-
1
-
-
28444479505
-
Maxfield, F. R., and I. Tabas
-
Maxfield, F. R., and I. Tabas. 2005. Role of cholesterol and lipid organization in disease. Nature. 438: 612-621.
-
(2005)
Nature
, vol.438
, pp. 612-621
-
-
-
2
-
-
84859646659
-
The evolution and refinement of traditional risk factors for cardiovascular disease
-
deGoma, E. M., J. W. Knowles, F. Angeli, M. J. Budoff, and D. J. Rader. 2012. The evolution and refinement of traditional risk factors for cardiovascular disease. Cardiol. Rev. 20: 118-129.
-
(2012)
Cardiol Rev
, vol.20
, pp. 118-129
-
-
Degoma, E.M.1
Knowles, J.W.2
Angeli, F.3
Budoff, M.J.4
Rader, D.J.5
-
3
-
-
77956176288
-
Sterol metabolism and SREBP activation
-
Sato, R. 2010. Sterol metabolism and SREBP activation. Arch. Biochem. Biophys. 501: 177-181.
-
(2010)
Arch. Biochem. Biophys
, vol.501
, pp. 177-181
-
-
Sato, R.1
-
4
-
-
0036251153
-
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton, J. D., J. L. Goldstein, and M. S. Brown. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109: 1125-1131.
-
(2002)
J. Clin. Invest
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
5
-
-
84867099976
-
Expanding roles for SREBP in metabolism
-
Shao, W., and P. J. Espenshade. 2012. Expanding roles for SREBP in metabolism. Cell Metab. 16: 414-419.
-
(2012)
Cell Metab
, vol.16
, pp. 414-419
-
-
Shao, W.1
Espenshade, P.J.2
-
6
-
-
84856471735
-
SREBPs: Metabolic integrators in physiology and metabolism
-
Jeon, T. I., and T. F. Osborne. 2012. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol. Metab. 23: 65-72.
-
(2012)
Trends Endocrinol. Metab
, vol.23
, pp. 65-72
-
-
Jeon, T.I.1
Osborne, T.F.2
-
7
-
-
38649110496
-
Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis
-
Biddinger, S. B., A. Hernandez-Ono, C. Rask-Madsen, J. T. Haas, J. O. Aleman, R. Suzuki, E. F. Scapa, C. Agarwal, M. C. Carey, G. Stephanopoulos, et al. 2008. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 7: 125-134.
-
(2008)
Cell Metab
, vol.7
, pp. 125-134
-
-
Biddinger, S.B.1
Hernandez-Ono, A.2
Rask-Madsen, C.3
Haas, J.T.4
Aleman, J.O.5
Suzuki, R.6
Scapa, E.F.7
Agarwal, C.8
Carey, M.C.9
Stephanopoulos, G.10
-
8
-
-
79954527279
-
SREBP-2: A link between insulin resistance, hepatic cholesterol, and inflammation in NASH
-
Van Rooyen, D. M., and G. C. Farrell. 2011. SREBP-2: a link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J. Gastroenterol. Hepatol. 26: 789-792.
-
(2011)
J. Gastroenterol. Hepatol
, vol.26
, pp. 789-792
-
-
Van Rooyen, D.M.1
Farrell, G.C.2
-
9
-
-
46749094102
-
Hepatic insulin resistance directly promotes formation of cholesterol gallstones
-
Biddinger, S. B., J. T. Haas, B. B. Yu, O. Bezy, E. Jing, W. Zhang, T. G. Unterman, M. C. Carey, and C. R. Kahn. 2008. Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat. Med. 14: 778-782.
-
(2008)
Nat. Med
, vol.14
, pp. 778-782
-
-
Biddinger, S.B.1
Haas, J.T.2
Yu, B.B.3
Bezy, O.4
Jing, E.5
Zhang, W.6
Unterman, T.G.7
Carey, M.C.8
Kahn, C.R.9
-
10
-
-
84858796689
-
Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
-
Calkin, A. C., and P. Tontonoz. 2012. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13: 213-224.
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.13
, pp. 213-224
-
-
Calkin, A.C.1
Tontonoz, P.2
-
11
-
-
79952227694
-
Nuclear receptors in liver disease
-
Wagner, M., G. Zollner, and M. Trauner. 2011. Nuclear receptors in liver disease. Hepatology. 53: 1023-1034.
-
(2011)
Hepatology
, vol.53
, pp. 1023-1034
-
-
Wagner, M.1
Zollner, G.2
Trauner, M.3
-
13
-
-
77956244443
-
Hepatic FoxO1 ablation exacerbates lipid abnormalities during hyperglycemia
-
Haeusler, R. A., S. Han, and D. Accili. 2010. Hepatic FoxO1 ablation exacerbates lipid abnormalities during hyperglycemia. J. Biol. Chem. 285: 26861-26868.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 26861-26868
-
-
Haeusler, R.A.1
Han, S.2
Accili, D.3
-
14
-
-
84862909028
-
Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice
-
Zhang, K., L. Li, Y. Qi, X. Zhu, B. Gan, R. A. DePinho, T. Averitt, and S. Guo. 2012. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology. 153: 631-646.
-
(2012)
Endocrinology
, vol.153
, pp. 631-646
-
-
Zhang, K.1
Li, L.2
Qi, Y.3
Zhu, X.4
Gan, B.5
Depinho, R.A.6
Averitt, T.7
Guo, S.8
-
15
-
-
33744515637
-
FoxO1 regulates multiple metabolic pathways in the liver: Effects on gluconeogenic, glycolytic, and lipogenic gene expression
-
Zhang, W., S. Patil, B. Chauhan, S. Guo, D. R. Powell, J. Le, A. Klotsas, R. Matika, X. Xiao, R. Franks, et al. 2006. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J. Biol. Chem. 281: 10105-10117.
-
(2006)
J. Biol. Chem
, vol.281
, pp. 10105-10117
-
-
Zhang, W.1
Patil, S.2
Chauhan, B.3
Guo, S.4
Powell, D.R.5
Le, J.6
Klotsas, A.7
Matika, R.8
Xiao, X.9
Franks, R.10
-
16
-
-
66649095347
-
FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells
-
Liu, Z., M. D. Rudd, I. Hernandez-Gonzalez, I. Gonzalez-Robayna, H. Y. Fan, A. J. Zeleznik, and J. S. Richards. 2009. FSH and FOXO1 regulate genes in the sterol/steroid and lipid biosynthetic pathways in granulosa cells. Mol. Endocrinol. 23: 649-661.
-
(2009)
Mol. Endocrinol
, vol.23
, pp. 649-661
-
-
Liu, Z.1
Rudd, M.D.2
Hernandez-Gonzalez, I.3
Gonzalez-Robayna, I.4
Fan, H.Y.5
Zeleznik, A.J.6
Richards, J.S.7
-
17
-
-
77952691826
-
Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake
-
Zhu, J., K. Mounzih, E. F. Chehab, N. Mitro, E. Saez, and F. F. Chehab. 2010. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake. J. Lipid Res. 51: 1312-1324.
-
(2010)
J. Lipid Res
, vol.51
, pp. 1312-1324
-
-
Zhu, J.1
Mounzih, K.2
Chehab, E.F.3
Mitro, N.4
Saez, E.5
Chehab, F.F.6
-
18
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
Li, X., S. Zhang, G. Blander, J. G. Tse, M. Krieger, and L. Guarente. 2007. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell. 28: 91-106.
-
(2007)
Mol. Cell
, vol.28
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
19
-
-
70350606061
-
FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
-
Kemper, J. K., Z. Xiao, B. Ponugoti, J. Miao, S. Fang, D. Kanamaluru, S. Tsang, S. Y. Wu, C. M. Chiang, and T. D. Veenstra. 2009. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10: 392-404.
-
(2009)
Cell Metab
, vol.10
, pp. 392-404
-
-
Kemper, J.K.1
Xiao, Z.2
Ponugoti, B.3
Miao, J.4
Fang, S.5
Kanamaluru, D.6
Tsang, S.7
Wu, S.Y.8
Chiang, C.M.9
Veenstra, T.D.10
-
20
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
Walker, A. K., F. Yang, K. Jiang, J. Y. Ji, J. L. Watts, A. Purushotham, O. Boss, M. L. Hirsch, S. Ribich, J. J. Smith, et al. 2010. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24: 1403-1417.
-
(2010)
Genes Dev
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
Yang, F.2
Jiang, K.3
Ji, J.Y.4
Watts, J.L.5
Purushotham, A.6
Boss, O.7
Hirsch, M.L.8
Ribich, S.9
Smith, J.J.10
-
21
-
-
77958595135
-
SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
-
Ponugoti, B., D. H. Kim, Z. Xiao, Z. Smith, J. Miao, M. Zang, S. Y. Wu, C. M. Chiang, T. D. Veenstra, and J. K. Kemper. 2010. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 285: 33959-33970.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 33959-33970
-
-
Ponugoti, B.1
Kim, D.H.2
Xiao, Z.3
Smith, Z.4
Miao, J.5
Zang, M.6
Wu, S.Y.7
Chiang, C.M.8
Veenstra, T.D.9
Kemper, J.K.10
-
22
-
-
77956550868
-
Human SIRT6 promotes DNA end resection through CtIP deacetylation
-
Kaidi, A., B. T. Weinert, C. Choudhary, and S. P. Jackson. 2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 329: 1348-1353.
-
(2010)
Science
, vol.329
, pp. 1348-1353
-
-
Kaidi, A.1
Weinert, B.T.2
Choudhary, C.3
Jackson, S.P.4
-
23
-
-
79959363092
-
SIRT6 promotes DNA repair under stress by activating PARP1
-
Mao, Z., C. Hine, X. Tian, M. Van Meter, M. Au, A. Vaidya, A. Seluanov, and V. Gorbunova. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 332: 1443-1446.
-
(2011)
Science
, vol.332
, pp. 1443-1446
-
-
Mao, Z.1
Hine, C.2
Tian, X.3
Van Meter, M.4
Au, M.5
Vaidya, A.6
Seluanov, A.7
Gorbunova, V.8
-
24
-
-
84863974838
-
Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence
-
Mao, Z., X. Tian, M. Van Meter, Z. Ke, V. Gorbunova, and A. Seluanov. 2012. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc. Natl. Acad. Sci. USA. 109: 11800-11805.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 11800-11805
-
-
Mao, Z.1
Tian, X.2
Van Meter, M.3
Ke, Z.4
Gorbunova, V.5
Seluanov, A.6
-
25
-
-
66049150672
-
SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair
-
McCord, R. A., E. Michishita, T. Hong, E. Berber, L. D. Boxer, R. Kusumoto, S. Guan, X. Shi, O. Gozani, A. L. Burlingame, et al. 2009. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY). 1: 109-121.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 109-121
-
-
McCord, R.A.1
Michishita, E.2
Hong, T.3
Berber, E.4
Boxer, L.D.5
Kusumoto, R.6
Guan, S.7
Shi, X.8
Gozani, O.9
Burlingame, A.L.10
-
26
-
-
41349090663
-
SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
-
Michishita, E., R. A. McCord, E. Berber, M. Kioi, H. Padilla-Nash, M. Damian, P. Cheung, R. Kusumoto, T. L. Kawahara, J. C. Barrett, et al. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 452: 492-496.
-
(2008)
Nature
, vol.452
, pp. 492-496
-
-
Michishita, E.1
McCord, R.A.2
Berber, E.3
Kioi, M.4
Padilla-Nash, H.5
Damian, M.6
Cheung, P.7
Kusumoto, R.8
Kawahara, T.L.9
Barrett, J.C.10
-
27
-
-
69249221533
-
Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
-
Michishita, E., R. A. McCord, L. D. Boxer, M. F. Barber, T. Hong, O. Gozani, and K. F. Chua. 2009. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 8: 2664-2666.
-
(2009)
Cell Cycle
, vol.8
, pp. 2664-2666
-
-
Michishita, E.1
McCord, R.A.2
Boxer, L.D.3
Barber, M.F.4
Hong, T.5
Gozani, O.6
Chua, K.F.7
-
28
-
-
31044445366
-
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
-
Mostoslavsky, R., K. F. Chua, D. B. Lombard, W. W. Pang, M. R. Fischer, L. Gellon, P. Liu, G. Mostoslavsky, S. Franco, M. M. Murphy, et al. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 124: 315-329.
-
(2006)
Cell
, vol.124
, pp. 315-329
-
-
Mostoslavsky, R.1
Chua, K.F.2
Lombard, D.B.3
Pang, W.W.4
Fischer, M.R.5
Gellon, L.6
Liu, P.7
Mostoslavsky, G.8
Franco, S.9
Murphy, M.M.10
-
29
-
-
69249229772
-
The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
-
Yang, B., B. M. Zwaans, M. Eckersdorff, and D. B. Lombard. 2009. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle. 8: 2662-2663.
-
(2009)
Cell Cycle
, vol.8
, pp. 2662-2663
-
-
Yang, B.1
Zwaans, B.M.2
Eckersdorff, M.3
Lombard, D.B.4
-
30
-
-
84869082071
-
Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin
-
Min, L., Y. Ji, L. Bakiri, Z. Qiu, J. Cen, X. Chen, L. Chen, H. Scheuch, H. Zheng, L. Qin, et al. 2012. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat. Cell Biol. 14: 1203-1211.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 1203-1211
-
-
Min, L.1
Ji, Y.2
Bakiri, L.3
Qiu, Z.4
Cen, J.5
Chen, X.6
Chen, L.7
Scheuch, H.8
Zheng, H.9
Qin, L.10
-
31
-
-
79955047394
-
Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells
-
Minagawa, S., J. Araya, T. Numata, S. Nojiri, H. Hara, Y. Yumino, M. Kawaishi, M. Odaka, T. Morikawa, S. L. Nishimura, et al. 2011. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 300: L391 - L401.
-
(2011)
Am. J. Physiol. Lung Cell. Mol. Physiol
, Issue.300
-
-
Minagawa, S.1
Araya, J.2
Numata, T.3
Nojiri, S.4
Hara, H.5
Yumino, Y.6
Kawaishi, M.7
Odaka, M.8
Morikawa, T.9
Nishimura, S.L.10
-
32
-
-
80052908853
-
SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells
-
Van Meter, M., Z. Mao, V. Gorbunova, and A. Seluanov. 2011. SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle. 10: 3153-3158.
-
(2011)
Cell Cycle
, vol.10
, pp. 3153-3158
-
-
Van Meter, M.1
Mao, Z.2
Gorbunova, V.3
Seluanov, A.4
-
33
-
-
84870363221
-
The NAD+- dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses
-
Bauer, I., A. Grozio, D. Lasigliè, G. Basile, L. Sturla, M. Magnone, G. Sociali, D. Soncini, I. Caffa, A. Poggi, et al. 2012. The NAD+- dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J. Biol. Chem. 287: 40924-40937.
-
(2012)
J. Biol. Chem
, vol.287
, pp. 40924-40937
-
-
Bauer, I.1
Grozio, A.2
Lasigliè, D.3
Basile, G.4
Sturla, L.5
Magnone, M.6
Sociali, G.7
Soncini, D.8
Caffa, I.9
Poggi, A.10
-
34
-
-
84863696106
-
Over expression of wild type or a catalytically dead mutant of Sirtuin 6 does not influence NFκB responses
-
Grimley, R., O. Polyakova, J. Vamathevan, J. McKenary, B. Hayes, C. Patel, J. Smith, A. Bridges, A. Fosberry, A. Bhardwaja, et al. 2012. Over expression of wild type or a catalytically dead mutant of Sirtuin 6 does not influence NFκB responses. PLoS ONE. 7: e39847.
-
(2012)
PLoS ONE
, vol.7
-
-
Grimley, R.1
Polyakova, O.2
Vamathevan, J.3
McKenary, J.4
Hayes, B.5
Patel, C.6
Smith, J.7
Bridges, A.8
Fosberry, A.9
Bhardwaja, A.10
-
35
-
-
58149090925
-
SIRT6 links histone H3 lysine 9 deacetylation to NFkappaB- dependent gene expression and organismal life span
-
Kawahara, T. L., E. Michishita, A. S. Adler, M. Damian, E. Berber, M. Lin, R. A. McCord, K. C. Ongaigui, L. D. Boxer, H. Y. Chang, et al. 2009. SIRT6 links histone H3 lysine 9 deacetylation to NFkappaB- dependent gene expression and organismal life span. Cell. 136: 62-74.
-
(2009)
Cell
, vol.136
, pp. 62-74
-
-
Kawahara, T.L.1
Michishita, E.2
Adler, A.S.3
Damian, M.4
Berber, E.5
Lin, M.6
McCord, R.A.7
Ongaigui, K.C.8
Boxer, L.D.9
Chang, H.Y.10
-
36
-
-
79959846078
-
Dynamic chromatin localization of Sirt6 shapes stress- and aging-related transcriptional networks
-
Kawahara, T. L., N. A. Rapicavoli, A. R. Wu, K. Qu, S. R. Quake, and H. Y. Chang. 2011. Dynamic chromatin localization of Sirt6 shapes stress- and aging-related transcriptional networks. PLoS Genet. 7: e1002153.
-
(2011)
PLoS Genet
, vol.7
-
-
Kawahara, T.L.1
Rapicavoli, N.A.2
Wu, A.R.3
Qu, K.4
Quake, S.R.5
Chang, H.Y.6
-
37
-
-
59649117804
-
Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner
-
Van Gool, F., M. Galli, C. Gueydan, V. Kruys, P. P. Prevot, A. Bedalov, R. Mostoslavsky, F. W. Alt, T. De Smedt, and O. Leo. 2009. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat. Med. 15: 206-210.
-
(2009)
Nat. Med
, vol.15
, pp. 206-210
-
-
Van Gool, F.1
Galli, M.2
Gueydan, C.3
Kruys, V.4
Prevot, P.P.5
Bedalov, A.6
Mostoslavsky, R.7
Alt, F.W.8
De Smedt, T.9
Leo, O.10
-
38
-
-
84871336282
-
Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice
-
Xiao, C., R. H. Wang, T. J. Lahusen, O. Park, A. Bertola, T. Maruyama, D. Reynolds, Q. Chen, X. Xu, H. A. Young, et al. 2012. Progression of chronic liver inflammation and fibrosis driven by activation of c-JUN signaling in Sirt6 mutant mice. J. Biol. Chem. 287: 41903-41913.
-
(2012)
J. Biol. Chem
, vol.287
, pp. 41903-41913
-
-
Xiao, C.1
Wang, R.H.2
Lahusen, T.J.3
Park, O.4
Bertola, A.5
Maruyama, T.6
Reynolds, D.7
Chen, Q.8
Xu, X.9
Young, H.A.10
-
39
-
-
84862786955
-
Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6
-
Cai, Y., S. S. Yu, S. R. Chen, R. B. Pi, S. Gao, H. Li, J. T. Ye, and P. Q. Liu. 2012. Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6. FEBS Lett. 586: 866-874.
-
(2012)
FEBS Lett
, vol.586
, pp. 866-874
-
-
Cai, Y.1
Yu, S.S.2
Chen, S.R.3
Pi, R.B.4
Gao, S.5
Li, H.6
Ye, J.T.7
Liu, P.Q.8
-
40
-
-
84869201195
-
The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
-
Sundaresan, N. R., P. Vasudevan, L. Zhong, G. Kim, S. Samant, V. Parekh, V. B. Pillai, P. V. Ravindra, M. Gupta, V. Jeevanandam, et al. 2012. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat. Med. 18: 1643-1650.
-
(2012)
Nat. Med
, vol.18
, pp. 1643-1650
-
-
Sundaresan, N.R.1
Vasudevan, P.2
Zhong, L.3
Kim, G.4
Samant, S.5
Parekh, V.6
Pillai, V.B.7
Ravindra, P.V.8
Gupta, M.9
Jeevanandam, V.10
-
41
-
-
84872856805
-
Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-κB-dependent transcriptional activity
-
Yu, S. S., Y. Cai, J. T. Ye, R. B. Pi, S. R. Chen, P. Q. Liu, X. Y. Shen, and Y. Ji. 2013. Sirtuin 6 protects cardiomyocytes from hypertrophy in vitro via inhibition of NF-κB-dependent transcriptional activity. Br. J. Pharmacol. 168: 117-128.
-
(2013)
Br. J. Pharmacol
, vol.168
, pp. 117-128
-
-
Yu, S.S.1
Cai, Y.2
Ye, J.T.3
Pi, R.B.4
Chen, S.R.5
Liu, P.Q.6
Shen, X.Y.7
Ji., Y.8
-
42
-
-
84866946852
-
C. Elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress
-
Chiang, W. C., D. X. Tishkoff, B. Yang, J. Wilson-Grady, X. Yu, T. Mazer, M. Eckersdorff, S. P. Gygi, D. B. Lombard, and A. L. Hsu. 2012. C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. PLoS Genet. 8: e1002948.
-
(2012)
PLoS Genet
, vol.8
-
-
Chiang, W.C.1
Tishkoff, D.X.2
Yang, B.3
Wilson-Grady, J.4
Yu, X.5
Mazer, T.6
Eckersdorff, M.7
Gygi, S.P.8
Lombard, D.B.9
Hsu, A.L.10
-
43
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi, Y., S. Naiman, G. Amir, V. Peshti, G. Zinman, L. Nahum, Z. Bar-Joseph, and H. Y. Cohen. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 483: 218-221.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfiy1
Naiman, S.2
Amir, G.3
Peshti, V.4
Zinman, G.5
Nahum, L.6
Bar-Joseph, Z.7
Cohen, H.Y.8
-
44
-
-
77953244349
-
SIRT6 protects against pathological damage caused by diet-induced obesity
-
Kanfi, Y., V. Peshti, R. Gil, S. Naiman, L. Nahum, E. Levin, N. Kronfeld-Schor, and H. Y. Cohen. 2010. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell. 9: 162-173.
-
(2010)
Aging Cell
, vol.9
, pp. 162-173
-
-
Kanfiy1
Peshti, V.2
Gil, R.3
Naiman, S.4
Nahum, L.5
Levin, E.6
Kronfeld-Schor, N.7
Cohen, H.Y.8
-
45
-
-
77956315551
-
Hepaticspecific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
Kim, H. S., C. Xiao, R. H. Wang, T. Lahusen, X. Xu, A. Vassilopoulos, G. Vazquez-Ortiz, W. I. Jeong, O. Park, S. H. Ki, et al. 2010. Hepaticspecific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 12: 224-236.
-
(2010)
Cell Metab
, vol.12
, pp. 224-236
-
-
Kim, H.S.1
Xiao, C.2
Wang, R.H.3
Lahusen, T.4
Xu, X.5
Vassilopoulos, A.6
Vazquez-Ortiz, G.7
Jeong, W.I.8
Park, O.9
Ki, S.H.10
-
46
-
-
78650724968
-
Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
-
Schwer, B., B. Schumacher, D. B. Lombard, C. Xiao, M. V. Kurtev, J. Gao, J. I. Schneider, H. Chai, R. T. Bronson, L. H. Tsai, et al. 2010. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc. Natl. Acad. Sci. USA. 107: 21790-21794.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 21790-21794
-
-
Schwer, B.1
Schumacher, B.2
Lombard, D.B.3
Xiao, C.4
Kurtev, M.V.5
Gao, J.6
Schneider, J.I.7
Chai, H.8
Bronson, R.T.9
Tsai, L.H.10
-
47
-
-
78449248442
-
SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
-
Xiao, C., H. S. Kim, T. Lahusen, R. H. Wang, X. Xu, O. Gavrilova, W. Jou, D. Gius, and C. X. Deng. 2010. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J. Biol. Chem. 285: 36776-36784.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 36776-36784
-
-
Xiao, C.1
Kim, H.S.2
Lahusen, T.3
Wang, R.H.4
Xu, X.5
Gavrilova, O.6
Jou, W.7
Gius, D.8
Deng, C.X.9
-
48
-
-
74549142287
-
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
-
Zhong, L., A. D'Urso, D. Toiber, C. Sebastian, R. E. Henry, D. D. Vadysirisack, A. Guimaraes, B. Marinelli, J. D. Wikstrom, T. Nir, et al. 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 140: 280-293.
-
(2010)
Cell
, vol.140
, pp. 280-293
-
-
Zhong, L.1
D'Urso, A.2
Toiber, D.3
Sebastian, C.4
Henry, R.E.5
Vadysirisack, D.D.6
Guimaraes, A.7
Marinelli, B.8
Wikstrom, J.D.9
Nir, T.10
-
49
-
-
79952032653
-
Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats
-
Yang, S. J., J. M. Choi, S. W. Chae, W. J. Kim, S. E. Park, E. J. Rhee, W. Y. Lee, K. W. Oh, S. W. Park, S. W. Kim, et al. 2011. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats. PLoS ONE. 6: e17057.
-
(2011)
PLoS ONE
, vol.6
-
-
Yang, S.J.1
Choi, J.M.2
Chae, S.W.3
Kim, W.J.4
Park, S.E.5
Rhee, E.J.6
Lee, W.Y.7
Oh, K.W.8
Park, S.W.9
Kim, S.W.10
-
50
-
-
84871676013
-
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
-
Dominy, J. E., Jr ., Y. Lee, M. P. Jedrychowski, H. Chim, M. J. Jurczak, J. P. Camporez, H. B. Ruan, J. Feldman, K. Pierce, R. Mostoslavsky, et al. 2012. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol. Cell. 48: 900-913.
-
(2012)
Mol. Cell
, vol.48
, pp. 900-913
-
-
Dominy Jr., J.E.1
Lee, Y.2
Jedrychowski, M.P.3
Chim, H.4
Jurczak, M.J.5
Camporez, J.P.6
Ruan, H.B.7
Feldman, J.8
Pierce, K.9
Mostoslavsky, R.10
-
51
-
-
84864386829
-
NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response
-
Liu, T. F., V. T. Vachharajani, B. K. Yoza, and C. E. McCall. 2012. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J. Biol. Chem. 287: 25758-25769.
-
(2012)
J. Biol. Chem
, vol.287
, pp. 25758-25769
-
-
Liu, T.F.1
Vachharajani, V.T.2
Yoza, B.K.3
McCall, C.E.4
-
52
-
-
20444409132
-
Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
-
Liszt, G., E. Ford, M. Kurtev, and L. Guarente. 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280: 21313-21320.
-
(2005)
J. Biol. Chem
, vol.280
, pp. 21313-21320
-
-
Liszt, G.1
Ford, E.2
Kurtev, M.3
Guarente, L.4
-
53
-
-
84875881601
-
SIRT6 regulates TNFalpha secretion through hydrolysis of long-chain fatty acyl lysine
-
Jiang, H., S. Khan, Y. Wang, G. Charron, B. He, C. Sebastian, J. Du, R. Kim, E. Ge, R. Mostoslavsky, et al. 2013. SIRT6 regulates TNFalpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 496: 110-113.
-
(2013)
Nature
, vol.496
, pp. 110-113
-
-
Jiang, H.1
Khan, S.2
Wang, Y.3
Charron, G.4
He, B.5
Sebastian, C.6
Du, J.7
Kim, R.8
Ge, E.9
Mostoslavsky, R.10
-
54
-
-
79954576666
-
Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene
-
Tao, R., D. Wei, H. Gao, Y. Liu, R. A. DePinho, and X. C. Dong. 2011. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J. Biol. Chem. 286: 14681-14690.
-
(2011)
J. Biol. Chem
, vol.286
, pp. 14681-14690
-
-
Tao, R.1
Wei, D.2
Gao, H.3
Liu, Y.4
Depinho, R.A.5
Dong, X.C.6
-
55
-
-
33846295218
-
FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis
-
Paik, J. H., R. Kollipara, G. Chu, H. Ji, Y. Xiao, Z. Ding, L. Miao, Z. Tothova, J. W. Horner, D. R. Carrasco, et al. 2007. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 128: 309-323.
-
(2007)
Cell
, vol.128
, pp. 309-323
-
-
Paik, J.H.1
Kollipara, R.2
Chu, G.3
Ji, H.4
Xiao, Y.5
Ding, Z.6
Miao, L.7
Tothova, Z.8
Horner, J.W.9
Carrasco, D.R.10
-
56
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
Zhao, J., J. J. Brault, A. Schild, P. Cao, M. Sandri, S. Schiaffino, S. H. Lecker, and A. L. Goldberg. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6: 472-483.
-
(2007)
Cell Metab
, vol.6
, pp. 472-483
-
-
Zhao, J.1
Brault, J.J.2
Schild, A.3
Cao, P.4
Sandri, M.5
Schiaffino, S.6
Lecker, S.H.7
Goldberg, A.L.8
-
57
-
-
81055140116
-
A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans
-
Walker, A. K., R. L. Jacobs, J. L. Watts, V. Rottiers, K. Jiang, D. M. Finnegan, T. Shioda, M. Hansen, F. Yang, L. J. Niebergall, et al. 2011. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell. 147: 840-852.
-
(2011)
Cell
, vol.147
, pp. 840-852
-
-
Walker, A.K.1
Jacobs, R.L.2
Watts, J.L.3
Rottiers, V.4
Jiang, K.5
Finnegan, D.M.6
Shioda, T.7
Hansen, M.8
Yang, F.9
Niebergall, L.J.10
-
58
-
-
0037378516
-
Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors
-
Giandomenico, V., M. Simonsson, E. Gronroos, and J. Ericsson. 2003. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol. Cell. Biol. 23: 2587-2599.
-
(2003)
Mol. Cell. Biol
, vol.23
, pp. 2587-2599
-
-
Giandomenico, V.1
Simonsson, M.2
Gronroos, E.3
Ericsson, J.4
-
59
-
-
0142027805
-
Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes
-
Horton, J. D., N. A. Shah, J. A. Warrington, N. N. Anderson, S. W. Park, M. S. Brown, and J. L. Goldstein. 2003. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. USA. 100: 12027-12032.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 12027-12032
-
-
Horton, J.D.1
Shah, N.A.2
Warrington, J.A.3
Anderson, N.N.4
Park, S.W.5
Brown, M.S.6
Goldstein, J.L.7
-
60
-
-
0029958652
-
Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2
-
Sato, R., J. Inoue, Y. Kawabe, T. Kodama, T. Takano, and M. Maeda. 1996. Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J. Biol. Chem. 271: 26461-26464.
-
(1996)
J. Biol. Chem
, vol.271
, pp. 26461-26464
-
-
Sato, R.1
Inoue, J.2
Kawabe, Y.3
Kodama, T.4
Takano, T.5
Maeda, M.6
-
61
-
-
4944245398
-
Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
-
Vaquero, A., M. Scher, D. Lee, H. Erdjument-Bromage, P. Tempst, and D. Reinberg. 2004. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell. 16: 93-105.
-
(2004)
Mol. Cell
, vol.16
, pp. 93-105
-
-
Vaquero, A.1
Scher, M.2
Lee, D.3
Erdjument-Bromage, H.4
Tempst, P.5
Reinberg, D.6
-
62
-
-
54049094000
-
FoxO1 integrates insulin signaling to VLDL production
-
Kamagate, A., and H. H. Dong. 2008. FoxO1 integrates insulin signaling to VLDL production. Cell Cycle. 7: 3162-3170.
-
(2008)
Cell Cycle
, vol.7
, pp. 3162-3170
-
-
Kamagate, A.1
Dong, H.H.2
-
63
-
-
34548349302
-
Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver
-
Matsumoto, M., A. Pocai, L. Rossetti, R. A. Depinho, and D. Accili. 2007. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 6: 208-216.
-
(2007)
Cell Metab
, vol.6
, pp. 208-216
-
-
Matsumoto, M.1
Pocai, A.2
Rossetti, L.3
Depinho, R.A.4
Accili, D.5
-
64
-
-
66149172131
-
Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study
-
Anselmi, C. V., A. Malovini, R. Roncarati, V. Novelli, F. Villa, G. Condorelli, R. Bellazzi, and A. A. Puca. 2009. Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res. 12: 95-104.
-
(2009)
Rejuvenation Res
, vol.12
, pp. 95-104
-
-
Anselmi, C.V.1
Malovini, A.2
Roncarati, R.3
Novelli, V.4
Villa, F.5
Condorelli, G.6
Bellazzi, R.7
Puca, A.A.8
-
65
-
-
62449083712
-
Association of FOXO3A variation with human longevity confirmed in German centenarians
-
Flachsbart, F., A. Caliebe, R. Kleindorp, H. Blanche, H. von Eller- Eberstein, S. Nikolaus, S. Schreiber, and A. Nebel. 2009. Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc. Natl. Acad. Sci. USA. 106: 2700-2705.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 2700-2705
-
-
Flachsbart, F.1
Caliebe, A.2
Kleindorp, R.3
Blanche, H.4
Von Eller-Eberstein, H.5
Nikolaus, S.6
Schreiber, S.7
Nebel, A.8
-
66
-
-
52949122885
-
FOXO3A genotype is strongly associated with human longevity
-
Willcox, B. J., T. A. Donlon, Q. He, R. Chen, J. S. Grove, K. Yano, K. H. Masaki, D. C. Willcox, B. Rodriguez, and J. D. Curb. 2008. FOXO3A genotype is strongly associated with human longevity. Proc. Natl. Acad. Sci. USA. 105: 13987-13992.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 13987-13992
-
-
Willcox, B.J.1
Donlon, T.A.2
He, Q.3
Chen, R.4
Grove, J.S.5
Yano, K.6
Masaki, K.H.7
Willcox, D.C.8
Rodriguez, B.9
Curb, J.D.10
-
67
-
-
78249280592
-
Replication of an association of variation in the FOXO3A gene with human longevity using both case-control and longitudinal data
-
Soerensen, M., S. Dato, K. Christensen, M. McGue, T. Stevnsner, V. A. Bohr, and L. Christiansen. 2010. Replication of an association of variation in the FOXO3A gene with human longevity using both case-control and longitudinal data. Aging Cell. 9: 1010-1017.
-
(2010)
Aging Cell
, vol.9
, pp. 1010-1017
-
-
Soerensen, M.1
Dato, S.2
Christensen, K.3
McGue, M.4
Stevnsner, T.5
Bohr, V.A.6
Christiansen, L.7
-
68
-
-
78649554549
-
Effects of FOXO genotypes on longevity: A biodemographic analysis
-
Zeng, Y., L. Cheng, H. Chen, H. Cao, E. R. Hauser, Y. Liu, Z. Xiao, Q. Tan, X. L. Tian, and J. W. Vaupel. 2010. Effects of FOXO genotypes on longevity: a biodemographic analysis. J. Gerontol. A Biol. Sci. Med. Sci. 65: 1285-1299.
-
(2010)
J. Gerontol. A Biol. Sci. Med. Sci
, vol.65
, pp. 1285-1299
-
-
Zeng, Y.1
Cheng, L.2
Chen, H.3
Cao, H.4
Hauser, E.R.5
Liu, Y.6
Xiao, Z.7
Tan, Q.8
Tian, X.L.9
Vaupel, J.W.10
-
69
-
-
78649513976
-
Diabetes and insulin in regulation of brain cholesterol metabolism
-
Suzuki, R., K. Lee, E. Jing, S. B. Biddinger, J. G. McDonald, T. J. Montine, S. Craft, and C. R. Kahn. 2010. Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metab. 12: 567-579. Kidney Diseases Kidney Diseases
-
(2010)
Cell Metab
, vol.12
, pp. 567-579
-
-
Suzuki, R.1
Lee, K.2
Jing, E.3
Biddinger, S.B.4
McDonald, J.G.5
Montine, T.J.6
Craft, S.7
Kahn, C.R.8
|