-
1
-
-
0034677535
-
Transcriptional silencing and longevity protein sir2 is an NAD-dependent histone deacetylase
-
Imai S., et al. Transcriptional silencing and longevity protein sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
-
(2000)
Nature
, vol.403
, pp. 795-800
-
-
Imai, S.1
-
2
-
-
0018644035
-
Mar1-a regulator of the hma and hmalpha loci in Saccharomyces cerevisiae
-
Klar A.J., et al. Mar1-a regulator of the hma and hmalpha loci in Saccharomyces cerevisiae. Genetics 1979, 93:37-50.
-
(1979)
Genetics
, vol.93
, pp. 37-50
-
-
Klar, A.J.1
-
3
-
-
0031459980
-
Extrachromosomal rdna circles--a cause of aging in yeast
-
Sinclair D.A., Guarente L. Extrachromosomal rdna circles--a cause of aging in yeast. Cell 1997, 91:1033-1042.
-
(1997)
Cell
, vol.91
, pp. 1033-1042
-
-
Sinclair, D.A.1
Guarente, L.2
-
4
-
-
0033214237
-
The sir2/3/4 complex and sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M., et al. The sir2/3/4 complex and sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999, 13:2570-2580.
-
(1999)
Genes Dev.
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
-
5
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans
-
Tissenbaum H.A., Guarente L. Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans. Nature 2001, 410:227-230.
-
(2001)
Nature
, vol.410
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
6
-
-
80053134340
-
Regulation of caenorhabditis elegans lifespan by sir-2.1 transgenes
-
Viswanathan M., Guarente L. Regulation of caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011, 477:E1-E2.
-
(2011)
Nature
, vol.477
-
-
Viswanathan, M.1
Guarente, L.2
-
7
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B., Helfand S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15998-16003.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
8
-
-
0034703217
-
Requirement of NAD and sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
-
Lin S.J., et al. Requirement of NAD and sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289:2126-2128.
-
(2000)
Science
, vol.289
, pp. 2126-2128
-
-
Lin, S.J.1
-
9
-
-
0037130175
-
Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
-
Lin S.J., et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002, 418:344-348.
-
(2002)
Nature
, vol.418
, pp. 344-348
-
-
Lin, S.J.1
-
10
-
-
0345731468
-
Yeast life-span extension by calorie restriction is independent of nad fluctuation
-
Anderson R.M., et al. Yeast life-span extension by calorie restriction is independent of nad fluctuation. Science 2003, 302:2124-2126.
-
(2003)
Science
, vol.302
, pp. 2124-2126
-
-
Anderson, R.M.1
-
11
-
-
80053168829
-
Absence of effects of sir2 overexpression on lifespan in C. elegans and drosophila
-
Burnett C., et al. Absence of effects of sir2 overexpression on lifespan in C. elegans and drosophila. Nature 2011, 477:482-485.
-
(2011)
Nature
, vol.477
, pp. 482-485
-
-
Burnett, C.1
-
12
-
-
84858000209
-
The sirtuin sirt6 regulates lifespan in male mice
-
Kanfi Y., et al. The sirtuin sirt6 regulates lifespan in male mice. Nature 2012, 483:218-221.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
-
13
-
-
84883476818
-
Sirt1 extends life span and delays aging in mice through the regulation of nk2 homeobox 1 in the dmh and lh
-
Satoh A., et al. Sirt1 extends life span and delays aging in mice through the regulation of nk2 homeobox 1 in the dmh and lh. Cell Metab. 2013, 18:416-430.
-
(2013)
Cell Metab.
, vol.18
, pp. 416-430
-
-
Satoh, A.1
-
14
-
-
84885355365
-
Calorie restriction and sirtuins revisited
-
Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013, 27:2072-2085.
-
(2013)
Genes Dev.
, vol.27
, pp. 2072-2085
-
-
Guarente, L.1
-
15
-
-
0037405043
-
Role for human sirt2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
-
Dryden S.C., et al. Role for human sirt2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 2003, 23:3173-3185.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 3173-3185
-
-
Dryden, S.C.1
-
16
-
-
33646550204
-
Sirt2 is a histone deacetylase with preference for histone h4 lys 16 during mitosis
-
Vaquero A., et al. Sirt2 is a histone deacetylase with preference for histone h4 lys 16 during mitosis. Genes Dev. 2006, 20:1256-1261.
-
(2006)
Genes Dev.
, vol.20
, pp. 1256-1261
-
-
Vaquero, A.1
-
17
-
-
84875309392
-
The tumor suppressor sirt2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of h4k20 methylation
-
Serrano L., et al. The tumor suppressor sirt2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of h4k20 methylation. Genes Dev. 2013, 27:639-653.
-
(2013)
Genes Dev.
, vol.27
, pp. 639-653
-
-
Serrano, L.1
-
18
-
-
78649328799
-
Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling
-
Verdin E., et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010, 35:669-675.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 669-675
-
-
Verdin, E.1
-
19
-
-
84859977895
-
Sirtuins mediate mammalian metabolic responses to nutrient availability
-
Chalkiadaki A., Guarente L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 2012, 8:287-296.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 287-296
-
-
Chalkiadaki, A.1
Guarente, L.2
-
20
-
-
2442559186
-
Saccharomyces cerevisiae ssd1-v confers longevity by a sir2p-independent mechanism
-
Kaeberlein M., et al. Saccharomyces cerevisiae ssd1-v confers longevity by a sir2p-independent mechanism. Genetics 2004, 166:1661-1672.
-
(2004)
Genetics
, vol.166
, pp. 1661-1672
-
-
Kaeberlein, M.1
-
21
-
-
34249891333
-
Two neurons mediate diet-restriction-induced longevity in C. elegans
-
Bishop N.A., Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 2007, 447:545-549.
-
(2007)
Nature
, vol.447
, pp. 545-549
-
-
Bishop, N.A.1
Guarente, L.2
-
22
-
-
77956244148
-
A pathway that links reproductive status to lifespan in Caenorhabditis elegans
-
Kenyon C. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann. N. Y. Acad. Sci. 2010, 1204:156-162.
-
(2010)
Ann. N. Y. Acad. Sci.
, vol.1204
, pp. 156-162
-
-
Kenyon, C.1
-
23
-
-
84872527628
-
MTOR is a key modulator of ageing and age-related disease
-
Johnson S.C., et al. mTOR is a key modulator of ageing and age-related disease. Nature 2013, 493:338-345.
-
(2013)
Nature
, vol.493
, pp. 338-345
-
-
Johnson, S.C.1
-
24
-
-
20844451123
-
Amp-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
-
Kahn B.B., et al. Amp-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005, 1:15-25.
-
(2005)
Cell Metab.
, vol.1
, pp. 15-25
-
-
Kahn, B.B.1
-
25
-
-
3142740860
-
Calorie restriction promotes mammalian cell survival by inducing the sirt1 deacetylase
-
Cohen H.Y., et al. Calorie restriction promotes mammalian cell survival by inducing the sirt1 deacetylase. Science 2004, 305:390-392.
-
(2004)
Science
, vol.305
, pp. 390-392
-
-
Cohen, H.Y.1
-
26
-
-
37549002891
-
Mammalian sir2 homolog sirt3 regulates global mitochondrial lysine acetylation
-
Lombard D.B., et al. Mammalian sir2 homolog sirt3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
-
27
-
-
65249087389
-
Sirt5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
Nakagawa T., et al. Sirt5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
-
28
-
-
33947710793
-
Calorie restriction increases muscle mitochondrial biogenesis in healthy humans
-
Civitarese A.E., et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007, 4:e76.
-
(2007)
PLoS Med.
, vol.4
-
-
Civitarese, A.E.1
-
29
-
-
84864678390
-
High-fat diet triggers inflammation-induced cleavage of sirt1 in adipose tissue to promote metabolic dysfunction
-
Chalkiadaki A., Guarente L. High-fat diet triggers inflammation-induced cleavage of sirt1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 2012, 16:180-188.
-
(2012)
Cell Metab.
, vol.16
, pp. 180-188
-
-
Chalkiadaki, A.1
Guarente, L.2
-
30
-
-
49549105992
-
Low sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women
-
Pedersen S.B., et al. Low sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int. J. Obes. 2008, 32:1250-1255.
-
(2008)
Int. J. Obes.
, vol.32
, pp. 1250-1255
-
-
Pedersen, S.B.1
-
31
-
-
77953285326
-
Sirt1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis
-
Costa Cdos S., et al. Sirt1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes. Surg. 2010, 20:633-639.
-
(2010)
Obes. Surg.
, vol.20
, pp. 633-639
-
-
Costa Cdos, S.1
-
32
-
-
28844469898
-
Increase in activity during calorie restriction requires sirt1
-
Chen D., et al. Increase in activity during calorie restriction requires sirt1. Science 2005, 310:1641.
-
(2005)
Science
, vol.310
, pp. 1641
-
-
Chen, D.1
-
33
-
-
72849130743
-
Neuronal sirt1 regulates endocrine and behavioral responses to calorie restriction
-
Cohen D.E., et al. Neuronal sirt1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 2009, 23:2812-2817.
-
(2009)
Genes Dev.
, vol.23
, pp. 2812-2817
-
-
Cohen, D.E.1
-
34
-
-
45549098657
-
Sirt1 regulates energy metabolism and response to caloric restriction in mice
-
Boily G., et al. Sirt1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 2008, 3:e1759.
-
(2008)
PLoS ONE
, vol.3
-
-
Boily, G.1
-
35
-
-
84892500218
-
Sirt1 but not its increased expression is essential for lifespan extension in caloric restricted mice
-
Mercken E.M., et al. Sirt1 but not its increased expression is essential for lifespan extension in caloric restricted mice. Aging Cell 2013, 10.1111/acel.12151.
-
(2013)
Aging Cell
-
-
Mercken, E.M.1
-
36
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
-
37
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
-
38
-
-
33751072349
-
Resveratrol improves health and survival of mice on a high-calorie diet
-
Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342.
-
(2006)
Nature
, vol.444
, pp. 337-342
-
-
Baur, J.A.1
-
39
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating sirt1 and pgc-1alpha
-
Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating sirt1 and pgc-1alpha. Cell 2006, 127:1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
-
40
-
-
36248975293
-
Sirt1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone L., et al. Sirt1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007, 6:759-767.
-
(2007)
Aging Cell
, vol.6
, pp. 759-767
-
-
Bordone, L.1
-
41
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Pfluger P.T., et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:9793-9798.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
-
42
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
Herranz D., et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010, 1:3.
-
(2010)
Nat. Commun.
, vol.1
, pp. 3
-
-
Herranz, D.1
-
43
-
-
84875332275
-
Identification of a sirt1 mutation in a family with type 1 diabetes
-
Biason-Lauber A., et al. Identification of a sirt1 mutation in a family with type 1 diabetes. Cell Metab. 2013, 17:448-455.
-
(2013)
Cell Metab.
, vol.17
, pp. 448-455
-
-
Biason-Lauber, A.1
-
44
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
Howitz K.T., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425:191-196.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
-
45
-
-
36749087548
-
Small molecule activators of sirt1 as therapeutics for the treatment of type 2 diabetes
-
Milne J.C., et al. Small molecule activators of sirt1 as therapeutics for the treatment of type 2 diabetes. Nature 2007, 450:712-716.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
-
46
-
-
84883464257
-
Resveratrol vs. calorie restriction: data from rodents to humans
-
Lam Y.Y., et al. Resveratrol vs. calorie restriction: data from rodents to humans. Exp. Gerontol. 2013, 48:1018-1024.
-
(2013)
Exp. Gerontol.
, vol.48
, pp. 1018-1024
-
-
Lam, Y.Y.1
-
47
-
-
48349110303
-
A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice
-
Barger J.L., et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 2008, 3:e2264.
-
(2008)
PLoS ONE
, vol.3
-
-
Barger, J.L.1
-
48
-
-
84874721105
-
Evidence for a common mechanism of sirt1 regulation by allosteric activators
-
Hubbard B.P., et al. Evidence for a common mechanism of sirt1 regulation by allosteric activators. Science 2013, 339:1216-1219.
-
(2013)
Science
, vol.339
, pp. 1216-1219
-
-
Hubbard, B.P.1
-
49
-
-
3943071801
-
Sirtuin activators mimic caloric restriction and delay ageing in metazoans
-
Wood J.G., et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430:686-689.
-
(2004)
Nature
, vol.430
, pp. 686-689
-
-
Wood, J.G.1
-
50
-
-
33744976074
-
C. elegans sir-2.1 interacts with 14-3-3 proteins to activate daf-16 and extend life span
-
Berdichevsky A., et al. C. elegans sir-2.1 interacts with 14-3-3 proteins to activate daf-16 and extend life span. Cell 2006, 125:1165-1177.
-
(2006)
Cell
, vol.125
, pp. 1165-1177
-
-
Berdichevsky, A.1
-
51
-
-
80053460544
-
The evolutionarily conserved longevity determinants hcf-1 and sir-2.1/sirt1 collaborate to regulate daf-16/foxo
-
Rizki G., et al. The evolutionarily conserved longevity determinants hcf-1 and sir-2.1/sirt1 collaborate to regulate daf-16/foxo. PLoS Genet. 2011, 7:e1002235.
-
(2011)
PLoS Genet.
, vol.7
-
-
Rizki, G.1
-
52
-
-
84867190452
-
Natural genetic variation in yeast longevity
-
Stumpferl S.W., et al. Natural genetic variation in yeast longevity. Genome Res. 2012, 22:1963-1973.
-
(2012)
Genome Res.
, vol.22
, pp. 1963-1973
-
-
Stumpferl, S.W.1
-
53
-
-
84875874024
-
Pheromone sensing regulates caenorhabditis elegans lifespan and stress resistance via the deacetylase sir-2.1
-
Ludewig A.H., et al. Pheromone sensing regulates caenorhabditis elegans lifespan and stress resistance via the deacetylase sir-2.1. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5522-5527.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5522-5527
-
-
Ludewig, A.H.1
-
54
-
-
84880517634
-
The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial upr and foxo signaling
-
Mouchiroud L., et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial upr and foxo signaling. Cell 2013, 154:430-441.
-
(2013)
Cell
, vol.154
, pp. 430-441
-
-
Mouchiroud, L.1
-
55
-
-
84871695502
-
Dsir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner
-
Banerjee K.K., et al. Dsir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2012, 2:1485-1491.
-
(2012)
Cell Rep.
, vol.2
, pp. 1485-1491
-
-
Banerjee, K.K.1
-
56
-
-
56249100986
-
A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
-
Liu Y., et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008, 456:269-273.
-
(2008)
Nature
, vol.456
, pp. 269-273
-
-
Liu, Y.1
-
57
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of pgc-1alpha and sirt1
-
Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of pgc-1alpha and sirt1. Nature 2005, 434:113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
58
-
-
63449112017
-
Hepatocyte-specific deletion of sirt1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A., et al. Hepatocyte-specific deletion of sirt1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009, 9:327-338.
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
-
59
-
-
84856742769
-
Regulation of glycolytic enzyme phosphoglycerate mutase-1 by sirt1 protein-mediated deacetylation
-
Hallows W.C., et al. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by sirt1 protein-mediated deacetylation. J. Biol. Chem. 2012, 287:3850-3858.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 3850-3858
-
-
Hallows, W.C.1
-
60
-
-
74549142287
-
The histone deacetylase sirt6 regulates glucose homeostasis via hif1alpha
-
Zhong L., et al. The histone deacetylase sirt6 regulates glucose homeostasis via hif1alpha. Cell 2010, 140:280-293.
-
(2010)
Cell
, vol.140
, pp. 280-293
-
-
Zhong, L.1
-
61
-
-
77956315551
-
Hepatic-specific disruption of sirt6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
Kim H.S., et al. Hepatic-specific disruption of sirt6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010, 12:224-236.
-
(2010)
Cell Metab.
, vol.12
, pp. 224-236
-
-
Kim, H.S.1
-
62
-
-
0036251153
-
SREBPS: activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton J.D., et al. SREBPS: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
-
(2002)
J. Clin. Invest.
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
-
63
-
-
77954488637
-
Conserved role of sirt1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator srebp
-
Walker A.K., et al. Conserved role of sirt1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator srebp. Genes Dev. 2010, 24:1403-1417.
-
(2010)
Genes Dev.
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
-
64
-
-
34948883324
-
Sirt1 deacetylates and positively regulates the nuclear receptor lxr
-
Li X., et al. Sirt1 deacetylates and positively regulates the nuclear receptor lxr. Mol. Cell 2007, 28:91-106.
-
(2007)
Mol. Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
-
65
-
-
70350606061
-
Fxr acetylation is normally dynamically regulated by p300 and sirt1 but constitutively elevated in metabolic disease states
-
Kemper J.K., et al. Fxr acetylation is normally dynamically regulated by p300 and sirt1 but constitutively elevated in metabolic disease states. Cell Metab. 2009, 10:392-404.
-
(2009)
Cell Metab.
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
-
66
-
-
77951210885
-
A pathway involving farnesoid x receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microrna-34a inhibition
-
Lee J., et al. A pathway involving farnesoid x receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microrna-34a inhibition. J. Biol. Chem. 2010, 285:12604-12611.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 12604-12611
-
-
Lee, J.1
-
67
-
-
84884134120
-
Hepatic srebp-2 and cholesterol biosynthesis are regulated by foxo3 and sirt6
-
Tao R., et al. Hepatic srebp-2 and cholesterol biosynthesis are regulated by foxo3 and sirt6. J. Lipid Res. 2013, 54:2745-2753.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 2745-2753
-
-
Tao, R.1
-
68
-
-
84884150671
-
Multiple regulatory layers of srebp1/2 by sirt6
-
Elhanati S., et al. Multiple regulatory layers of srebp1/2 by sirt6. Cell Rep. 2013, 4:905-912.
-
(2013)
Cell Rep.
, vol.4
, pp. 905-912
-
-
Elhanati, S.1
-
69
-
-
47749140333
-
Sirt1 regulates circadian clock gene expression through per2 deacetylation
-
Asher G., et al. Sirt1 regulates circadian clock gene expression through per2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
70
-
-
47549088250
-
The NAD+-dependent deacetylase sirt1 modulates clock-mediated chromatin remodeling and circadian control
-
Nakahata Y., et al. The NAD+-dependent deacetylase sirt1 modulates clock-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
71
-
-
77950806433
-
Sirt3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey M.D., et al. Sirt3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
-
72
-
-
78649509214
-
Sirt3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl coa synthase 2 and regulates ketone body production
-
Shimazu T., et al. Sirt3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl coa synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
-
(2010)
Cell Metab.
, vol.12
, pp. 654-661
-
-
Shimazu, T.1
-
73
-
-
77957762687
-
Sirt4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
-
Nasrin N., et al. Sirt4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem. 2010, 285:31995-32002.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31995-32002
-
-
Nasrin, N.1
-
74
-
-
84886993387
-
Sirt4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation
-
Laurent G., et al. Sirt4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol. Cell. Biol. 2013, 33:4552-4561.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 4552-4561
-
-
Laurent, G.1
-
75
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through sirt1/pgc-1alpha
-
Gerhart-Hines Z., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through sirt1/pgc-1alpha. EMBO J. 2007, 26:1913-1923.
-
(2007)
EMBO J.
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
-
76
-
-
84858782079
-
Ampk: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie D.G., et al. Ampk: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13:251-262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
-
77
-
-
34547545892
-
Amp-activated protein kinase (ampk) action in skeletal muscle via direct phosphorylation of pgc-1alpha
-
Jager S., et al. Amp-activated protein kinase (ampk) action in skeletal muscle via direct phosphorylation of pgc-1alpha. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12017-12022.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
-
78
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating sirt1 through ampk-mediated regulation of nampt
-
Fulco M., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating sirt1 through ampk-mediated regulation of nampt. Dev. Cell 2008, 14:661-673.
-
(2008)
Dev. Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
-
79
-
-
67349276169
-
AMPK regulates energy expenditure by modulating nad+ metabolism and sirt1 activity
-
Canto C., et al. AMPK regulates energy expenditure by modulating nad+ metabolism and sirt1 activity. Nature 2009, 458:10561060.
-
(2009)
Nature
, vol.458
, pp. 10561060
-
-
Canto, C.1
-
80
-
-
55549096745
-
Sirt1 modulation of the acetylation status, cytosolic localization, and activity of lkb1. Possible role in AMP-activated protein kinase activation
-
Lan F., et al. Sirt1 modulation of the acetylation status, cytosolic localization, and activity of lkb1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 2008, 283:27628-27635.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
-
81
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
Jing E., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
-
82
-
-
77951872309
-
Adiponectin and adipor1 regulate pgc-1alpha and mitochondria by ca(2+) and ampk/sirt1
-
Iwabu M., et al. Adiponectin and adipor1 regulate pgc-1alpha and mitochondria by ca(2+) and ampk/sirt1. Nature 2010, 464:1313-1319.
-
(2010)
Nature
, vol.464
, pp. 1313-1319
-
-
Iwabu, M.1
-
83
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing ppar-gamma
-
Picard F., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing ppar-gamma. Nature 2004, 429:771-776.
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
-
84
-
-
84864615516
-
Brown remodeling of white adipose tissue by sirt1-dependent deacetylation of ppargamma
-
Qiang L., et al. Brown remodeling of white adipose tissue by sirt1-dependent deacetylation of ppargamma. Cell 2012, 150:620-632.
-
(2012)
Cell
, vol.150
, pp. 620-632
-
-
Qiang, L.1
-
85
-
-
35549008884
-
Sirt1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
-
Mattagajasingh I., et al. Sirt1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14855-14860.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 14855-14860
-
-
Mattagajasingh, I.1
-
86
-
-
57349200508
-
Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear sirt1
-
Shinmura K., et al. Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear sirt1. Am. J. Physiol. Heart Circ. Physiol. 2008, 295:H2348-H2355.
-
(2008)
Am. J. Physiol. Heart Circ. Physiol.
, vol.295
-
-
Shinmura, K.1
-
87
-
-
79955397959
-
Sirt1 acts in association with pparalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation
-
Planavila A., et al. Sirt1 acts in association with pparalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res. 2011, 90:276-284.
-
(2011)
Cardiovasc. Res.
, vol.90
, pp. 276-284
-
-
Planavila, A.1
-
88
-
-
34249669270
-
Sirt1 regulates aging and resistance to oxidative stress in the heart
-
Alcendor R.R., et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 2007, 100:1512-1521.
-
(2007)
Circ. Res.
, vol.100
, pp. 1512-1521
-
-
Alcendor, R.R.1
-
89
-
-
77449120223
-
Exogenous nad blocks cardiac hypertrophic response via activation of the sirt3-lkb1-amp-activated kinase pathway
-
Pillai V.B., et al. Exogenous nad blocks cardiac hypertrophic response via activation of the sirt3-lkb1-amp-activated kinase pathway. J. Biol. Chem. 2010, 285:3133-3144.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3133-3144
-
-
Pillai, V.B.1
-
90
-
-
84869201195
-
The sirtuin sirt6 blocks igf-akt signaling and development of cardiac hypertrophy by targeting c-jun
-
Sundaresan N.R., et al. The sirtuin sirt6 blocks igf-akt signaling and development of cardiac hypertrophy by targeting c-jun. Nat. Med. 2012, 18:1643-1650.
-
(2012)
Nat. Med.
, vol.18
, pp. 1643-1650
-
-
Sundaresan, N.R.1
-
91
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
Vakhrusheva O., et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 2008, 102:703-710.
-
(2008)
Circ. Res.
, vol.102
, pp. 703-710
-
-
Vakhrusheva, O.1
-
92
-
-
54049158932
-
Brain sirt1: Anatomical distribution and regulation by energy availability
-
Ramadori G., et al. Brain sirt1: Anatomical distribution and regulation by energy availability. J. Neurosci. 2008, 28:9989-9996.
-
(2008)
J. Neurosci.
, vol.28
, pp. 9989-9996
-
-
Ramadori, G.1
-
93
-
-
77955344258
-
Sirt1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
-
Satoh A., et al. Sirt1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J. Neurosci. 2010, 30:10220-10232.
-
(2010)
J. Neurosci.
, vol.30
, pp. 10220-10232
-
-
Satoh, A.1
-
94
-
-
77956644726
-
Sirt1 deacetylase in pomc neurons is required for homeostatic defenses against diet-induced obesity
-
Ramadori G., et al. Sirt1 deacetylase in pomc neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010, 12:78-87.
-
(2010)
Cell Metab.
, vol.12
, pp. 78-87
-
-
Ramadori, G.1
-
95
-
-
80052700953
-
Sirt1 deacetylase in sf1 neurons protects against metabolic imbalance
-
Ramadori G., et al. Sirt1 deacetylase in sf1 neurons protects against metabolic imbalance. Cell Metab. 2011, 14:301-312.
-
(2011)
Cell Metab.
, vol.14
, pp. 301-312
-
-
Ramadori, G.1
-
96
-
-
77954470727
-
Induction of hypothalamic sirt1 leads to cessation of feeding via agouti-related peptide
-
Sasaki T., et al. Induction of hypothalamic sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology 2010, 151:2556-2566.
-
(2010)
Endocrinology
, vol.151
, pp. 2556-2566
-
-
Sasaki, T.1
-
97
-
-
79953183390
-
The central sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin
-
Velasquez D.A., et al. The central sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes 2011, 60:1177-1185.
-
(2011)
Diabetes
, vol.60
, pp. 1177-1185
-
-
Velasquez, D.A.1
-
98
-
-
84876256827
-
Neuronal sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues
-
Lu M., et al. Neuronal sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. J. Biol. Chem. 2013, 288:10722-10735.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 10722-10735
-
-
Lu, M.1
-
99
-
-
84879391795
-
Sirt1 mediates central circadian control in the scn by a mechanism that decays with aging
-
Chang H.C., Guarente L. Sirt1 mediates central circadian control in the scn by a mechanism that decays with aging. Cell 2013, 153:1448-1460.
-
(2013)
Cell
, vol.153
, pp. 1448-1460
-
-
Chang, H.C.1
Guarente, L.2
-
100
-
-
44849096876
-
The sirt1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
-
Firestein R., et al. The sirt1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 2008, 3:e2020.
-
(2008)
PLoS ONE
, vol.3
-
-
Firestein, R.1
-
101
-
-
53149137486
-
Impaired DNA damage response, genome instability, and tumorigenesis in sirt1 mutant mice
-
Wang R.H., et al. Impaired DNA damage response, genome instability, and tumorigenesis in sirt1 mutant mice. Cancer Cell 2008, 14:312-323.
-
(2008)
Cancer Cell
, vol.14
, pp. 312-323
-
-
Wang, R.H.1
-
102
-
-
80054769188
-
Sirt2 maintains genome integrity and suppresses tumorigenesis through regulating apc/c activity
-
Kim H.S., et al. Sirt2 maintains genome integrity and suppresses tumorigenesis through regulating apc/c activity. Cancer Cell 2011, 20:487-499.
-
(2011)
Cancer Cell
, vol.20
, pp. 487-499
-
-
Kim, H.S.1
-
103
-
-
79952501323
-
Sirt3 opposes reprogramming of cancer cell metabolism through hif1alpha destabilization
-
Finley L.W., et al. Sirt3 opposes reprogramming of cancer cell metabolism through hif1alpha destabilization. Cancer Cell 2011, 19:416-428.
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.1
-
104
-
-
84876359638
-
Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
-
Jeong S.M., et al. Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013, 23:450-463.
-
(2013)
Cancer Cell
, vol.23
, pp. 450-463
-
-
Jeong, S.M.1
-
105
-
-
84870874690
-
The histone deacetylase sirt6 is a tumor suppressor that controls cancer metabolism
-
Sebastian C., et al. The histone deacetylase sirt6 is a tumor suppressor that controls cancer metabolism. Cell 2012, 151:1185-1199.
-
(2012)
Cell
, vol.151
, pp. 1185-1199
-
-
Sebastian, C.1
-
106
-
-
74049094817
-
Sirt3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim H.S., et al. Sirt3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.S.1
-
107
-
-
77951225449
-
Dyrk1a and dyrk3 promote cell survival through phosphorylation and activation of sirt1
-
Guo X., et al. Dyrk1a and dyrk3 promote cell survival through phosphorylation and activation of sirt1. J. Biol. Chem. 2010, 285:13223-13232.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13223-13232
-
-
Guo, X.1
-
108
-
-
84255198350
-
The camp/pka pathway rapidly activates sirt1 to promote fatty acid oxidation independently of changes in NAD(+)
-
Gerhart-Hines Z., et al. The camp/pka pathway rapidly activates sirt1 to promote fatty acid oxidation independently of changes in NAD(+). Mol. Cell 2011, 44:851-863.
-
(2011)
Mol. Cell
, vol.44
, pp. 851-863
-
-
Gerhart-Hines, Z.1
-
109
-
-
38749088678
-
Dbc1 is a negative regulator of sirt1
-
Kim J.E., et al. Dbc1 is a negative regulator of sirt1. Nature 2008, 451:583-586.
-
(2008)
Nature
, vol.451
, pp. 583-586
-
-
Kim, J.E.1
-
110
-
-
76649085804
-
Deleted in breast cancer-1 regulates sirt1 activity and contributes to high-fat diet-induced liver steatosis in mice
-
Escande C., et al. Deleted in breast cancer-1 regulates sirt1 activity and contributes to high-fat diet-induced liver steatosis in mice. J. Clin. Invest. 2010, 120:545-558.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 545-558
-
-
Escande, C.1
-
111
-
-
0347128279
-
Calorie restriction extends yeast life span by lowering the level of NADH
-
Lin S.J., et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004, 18:12-16.
-
(2004)
Genes Dev.
, vol.18
, pp. 12-16
-
-
Lin, S.J.1
-
112
-
-
38349112898
-
Age-associated loss of sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific sirt1-overexpressing (besto) mice
-
Ramsey K.M., et al. Age-associated loss of sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific sirt1-overexpressing (besto) mice. Aging Cell 2008, 7:78-88.
-
(2008)
Aging Cell
, vol.7
, pp. 78-88
-
-
Ramsey, K.M.1
-
113
-
-
80053920774
-
Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
Yoshino J., et al. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14:528-536.
-
(2011)
Cell Metab.
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
-
114
-
-
84862022077
-
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
-
Canto C., et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012, 15:838-847.
-
(2012)
Cell Metab.
, vol.15
, pp. 838-847
-
-
Canto, C.1
-
115
-
-
84886476382
-
Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide
-
Schmeisser K., et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat. Chem. Biol. 2013, 9:693-700.
-
(2013)
Nat. Chem. Biol.
, vol.9
, pp. 693-700
-
-
Schmeisser, K.1
-
116
-
-
79953752384
-
Parp-1 inhibition increases mitochondrial metabolism through sirt1 activation
-
Bai P., et al. Parp-1 inhibition increases mitochondrial metabolism through sirt1 activation. Cell Metab. 2011, 13:461-468.
-
(2011)
Cell Metab.
, vol.13
, pp. 461-468
-
-
Bai, P.1
-
117
-
-
65549103855
-
Circadian clock feedback cycle through nampt-mediated nad+ biosynthesis
-
Ramsey K.M., et al. Circadian clock feedback cycle through nampt-mediated nad+ biosynthesis. Science 2009, 324:651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
118
-
-
65549118773
-
Circadian control of the nad+ salvage pathway by clock-sirt1
-
Nakahata Y., et al. Circadian control of the nad+ salvage pathway by clock-sirt1. Science 2009, 324:654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
-
119
-
-
84884248040
-
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
-
Peek C.B., et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013, 342:1243417.
-
(2013)
Science
, vol.342
, pp. 1243417
-
-
Peek, C.B.1
-
120
-
-
77958488312
-
Sirt1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator
-
Dai H., et al. Sirt1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator. J. Biol. Chem. 2010, 285:32695-32703.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 32695-32703
-
-
Dai, H.1
|