메뉴 건너뛰기




Volumn 25, Issue 3, 2014, Pages 138-145

SIRT1 and other sirtuins in metabolism

Author keywords

Aging; Calorie restriction; CR mimetics; Metabolism; NAD+; SIRT1; Sirtuins

Indexed keywords

AGING; CALORIE RESTRICTION; CR MIMETICS; METABOLISM; NAD(+); SIRT1; SIRTUINS;

EID: 84894352303     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2013.12.001     Document Type: Review
Times cited : (871)

References (120)
  • 1
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein sir2 is an NAD-dependent histone deacetylase
    • Imai S., et al. Transcriptional silencing and longevity protein sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403:795-800.
    • (2000) Nature , vol.403 , pp. 795-800
    • Imai, S.1
  • 2
    • 0018644035 scopus 로고
    • Mar1-a regulator of the hma and hmalpha loci in Saccharomyces cerevisiae
    • Klar A.J., et al. Mar1-a regulator of the hma and hmalpha loci in Saccharomyces cerevisiae. Genetics 1979, 93:37-50.
    • (1979) Genetics , vol.93 , pp. 37-50
    • Klar, A.J.1
  • 3
    • 0031459980 scopus 로고    scopus 로고
    • Extrachromosomal rdna circles--a cause of aging in yeast
    • Sinclair D.A., Guarente L. Extrachromosomal rdna circles--a cause of aging in yeast. Cell 1997, 91:1033-1042.
    • (1997) Cell , vol.91 , pp. 1033-1042
    • Sinclair, D.A.1    Guarente, L.2
  • 4
    • 0033214237 scopus 로고    scopus 로고
    • The sir2/3/4 complex and sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M., et al. The sir2/3/4 complex and sir2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999, 13:2570-2580.
    • (1999) Genes Dev. , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1
  • 5
    • 0035826271 scopus 로고    scopus 로고
    • Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans
    • Tissenbaum H.A., Guarente L. Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans. Nature 2001, 410:227-230.
    • (2001) Nature , vol.410 , pp. 227-230
    • Tissenbaum, H.A.1    Guarente, L.2
  • 6
    • 80053134340 scopus 로고    scopus 로고
    • Regulation of caenorhabditis elegans lifespan by sir-2.1 transgenes
    • Viswanathan M., Guarente L. Regulation of caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 2011, 477:E1-E2.
    • (2011) Nature , vol.477
    • Viswanathan, M.1    Guarente, L.2
  • 7
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B., Helfand S.L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15998-16003.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 8
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin S.J., et al. Requirement of NAD and sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000, 289:2126-2128.
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1
  • 9
    • 0037130175 scopus 로고    scopus 로고
    • Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration
    • Lin S.J., et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 2002, 418:344-348.
    • (2002) Nature , vol.418 , pp. 344-348
    • Lin, S.J.1
  • 10
    • 0345731468 scopus 로고    scopus 로고
    • Yeast life-span extension by calorie restriction is independent of nad fluctuation
    • Anderson R.M., et al. Yeast life-span extension by calorie restriction is independent of nad fluctuation. Science 2003, 302:2124-2126.
    • (2003) Science , vol.302 , pp. 2124-2126
    • Anderson, R.M.1
  • 11
    • 80053168829 scopus 로고    scopus 로고
    • Absence of effects of sir2 overexpression on lifespan in C. elegans and drosophila
    • Burnett C., et al. Absence of effects of sir2 overexpression on lifespan in C. elegans and drosophila. Nature 2011, 477:482-485.
    • (2011) Nature , vol.477 , pp. 482-485
    • Burnett, C.1
  • 12
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin sirt6 regulates lifespan in male mice
    • Kanfi Y., et al. The sirtuin sirt6 regulates lifespan in male mice. Nature 2012, 483:218-221.
    • (2012) Nature , vol.483 , pp. 218-221
    • Kanfi, Y.1
  • 13
    • 84883476818 scopus 로고    scopus 로고
    • Sirt1 extends life span and delays aging in mice through the regulation of nk2 homeobox 1 in the dmh and lh
    • Satoh A., et al. Sirt1 extends life span and delays aging in mice through the regulation of nk2 homeobox 1 in the dmh and lh. Cell Metab. 2013, 18:416-430.
    • (2013) Cell Metab. , vol.18 , pp. 416-430
    • Satoh, A.1
  • 14
    • 84885355365 scopus 로고    scopus 로고
    • Calorie restriction and sirtuins revisited
    • Guarente L. Calorie restriction and sirtuins revisited. Genes Dev. 2013, 27:2072-2085.
    • (2013) Genes Dev. , vol.27 , pp. 2072-2085
    • Guarente, L.1
  • 15
    • 0037405043 scopus 로고    scopus 로고
    • Role for human sirt2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
    • Dryden S.C., et al. Role for human sirt2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell. Biol. 2003, 23:3173-3185.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3173-3185
    • Dryden, S.C.1
  • 16
    • 33646550204 scopus 로고    scopus 로고
    • Sirt2 is a histone deacetylase with preference for histone h4 lys 16 during mitosis
    • Vaquero A., et al. Sirt2 is a histone deacetylase with preference for histone h4 lys 16 during mitosis. Genes Dev. 2006, 20:1256-1261.
    • (2006) Genes Dev. , vol.20 , pp. 1256-1261
    • Vaquero, A.1
  • 17
    • 84875309392 scopus 로고    scopus 로고
    • The tumor suppressor sirt2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of h4k20 methylation
    • Serrano L., et al. The tumor suppressor sirt2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of h4k20 methylation. Genes Dev. 2013, 27:639-653.
    • (2013) Genes Dev. , vol.27 , pp. 639-653
    • Serrano, L.1
  • 18
    • 78649328799 scopus 로고    scopus 로고
    • Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling
    • Verdin E., et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010, 35:669-675.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 669-675
    • Verdin, E.1
  • 19
    • 84859977895 scopus 로고    scopus 로고
    • Sirtuins mediate mammalian metabolic responses to nutrient availability
    • Chalkiadaki A., Guarente L. Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 2012, 8:287-296.
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 287-296
    • Chalkiadaki, A.1    Guarente, L.2
  • 20
    • 2442559186 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae ssd1-v confers longevity by a sir2p-independent mechanism
    • Kaeberlein M., et al. Saccharomyces cerevisiae ssd1-v confers longevity by a sir2p-independent mechanism. Genetics 2004, 166:1661-1672.
    • (2004) Genetics , vol.166 , pp. 1661-1672
    • Kaeberlein, M.1
  • 21
    • 34249891333 scopus 로고    scopus 로고
    • Two neurons mediate diet-restriction-induced longevity in C. elegans
    • Bishop N.A., Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 2007, 447:545-549.
    • (2007) Nature , vol.447 , pp. 545-549
    • Bishop, N.A.1    Guarente, L.2
  • 22
    • 77956244148 scopus 로고    scopus 로고
    • A pathway that links reproductive status to lifespan in Caenorhabditis elegans
    • Kenyon C. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann. N. Y. Acad. Sci. 2010, 1204:156-162.
    • (2010) Ann. N. Y. Acad. Sci. , vol.1204 , pp. 156-162
    • Kenyon, C.1
  • 23
    • 84872527628 scopus 로고    scopus 로고
    • MTOR is a key modulator of ageing and age-related disease
    • Johnson S.C., et al. mTOR is a key modulator of ageing and age-related disease. Nature 2013, 493:338-345.
    • (2013) Nature , vol.493 , pp. 338-345
    • Johnson, S.C.1
  • 24
    • 20844451123 scopus 로고    scopus 로고
    • Amp-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
    • Kahn B.B., et al. Amp-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005, 1:15-25.
    • (2005) Cell Metab. , vol.1 , pp. 15-25
    • Kahn, B.B.1
  • 25
    • 3142740860 scopus 로고    scopus 로고
    • Calorie restriction promotes mammalian cell survival by inducing the sirt1 deacetylase
    • Cohen H.Y., et al. Calorie restriction promotes mammalian cell survival by inducing the sirt1 deacetylase. Science 2004, 305:390-392.
    • (2004) Science , vol.305 , pp. 390-392
    • Cohen, H.Y.1
  • 26
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian sir2 homolog sirt3 regulates global mitochondrial lysine acetylation
    • Lombard D.B., et al. Mammalian sir2 homolog sirt3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8807-8814
    • Lombard, D.B.1
  • 27
    • 65249087389 scopus 로고    scopus 로고
    • Sirt5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T., et al. Sirt5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1
  • 28
    • 33947710793 scopus 로고    scopus 로고
    • Calorie restriction increases muscle mitochondrial biogenesis in healthy humans
    • Civitarese A.E., et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007, 4:e76.
    • (2007) PLoS Med. , vol.4
    • Civitarese, A.E.1
  • 29
    • 84864678390 scopus 로고    scopus 로고
    • High-fat diet triggers inflammation-induced cleavage of sirt1 in adipose tissue to promote metabolic dysfunction
    • Chalkiadaki A., Guarente L. High-fat diet triggers inflammation-induced cleavage of sirt1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 2012, 16:180-188.
    • (2012) Cell Metab. , vol.16 , pp. 180-188
    • Chalkiadaki, A.1    Guarente, L.2
  • 30
    • 49549105992 scopus 로고    scopus 로고
    • Low sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women
    • Pedersen S.B., et al. Low sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int. J. Obes. 2008, 32:1250-1255.
    • (2008) Int. J. Obes. , vol.32 , pp. 1250-1255
    • Pedersen, S.B.1
  • 31
    • 77953285326 scopus 로고    scopus 로고
    • Sirt1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis
    • Costa Cdos S., et al. Sirt1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes. Surg. 2010, 20:633-639.
    • (2010) Obes. Surg. , vol.20 , pp. 633-639
    • Costa Cdos, S.1
  • 32
    • 28844469898 scopus 로고    scopus 로고
    • Increase in activity during calorie restriction requires sirt1
    • Chen D., et al. Increase in activity during calorie restriction requires sirt1. Science 2005, 310:1641.
    • (2005) Science , vol.310 , pp. 1641
    • Chen, D.1
  • 33
    • 72849130743 scopus 로고    scopus 로고
    • Neuronal sirt1 regulates endocrine and behavioral responses to calorie restriction
    • Cohen D.E., et al. Neuronal sirt1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev. 2009, 23:2812-2817.
    • (2009) Genes Dev. , vol.23 , pp. 2812-2817
    • Cohen, D.E.1
  • 34
    • 45549098657 scopus 로고    scopus 로고
    • Sirt1 regulates energy metabolism and response to caloric restriction in mice
    • Boily G., et al. Sirt1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 2008, 3:e1759.
    • (2008) PLoS ONE , vol.3
    • Boily, G.1
  • 35
    • 84892500218 scopus 로고    scopus 로고
    • Sirt1 but not its increased expression is essential for lifespan extension in caloric restricted mice
    • Mercken E.M., et al. Sirt1 but not its increased expression is essential for lifespan extension in caloric restricted mice. Aging Cell 2013, 10.1111/acel.12151.
    • (2013) Aging Cell
    • Mercken, E.M.1
  • 36
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya S. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1
  • 37
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
    • (2011) Mol. Cell , vol.41 , pp. 139-149
    • Hallows, W.C.1
  • 38
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur J.A., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342.
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1
  • 39
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating sirt1 and pgc-1alpha
    • Lagouge M., et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating sirt1 and pgc-1alpha. Cell 2006, 127:1109-1122.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1
  • 40
    • 36248975293 scopus 로고    scopus 로고
    • Sirt1 transgenic mice show phenotypes resembling calorie restriction
    • Bordone L., et al. Sirt1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007, 6:759-767.
    • (2007) Aging Cell , vol.6 , pp. 759-767
    • Bordone, L.1
  • 41
    • 47749128879 scopus 로고    scopus 로고
    • Sirt1 protects against high-fat diet-induced metabolic damage
    • Pfluger P.T., et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:9793-9798.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 9793-9798
    • Pfluger, P.T.1
  • 42
    • 78650758398 scopus 로고    scopus 로고
    • Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
    • Herranz D., et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 2010, 1:3.
    • (2010) Nat. Commun. , vol.1 , pp. 3
    • Herranz, D.1
  • 43
    • 84875332275 scopus 로고    scopus 로고
    • Identification of a sirt1 mutation in a family with type 1 diabetes
    • Biason-Lauber A., et al. Identification of a sirt1 mutation in a family with type 1 diabetes. Cell Metab. 2013, 17:448-455.
    • (2013) Cell Metab. , vol.17 , pp. 448-455
    • Biason-Lauber, A.1
  • 44
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • Howitz K.T., et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003, 425:191-196.
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1
  • 45
    • 36749087548 scopus 로고    scopus 로고
    • Small molecule activators of sirt1 as therapeutics for the treatment of type 2 diabetes
    • Milne J.C., et al. Small molecule activators of sirt1 as therapeutics for the treatment of type 2 diabetes. Nature 2007, 450:712-716.
    • (2007) Nature , vol.450 , pp. 712-716
    • Milne, J.C.1
  • 46
    • 84883464257 scopus 로고    scopus 로고
    • Resveratrol vs. calorie restriction: data from rodents to humans
    • Lam Y.Y., et al. Resveratrol vs. calorie restriction: data from rodents to humans. Exp. Gerontol. 2013, 48:1018-1024.
    • (2013) Exp. Gerontol. , vol.48 , pp. 1018-1024
    • Lam, Y.Y.1
  • 47
    • 48349110303 scopus 로고    scopus 로고
    • A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice
    • Barger J.L., et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS ONE 2008, 3:e2264.
    • (2008) PLoS ONE , vol.3
    • Barger, J.L.1
  • 48
    • 84874721105 scopus 로고    scopus 로고
    • Evidence for a common mechanism of sirt1 regulation by allosteric activators
    • Hubbard B.P., et al. Evidence for a common mechanism of sirt1 regulation by allosteric activators. Science 2013, 339:1216-1219.
    • (2013) Science , vol.339 , pp. 1216-1219
    • Hubbard, B.P.1
  • 49
    • 3943071801 scopus 로고    scopus 로고
    • Sirtuin activators mimic caloric restriction and delay ageing in metazoans
    • Wood J.G., et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 2004, 430:686-689.
    • (2004) Nature , vol.430 , pp. 686-689
    • Wood, J.G.1
  • 50
    • 33744976074 scopus 로고    scopus 로고
    • C. elegans sir-2.1 interacts with 14-3-3 proteins to activate daf-16 and extend life span
    • Berdichevsky A., et al. C. elegans sir-2.1 interacts with 14-3-3 proteins to activate daf-16 and extend life span. Cell 2006, 125:1165-1177.
    • (2006) Cell , vol.125 , pp. 1165-1177
    • Berdichevsky, A.1
  • 51
    • 80053460544 scopus 로고    scopus 로고
    • The evolutionarily conserved longevity determinants hcf-1 and sir-2.1/sirt1 collaborate to regulate daf-16/foxo
    • Rizki G., et al. The evolutionarily conserved longevity determinants hcf-1 and sir-2.1/sirt1 collaborate to regulate daf-16/foxo. PLoS Genet. 2011, 7:e1002235.
    • (2011) PLoS Genet. , vol.7
    • Rizki, G.1
  • 52
    • 84867190452 scopus 로고    scopus 로고
    • Natural genetic variation in yeast longevity
    • Stumpferl S.W., et al. Natural genetic variation in yeast longevity. Genome Res. 2012, 22:1963-1973.
    • (2012) Genome Res. , vol.22 , pp. 1963-1973
    • Stumpferl, S.W.1
  • 53
    • 84875874024 scopus 로고    scopus 로고
    • Pheromone sensing regulates caenorhabditis elegans lifespan and stress resistance via the deacetylase sir-2.1
    • Ludewig A.H., et al. Pheromone sensing regulates caenorhabditis elegans lifespan and stress resistance via the deacetylase sir-2.1. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5522-5527.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5522-5527
    • Ludewig, A.H.1
  • 54
    • 84880517634 scopus 로고    scopus 로고
    • The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial upr and foxo signaling
    • Mouchiroud L., et al. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial upr and foxo signaling. Cell 2013, 154:430-441.
    • (2013) Cell , vol.154 , pp. 430-441
    • Mouchiroud, L.1
  • 55
    • 84871695502 scopus 로고    scopus 로고
    • Dsir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner
    • Banerjee K.K., et al. Dsir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep. 2012, 2:1485-1491.
    • (2012) Cell Rep. , vol.2 , pp. 1485-1491
    • Banerjee, K.K.1
  • 56
    • 56249100986 scopus 로고    scopus 로고
    • A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
    • Liu Y., et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008, 456:269-273.
    • (2008) Nature , vol.456 , pp. 269-273
    • Liu, Y.1
  • 57
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of pgc-1alpha and sirt1
    • Rodgers J.T., et al. Nutrient control of glucose homeostasis through a complex of pgc-1alpha and sirt1. Nature 2005, 434:113-118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1
  • 58
    • 63449112017 scopus 로고    scopus 로고
    • Hepatocyte-specific deletion of sirt1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
    • Purushotham A., et al. Hepatocyte-specific deletion of sirt1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009, 9:327-338.
    • (2009) Cell Metab. , vol.9 , pp. 327-338
    • Purushotham, A.1
  • 59
    • 84856742769 scopus 로고    scopus 로고
    • Regulation of glycolytic enzyme phosphoglycerate mutase-1 by sirt1 protein-mediated deacetylation
    • Hallows W.C., et al. Regulation of glycolytic enzyme phosphoglycerate mutase-1 by sirt1 protein-mediated deacetylation. J. Biol. Chem. 2012, 287:3850-3858.
    • (2012) J. Biol. Chem. , vol.287 , pp. 3850-3858
    • Hallows, W.C.1
  • 60
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase sirt6 regulates glucose homeostasis via hif1alpha
    • Zhong L., et al. The histone deacetylase sirt6 regulates glucose homeostasis via hif1alpha. Cell 2010, 140:280-293.
    • (2010) Cell , vol.140 , pp. 280-293
    • Zhong, L.1
  • 61
    • 77956315551 scopus 로고    scopus 로고
    • Hepatic-specific disruption of sirt6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
    • Kim H.S., et al. Hepatic-specific disruption of sirt6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010, 12:224-236.
    • (2010) Cell Metab. , vol.12 , pp. 224-236
    • Kim, H.S.1
  • 62
    • 0036251153 scopus 로고    scopus 로고
    • SREBPS: activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton J.D., et al. SREBPS: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 2002, 109:1125-1131.
    • (2002) J. Clin. Invest. , vol.109 , pp. 1125-1131
    • Horton, J.D.1
  • 63
    • 77954488637 scopus 로고    scopus 로고
    • Conserved role of sirt1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator srebp
    • Walker A.K., et al. Conserved role of sirt1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator srebp. Genes Dev. 2010, 24:1403-1417.
    • (2010) Genes Dev. , vol.24 , pp. 1403-1417
    • Walker, A.K.1
  • 64
    • 34948883324 scopus 로고    scopus 로고
    • Sirt1 deacetylates and positively regulates the nuclear receptor lxr
    • Li X., et al. Sirt1 deacetylates and positively regulates the nuclear receptor lxr. Mol. Cell 2007, 28:91-106.
    • (2007) Mol. Cell , vol.28 , pp. 91-106
    • Li, X.1
  • 65
    • 70350606061 scopus 로고    scopus 로고
    • Fxr acetylation is normally dynamically regulated by p300 and sirt1 but constitutively elevated in metabolic disease states
    • Kemper J.K., et al. Fxr acetylation is normally dynamically regulated by p300 and sirt1 but constitutively elevated in metabolic disease states. Cell Metab. 2009, 10:392-404.
    • (2009) Cell Metab. , vol.10 , pp. 392-404
    • Kemper, J.K.1
  • 66
    • 77951210885 scopus 로고    scopus 로고
    • A pathway involving farnesoid x receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microrna-34a inhibition
    • Lee J., et al. A pathway involving farnesoid x receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microrna-34a inhibition. J. Biol. Chem. 2010, 285:12604-12611.
    • (2010) J. Biol. Chem. , vol.285 , pp. 12604-12611
    • Lee, J.1
  • 67
    • 84884134120 scopus 로고    scopus 로고
    • Hepatic srebp-2 and cholesterol biosynthesis are regulated by foxo3 and sirt6
    • Tao R., et al. Hepatic srebp-2 and cholesterol biosynthesis are regulated by foxo3 and sirt6. J. Lipid Res. 2013, 54:2745-2753.
    • (2013) J. Lipid Res. , vol.54 , pp. 2745-2753
    • Tao, R.1
  • 68
    • 84884150671 scopus 로고    scopus 로고
    • Multiple regulatory layers of srebp1/2 by sirt6
    • Elhanati S., et al. Multiple regulatory layers of srebp1/2 by sirt6. Cell Rep. 2013, 4:905-912.
    • (2013) Cell Rep. , vol.4 , pp. 905-912
    • Elhanati, S.1
  • 69
    • 47749140333 scopus 로고    scopus 로고
    • Sirt1 regulates circadian clock gene expression through per2 deacetylation
    • Asher G., et al. Sirt1 regulates circadian clock gene expression through per2 deacetylation. Cell 2008, 134:317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 70
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase sirt1 modulates clock-mediated chromatin remodeling and circadian control
    • Nakahata Y., et al. The NAD+-dependent deacetylase sirt1 modulates clock-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 71
    • 77950806433 scopus 로고    scopus 로고
    • Sirt3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey M.D., et al. Sirt3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1
  • 72
    • 78649509214 scopus 로고    scopus 로고
    • Sirt3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl coa synthase 2 and regulates ketone body production
    • Shimazu T., et al. Sirt3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl coa synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
    • (2010) Cell Metab. , vol.12 , pp. 654-661
    • Shimazu, T.1
  • 73
    • 77957762687 scopus 로고    scopus 로고
    • Sirt4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
    • Nasrin N., et al. Sirt4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem. 2010, 285:31995-32002.
    • (2010) J. Biol. Chem. , vol.285 , pp. 31995-32002
    • Nasrin, N.1
  • 74
    • 84886993387 scopus 로고    scopus 로고
    • Sirt4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation
    • Laurent G., et al. Sirt4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation. Mol. Cell. Biol. 2013, 33:4552-4561.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 4552-4561
    • Laurent, G.1
  • 75
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through sirt1/pgc-1alpha
    • Gerhart-Hines Z., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through sirt1/pgc-1alpha. EMBO J. 2007, 26:1913-1923.
    • (2007) EMBO J. , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1
  • 76
    • 84858782079 scopus 로고    scopus 로고
    • Ampk: a nutrient and energy sensor that maintains energy homeostasis
    • Hardie D.G., et al. Ampk: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13:251-262.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 251-262
    • Hardie, D.G.1
  • 77
    • 34547545892 scopus 로고    scopus 로고
    • Amp-activated protein kinase (ampk) action in skeletal muscle via direct phosphorylation of pgc-1alpha
    • Jager S., et al. Amp-activated protein kinase (ampk) action in skeletal muscle via direct phosphorylation of pgc-1alpha. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12017-12022.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 12017-12022
    • Jager, S.1
  • 78
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating sirt1 through ampk-mediated regulation of nampt
    • Fulco M., et al. Glucose restriction inhibits skeletal myoblast differentiation by activating sirt1 through ampk-mediated regulation of nampt. Dev. Cell 2008, 14:661-673.
    • (2008) Dev. Cell , vol.14 , pp. 661-673
    • Fulco, M.1
  • 79
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating nad+ metabolism and sirt1 activity
    • Canto C., et al. AMPK regulates energy expenditure by modulating nad+ metabolism and sirt1 activity. Nature 2009, 458:10561060.
    • (2009) Nature , vol.458 , pp. 10561060
    • Canto, C.1
  • 80
    • 55549096745 scopus 로고    scopus 로고
    • Sirt1 modulation of the acetylation status, cytosolic localization, and activity of lkb1. Possible role in AMP-activated protein kinase activation
    • Lan F., et al. Sirt1 modulation of the acetylation status, cytosolic localization, and activity of lkb1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 2008, 283:27628-27635.
    • (2008) J. Biol. Chem. , vol.283 , pp. 27628-27635
    • Lan, F.1
  • 81
    • 84891506172 scopus 로고    scopus 로고
    • Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
    • Jing E., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
    • (2013) Diabetes , vol.62 , pp. 3404-3417
    • Jing, E.1
  • 82
    • 77951872309 scopus 로고    scopus 로고
    • Adiponectin and adipor1 regulate pgc-1alpha and mitochondria by ca(2+) and ampk/sirt1
    • Iwabu M., et al. Adiponectin and adipor1 regulate pgc-1alpha and mitochondria by ca(2+) and ampk/sirt1. Nature 2010, 464:1313-1319.
    • (2010) Nature , vol.464 , pp. 1313-1319
    • Iwabu, M.1
  • 83
    • 3042681042 scopus 로고    scopus 로고
    • Sirt1 promotes fat mobilization in white adipocytes by repressing ppar-gamma
    • Picard F., et al. Sirt1 promotes fat mobilization in white adipocytes by repressing ppar-gamma. Nature 2004, 429:771-776.
    • (2004) Nature , vol.429 , pp. 771-776
    • Picard, F.1
  • 84
    • 84864615516 scopus 로고    scopus 로고
    • Brown remodeling of white adipose tissue by sirt1-dependent deacetylation of ppargamma
    • Qiang L., et al. Brown remodeling of white adipose tissue by sirt1-dependent deacetylation of ppargamma. Cell 2012, 150:620-632.
    • (2012) Cell , vol.150 , pp. 620-632
    • Qiang, L.1
  • 85
    • 35549008884 scopus 로고    scopus 로고
    • Sirt1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
    • Mattagajasingh I., et al. Sirt1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14855-14860.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 14855-14860
    • Mattagajasingh, I.1
  • 86
    • 57349200508 scopus 로고    scopus 로고
    • Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear sirt1
    • Shinmura K., et al. Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear sirt1. Am. J. Physiol. Heart Circ. Physiol. 2008, 295:H2348-H2355.
    • (2008) Am. J. Physiol. Heart Circ. Physiol. , vol.295
    • Shinmura, K.1
  • 87
    • 79955397959 scopus 로고    scopus 로고
    • Sirt1 acts in association with pparalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation
    • Planavila A., et al. Sirt1 acts in association with pparalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc. Res. 2011, 90:276-284.
    • (2011) Cardiovasc. Res. , vol.90 , pp. 276-284
    • Planavila, A.1
  • 88
    • 34249669270 scopus 로고    scopus 로고
    • Sirt1 regulates aging and resistance to oxidative stress in the heart
    • Alcendor R.R., et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 2007, 100:1512-1521.
    • (2007) Circ. Res. , vol.100 , pp. 1512-1521
    • Alcendor, R.R.1
  • 89
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous nad blocks cardiac hypertrophic response via activation of the sirt3-lkb1-amp-activated kinase pathway
    • Pillai V.B., et al. Exogenous nad blocks cardiac hypertrophic response via activation of the sirt3-lkb1-amp-activated kinase pathway. J. Biol. Chem. 2010, 285:3133-3144.
    • (2010) J. Biol. Chem. , vol.285 , pp. 3133-3144
    • Pillai, V.B.1
  • 90
    • 84869201195 scopus 로고    scopus 로고
    • The sirtuin sirt6 blocks igf-akt signaling and development of cardiac hypertrophy by targeting c-jun
    • Sundaresan N.R., et al. The sirtuin sirt6 blocks igf-akt signaling and development of cardiac hypertrophy by targeting c-jun. Nat. Med. 2012, 18:1643-1650.
    • (2012) Nat. Med. , vol.18 , pp. 1643-1650
    • Sundaresan, N.R.1
  • 91
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva O., et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 2008, 102:703-710.
    • (2008) Circ. Res. , vol.102 , pp. 703-710
    • Vakhrusheva, O.1
  • 92
    • 54049158932 scopus 로고    scopus 로고
    • Brain sirt1: Anatomical distribution and regulation by energy availability
    • Ramadori G., et al. Brain sirt1: Anatomical distribution and regulation by energy availability. J. Neurosci. 2008, 28:9989-9996.
    • (2008) J. Neurosci. , vol.28 , pp. 9989-9996
    • Ramadori, G.1
  • 93
    • 77955344258 scopus 로고    scopus 로고
    • Sirt1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
    • Satoh A., et al. Sirt1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J. Neurosci. 2010, 30:10220-10232.
    • (2010) J. Neurosci. , vol.30 , pp. 10220-10232
    • Satoh, A.1
  • 94
    • 77956644726 scopus 로고    scopus 로고
    • Sirt1 deacetylase in pomc neurons is required for homeostatic defenses against diet-induced obesity
    • Ramadori G., et al. Sirt1 deacetylase in pomc neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 2010, 12:78-87.
    • (2010) Cell Metab. , vol.12 , pp. 78-87
    • Ramadori, G.1
  • 95
    • 80052700953 scopus 로고    scopus 로고
    • Sirt1 deacetylase in sf1 neurons protects against metabolic imbalance
    • Ramadori G., et al. Sirt1 deacetylase in sf1 neurons protects against metabolic imbalance. Cell Metab. 2011, 14:301-312.
    • (2011) Cell Metab. , vol.14 , pp. 301-312
    • Ramadori, G.1
  • 96
    • 77954470727 scopus 로고    scopus 로고
    • Induction of hypothalamic sirt1 leads to cessation of feeding via agouti-related peptide
    • Sasaki T., et al. Induction of hypothalamic sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology 2010, 151:2556-2566.
    • (2010) Endocrinology , vol.151 , pp. 2556-2566
    • Sasaki, T.1
  • 97
    • 79953183390 scopus 로고    scopus 로고
    • The central sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin
    • Velasquez D.A., et al. The central sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes 2011, 60:1177-1185.
    • (2011) Diabetes , vol.60 , pp. 1177-1185
    • Velasquez, D.A.1
  • 98
    • 84876256827 scopus 로고    scopus 로고
    • Neuronal sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues
    • Lu M., et al. Neuronal sirt1 deficiency increases insulin sensitivity in both brain and peripheral tissues. J. Biol. Chem. 2013, 288:10722-10735.
    • (2013) J. Biol. Chem. , vol.288 , pp. 10722-10735
    • Lu, M.1
  • 99
    • 84879391795 scopus 로고    scopus 로고
    • Sirt1 mediates central circadian control in the scn by a mechanism that decays with aging
    • Chang H.C., Guarente L. Sirt1 mediates central circadian control in the scn by a mechanism that decays with aging. Cell 2013, 153:1448-1460.
    • (2013) Cell , vol.153 , pp. 1448-1460
    • Chang, H.C.1    Guarente, L.2
  • 100
    • 44849096876 scopus 로고    scopus 로고
    • The sirt1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • Firestein R., et al. The sirt1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 2008, 3:e2020.
    • (2008) PLoS ONE , vol.3
    • Firestein, R.1
  • 101
    • 53149137486 scopus 로고    scopus 로고
    • Impaired DNA damage response, genome instability, and tumorigenesis in sirt1 mutant mice
    • Wang R.H., et al. Impaired DNA damage response, genome instability, and tumorigenesis in sirt1 mutant mice. Cancer Cell 2008, 14:312-323.
    • (2008) Cancer Cell , vol.14 , pp. 312-323
    • Wang, R.H.1
  • 102
    • 80054769188 scopus 로고    scopus 로고
    • Sirt2 maintains genome integrity and suppresses tumorigenesis through regulating apc/c activity
    • Kim H.S., et al. Sirt2 maintains genome integrity and suppresses tumorigenesis through regulating apc/c activity. Cancer Cell 2011, 20:487-499.
    • (2011) Cancer Cell , vol.20 , pp. 487-499
    • Kim, H.S.1
  • 103
    • 79952501323 scopus 로고    scopus 로고
    • Sirt3 opposes reprogramming of cancer cell metabolism through hif1alpha destabilization
    • Finley L.W., et al. Sirt3 opposes reprogramming of cancer cell metabolism through hif1alpha destabilization. Cancer Cell 2011, 19:416-428.
    • (2011) Cancer Cell , vol.19 , pp. 416-428
    • Finley, L.W.1
  • 104
    • 84876359638 scopus 로고    scopus 로고
    • Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
    • Jeong S.M., et al. Sirt4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013, 23:450-463.
    • (2013) Cancer Cell , vol.23 , pp. 450-463
    • Jeong, S.M.1
  • 105
    • 84870874690 scopus 로고    scopus 로고
    • The histone deacetylase sirt6 is a tumor suppressor that controls cancer metabolism
    • Sebastian C., et al. The histone deacetylase sirt6 is a tumor suppressor that controls cancer metabolism. Cell 2012, 151:1185-1199.
    • (2012) Cell , vol.151 , pp. 1185-1199
    • Sebastian, C.1
  • 106
    • 74049094817 scopus 로고    scopus 로고
    • Sirt3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim H.S., et al. Sirt3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.S.1
  • 107
    • 77951225449 scopus 로고    scopus 로고
    • Dyrk1a and dyrk3 promote cell survival through phosphorylation and activation of sirt1
    • Guo X., et al. Dyrk1a and dyrk3 promote cell survival through phosphorylation and activation of sirt1. J. Biol. Chem. 2010, 285:13223-13232.
    • (2010) J. Biol. Chem. , vol.285 , pp. 13223-13232
    • Guo, X.1
  • 108
    • 84255198350 scopus 로고    scopus 로고
    • The camp/pka pathway rapidly activates sirt1 to promote fatty acid oxidation independently of changes in NAD(+)
    • Gerhart-Hines Z., et al. The camp/pka pathway rapidly activates sirt1 to promote fatty acid oxidation independently of changes in NAD(+). Mol. Cell 2011, 44:851-863.
    • (2011) Mol. Cell , vol.44 , pp. 851-863
    • Gerhart-Hines, Z.1
  • 109
    • 38749088678 scopus 로고    scopus 로고
    • Dbc1 is a negative regulator of sirt1
    • Kim J.E., et al. Dbc1 is a negative regulator of sirt1. Nature 2008, 451:583-586.
    • (2008) Nature , vol.451 , pp. 583-586
    • Kim, J.E.1
  • 110
    • 76649085804 scopus 로고    scopus 로고
    • Deleted in breast cancer-1 regulates sirt1 activity and contributes to high-fat diet-induced liver steatosis in mice
    • Escande C., et al. Deleted in breast cancer-1 regulates sirt1 activity and contributes to high-fat diet-induced liver steatosis in mice. J. Clin. Invest. 2010, 120:545-558.
    • (2010) J. Clin. Invest. , vol.120 , pp. 545-558
    • Escande, C.1
  • 111
    • 0347128279 scopus 로고    scopus 로고
    • Calorie restriction extends yeast life span by lowering the level of NADH
    • Lin S.J., et al. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 2004, 18:12-16.
    • (2004) Genes Dev. , vol.18 , pp. 12-16
    • Lin, S.J.1
  • 112
    • 38349112898 scopus 로고    scopus 로고
    • Age-associated loss of sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific sirt1-overexpressing (besto) mice
    • Ramsey K.M., et al. Age-associated loss of sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific sirt1-overexpressing (besto) mice. Aging Cell 2008, 7:78-88.
    • (2008) Aging Cell , vol.7 , pp. 78-88
    • Ramsey, K.M.1
  • 113
    • 80053920774 scopus 로고    scopus 로고
    • Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
    • Yoshino J., et al. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011, 14:528-536.
    • (2011) Cell Metab. , vol.14 , pp. 528-536
    • Yoshino, J.1
  • 114
    • 84862022077 scopus 로고    scopus 로고
    • The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
    • Canto C., et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012, 15:838-847.
    • (2012) Cell Metab. , vol.15 , pp. 838-847
    • Canto, C.1
  • 115
    • 84886476382 scopus 로고    scopus 로고
    • Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide
    • Schmeisser K., et al. Role of sirtuins in lifespan regulation is linked to methylation of nicotinamide. Nat. Chem. Biol. 2013, 9:693-700.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 693-700
    • Schmeisser, K.1
  • 116
    • 79953752384 scopus 로고    scopus 로고
    • Parp-1 inhibition increases mitochondrial metabolism through sirt1 activation
    • Bai P., et al. Parp-1 inhibition increases mitochondrial metabolism through sirt1 activation. Cell Metab. 2011, 13:461-468.
    • (2011) Cell Metab. , vol.13 , pp. 461-468
    • Bai, P.1
  • 117
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through nampt-mediated nad+ biosynthesis
    • Ramsey K.M., et al. Circadian clock feedback cycle through nampt-mediated nad+ biosynthesis. Science 2009, 324:651-654.
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1
  • 118
    • 65549118773 scopus 로고    scopus 로고
    • Circadian control of the nad+ salvage pathway by clock-sirt1
    • Nakahata Y., et al. Circadian control of the nad+ salvage pathway by clock-sirt1. Science 2009, 324:654-657.
    • (2009) Science , vol.324 , pp. 654-657
    • Nakahata, Y.1
  • 119
    • 84884248040 scopus 로고    scopus 로고
    • Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
    • Peek C.B., et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013, 342:1243417.
    • (2013) Science , vol.342 , pp. 1243417
    • Peek, C.B.1
  • 120
    • 77958488312 scopus 로고    scopus 로고
    • Sirt1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator
    • Dai H., et al. Sirt1 activation by small molecules: Kinetic and biophysical evidence for direct interaction of enzyme and activator. J. Biol. Chem. 2010, 285:32695-32703.
    • (2010) J. Biol. Chem. , vol.285 , pp. 32695-32703
    • Dai, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.