:620-632.
-
(2012)
Cell
, vol.150
, pp. 620-632
-
-
Qiang, L.1
Wang, L.2
Kon, N.3
Zhao, W.4
Lee, S.5
Zhang, Y.6
Rosenbaum, M.7
-
74
-
-
70350312488
-
Genetic and biochemical pathways of beta-cell failure in type 2 diabetes
-
Talchai C, Lin HV, Kitamura T and Accili D. Genetic and biochemical pathways of beta-cell failure in type 2 diabetes. Diabetes Obes Metab 2009, 11(Suppl. 4):38-45.
-
(2009)
Diabetes Obes Metab
, vol.11
, Issue.SUPPL. 4
, pp. 38-45
-
-
Talchai, C.1
Lin, H.V.2
Kitamura, T.3
Accili, D.4
-
75
-
-
77957293804
-
What ails the beta-cell?
-
Accili D, Ahren B, Boitard C, Cerasi E, Henquin JC and Seino S. What ails the beta-cell? Diabetes Obes Metab 2010, 12(Suppl. 2):1-3.
-
(2010)
Diabetes Obes Metab
, vol.12
, Issue.SUPPL. 2
, pp. 1-3
-
-
Accili, D.1
Ahren, B.2
Boitard, C.3
Cerasi, E.4
Henquin, J.C.5
Seino, S.6
-
76
-
-
84866389264
-
Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure
-
Talchai C, Xuan S, Lin HV, Sussel L and Accili D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 2012, 150:1223-1234.
-
(2012)
Cell
, vol.150
, pp. 1223-1234
-
-
Talchai, C.1
Xuan, S.2
Lin, H.V.3
Sussel, L.4
Accili, D.5
-
77
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C and Permutt MA, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005, 2:105-117.
-
(2005)
Cell Metab
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
Bernal-Mizrachi, E.4
Ford, E.5
Cras-Meneur, C.6
Permutt, M.A.7
-
78
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J and McDonagh T, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006, 4: e31.
-
(2006)
PLoS Biol
, vol.4
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
Robinson, A.4
Jhala, U.S.5
Apfeld, J.6
McDonagh, T.7
-
79
-
-
79953206276
-
Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through Sirt1 dependent mechanism
-
Vetterli L, Brun T, Giovannoni L, Bosco D and Maechler P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through Sirt1 dependent mechanism. J Biol Chem 2010, 286:6049-6060.
-
(2010)
J Biol Chem
, vol.286
, pp. 6049-6060
-
-
Vetterli, L.1
Brun, T.2
Giovannoni, L.3
Bosco, D.4
Maechler, P.5
-
80
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
DOI 10.1073/pnas.0802917105
-
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M and Tschop MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA 2008, 105:9793-9798. (Pubitemid 352031379)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.28
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschop, M.H.5
-
81
-
-
52749091816
-
SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice
-
Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L and Gu W, et al. SirT1 Gain of Function Increases Energy Efficiency and Prevents Diabetes in Mice. Cell Metab 2008, 8:333-341.
-
(2008)
Cell Metab
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
Matsumoto, M.4
Gutierrez-Juarez, R.5
Rossetti, L.6
Gu, W.7
-
82
-
-
0035936764
-
Obesity and the regulation of energy balance
-
DOI 10.1016/S0092-8674(01)00240-9
-
Spiegelman BM and Flier JS. Obesity and the regulation of energy balance. Cell 2001, 104:531-543. (Pubitemid 32201948)
-
(2001)
Cell
, vol.104
, Issue.4
, pp. 531-543
-
-
Spiegelman, B.M.1
Flier, J.S.2
-
83
-
-
2442678938
-
Brain circuits regulating energy homeostasis
-
DOI 10.1177/1073858403262151
-
Horvath TL, Diano S and Tschop M. Brain circuits regulating energy homeostasis. Neuroscientist 2004, 10:235-246. (Pubitemid 38657090)
-
(2004)
Neuroscientist
, vol.10
, Issue.3
, pp. 235-246
-
-
Horvath, T.L.1
Diano, S.2
Tschop, M.3
-
84
-
-
77949506721
-
Hypothalamic Sirt1 regulates food intake in a rodent model system
-
Cakir I, Perello M, Lansari O, Messier NJ, Vaslet CA and Nillni EA. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One 2009, 4: e8322.
-
(2009)
PLoS One
, vol.4
-
-
Cakir, I.1
Perello, M.2
Lansari, O.3
Messier, N.J.4
Vaslet, C.A.5
Nillni, E.A.6
-
85
-
-
77955344258
-
SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
-
Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, Holtzman DM and Herzog ED, et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci 2010, 30:10220-10232.
-
(2010)
J Neurosci
, vol.30
, pp. 10220-10232
-
-
Satoh, A.1
Brace, C.S.2
Ben-Josef, G.3
West, T.4
Wozniak, D.F.5
Holtzman, D.M.6
Herzog, E.D.7
-
86
-
-
72849130743
-
Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
-
Cohen DE, Supinski AM, Bonkowski MS, Donmez G and Guarente LP. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev 2009, 23:2812-2817.
-
(2009)
Genes Dev
, vol.23
, pp. 2812-2817
-
-
Cohen, D.E.1
Supinski, A.M.2
Bonkowski, M.S.3
Donmez, G.4
Guarente, L.P.5
-
87
-
-
33748931457
-
Central nervous system control of food intake and body weight
-
DOI 10.1038/nature05026, PII NATURE05026
-
Morton GJ, Cummings DE, Baskin DG, Barsh GS and Schwartz MW. Central nervous system control of food intake and body weight. Nature 2006, 443:289-295. (Pubitemid 44435142)
-
(2006)
Nature
, vol.443
, Issue.7109
, pp. 289-295
-
-
Morton, G.J.1
Cummings, D.E.2
Baskin, D.G.3
Barsh, G.S.4
Schwartz, M.W.5
-
88
-
-
77956241193
-
Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: Roles for Sirt1 in neuronal firing and synaptic plasticity
-
Dietrich MO, Antunes C, Geliang G, Liu ZW, Borok E, Nie Y and Xu AW, et al. Agrp neurons mediate Sirt1's action on the melanocortin system and energy balance: roles for Sirt1 in neuronal firing and synaptic plasticity. J Neurosci 2010, 30:11815-11825.
-
(2010)
J Neurosci
, vol.30
, pp. 11815-11825
-
-
Dietrich, M.O.1
Antunes, C.2
Geliang, G.3
Liu, Z.W.4
Borok, E.5
Nie, Y.6
Xu, A.W.7
-
89
-
-
71949100263
-
Central administration of resveratrol improves diet-induced diabetes
-
Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK and Coppari R. Central administration of resveratrol improves diet-induced diabetes. Endocrinology 2009, 150:5326-5333.
-
(2009)
Endocrinology
, vol.150
, pp. 5326-5333
-
-
Ramadori, G.1
Gautron, L.2
Fujikawa, T.3
Vianna, C.R.4
Elmquist, J.K.5
Coppari, R.6
-
91
-
-
33845866857
-
Inflammation and metabolic disorders
-
DOI 10.1038/nature05485, PII NATURE05485
-
Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006, 444:860-867. (Pubitemid 46024993)
-
(2006)
Nature
, vol.444
, Issue.7121
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
92
-
-
34347354309
-
Macrophage-specific PPARγ controls alternative activation and improves insulin resistance
-
DOI 10.1038/nature05894, PII NATURE05894
-
Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L and Red Eagle A, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007, 447:1116-1120. (Pubitemid 47014427)
-
(2007)
Nature
, vol.447
, Issue.7148
, pp. 1116-1120
-
-
Odegaard, J.I.1
Ricardo-Gonzalez, R.R.2
Goforth, M.H.3
Morel, C.R.4
Subramanian, V.5
Mukundan, L.6
Eagle, A.R.7
Vats, D.8
Brombacher, F.9
Ferrante, A.W.10
Chawla, A.11
-
93
-
-
77954672503
-
Adipose tissue macrophages: Their role in adipose tissue remodeling
-
Suganami T and Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 2010, 88:33-39.
-
(2010)
J Leukoc Biol
, vol.88
, pp. 33-39
-
-
Suganami, T.1
Ogawa, Y.2
-
94
-
-
42649146208
-
SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease
-
DOI 10.1164/rccm.200708-1269OC
-
Rajendrasozhan S, Yang SR, Kinnula VL and Rahman I. SIRT1, an anti-inflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008, 177:861-870. (Pubitemid 351600664)
-
(2008)
American Journal of Respiratory and Critical Care Medicine
, vol.177
, Issue.8
, pp. 861-870
-
-
Rajendrasozhan, S.1
Yang, S.-R.2
Kinnula, V.L.3
Rahman, I.4
-
95
-
-
61749095297
-
SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes
-
Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL and Lu JC, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009, 29:1363-1374.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 1363-1374
-
-
Yoshizaki, T.1
Milne, J.C.2
Imamura, T.3
Schenk, S.4
Sonoda, N.5
Babendure, J.L.6
Lu, J.C.7
-
96
-
-
77349087078
-
SIRT1 inhibits inflammatory pathways in macro-phages and modulates insulin sensitivity
-
Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ and Oh da Y, et al. SIRT1 inhibits inflammatory pathways in macro-phages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 2010, 298: E419-E428.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
-
-
Yoshizaki, T.1
Schenk, S.2
Imamura, T.3
Babendure, J.L.4
Sonoda, N.5
Bae, E.J.6
Oh Da, Y.7
-
97
-
-
77956677458
-
Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress
-
Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB and Purushotham A, et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol 2010, 30:4712-4721.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4712-4721
-
-
Schug, T.T.1
Xu, Q.2
Gao, H.3
Peres-Da-Silva, A.4
Draper, D.W.5
Fessler, M.B.6
Purushotham, A.7
-
98
-
-
77954515012
-
Lack of SIRT1 (mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/2 mice: A role of lipid mobilization and inflammation
-
Xu F, Gao Z, Zhang J, Rivera CA, Yin J, Weng J and Ye J. Lack of SIRT1 (mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/2 mice: a role of lipid mobilization and inflammation. Endocrinology 2010, 151:2504-2514.
-
(2010)
Endocrinology
, vol.151
, pp. 2504-2514
-
-
Xu, F.1
Gao, Z.2
Zhang, J.3
Rivera, C.A.4
Yin, J.5
Weng, J.6
Ye, J.7
-
99
-
-
84863012694
-
Systemic SIRT1 insufficiency results in disruption of energy homeostasis and steroid hormone metabolism upon high-fat-diet feeding
-
Purushotham A, Xu Q and Li X. Systemic SIRT1 insufficiency results in disruption of energy homeostasis and steroid hormone metabolism upon high-fat-diet feeding. FASEB J 2012, 26:656-667.
-
(2012)
FASEB J
, vol.26
, pp. 656-667
-
-
Purushotham, A.1
Xu, Q.2
Li, X.3
-
100
-
-
3242719545
-
Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase
-
DOI 10.1038/sj.emboj.7600244
-
Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA and Mayo MW. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004, 23:2369-2380. (Pubitemid 38954844)
-
(2004)
EMBO Journal
, vol.23
, Issue.12
, pp. 2369-2380
-
-
Yeung, F.1
Hoberg, J.E.2
Ramsey, C.S.3
Keller, M.D.4
Jones, D.R.5
Frye, R.A.6
Mayo, M.W.7
-
101
-
-
84863230325
-
Interferon gamma (IFN-gamma) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription
-
Li P, Zhao Y, Wu X, Xia M, Fang M, Iwasaki Y and Sha J, et al. Interferon gamma (IFN-gamma) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res 2012, 40:1609-1620.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 1609-1620
-
-
Li, P.1
Zhao, Y.2
Wu, X.3
Xia, M.4
Fang, M.5
Iwasaki, Y.6
Sha, J.7
-
102
-
-
79961125549
-
Tumor necrosis factor alpha-mediated cleavage and inactivation of SirT1 in human osteoarthritic chondrocytes
-
Dvir-Ginzberg M, Gagarina V, Lee EJ, Booth R, Gabay O and Hall DJ. Tumor necrosis factor alpha-mediated cleavage and inactivation of SirT1 in human osteoarthritic chondrocytes. Arthritis Rheum 2011, 63:2363-2373.
-
(2011)
Arthritis Rheum
, vol.63
, pp. 2363-2373
-
-
Dvir-Ginzberg, M.1
Gagarina, V.2
Lee, E.J.3
Booth, R.4
Gabay, O.5
Hall, D.J.6
-
103
-
-
33845611615
-
Interplay of circadian clocks and metabolic rhythms
-
DOI 10.1146/annurev.genet.40.110405.090603
-
Wijnen H and Young MW. Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 2006, 40:409-448. (Pubitemid 44956792)
-
(2006)
Annual Review of Genetics
, vol.40
, pp. 409-448
-
-
Wijnen, H.1
Young, M.W.2
-
104
-
-
65549128208
-
Circadian rhythms. A circadian loop asSIRTs itself
-
Wijnen H. Circadian rhythms. A circadian loop asSIRTs itself. Science 2009, 324:598-599.
-
(2009)
Science
, vol.324
, pp. 598-599
-
-
Wijnen, H.1
-
105
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant nice
-
DOI 10.1126/science.1108750
-
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E and Laposky A, et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science 2005, 308:1043-1045. (Pubitemid 40664419)
-
(2005)
Science
, vol.308
, Issue.5724
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
Lin, E.4
Ivanova, G.5
McDearmon, E.6
Laposky, A.7
Losee-Olson, S.8
Easton, A.9
Jensen, D.R.10
Eckel, R.H.11
Takahashi, J.S.12
Bass, J.13
-
106
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB and Fitzgerald GA. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004, 2: e377.
-
(2004)
PLoS Biol
, vol.2
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.M.3
Boston, R.C.4
Panda, S.5
Hogenesch, J.B.6
Fitzgerald, G.A.7
-
107
-
-
35548930677
-
High-Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms in Mice
-
DOI 10.1016/j.cmet.2007.09.006, PII S1550413107002665
-
Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y and Turek FW, et al. High-fat diet disrupts behavioral and molecular cir-cadian rhythms in mice. Cell Metab 2007, 6:414-421. (Pubitemid 350011997)
-
(2007)
Cell Metabolism
, vol.6
, Issue.5
, pp. 414-421
-
-
Kohsaka, A.1
Laposky, A.D.2
Ramsey, K.M.3
Estrada, C.4
Joshu, C.5
Kobayashi, Y.6
Turek, F.W.7
Bass, J.8
-
108
-
-
58149464684
-
High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver
-
Barnea M, Madar Z and Froy O. High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 2009, 150:161-168.
-
(2009)
Endocrinology
, vol.150
, pp. 161-168
-
-
Barnea, M.1
Madar, Z.2
Froy, O.3
-
109
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M, Hirayama J and Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125:497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
110
-
-
47749140333
-
SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation
-
DOI 10.1016/j.cell.2008.06.050, PII S0092867408008374
-
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F and Mostoslavsky R, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328. (Pubitemid 352024391)
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
Reinke, H.4
Dibner, C.5
Kreppel, F.6
Mostoslavsky, R.7
Alt, F.W.8
Schibler, U.9
-
111
-
-
47549088250
-
+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control
-
DOI 10.1016/j.cell.2008.07.002, PII S0092867408008799
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340. (Pubitemid 352010336)
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
Sahar, S.4
Hirayama, J.5
Chen, D.6
Guarente, L.P.7
Sassone-Corsi, P.8
-
113
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B and Hong HK, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009, 324:651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
Abrassart, D.4
Kobayashi, Y.5
Marcheva, B.6
Hong, H.K.7
-
114
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT and Minor W, et al. Phosphorylation regulates SIRT1 function. PloS one 2008, 3: e4020.
-
(2008)
PloS One
, vol.3
-
-
Sasaki, T.1
Maier, B.2
Koclega, K.D.3
Chruszcz, M.4
Gluba, W.5
Stukenberg, P.T.6
Minor, W.7
-
115
-
-
69949138641
-
CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage
-
Kang H, Jung JW, Kim MK and Chung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PloS one 2009, 4: e6611.
-
(2009)
PloS One
, vol.4
-
-
Kang, H.1
Jung, J.W.2
Kim, M.K.3
Chung, J.H.4
-
116
-
-
77949539030
-
JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
-
Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R and Bordone L. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PloS one 2009, 4: e8414.
-
(2009)
PloS One
, vol.4
-
-
Nasrin, N.1
Kaushik, V.K.2
Fortier, E.3
Wall, D.4
Pearson, K.J.5
De Cabo, R.6
Bordone, L.7
-
117
-
-
77949363859
-
DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping
-
Kurabayashi N, Hirota T, Sakai M, Sanada K and Fukada Y. DYRK1A and glycogen synthase kinase 3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2 for circadian timekeeping. Mol Cell Biol 2010, 30:1757-1768.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 1757-1768
-
-
Kurabayashi, N.1
Hirota, T.2
Sakai, M.3
Sanada, K.4
Fukada, Y.5
-
118
-
-
77951225449
-
DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1
-
Guo X, Williams JG, Schug TT and Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010, 285:13223-13232.
-
(2010)
J Biol Chem
, vol.285
, pp. 13223-13232
-
-
Guo, X.1
Williams, J.G.2
Schug, T.T.3
Li, X.4
-
119
-
-
38749132992
-
Negative regulation of the deacetylase SIRT1 by DBC1
-
DOI 10.1038/nature06515, PII NATURE06515
-
Zhao W, Kruse JP, Tang Y, Jung SY, Qin J and Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 2008, 451:587-590. (Pubitemid 351186268)
-
(2008)
Nature
, vol.451
, Issue.7178
, pp. 587-590
-
-
Zhao, W.1
Kruse, J.-P.2
Tang, Y.3
Jung, S.Y.4
Qin, J.5
Gu, W.6
-
120
-
-
38749088678
-
DBC1 is a negative regulator of SIRT1
-
DOI 10.1038/nature06500, PII NATURE06500
-
Kim JE, Chen J and Lou Z. DBC1 is a negative regulator of SIRT1. Nature 2008, 451:583-586. (Pubitemid 351186264)
-
(2008)
Nature
, vol.451
, Issue.7178
, pp. 583-586
-
-
Kim, J.-E.1
Chen, J.2
Lou, Z.3
-
121
-
-
35349011726
-
Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity
-
Kim EJ, Kho JH, Kang MR and Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 2007, 28:277-290.
-
(2007)
Mol Cell
, vol.28
, pp. 277-290
-
-
Kim, E.J.1
Kho, J.H.2
Kang, M.R.3
Um, S.J.4
-
122
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
DOI 10.1038/ncb1645, PII NCB1645
-
Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV and Bhalla K, et al. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 2007, 9:1253-1262. (Pubitemid 350042357)
-
(2007)
Nature Cell Biology
, vol.9
, Issue.11
, pp. 1253-1262
-
-
Yang, Y.1
Fu, W.2
Chen, J.3
Olashaw, N.4
Zhang, X.5
Nicosia, S.V.6
Bhalla, K.7
Bai, W.8
-
123
-
-
1842842014
-
Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition
-
Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr and Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol 2004, 24: e13-e18.
-
(2004)
Arterioscler Thromb Vasc Biol
, vol.24
-
-
Grundy, S.M.1
Brewer Jr., H.B.2
Cleeman, J.I.3
Smith Jr., S.C.4
Lenfant, C.5
-
124
-
-
17144380822
-
The metabolic syndrome
-
DOI 10.1016/S0140-6736(05)66378-7
-
Eckel RH, Grundy SM and Zimmet PZ. The metabolic syndrome. Lancet 2005, 365:1415-1428. (Pubitemid 40523737)
-
(2005)
Lancet
, vol.365
, Issue.9468
, pp. 1415-1428
-
-
Eckel, R.H.1
Grundy, S.M.2
Zimmet, P.Z.3
-
125
-
-
0035856920
-
Global and societal implications of the diabetes epidemic
-
DOI 10.1038/414782a
-
Zimmet P, Alberti KG and Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001, 414:782-787. (Pubitemid 34000780)
-
(2001)
Nature
, vol.414
, Issue.6865
, pp. 782-787
-
-
Zimmet, P.1
Alberti, K.G.M.M.2
Shaw, J.3
-
126
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
-
DOI 10.1038/sj.emboj.7601633, PII 7601633
-
Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R and Alt FW, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007, 26:1913-1923. (Pubitemid 46624046)
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.-H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
127
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
-
Lan F, Cacicedo JM, Ruderman N and Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 2008, 283:27628-27635.
-
(2008)
J Biol Chem
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
Cacicedo, J.M.2
Ruderman, N.3
Ido, Y.4
-
128
-
-
50649112638
-
SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase
-
Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y and Lan F, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 2008, 283:20015-20026.
-
(2008)
J Biol Chem
, vol.283
, pp. 20015-20026
-
-
Hou, X.1
Xu, S.2
Maitland-Toolan, K.A.3
Sato, K.4
Jiang, B.5
Ido, Y.6
Lan, F.7
-
129
-
-
33845985335
-
SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer- binding protein α transcriptional complex
-
DOI 10.1074/jbc.M607215200
-
Qiao L and Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006, 281:39915-39924. (Pubitemid 46041795)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.52
, pp. 39915-39924
-
-
Qiao, L.1
Shao, J.2
-
130
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
DOI 10.1038/90984
-
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K and Mori Y, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001, 7:941-946. (Pubitemid 32756432)
-
(2001)
Nature Medicine
, vol.7
, Issue.8
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
Terauchi, Y.4
Kubota, N.5
Hara, K.6
Mori, Y.7
Ide, T.8
Murakami, K.9
Tsuboyama-Kasaoka, N.10
Ezaki, O.11
Akanuma, Y.12
Gavrilova, O.13
Vinson, C.14
Reitman, M.L.15
Kagechika, H.16
Shudo, K.17
Yoda, M.18
Nakano, Y.19
Tobe, K.20
Nagai, R.21
Kimura, S.22
Tomita, M.23
Froguel, P.24
Kadowaki, T.25
more..
-
131
-
-
33745834319
-
Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome
-
DOI 10.1172/JCI29126
-
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K and Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006, 116:1784-1792. (Pubitemid 44033298)
-
(2006)
Journal of Clinical Investigation
, vol.116
, Issue.7
, pp. 1784-1792
-
-
Kadowaki, T.1
Yamauchi, T.2
Kubota, N.3
Hara, K.4
Ueki, K.5
Tobe, K.6
-
132
-
-
34548857700
-
SIRT1 Improves Insulin Sensitivity under Insulin-Resistant Conditions by Repressing PTP1B
-
DOI 10.1016/j.cmet.2007.08.014, PII S1550413107002598
-
Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X and Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007, 6:307-319. (Pubitemid 47468091)
-
(2007)
Cell Metabolism
, vol.6
, Issue.4
, pp. 307-319
-
-
Sun, C.1
Zhang, F.2
Ge, X.3
Yan, T.4
Chen, X.5
Shi, X.6
Zhai, Q.7
-
133
-
-
36348974168
-
The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation
-
DOI 10.1074/jbc.M706644200
-
Zhang J. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem 2007, 282:34356-34364. (Pubitemid 350159485)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.47
, pp. 34356-34364
-
-
Zhang, J.1
-
134
-
-
80555146753
-
Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
-
Wang RH, Kim HS, Xiao C, Xu X, Gavrilova O and Deng CX. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 2011, 121:4477-4490.
-
(2011)
J Clin Invest
, vol.121
, pp. 4477-4490
-
-
Wang, R.H.1
Kim, H.S.2
Xiao, C.3
Xu, X.4
Gavrilova, O.5
Deng, C.X.6
-
135
-
-
84859909860
-
SRT1720 improves survival and healthspan of obese mice
-
Minor RK, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM and Abdelmohsen K, et al. SRT1720 improves survival and healthspan of obese mice. Sci Rep 2011, 1:70.
-
(2011)
Sci Rep
, vol.1
, pp. 70
-
-
Minor, R.K.1
Baur, J.A.2
Gomes, A.P.3
Ward, T.M.4
Csiszar, A.5
Mercken, E.M.6
Abdelmohsen, K.7
-
136
-
-
84866116711
-
The NAD(+)-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status
-
Guo X, Kesimer M, Tolun G, Zheng X, Xu Q, Lu J and Sheehan JK, et al. The NAD(+)-dependent protein deacetylase activity of SIRT1 is regulated by its oligomeric status. Sci Rep 2012, 2:640.
-
(2012)
Sci Rep
, vol.2
, pp. 640
-
-
Guo, X.1
Kesimer, M.2
Tolun, G.3
Zheng, X.4
Xu, Q.5
Lu, J.6
Sheehan, J.K.7
|