-
1
-
-
0030907987
-
PI3K: Downstream AKTion blocks apoptosis
-
T. F. Franke, D. R. Kaplan, L. C. Cantley, PI3K: Downstream AKTion blocks apoptosis. Cell 88, 435-437 (1997).
-
(1997)
Cell
, vol.88
, pp. 435-437
-
-
Franke, T.F.1
Kaplan, D.R.2
Cantley, L.C.3
-
2
-
-
34250788809
-
AKT/PKB signaling: Navigating downstream
-
B. D. Manning, L. C. Cantley, AKT/PKB signaling: Navigating downstream. Cell 129, 1261-1274 (2007).
-
(2007)
Cell
, vol.129
, pp. 1261-1274
-
-
Manning, B.D.1
Cantley, L.C.2
-
3
-
-
0031127305
-
Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα
-
D. R. Alessi, S. R. James, C. P. Downes, A. B. Holmes, P. R. Gaffney, C. B. Reese, P. Cohen, Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261-269 (1997).
-
(1997)
Curr. Biol.
, vol.7
, pp. 261-269
-
-
Alessi, D.R.1
James, S.R.2
Downes, C.P.3
Holmes, A.B.4
Gaffney, P.R.5
Reese, C.B.6
Cohen, P.7
-
4
-
-
0029810181
-
Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation
-
A. D. Kohn, F. Takeuchi, R. A. Roth, Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J. Biol. Chem. 271, 21920-21926 (1996).
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 21920-21926
-
-
Kohn, A.D.1
Takeuchi, F.2
Roth, R.A.3
-
5
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
D. D. Sarbassov, D. A. Guertin, S. M. Ali, D. M. Sabatini, Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101 (2005).
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
6
-
-
0031831780
-
Pleckstrin homology domains: A common fold with diverse functions
-
M. J. Rebecchi, S. Scarlata, Pleckstrin homology domains: A common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27, 503-528 (1998).
-
(1998)
Annu. Rev. Biophys. Biomol. Struct.
, vol.27
, pp. 503-528
-
-
Rebecchi, M.J.1
Scarlata, S.2
-
7
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
C. Choudhary, C. Kumar, F. Gnad, M. L. Nielsen, M. Rehman, T. C. Walther, J. V. Olsen, M. Mann, Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840 (2009).
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
Kumar, C.2
Gnad, F.3
Nielsen, M.L.4
Rehman, M.5
Walther, T.C.6
Olsen, J.V.7
Mann, M.8
-
8
-
-
67949102053
-
Recent progress in the biology and physiology of sirtuins
-
T. Finkel, C. X. Deng, R. Mostoslavsky, Recent progress in the biology and physiology of sirtuins. Nature 460, 587-591 (2009).
-
(2009)
Nature
, vol.460
, pp. 587-591
-
-
Finkel, T.1
Deng, C.X.2
Mostoslavsky, R.3
-
9
-
-
17144429302
-
Calorie restriction, SIRT1 and metabolism: Understanding longevity
-
L. Bordone, L. Guarente, Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat. Rev. Mol. Cell Biol. 6, 298-305 (2005).
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 298-305
-
-
Bordone, L.1
Guarente, L.2
-
10
-
-
34249083199
-
Sirtuins in mammals: Insights into their biological function
-
S. Michan, D. Sinclair, Sirtuins in mammals: Insights into their biological function. Biochem. J. 404, 1-13 (2007).
-
(2007)
Biochem. J.
, vol.404
, pp. 1-13
-
-
Michan, S.1
Sinclair, D.2
-
12
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
J. C. Milne, P. D. Lambert, S. Schenk, D. P. Carney, J. J. Smith, D. J. Gagne, L. Jin, O. Boss, R. B. Perni, C. B. Vu, J. E. Bemis, R. Xie, J. S. Disch, P. Y. Ng, J. J. Nunes, A. V. Lynch, H. Yang, H. Galonek, K. Israelian, W. Choy, A. Iffland, S. Lavu, O. Medvedik, D. A. Sinclair, J. M. Olefsky, M. R. Jirousek, P. J. Elliott, C. H. Westphal, Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716 (2007).
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
Bemis, J.E.11
Xie, R.12
Disch, J.S.13
Ng, P.Y.14
Nunes, J.J.15
Lynch, A.V.16
Yang, H.17
Galonek, H.18
Israelian, K.19
Choy, W.20
Iffland, A.21
Lavu, S.22
Medvedik, O.23
Sinclair, D.A.24
Olefsky, J.M.25
Jirousek, M.R.26
Elliott, P.J.27
Westphal, C.H.28
more..
-
13
-
-
0037162293
-
High-resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3,4,5)-trisphosphate
-
C. C. Thomas, M. Deak, D. R. Alessi, D. M. van Aalten, High-resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr. Biol. 12, 1256-1262 (2002).
-
(2002)
Curr. Biol.
, vol.12
, pp. 1256-1262
-
-
Thomas, C.C.1
Deak, M.2
Alessi, D.R.3
Van Aalten, D.M.4
-
14
-
-
20444444649
-
Mechanism of human SIRT1 activation by resveratrol
-
M. T. Borra, B. C. Smith, J. M. Denu, Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem. 280, 17187-17195 (2005).
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 17187-17195
-
-
Borra, M.T.1
Smith, B.C.2
Denu, J.M.3
-
15
-
-
1342264308
-
Mammalian SIRT1 represses forkhead transcription factors
-
M. C. Motta, N. Divecha, M. Lemieux, C. Kamel, D. Chen, W. Gu, Y. Bultsma, M. McBurney, L. Guarente, Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563 (2004).
-
(2004)
Cell
, vol.116
, pp. 551-563
-
-
Motta, M.C.1
Divecha, N.2
Lemieux, M.3
Kamel, C.4
Chen, D.5
Gu, W.6
Bultsma, Y.7
McBurney, M.8
Guarente, L.9
-
16
-
-
0032578999
-
Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B
-
L. Stephens, K. Anderson, D. Stokoe, H. Erdjument-Bromage, G. F. Painter, A. B. Holmes, P. R. Gaffney, C. B. Reese, F. McCormick, P. Tempst, J. Coadwell, P. T. Hawkins, Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279, 710-714 (1998).
-
(1998)
Science
, vol.279
, pp. 710-714
-
-
Stephens, L.1
Anderson, K.2
Stokoe, D.3
Erdjument-Bromage, H.4
Painter, G.F.5
Holmes, A.B.6
Gaffney, P.R.7
Reese, C.B.8
McCormick, F.9
Tempst, P.10
Coadwell, J.11
Hawkins, P.T.12
-
17
-
-
0030799706
-
Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B
-
D. Stokoe, L. R. Stephens, T. Copeland, P. R. Gaffney, C. B. Reese, G. F. Painter, A. B. Holmes, F. McCormick, P. T. Hawkins, Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567-570 (1997).
-
(1997)
Science
, vol.277
, pp. 567-570
-
-
Stokoe, D.1
Stephens, L.R.2
Copeland, T.3
Gaffney, P.R.4
Reese, C.B.5
Painter, G.F.6
Holmes, A.B.7
McCormick, F.8
Hawkins, P.T.9
-
18
-
-
34547172596
-
A transforming mutation in the pleckstrin homology domain of AKT1 in cancer
-
J. D. Carpten, A. L. Faber, C. Horn, G. P. Donoho, S. L. Briggs, C. M. Robbins, G. Hostetter, S. Boguslawski, T. Y. Moses, S. Savage, M. Uhlik, A. Lin, J. Du, Y. W. Qian, D. J. Zeckner, G. Tucker-Kellogg, J. Touchman, K. Patel, S. Mousses, M. Bittner, R. Schevitz, M. H. Lai, K. L. Blanchard, J. E. Thomas, A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439-444 (2007).
-
(2007)
Nature
, vol.448
, pp. 439-444
-
-
Carpten, J.D.1
Faber, A.L.2
Horn, C.3
Donoho, G.P.4
Briggs, S.L.5
Robbins, C.M.6
Hostetter, G.7
Boguslawski, S.8
Moses, T.Y.9
Savage, S.10
Uhlik, M.11
Lin, A.12
Du, J.13
Qian, Y.W.14
Zeckner, D.J.15
Tucker-Kellogg, G.16
Touchman, J.17
Patel, K.18
Mousses, S.19
Bittner, M.20
Schevitz, R.21
Lai, M.H.22
Blanchard, K.L.23
Thomas, J.E.24
more..
-
19
-
-
69549116880
-
The E3 ligase TRAF6 regulates Akt ubiquitination and activation
-
W. L. Yang, J. Wang, C. H. Chan, S. W. Lee, A. D. Campos, B. Lamothe, L. Hur, B. C. Grabiner, X. Lin, B. G. Darnay, H. K. Lin, The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 1134-1138 (2009).
-
(2009)
Science
, vol.325
, pp. 1134-1138
-
-
Yang, W.L.1
Wang, J.2
Chan, C.H.3
Lee, S.W.4
Campos, A.D.5
Lamothe, B.6
Hur, L.7
Grabiner, B.C.8
Lin, X.9
Darnay, B.G.10
Lin, H.K.11
-
20
-
-
0032482374
-
Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B
-
K. E. Anderson, J. Coadwell, L. R. Stephens, P. T. Hawkins, Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr. Biol. 8, 684-691 (1998).
-
(1998)
Curr. Biol.
, vol.8
, pp. 684-691
-
-
Anderson, K.E.1
Coadwell, J.2
Stephens, L.R.3
Hawkins, P.T.4
-
21
-
-
0037125980
-
Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice
-
G. Condorelli, A. Drusco, G. Stassi, A. Bellacosa, R. Roncarati, G. Iaccarino, M. A. Russo, Y.Gu, N.Dalton, C.Chung, M. V. Latronico, C.Napoli, J.Sadoshima, C.M.Croce, J.Ross Jr., Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 99, 12333-12338 (2002).
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 12333-12338
-
-
Condorelli, G.1
Drusco, A.2
Stassi, G.3
Bellacosa, A.4
Roncarati, R.5
Iaccarino, G.6
Russo, M.A.7
Gu, Y.8
Dalton, N.9
Chung, C.10
Latronico, M.V.11
Napoli, C.12
Sadoshima, J.13
Croce, C.M.14
Ross Jr., J.15
-
22
-
-
0037020157
-
Akt signaling mediates postnatal heart growth in response to insulin and nutritional status
-
I. Shiojima, M. Yefremashvili, Z. Luo, Y. Kureishi, A. Takahashi, J. Tao, A. Rosenzweig, C. R. Kahn, E. D. Abel, K. Walsh, Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. J. Biol. Chem. 277, 37670-37677 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 37670-37677
-
-
Shiojima, I.1
Yefremashvili, M.2
Luo, Z.3
Kureishi, Y.4
Takahashi, A.5
Tao, J.6
Rosenzweig, A.7
Kahn, C.R.8
Abel, E.D.9
Walsh, K.10
-
23
-
-
33646458252
-
Akt signaling and growth of the heart
-
K. Walsh, Akt signaling and growth of the heart. Circulation 113, 2032-2034 (2006).
-
(2006)
Circulation
, vol.113
, pp. 2032-2034
-
-
Walsh, K.1
-
24
-
-
77952288736
-
An antagonism between the AKT and β-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p
-
S. Rane, M. He, D. Sayed, L. Yan, D. Vatner, M. Abdellatif, An antagonism between the AKT and β-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cell. Signal. 22, 1054-1062 (2010).
-
(2010)
Cell. Signal.
, vol.22
, pp. 1054-1062
-
-
Rane, S.1
He, M.2
Sayed, D.3
Yan, L.4
Vatner, D.5
Abdellatif, M.6
-
25
-
-
65249185780
-
Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes
-
S. Rane, M. He, D. Sayed, H. Vashistha, A. Malhotra, J. Sadoshima, D. E. Vatner, S. F. Vatner, M. Abdellatif, Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 104, 879-886 (2009).
-
(2009)
Circ. Res.
, vol.104
, pp. 879-886
-
-
Rane, S.1
He, M.2
Sayed, D.3
Vashistha, H.4
Malhotra, A.5
Sadoshima, J.6
Vatner, D.E.7
Vatner, S.F.8
Abdellatif, M.9
-
27
-
-
0842263745
-
Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway
-
H. Miyauchi, T. Minamino, K. Tateno, T. Kunieda, H. Toko, I. Komuro, Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J. 23, 212-220 (2004).
-
(2004)
EMBO J.
, vol.23
, pp. 212-220
-
-
Miyauchi, H.1
Minamino, T.2
Tateno, K.3
Kunieda, T.4
Toko, H.5
Komuro, I.6
-
28
-
-
33745962138
-
Therapeutic potential of resveratrol: The in vivo evidence
-
J. A. Baur, D. A. Sinclair, Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 5, 493-506 (2006).
-
(2006)
Nat. Rev. Drug Discov.
, vol.5
, pp. 493-506
-
-
Baur, J.A.1
Sinclair, D.A.2
-
29
-
-
45549096918
-
SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons
-
Y. Li, W. Xu, M. W. McBurney, V. D. Longo, SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab. 8, 38-48 (2008).
-
(2008)
Cell Metab.
, vol.8
, pp. 38-48
-
-
Li, Y.1
Xu, W.2
McBurney, M.W.3
Longo, V.D.4
-
30
-
-
45549086613
-
The ongoing saga of sirtuins and aging
-
M. Kaeberlein, The ongoing saga of sirtuins and aging. Cell Metab. 8, 4-5 (2008).
-
(2008)
Cell Metab.
, vol.8
, pp. 4-5
-
-
Kaeberlein, M.1
-
31
-
-
41649094992
-
SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity
-
S. R. Narala, R.C. Allsopp, T. B. Wells, G. Zhang, P. Prasad, M. J. Coussens, D. J.Rossi, I. L. Weissman, H. Vaziri, SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol. Biol. Cell 19, 1210-1219 (2008).
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1210-1219
-
-
Narala, S.R.1
Allsopp, R.C.2
Wells, T.B.3
Zhang, G.4
Prasad, P.5
Coussens, M.J.6
Rossi, D.J.7
Weissman, I.L.8
Vaziri, H.9
-
32
-
-
27244435939
-
Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress
-
K. F. Chua, R. Mostoslavsky, D. B. Lombard, W. W. Pang, S. Saito, S. Franco, D. Kaushal, H. L. Cheng, M. R. Fischer, N. Stokes, M. M. Murphy, E. Appella, F. W. Alt, Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab. 2, 67-76 (2005).
-
(2005)
Cell Metab.
, vol.2
, pp. 67-76
-
-
Chua, K.F.1
Mostoslavsky, R.2
Lombard, D.B.3
Pang, W.W.4
Saito, S.5
Franco, S.6
Kaushal, D.7
Cheng, H.L.8
Fischer, M.R.9
Stokes, N.10
Murphy, M.M.11
Appella, E.12
Alt, F.W.13
-
33
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
E. Michishita, J. Y. Park, J. M. Burneskis, J. C. Barrett, I. Horikawa, Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623-4635 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4623-4635
-
-
Michishita, E.1
Park, J.Y.2
Burneskis, J.M.3
Barrett, J.C.4
Horikawa, I.5
-
34
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
A. Brunet, L. B. Sweeney, J. F. Sturgill, K. F. Chua, P. L. Greer, Y. Lin, H. Tran, S. E. Ross, R. Mostoslavsky, H. Y. Cohen, L. S. Hu, H. L. Cheng, M. P. Jedrychowski, S. P. Gygi, D. A. Sinclair, F. W. Alt, M. E. Greenberg, Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015 (2004).
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
Chua, K.F.4
Greer, P.L.5
Lin, Y.6
Tran, H.7
Ross, S.E.8
Mostoslavsky, R.9
Cohen, H.Y.10
Hu, L.S.11
Cheng, H.L.12
Jedrychowski, M.P.13
Gygi, S.P.14
Sinclair, D.A.15
Alt, F.W.16
Greenberg, M.E.17
-
36
-
-
62749133315
-
SIRT1, is it a tumor promoter or tumor suppressor?
-
C. X. Deng, SIRT1, is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci. 5, 147-152 (2009).
-
(2009)
Int. J. Biol. Sci.
, vol.5
, pp. 147-152
-
-
Deng, C.X.1
-
37
-
-
44849096876
-
The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
-
R. Firestein, G. Blander, S. Michan, P. Oberdoerffer, S. Ogino, J. Campbell, A. Bhimavarapu, S. Luikenhuis, R. de Cabo, C. Fuchs, W. C. Hahn, L. P. Guarente, D. A. Sinclair, The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 3, e2020 (2008).
-
(2008)
PLoS One
, vol.3
-
-
Firestein, R.1
Blander, G.2
Michan, S.3
Oberdoerffer, P.4
Ogino, S.5
Campbell, J.6
Bhimavarapu, A.7
Luikenhuis, S.8
De Cabo, R.9
Fuchs, C.10
Hahn, W.C.11
Guarente, L.P.12
Sinclair, D.A.13
-
38
-
-
32044466838
-
Exploiting the PI3K/AKT pathway for cancer drug discovery
-
B. T. Hennessy, D. L. Smith, P. T. Ram, Y. Lu, G. B. Mills, Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4, 988-1004 (2005).
-
(2005)
Nat. Rev. Drug Discov.
, vol.4
, pp. 988-1004
-
-
Hennessy, B.T.1
Smith, D.L.2
Ram, P.T.3
Lu, Y.4
Mills, G.B.5
-
39
-
-
34249669270
-
Sirt1 regulates aging and resistance to oxidative stress in the heart
-
R. R. Alcendor, S. Gao, P. Zhai, D. Zablocki, E. Holle, X. Yu, B. Tian, T. Wagner, S. F. Vatner, J. Sadoshima, Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 100, 1512-1521 (2007).
-
(2007)
Circ. Res.
, vol.100
, pp. 1512-1521
-
-
Alcendor, R.R.1
Gao, S.2
Zhai, P.3
Zablocki, D.4
Holle, E.5
Yu, X.6
Tian, B.7
Wagner, T.8
Vatner, S.F.9
Sadoshima, J.10
-
40
-
-
35348980724
-
SIRT1 controls endothelial angiogenic functions during vascular growth
-
M. Potente, L. Ghaeni, D. Baldessari, R. Mostoslavsky, L. Rossig, F. Dequiedt, J. Haendeler, M. Mione, E. Dejana, F. W. Alt, A. M. Zeiher, S. Dimmeler, SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21, 2644-2658 (2007).
-
(2007)
Genes Dev.
, vol.21
, pp. 2644-2658
-
-
Potente, M.1
Ghaeni, L.2
Baldessari, D.3
Mostoslavsky, R.4
Rossig, L.5
Dequiedt, F.6
Haendeler, J.7
Mione, M.8
Dejana, E.9
Alt, F.W.10
Zeiher, A.M.11
Dimmeler, S.12
-
41
-
-
33646449520
-
Akt1 is required for physiological cardiac growth
-
B. DeBosch, I. Treskov, T. S. Lupu, C. Weinheimer, A. Kovacs, M. Courtois, A. J. Muslin, Akt1 is required for physiological cardiac growth. Circulation 113, 2097-2104 (2006).
-
(2006)
Circulation
, vol.113
, pp. 2097-2104
-
-
DeBosch, B.1
Treskov, I.2
Lupu, T.S.3
Weinheimer, C.4
Kovacs, A.5
Courtois, M.6
Muslin, A.J.7
-
42
-
-
0037151104
-
Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart
-
T. Matsui, L. Li, J. C. Wu, S. A. Cook, T. Nagoshi, M. H. Picard, R. Liao, A. Rosenzweig, Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J. Biol. Chem. 277, 22896-22901 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 22896-22901
-
-
Matsui, T.1
Li, L.2
Wu, J.C.3
Cook, S.A.4
Nagoshi, T.5
Picard, M.H.6
Liao, R.7
Rosenzweig, A.8
-
43
-
-
65249094726
-
Sirt1 hyperexpression in SHR heart related to left ventricular hypertrophy
-
L. Li, L. Zhao, W. Yi-Ming, Y.-S. Yu, C.-Y. Xia, J.-L. Duan, D.-F. Su, Sirt1 hyperexpression in SHR heart related to left ventricular hypertrophy. Can. J. Physiol. Pharmacol. 87, 56-62 (2009).
-
(2009)
Can. J. Physiol. Pharmacol.
, vol.87
, pp. 56-62
-
-
Li, L.1
Zhao, L.2
Yi-Ming, W.3
Yu, Y.-S.4
Xia, C.-Y.5
Duan, J.-L.6
Su, D.-F.7
-
44
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
A. Purushotham, T. T. Schug, Q. Xu, S. Surapureddi, X. Guo, X. Li, Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9, 327-338 (2009).
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
45
-
-
77952496696
-
SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells
-
Y. Zu, L. Liu, M. Y. Lee, C. Xu, Y. Liang, R. Y. Man, P. M. Vanhoutte, Y. Wang, SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ. Res. 106, 1384-1393 (2010).
-
(2010)
Circ. Res.
, vol.106
, pp. 1384-1393
-
-
Zu, Y.1
Liu, L.2
Lee, M.Y.3
Xu, C.4
Liang, Y.5
Man, R.Y.6
Vanhoutte, P.M.7
Wang, Y.8
-
46
-
-
52749091816
-
SIRT1 gain of function increases energy efficiency and prevents diabetes in mice
-
A. S. Banks, N. Kon, C. Knight, M. Matsumoto, R. Gutierrez-Juárez, L. Rossetti, W. Gu, D. Accili, SIRT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8, 333-341 (2008).
-
(2008)
Cell Metab.
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
Matsumoto, M.4
Gutierrez-Juárez, R.5
Rossetti, L.6
Gu, W.7
Accili, D.8
-
47
-
-
41549134383
-
Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the a-myosin heavy chain expression
-
J. B. Pillai, M. Chen, S. B. Rajamohan, S. Samant, V. B. Pillai, M. Gupta, M. P. Gupta, Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the a-myosin heavy chain expression. Am. J. Physiol. Heart Circ. Physiol. 294, H1388-H1397 (2008).
-
(2008)
Am. J. Physiol. Heart Circ. Physiol.
, vol.294
-
-
Pillai, J.B.1
Chen, M.2
Rajamohan, S.B.3
Samant, S.4
Pillai, V.B.5
Gupta, M.6
Gupta, M.P.7
-
48
-
-
77957828102
-
Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation
-
T. H. Schreiber, D. Wolf, M. S. Tsai, J. Chirinos, V. V. Deyev, L. Gonzalez, T. R. Malek, R. B. Levy, E. R. Podack, Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J. Clin. Invest. 120, 3629-3640 (2010).
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 3629-3640
-
-
Schreiber, T.H.1
Wolf, D.2
Tsai, M.S.3
Chirinos, J.4
Deyev, V.V.5
Gonzalez, L.6
Malek, T.R.7
Levy, R.B.8
Podack, E.R.9
-
49
-
-
67651210858
-
SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1
-
S. B. Rajamohan, V. B. Pillai, M. Gupta, N. R. Sundaresan, K. G. Birukov, S. Samant, M. O. Hottiger, M. P. Gupta, SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol. Cell. Biol. 29, 4116-4129 (2009).
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4116-4129
-
-
Rajamohan, S.B.1
Pillai, V.B.2
Gupta, M.3
Sundaresan, N.R.4
Birukov, K.G.5
Samant, S.6
Hottiger, M.O.7
Gupta, M.P.8
-
50
-
-
53549105529
-
SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
-
N. R. Sundaresan, S. A. Samant, V. B. Pillai, S. B. Rajamohan, M. P. Gupta, SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell. Biol. 28, 6384-6401 (2008).
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6384-6401
-
-
Sundaresan, N.R.1
Samant, S.A.2
Pillai, V.B.3
Rajamohan, S.B.4
Gupta, M.P.5
-
51
-
-
44349184388
-
HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity
-
M. P. Gupta, S. A. Samant, S. H. Smith, S. G. Shroff, HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J. Biol. Chem. 283, 10135-10146 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10135-10146
-
-
Gupta, M.P.1
Samant, S.A.2
Smith, S.H.3
Shroff, S.G.4
-
52
-
-
77449120223
-
Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
-
V. B. Pillai, N. R. Sundaresan, G. Kim, M. Gupta, S. B. Rajamohan, J. B. Pillai, S. Samant, P. V. Ravindra, A. Isbatan, M. P. Gupta, Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 285, 3133-3144 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3133-3144
-
-
Pillai, V.B.1
Sundaresan, N.R.2
Kim, G.3
Gupta, M.4
Rajamohan, S.B.5
Pillai, J.B.6
Samant, S.7
Ravindra, P.V.8
Isbatan, A.9
Gupta, M.P.10
-
53
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
N. R. Sundaresan, M. Gupta, G. Kim, S. B. Rajamohan, A. Isbatan, M. P. Gupta, Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119, 2758-2771 (2009).
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
54
-
-
0242468741
-
Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change
-
C. C. Milburn, M. Deak, S. M. Kelly, N. C. Price, D. R. Alessi, D. M. Van Aalten, Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. Biochem. J. 375, 531-538 (2003).
-
(2003)
Biochem. J.
, vol.375
, pp. 531-538
-
-
Milburn, C.C.1
Deak, M.2
Kelly, S.M.3
Price, N.C.4
Alessi, D.R.5
Van Aalten, D.M.6
-
55
-
-
79960632495
-
-
note
-
Acknowledgments: We thank B.-C. He for his technical help in injecting cells in nude mice. We are also grateful to W. McBurney (University of Ottawa, Canada) for providing SIRT1-KO mice. Adenovirus vectors synthesizing shRNA against p300 and SIRT1 were provided by B. Thimmapaya (Northwestern University, Chicago, IL) and P. Puigserver (Harvard Medical School, Boston, MA), respectively. Funding: This study was supported by NIH grants RO1 HL-77788 and HL-83423 to M.P.G. N.R.S. was supported by a postdoctoral fellowship grant from the American Heart Association. Author contributions: Most of the experiments in this study were done by N.R.S. V.B.P. performed time course and cellular NAD/NADH ratio experiments. J.M.C. was involved in the planning of experiments related to cancer growth. D.W. did MS/MS analysis. S.S. was involved in creating Akt mutants and performed GST pull-down assays and localization experiments. P.V. and V.P. worked in the laboratory of J.M.C. and did experiments related to cancer cell growth and tumorigenesis. H.R. generated in silico models showing interaction of the PH domain of Akt and PDK1 with PIP3. M.G. analyzed cardiac hypertrophy in mice. M.P.G. coordinated with different investigators and prepared the manuscript. Competing interests: The authors declare that they have no competing interests. Data availability: The MS data associated with this manuscript may be downloaded from the Proteome Commons Tranche repository at https:// proteomecommons.org/tranche/ (Tranche hash: Ar624VS4wP/z/ 2MG7dPnqkgNsh0iEiT/ 3943A7xZPQcseJLI+2oV1fsnC7Ti0sqKiWK8l3b2E86cdwPfw6BgPQ2Tc+EAAAAAAAACFQ==).
-
-
-
|