-
1
-
-
0024549618
-
Ketone body production and disposal:effects of fasting, diabetes, and exercise
-
Balasse E.O., Féry F. Ketone body production and disposal:effects of fasting, diabetes, and exercise. Diabetes Metab. Rev. 1989, 5:247-270.
-
(1989)
Diabetes Metab. Rev.
, vol.5
, pp. 247-270
-
-
Balasse, E.O.1
Féry, F.2
-
2
-
-
79959819034
-
SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production
-
Bell E.L., Emerling B.M., Ricoult S.J., Guarente L. SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production. Oncogene 2011, 30:2986-2996.
-
(2011)
Oncogene
, vol.30
, pp. 2986-2996
-
-
Bell, E.L.1
Emerling, B.M.2
Ricoult, S.J.3
Guarente, L.4
-
3
-
-
3543025709
-
Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II
-
Boerner J.L., Demory M.L., Silva C., Parsons S.J. Phosphorylation of Y845 on the epidermal growth factor receptor mediates binding to the mitochondrial protein cytochrome c oxidase subunit II. Mol. Cell. Biol. 2004, 24:7059-7071.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 7059-7071
-
-
Boerner, J.L.1
Demory, M.L.2
Silva, C.3
Parsons, S.J.4
-
5
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C., Olsen J.V., Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
Kumar, C.2
Gnad, F.3
Nielsen, M.L.4
Rehman, M.5
Walther, T.C.6
Olsen, J.V.7
Mann, M.8
-
6
-
-
79952501323
-
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization
-
Finley L.W., Carracedo A., Lee J., Souza A., Egia A., Zhang J., Teruya-Feldstein J., Moreira P.I., Cardoso S.M., Clish C.B., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization. Cancer Cell 2011, 19:416-428.
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.1
Carracedo, A.2
Lee, J.3
Souza, A.4
Egia, A.5
Zhang, J.6
Teruya-Feldstein, J.7
Moreira, P.I.8
Cardoso, S.M.9
Clish, C.B.10
-
7
-
-
0036377351
-
Regulation of the activity of the pyruvate dehydrogenase complex
-
Harris R.A., Bowker-Kinley M.M., Huang B., Wu P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv. Enzyme Regul. 2002, 42:249-259.
-
(2002)
Adv. Enzyme Regul.
, vol.42
, pp. 249-259
-
-
Harris, R.A.1
Bowker-Kinley, M.M.2
Huang, B.3
Wu, P.4
-
8
-
-
1342325393
-
Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind the E1 and E3 components
-
Hiromasa Y., Fujisawa T., Aso Y., Roche T.E. Organization of the cores of the mammalian pyruvate dehydrogenase complex formed by E2 and E2 plus the E3-binding protein and their capacities to bind the E1 and E3 components. J.Biol. Chem. 2004, 279:6921-6933.
-
(2004)
J.Biol. Chem.
, vol.279
, pp. 6921-6933
-
-
Hiromasa, Y.1
Fujisawa, T.2
Aso, Y.3
Roche, T.E.4
-
9
-
-
84255162057
-
Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism
-
Hitosugi T., Fan J., Chung T.W., Lythgoe K., Wang X., Xie J., Ge Q., Gu T.L., Polakiewicz R.D., Roesel J.L., et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol. Cell 2011, 44:864-877.
-
(2011)
Mol. Cell
, vol.44
, pp. 864-877
-
-
Hitosugi, T.1
Fan, J.2
Chung, T.W.3
Lythgoe, K.4
Wang, X.5
Xie, J.6
Ge, Q.7
Gu, T.L.8
Polakiewicz, R.D.9
Roesel, J.L.10
-
10
-
-
0346158376
-
Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation
-
Holness M.J., Sugden M.C. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem. Soc. Trans. 2003, 31:1143-1151.
-
(2003)
Biochem. Soc. Trans.
, vol.31
, pp. 1143-1151
-
-
Holness, M.J.1
Sugden, M.C.2
-
11
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
Jing E., O'Neill B.T., Rardin M.J., Kleinridders A., Ilkeyeva O.R., Ussar S., Bain J.R., Lee K.Y., Verdin E.M., Newgard C.B., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
O'Neill, B.T.2
Rardin, M.J.3
Kleinridders, A.4
Ilkeyeva, O.R.5
Ussar, S.6
Bain, J.R.7
Lee, K.Y.8
Verdin, E.M.9
Newgard, C.B.10
-
12
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
-
Kim J.W., Tchernyshyov I., Semenza G.L., Dang C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3:177-185.
-
(2006)
Cell Metab.
, vol.3
, pp. 177-185
-
-
Kim, J.W.1
Tchernyshyov, I.2
Semenza, G.L.3
Dang, C.V.4
-
13
-
-
33746992118
-
Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
-
Kim S.C., Sprung R., Chen Y., Xu Y., Ball H., Pei J., Cheng T., Kho Y., Xiao H., Xiao L., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
-
(2006)
Mol. Cell
, vol.23
, pp. 607-618
-
-
Kim, S.C.1
Sprung, R.2
Chen, Y.3
Xu, Y.4
Ball, H.5
Pei, J.6
Cheng, T.7
Kho, Y.8
Xiao, H.9
Xiao, L.10
-
14
-
-
35649014840
-
Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1
-
Kim J.W., Gao P., Liu Y.C., Semenza G.L., Dang C.V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 2007, 27:7381-7393.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 7381-7393
-
-
Kim, J.W.1
Gao, P.2
Liu, Y.C.3
Semenza, G.L.4
Dang, C.V.5
-
15
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim H.S., Patel K., Muldoon-Jacobs K., Bisht K.S., Aykin-Burns N., Pennington J.D., van der Meer R., Nguyen P., Savage J., Owens K.M., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.S.1
Patel, K.2
Muldoon-Jacobs, K.3
Bisht, K.S.4
Aykin-Burns, N.5
Pennington, J.D.6
van der Meer, R.7
Nguyen, P.8
Savage, J.9
Owens, K.M.10
-
16
-
-
22044442973
-
Tyrosine kinases as targets for cancer therapy
-
Krause D.S., Van Etten R.A. Tyrosine kinases as targets for cancer therapy. N.Engl. J. Med. 2005, 353:172-187.
-
(2005)
N.Engl. J. Med.
, vol.353
, pp. 172-187
-
-
Krause, D.S.1
Van Etten, R.A.2
-
17
-
-
44449147036
-
Tumor cell metabolism: cancer's Achilles' heel
-
Kroemer G., Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008, 13:472-482.
-
(2008)
Cancer Cell
, vol.13
, pp. 472-482
-
-
Kroemer, G.1
Pouyssegur, J.2
-
18
-
-
84882605310
-
Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth
-
Lin R., Tao R., Gao X., Li T., Zhou X., Guan K.L., Xiong Y., Lei Q.Y. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 2013, 51:506-518.
-
(2013)
Mol. Cell
, vol.51
, pp. 506-518
-
-
Lin, R.1
Tao, R.2
Gao, X.3
Li, T.4
Zhou, X.5
Guan, K.L.6
Xiong, Y.7
Lei, Q.Y.8
-
19
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard D.B., Alt F.W., Cheng H.L., Bunkenborg J., Streeper R.S., Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., Murphy A., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
Alt, F.W.2
Cheng, H.L.3
Bunkenborg, J.4
Streeper, R.S.5
Mostoslavsky, R.6
Kim, J.7
Yancopoulos, G.8
Valenzuela, D.9
Murphy, A.10
-
20
-
-
79959371914
-
Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth
-
Lv L., Li D., Zhao D., Lin R., Chu Y., Zhang H., Zha Z., Liu Y., Li Z., Xu Y., et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol. Cell 2011, 42:719-730.
-
(2011)
Mol. Cell
, vol.42
, pp. 719-730
-
-
Lv, L.1
Li, D.2
Zhao, D.3
Lin, R.4
Chu, Y.5
Zhang, H.6
Zha, Z.7
Liu, Y.8
Li, Z.9
Xu, Y.10
-
21
-
-
84887206685
-
Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization
-
Lv L., Xu Y.P., Zhao D., Li F.L., Wang W., Sasaki N., Jiang Y., Zhou X., Li T.T., Guan K.L., et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol. Cell 2013, 52:340-352.
-
(2013)
Mol. Cell
, vol.52
, pp. 340-352
-
-
Lv, L.1
Xu, Y.P.2
Zhao, D.3
Li, F.L.4
Wang, W.5
Sasaki, N.6
Jiang, Y.7
Zhou, X.8
Li, T.T.9
Guan, K.L.10
-
22
-
-
58849122812
-
Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells
-
Marek L., Ware K.E., Fritzsche A., Hercule P., Helton W.R., Smith J.E., McDermott L.A., Coldren C.D., Nemenoff R.A., Merrick D.T., et al. Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol. Pharmacol. 2009, 75:196-207.
-
(2009)
Mol. Pharmacol.
, vol.75
, pp. 196-207
-
-
Marek, L.1
Ware, K.E.2
Fritzsche, A.3
Hercule, P.4
Helton, W.R.5
Smith, J.E.6
McDermott, L.A.7
Coldren, C.D.8
Nemenoff, R.A.9
Merrick, D.T.10
-
23
-
-
33644622570
-
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
-
Papandreou I., Cairns R.A., Fontana L., Lim A.L., Denko N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3:187-197.
-
(2006)
Cell Metab.
, vol.3
, pp. 187-197
-
-
Papandreou, I.1
Cairns, R.A.2
Fontana, L.3
Lim, A.L.4
Denko, N.C.5
-
24
-
-
84880791239
-
SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
-
Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z., Zhang Y., Zwaans B.M., Skinner M.E., et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 2013, 50:919-930.
-
(2013)
Mol. Cell
, vol.50
, pp. 919-930
-
-
Park, J.1
Chen, Y.2
Tishkoff, D.X.3
Peng, C.4
Tan, M.5
Dai, L.6
Xie, Z.7
Zhang, Y.8
Zwaans, B.M.9
Skinner, M.E.10
-
25
-
-
0035788107
-
Pushing the boundaries of molecular replacement with maximum likelihood
-
Read R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 2001, 57:1373-1382.
-
(2001)
Acta Crystallogr. D Biol. Crystallogr.
, vol.57
, pp. 1373-1382
-
-
Read, R.J.1
-
26
-
-
0035224979
-
Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms
-
Roche T.E., Baker J.C., Yan X., Hiromasa Y., Gong X.M., Peng T., Dong J.C., Turkan A., Kasten S.A. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol. 2001, 70:33-75.
-
(2001)
Prog. Nucleic Acid Res. Mol. Biol.
, vol.70
, pp. 33-75
-
-
Roche, T.E.1
Baker, J.C.2
Yan, X.3
Hiromasa, Y.4
Gong, X.M.5
Peng, T.6
Dong, J.C.7
Turkan, A.8
Kasten, S.A.9
-
27
-
-
0021268270
-
Insulin and epidermal growth factor stimulate glycolysis in quiescent 3T3 fibroblasts with no changes in key glycolytic enzyme activities
-
Sumi S., Ichihara K., Kono N., Nonaka K., Tarui S. Insulin and epidermal growth factor stimulate glycolysis in quiescent 3T3 fibroblasts with no changes in key glycolytic enzyme activities. Endocrinol. Jpn. 1984, 31:117-125.
-
(1984)
Endocrinol. Jpn.
, vol.31
, pp. 117-125
-
-
Sumi, S.1
Ichihara, K.2
Kono, N.3
Nonaka, K.4
Tarui, S.5
-
28
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
29
-
-
77149120797
-
Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
-
Wang Q., Zhang Y., Yang C., Xiong H., Lin Y., Yao J., Li H., Xie L., Zhao W., Yao Y., et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010, 327:1004-1007.
-
(2010)
Science
, vol.327
, pp. 1004-1007
-
-
Wang, Q.1
Zhang, Y.2
Yang, C.3
Xiong, H.4
Lin, Y.5
Yao, J.6
Li, H.7
Xie, L.8
Zhao, W.9
Yao, Y.10
-
30
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956, 123:309-314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
31
-
-
84880592756
-
Sirt3 is a tumor suppressor in lung adenocarcinoma cells
-
Xiao K., Jiang J., Wang W., Cao S., Zhu L., Zeng H., Ouyang R., Zhou R., Chen P. Sirt3 is a tumor suppressor in lung adenocarcinoma cells. Oncol. Rep. 2013, 30:1323-1328.
-
(2013)
Oncol. Rep.
, vol.30
, pp. 1323-1328
-
-
Xiao, K.1
Jiang, J.2
Wang, W.3
Cao, S.4
Zhu, L.5
Zeng, H.6
Ouyang, R.7
Zhou, R.8
Chen, P.9
-
32
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., Zhou L., Zeng Y., Li H., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
Xu, W.2
Jiang, W.3
Yu, W.4
Lin, Y.5
Zhang, T.6
Yao, J.7
Zhou, L.8
Zeng, Y.9
Li, H.10
-
33
-
-
84876417170
-
Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer
-
Zhao D., Zou S.W., Liu Y., Zhou X., Mo Y., Wang P., Xu Y.H., Dong B., Xiong Y., Lei Q.Y., Guan K.L. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 2013, 23:464-476.
-
(2013)
Cancer Cell
, vol.23
, pp. 464-476
-
-
Zhao, D.1
Zou, S.W.2
Liu, Y.3
Zhou, X.4
Mo, Y.5
Wang, P.6
Xu, Y.H.7
Dong, B.8
Xiong, Y.9
Lei, Q.Y.10
Guan, K.L.11
|