-
1
-
-
0037312020
-
How does calorie restriction work?
-
DOI 10.1101/gad.1052903
-
Koubova J, Guarente L. How does calorie restriction work? Genes Dev. 2003;17(3):313-321. (Pubitemid 36182188)
-
(2003)
Genes and Development
, vol.17
, Issue.3
, pp. 313-321
-
-
Koubova, J.1
Guarente, L.2
-
2
-
-
84866163081
-
Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study
-
Mattison JA, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature. 2012;489(7415):318-321.
-
(2012)
Nature
, vol.489
, Issue.7415
, pp. 318-321
-
-
Mattison, J.A.1
-
3
-
-
67650439330
-
Caloric restriction delays disease onset and mortality in rhesus monkeys
-
Colman RJ, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201-204.
-
(2009)
Science
, vol.325
, Issue.5937
, pp. 201-204
-
-
Colman, R.J.1
-
4
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
DOI 10.1101/gad.13.19.2570
-
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570-2580. (Pubitemid 29489648)
-
(1999)
Genes and Development
, vol.13
, Issue.19
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
5
-
-
33846583673
-
SIR2: A potential target for calorie restriction mimetics
-
DOI 10.1016/j.molmed.2006.12.004, PII S1471491406002863
-
Chen D, Guarente L. SIR2: a potential target for calorie restriction mimetics. Trends Mol Med. 2007; 13(2):64-71. (Pubitemid 46186153)
-
(2007)
Trends in Molecular Medicine
, vol.13
, Issue.2
, pp. 64-71
-
-
Chen, D.1
Guarente, L.2
-
6
-
-
80053168829
-
Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
-
Burnett C, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011;477(7365):482-485.
-
(2011)
Nature
, vol.477
, Issue.7365
, pp. 482-485
-
-
Burnett, C.1
-
7
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
DOI 10.1006/bbrc.2000.3000
-
Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2):793-798. (Pubitemid 30599063)
-
(2000)
Biochemical and Biophysical Research Communications
, vol.273
, Issue.2
, pp. 793-798
-
-
Frye, R.A.1
-
9
-
-
33748316536
-
SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells
-
DOI 10.1016/j.cell.2006.06.057, PII S0092867406010208
-
Haigis MC, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126(5):941-954. (Pubitemid 44321935)
-
(2006)
Cell
, vol.126
, Issue.5
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
Murphy, AndrewJ.6
Valenzuela, D.M.7
Yancopoulos, G.D.8
Karow, M.9
Blander, G.10
Wolberger, C.11
Prolla, T.A.12
Weindruch, R.13
Alt, F.W.14
Guarente, L.15
-
10
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
Du J, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057):806-809.
-
(2011)
Science
, vol.334
, Issue.6057
, pp. 806-809
-
-
Du, J.1
-
11
-
-
83055173304
-
The first identification of lysine malonylation substrates and its regulatory enzyme
-
Peng C, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011;10(12):M111.012658.
-
(2011)
Mol Cell Proteomics
, vol.10
, Issue.12
-
-
Peng, C.1
-
12
-
-
84858796367
-
A two-way street: Reciprocal regulation of metabolism and signalling
-
Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. 2012;13(4):270-276.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, Issue.4
, pp. 270-276
-
-
Wellen, K.E.1
Thompson, C.B.2
-
13
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey MD, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464(7285):121-125.
-
(2010)
Nature
, vol.464
, Issue.7285
, pp. 121-125
-
-
Hirschey, M.D.1
-
14
-
-
33746992118
-
Substrate and Functional Diversity of Lysine Acetylation Revealed by a Proteomics Survey
-
DOI 10.1016/j.molcel.2006.06.026, PII S1097276506004540
-
Kim SC, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006;23(4):607-618. (Pubitemid 44205490)
-
(2006)
Molecular Cell
, vol.23
, Issue.4
, pp. 607-618
-
-
Kim, S.C.1
Sprung, R.2
Chen, Y.3
Xu, Y.4
Ball, H.5
Pei, J.6
Cheng, T.7
Kho, Y.8
Xiao, H.9
Xiao, L.10
Grishin, N.V.11
White, M.12
Yang, X.-J.13
Zhao, Y.14
-
15
-
-
80052450371
-
The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching
-
Yang L, et al. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J Proteome Res. 2011;10(9):4134-4149.
-
(2011)
J Proteome Res
, vol.10
, Issue.9
, pp. 4134-4149
-
-
Yang, L.1
-
16
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
Herranz D, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010;1:3.
-
(2010)
Nat Commun
, vol.1
, pp. 3
-
-
Herranz, D.1
-
17
-
-
31044445366
-
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
-
DOI 10.1016/j.cell.2005.11.044, PII S0092867406000493
-
Mostoslavsky R, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315-329. (Pubitemid 43121980)
-
(2006)
Cell
, vol.124
, Issue.2
, pp. 315-329
-
-
Mostoslavsky, R.1
Chua, K.F.2
Lombard, D.B.3
Pang, W.W.4
Fischer, M.R.5
Gellon, L.6
Liu, P.7
Mostoslavsky, G.8
Franco, S.9
Murphy, M.M.10
Mills, K.D.11
Patel, P.12
Hsu, J.T.13
Hong, A.L.14
Ford, E.15
Cheng, H.-L.16
Kennedy, C.17
Nunez, N.18
Bronson, R.19
Frendewey, D.20
Auerbach, W.21
Valenzuela, D.22
Karow, M.23
Hottiger, M.O.24
Hursting, S.25
Barrett, J.C.26
Guarente, L.27
Mulligan, R.28
Demple, B.29
Yancopoulos, G.D.30
Alt, F.W.31
more..
-
18
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi Y, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218-221.
-
(2012)
Nature
, vol.483
, Issue.7388
, pp. 218-221
-
-
Kanfi, Y.1
-
19
-
-
33845208684
-
Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13
-
DOI 10.1016/j.ygeno.2006.09.004, PII S0888754306002709
-
Bellizzi D, et al. Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13. Genomics. 2007; 89(1):143-150. (Pubitemid 44856231)
-
(2007)
Genomics
, vol.89
, Issue.1
, pp. 143-150
-
-
Bellizzi, D.1
Dato, S.2
Cavalcante, P.3
Covello, G.4
Di Cianni, F.5
Passarino, G.6
Rose, G.7
De Benedictis, G.8
-
20
-
-
19944433088
-
A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages
-
DOI 10.1016/j.ygeno.2004.11.003, PII S0888754304003088
-
Bellizzi D, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85(2):258-263. (Pubitemid 40164791)
-
(2005)
Genomics
, vol.85
, Issue.2
, pp. 258-263
-
-
Bellizzi, D.1
Rose, G.2
Cavalcante, P.3
Covello, G.4
Dato, S.5
De Rango, F.6
Greco, V.7
Maggiolini, M.8
Feraco, E.9
Mari, V.10
Franceschi, C.11
Passarino, G.12
De Benedictis, G.13
-
21
-
-
10744232772
-
Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly
-
DOI 10.1016/S0531-5565(03)00209-2
-
Rose G, et al. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly. Exp Gerontol. 2003; 38(10):1065-1070. (Pubitemid 37324417)
-
(2003)
Experimental Gerontology
, vol.38
, Issue.10
, pp. 1065-1070
-
-
Rose, G.1
Dato, S.2
Altomare, K.3
Bellizzi, D.4
Garasto, S.5
Greco, V.6
Passarino, G.7
Feraco, E.8
Mari, V.9
Barbi, C.10
BonaFe, M.11
Franceschi, C.12
Tan, Q.13
Boiko, S.14
Yashin, A.I.15
De Benedictis, G.16
-
22
-
-
70350365059
-
Human longevity and 11p15.5: A study in 1321 centenarians
-
Lescai F, et al. Human longevity and 11p15.5: a study in 1321 centenarians. Eur J Hum Genet. 2009; 17(11):1515-1519.
-
(2009)
Eur J Hum Genet
, vol.17
, Issue.11
, pp. 1515-1519
-
-
Lescai, F.1
-
23
-
-
78751506349
-
Catalysis and mechanistic insights into sirtuin activation
-
Dittenhafer-Reed KE, Feldman JL, Denu JM. Catalysis and mechanistic insights into sirtuin activation. Chembiochem. 2011;12(2):281-289.
-
(2011)
Chembiochem
, vol.12
, Issue.2
, pp. 281-289
-
-
Dittenhafer-Reed, K.E.1
Feldman, J.L.2
Denu, J.M.3
-
24
-
-
0029366170
-
Body habitus changes among adult males from the normative aging study: Relations to aging, smoking history and alcohol intake
-
Grinker JA, Tucker K, Vokonas PS, Rush D. Body habitus changes among adult males from the normative aging study: relations to aging, smoking history and alcohol intake. Obes Res. 1995;3(5):435-446.
-
(1995)
Obes Res
, vol.3
, Issue.5
, pp. 435-446
-
-
Grinker, J.A.1
Tucker, K.2
Vokonas, P.S.3
Rush, D.4
-
26
-
-
84867414867
-
Nutrient-dependent acetylation controls basic regulatory metabolic switches and cellular reprogramming
-
Dominy JE, Gerhart-Hines Z, Puigserver P. Nutrient-dependent acetylation controls basic regulatory metabolic switches and cellular reprogramming. Cold Spring Harb Symp Quant Biol. 2011;76:203-209.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 203-209
-
-
Dominy, J.E.1
Gerhart-Hines, Z.2
Puigserver, P.3
-
27
-
-
84255198350
-
The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+)
-
Gerhart-Hines Z, et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell. 2011;44(6):851-863.
-
(2011)
Mol Cell
, vol.44
, Issue.6
, pp. 851-863
-
-
Gerhart-Hines, Z.1
-
28
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α
-
DOI 10.1038/sj.emboj.7601633, PII 7601633
-
Gerhart-Hines Z, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007; 26(7):1913-1923. (Pubitemid 46624046)
-
(2007)
EMBO Journal
, vol.26
, Issue.7
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.-H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
29
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056-1060.
-
(2009)
Nature
, vol.458
, Issue.7241
, pp. 1056-1060
-
-
Canto, C.1
-
30
-
-
84864615516
-
Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma
-
Qiang L, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell. 2012;150(3):620-632.
-
(2012)
Cell
, vol.150
, Issue.3
, pp. 620-632
-
-
Qiang, L.1
-
31
-
-
44149113548
-
Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex
-
DOI 10.1101/gad.1666108
-
Kajimura S, et al. Regulation of the brown and white fat gene programs through a PRDM16/ CtBP transcriptional complex. Genes Dev. 2008; 22(10):1397-1409. (Pubitemid 351717529)
-
(2008)
Genes and Development
, vol.22
, Issue.10
, pp. 1397-1409
-
-
Kajimura, S.1
Seale, P.2
Tomaru, T.3
Erdjument-Bromage, H.4
Cooper, M.P.5
Ruas, J.L.6
Chin, S.7
Tempst, P.8
Lazar, M.A.9
Spiegelman, B.M.10
-
32
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks AS, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008;8(4):333-341.
-
(2008)
Cell Metab
, vol.8
, Issue.4
, pp. 333-341
-
-
Banks, A.S.1
-
33
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
DOI 10.1073/pnas.0802917105
-
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirt1 protects against high-fat dietinduced metabolic damage. Proc Natl Acad Sci U S A. 2008;105(28):9793-9798. (Pubitemid 352031379)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.28
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschop, M.H.5
-
34
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucosestimulated insulin secretion in mice
-
Moynihan KA, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucosestimulated insulin secretion in mice. Cell Metab. 2005;2(2):105-117.
-
(2005)
Cell Metab
, vol.2
, Issue.2
, pp. 105-117
-
-
Moynihan, K.A.1
-
35
-
-
78650861804
-
Intra-arterial targeted islet-specific expression of Sirt1 protects beta cells from streptozotocin-induced apoptosis in mice
-
Tang MM, et al. Intra-arterial targeted islet-specific expression of Sirt1 protects beta cells from streptozotocin-induced apoptosis in mice. Mol Ther. 2011; 19(1):60-66.
-
(2011)
Mol Ther
, vol.19
, Issue.1
, pp. 60-66
-
-
Tang, M.M.1
-
36
-
-
82255164629
-
SirT1 regulates adipose tissue inflammation
-
Gillum MP, et al. SirT1 regulates adipose tissue inflammation. Diabetes. 2011;60(12):3235-3245.
-
(2011)
Diabetes
, vol.60
, Issue.12
, pp. 3235-3245
-
-
Gillum, M.P.1
-
37
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9(4):327-338.
-
(2009)
Cell Metab
, vol.9
, Issue.4
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
38
-
-
78650533816
-
Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition
-
Wang RH, Li C, Deng CX. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int J Biol Sci. 2010;6(7):682-690.
-
(2010)
Int J Biol Sci
, vol.6
, Issue.7
, pp. 682-690
-
-
Wang, R.H.1
Li, C.2
Deng, C.X.3
-
39
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
DOI 10.1038/nature06261, PII NATURE06261
-
Milne JC, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712-716. (Pubitemid 350207685)
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
Bemis, J.E.11
Xie, R.12
Disch, J.S.13
Ng, P.Y.14
Nunes, J.J.15
Lynch, A.V.16
Yang, H.17
Galonek, H.18
Israelian, K.19
Choy, W.20
Iffland, A.21
Lavu, S.22
Medvedik, O.23
Sinclair, D.A.24
Olefsky, J.M.25
Jirousek, M.R.26
Elliott, P.J.27
Westphal, C.H.28
more..
-
40
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige JN, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008;8(5):347-358.
-
(2008)
Cell Metab
, vol.8
, Issue.5
, pp. 347-358
-
-
Feige, J.N.1
-
41
-
-
84859909860
-
SRT1720 improves survival and healthspan of obese mice
-
Minor RK, et al. SRT1720 improves survival and healthspan of obese mice. Sci Rep. 2011;1:70.
-
(2011)
Sci Rep
, vol.1
, pp. 70
-
-
Minor, R.K.1
-
42
-
-
80455143206
-
Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans
-
Timmers S, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612-622.
-
(2011)
Cell Metab
, vol.14
, Issue.5
, pp. 612-622
-
-
Timmers, S.1
-
43
-
-
84861852370
-
Are sirtuins viable targets for improving healthspan and lifespan?
-
Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov. 2012;11(6):443-461.
-
(2012)
Nat Rev Drug Discov
, vol.11
, Issue.6
, pp. 443-461
-
-
Baur, J.A.1
Ungvari, Z.2
Minor, R.K.3
Le Couteur, D.G.4
De Cabo, R.5
-
44
-
-
78751663378
-
SIRT1 modulation as a novel approach to the treatment of diseases of aging
-
Blum CA, Ellis JL, Loh C, Ng PY, Perni RB, Stein RL. SIRT1 modulation as a novel approach to the treatment of diseases of aging. J Med Chem. 2011; 54(2):417-432.
-
(2011)
J Med Chem
, vol.54
, Issue.2
, pp. 417-432
-
-
Blum, C.A.1
Ellis, J.L.2
Loh, C.3
Ng, P.Y.4
Perni, R.B.5
Stein, R.L.6
-
45
-
-
67650488877
-
SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats
-
Erion DM, et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A. 2009;106(27):11288-11293.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.27
, pp. 11288-11293
-
-
Erion, D.M.1
-
47
-
-
82955169641
-
Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation
-
Qiang L, Lin HV, Kim-Muller JY, Welch CL, Gu W, Accili D. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab. 2011;14(6):758-767.
-
(2011)
Cell Metab
, vol.14
, Issue.6
, pp. 758-767
-
-
Qiang, L.1
Lin, H.V.2
Kim-Muller, J.Y.3
Welch, C.L.4
Gu, W.5
Accili, D.6
-
48
-
-
34948883324
-
SIRT1 deacetylates and positively regulates the nuclear receptor LXR
-
DOI 10.1016/j.molcel.2007.07.032, PII S109727650700620X
-
Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007;28(1):91-106. (Pubitemid 47531974)
-
(2007)
Molecular Cell
, vol.28
, Issue.1
, pp. 91-106
-
-
Li, X.1
Zhang, S.2
Blander, G.3
Tse, J.G.4
Krieger, M.5
Guarente, L.6
-
49
-
-
34447626095
-
SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
-
DOI 10.1111/j.1474-9726.2007.00304.x
-
Wang F, Nguyen M, Qin FX, Tong Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007;6(4):505-514. (Pubitemid 47087055)
-
(2007)
Aging Cell
, vol.6
, Issue.4
, pp. 505-514
-
-
Wang, F.1
Nguyen, M.2
Qin, F.X.-F.3
Tong, Q.4
-
50
-
-
84856628731
-
Dietary obesity-associated Hif1alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system
-
Krishnan J, et al. Dietary obesity-associated Hif1alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev. 2012;26(3):259-270.
-
(2012)
Genes Dev
, vol.26
, Issue.3
, pp. 259-270
-
-
Krishnan, J.1
-
51
-
-
34547397081
-
SIRT2 Regulates Adipocyte Differentiation through FoxO1 Acetylation/Deacetylation
-
DOI 10.1016/j.cmet.2007.07.003, PII S155041310700191X
-
Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/ deacetylation. Cell Metab. 2007;6(2):105-114. (Pubitemid 47163621)
-
(2007)
Cell Metabolism
, vol.6
, Issue.2
, pp. 105-114
-
-
Jing, E.1
Gesta, S.2
Kahn, C.R.3
-
52
-
-
64049089450
-
SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma
-
Wang F, Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Mol Biol Cell. 2009;20(3):801-808.
-
(2009)
Mol Biol Cell
, vol.20
, Issue.3
, pp. 801-808
-
-
Wang, F.1
Tong, Q.2
-
53
-
-
80054746880
-
Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation
-
Lombard DB, Tishkoff DX, Bao J. Mitochondrial sirtuins in the regulation of mitochondrial activity and metabolic adaptation. Handb Exp Pharmacol. 2011;206:163-188.
-
(2011)
Handb Exp Pharmacol
, vol.206
, pp. 163-188
-
-
Lombard, D.B.1
Tishkoff, D.X.2
Bao, J.3
-
54
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
-
Palacios OM, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY). 2009;1(9):771-783.
-
(2009)
Aging (Albany NY)
, vol.1
, Issue.9
, pp. 771-783
-
-
Palacios, O.M.1
-
55
-
-
73949123433
-
Calorie restriction alters mitochondrial protein acetylation
-
Schwer B, et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell. 2009;8(5):604-606.
-
(2009)
Aging Cell
, vol.8
, Issue.5
, pp. 604-606
-
-
Schwer, B.1
-
56
-
-
17144424946
-
SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes
-
DOI 10.1074/jbc.M414670200
-
Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005;280(14):13560-13567. (Pubitemid 40517248)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.14
, pp. 13560-13567
-
-
Shi, T.1
Wang, F.2
Stieren, E.3
Tong, Q.4
-
57
-
-
77956173286
-
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
-
Bao J, et al. SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic Biol Med. 2010;49(7):1230-1237.
-
(2010)
Free Radic Biol Med
, vol.49
, Issue.7
, pp. 1230-1237
-
-
Bao, J.1
-
58
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick AA, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 2011;433(3):505-514.
-
(2011)
Biochem J
, vol.433
, Issue.3
, pp. 505-514
-
-
Kendrick, A.A.1
-
59
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey MD, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011;44(2):177-190.
-
(2011)
Mol Cell
, vol.44
, Issue.2
, pp. 177-190
-
-
Hirschey, M.D.1
-
60
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
Jing E, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci U S A. 2011; 108(35):14608-14613.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, Issue.35
, pp. 14608-14613
-
-
Jing, E.1
-
61
-
-
9344237090
-
Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: An in vivo analysis in MIRKO mice
-
DOI 10.1073/pnas.0407574101
-
Yechoor VK, et al. Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: an in vivo analysis in MIRKO mice. Proc Natl Acad Sci U S A. 2004;101(47):16525-16530. (Pubitemid 39557746)
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.47
, pp. 16525-16530
-
-
Yechoor, V.K.1
Patti, M.-E.2
Ueki, K.3
Laustsen, P.G.4
Saccone, R.5
Rauniyar, R.6
Kahn, C.R.7
-
62
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Shimazu T, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3- methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010;12(6):654-661.
-
(2010)
Cell Metab
, vol.12
, Issue.6
, pp. 654-661
-
-
Shimazu, T.1
-
63
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn BH, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105(38):14447- 14452.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.38
, pp. 14447-14452
-
-
Ahn, B.H.1
-
64
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim HS, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010;17(1):41-52.
-
(2010)
Cancer Cell
, vol.17
, Issue.1
, pp. 41-52
-
-
Kim, H.S.1
-
65
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry. 2010;49(2):304-311.
-
(2010)
Biochemistry
, vol.49
, Issue.2
, pp. 304-311
-
-
Cimen, H.1
Han, M.J.2
Yang, Y.3
Tong, Q.4
Koc, H.5
Koc, E.C.6
-
66
-
-
84861589885
-
Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
-
Fernandez-Marcos PJ, et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci Rep. 2012;2:425.
-
(2012)
Sci Rep
, vol.2
, pp. 425
-
-
Fernandez-Marcos, P.J.1
-
67
-
-
77957762687
-
SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
-
Nasrin N, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010;285(42):31995- 32002.
-
(2010)
J Biol Chem
, vol.285
, Issue.42
, pp. 31995-32002
-
-
Nasrin, N.1
-
68
-
-
65249087389
-
SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137(3):560-570.
-
(2009)
Cell
, vol.137
, Issue.3
, pp. 560-570
-
-
Nakagawa, T.1
Lomb, D.J.2
Haigis, M.C.3
Guarente, L.4
-
69
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard DB, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27(24):8807-8814.
-
(2007)
Mol Cell Biol
, vol.27
, Issue.24
, pp. 8807-8814
-
-
Lombard, D.B.1
-
70
-
-
74549142287
-
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
-
Zhong L, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 2010;140(2):280-293.
-
(2010)
Cell
, vol.140
, Issue.2
, pp. 280-293
-
-
Zhong, L.1
-
71
-
-
77956315551
-
Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
-
Kim HS, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12(3):224-236.
-
(2010)
Cell Metab
, vol.12
, Issue.3
, pp. 224-236
-
-
Kim, H.S.1
-
72
-
-
78650724968
-
Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
-
Schwer B, et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci U S A. 2010;107(50):21790-21794.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.50
, pp. 21790-21794
-
-
Schwer, B.1
-
73
-
-
77953244349
-
SIRT6 protects against pathological damage caused by diet-induced obesity
-
Kanfi Y, et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell. 2010;9(2):162-173.
-
(2010)
Aging Cell
, vol.9
, Issue.2
, pp. 162-173
-
-
Kanfi, Y.1
-
74
-
-
58149090925
-
SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
-
Kawahara TL, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell. 2009; 136(1):62-74.
-
(2009)
Cell
, vol.136
, Issue.1
, pp. 62-74
-
-
Kawahara, T.L.1
-
75
-
-
77956550868
-
Human SIRT6 promotes DNA end resection through CtIP deacetylation
-
Kaidi A, Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010; 329(5997):1348-1353.
-
(2010)
Science
, vol.329
, Issue.5997
, pp. 1348-1353
-
-
Kaidi, A.1
Weinert, B.T.2
Choudhary, C.3
Jackson, S.P.4
-
76
-
-
69249229772
-
The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability
-
Yang B, Zwaans BM, Eckersdorff M, Lombard DB. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle. 2009;8(16):2662-2663.
-
(2009)
Cell Cycle
, vol.8
, Issue.16
, pp. 2662-2663
-
-
Yang, B.1
Zwaans, B.M.2
Eckersdorff, M.3
Lombard, D.B.4
-
77
-
-
69249221533
-
Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
-
Michishita E, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 2009;8(16):2664-2666.
-
(2009)
Cell Cycle
, vol.8
, Issue.16
, pp. 2664-2666
-
-
Michishita, E.1
-
78
-
-
34249669270
-
Sirt1 regulates aging and resistance to oxidative stress in the heart
-
DOI 10.1161/01.RES.0000267723.65696.4a
-
Alcendor RR, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100(10):1512-1521. (Pubitemid 46834764)
-
(2007)
Circulation Research
, vol.100
, Issue.10
, pp. 1512-1521
-
-
Alcendor, R.R.1
Gao, S.2
Zhai, P.3
Zablocki, D.4
Holle, E.5
Yu, X.6
Tian, B.7
Wagner, T.8
Vatner, S.F.9
Sadoshima, J.10
-
79
-
-
54149103338
-
Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice
-
Zhang QJ, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res. 2008;80(2):191-199.
-
(2008)
Cardiovasc Res
, vol.80
, Issue.2
, pp. 191-199
-
-
Zhang, Q.J.1
-
80
-
-
77956901469
-
SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis
-
Stein S, et al. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J. 2010;31(18):2301-2309.
-
(2010)
Eur Heart J
, vol.31
, Issue.18
, pp. 2301-2309
-
-
Stein, S.1
-
81
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3adependent antioxidant defense mechanisms in mice
-
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3adependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119(9):2758-2771.
-
(2009)
J Clin Invest
, vol.119
, Issue.9
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
82
-
-
79952266729
-
Regulation of the mPTP by SIRT3- mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
-
Hafner AV, et al. Regulation of the mPTP by SIRT3- mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY). 2010;2(12):914-923.
-
(2010)
Aging (Albany NY)
, vol.2
, Issue.12
, pp. 914-923
-
-
Hafner, A.V.1
-
83
-
-
41449083867
-
Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
-
DOI 10.1161/CIRCRESAHA.107.164558
-
Vakhrusheva O, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102(6):703-710. (Pubitemid 351457857)
-
(2008)
Circulation Research
, vol.102
, Issue.6
, pp. 703-710
-
-
Vakhrusheva, O.1
Smolka, C.2
Gajawada, P.3
Kostin, S.4
Boettger, T.5
Kubin, T.6
Braun, T.7
Bober, E.8
-
84
-
-
34547100073
-
SIRT1 is significantly elevated in mouse and human prostate cancer
-
DOI 10.1158/0008-5472.CAN-07-0085
-
Huffman DM, et al. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 2007;67(14):6612-6618. (Pubitemid 47105506)
-
(2007)
Cancer Research
, vol.67
, Issue.14
, pp. 6612-6618
-
-
Huffman, D.M.1
Grizzle, W.E.2
Bamman, M.M.3
Kim, J.-S.4
Eltoum, I.A.5
Elgavish, A.6
Nagy, T.R.7
-
85
-
-
27144475816
-
Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors
-
DOI 10.1038/sj.leu.2403910, PII 2403910
-
Bradbury CA, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005; 19(10):1751-1759. (Pubitemid 41486152)
-
(2005)
Leukemia
, vol.19
, Issue.10
, pp. 1751-1759
-
-
Bradbury, C.A.1
Khanim, F.L.2
Hayden, R.3
Bunce, C.M.4
White, D.A.5
Drayson, M.T.6
Craddock, C.7
Turner, B.M.8
-
86
-
-
36549044009
-
Function of the SIRTI protein deacetylase in cancer
-
DOI 10.1002/biot.200700087
-
Stunkel W, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J. 2007;2(11):1360-1368. (Pubitemid 350176266)
-
(2007)
Biotechnology Journal
, vol.2
, Issue.11
, pp. 1360-1368
-
-
Stunkel, W.1
Peh, B.K.2
Tan, Y.C.3
Nayagam, V.M.4
Wang, X.5
Salto-Tellez, M.6
Ni, B.H.7
Entzeroth, M.8
Wood, J.9
-
87
-
-
34247570492
-
Strong expression of a longevity-related protein, SIRT1, in Bowen's disease
-
DOI 10.1007/s00403-006-0725-6
-
Hida Y, Kubo Y, Murao K, Arase S. Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res. 2007;299(2):103-106. (Pubitemid 46669407)
-
(2007)
Archives of Dermatological Research
, vol.299
, Issue.2
, pp. 103-106
-
-
Hida, Y.1
Kubo, Y.2
Murao, K.3
Arase, S.4
-
88
-
-
28544444366
-
Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival
-
DOI 10.1158/0008-5472.CAN-05-1923
-
Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 2005;65(22):10457-10463. (Pubitemid 41743740)
-
(2005)
Cancer Research
, vol.65
, Issue.22
, pp. 10457-10463
-
-
Ford, J.1
Jiang, M.2
Milner, J.3
-
89
-
-
33646254136
-
Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes
-
Heltweg B, et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 2006;66(8):4368-4377.
-
(2006)
Cancer Res
, vol.66
, Issue.8
, pp. 4368-4377
-
-
Heltweg, B.1
-
90
-
-
30544445468
-
Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells
-
DOI 10.1038/sj.onc.1209049, PII 1209049
-
Ota H, et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene. 2006;25(2):176-185. (Pubitemid 43083679)
-
(2006)
Oncogene
, vol.25
, Issue.2
, pp. 176-185
-
-
Ota, H.1
Tokunaga, E.2
Chang, K.3
Hikasa, M.4
Iijima, K.5
Eto, M.6
Kozaki, K.7
Akishita, M.8
Ouchi, Y.9
Kaneki, M.10
-
91
-
-
42949114938
-
Discovery, In Vivo Activity, and Mechanism of Action of a Small-Molecule p53 Activator
-
DOI 10.1016/j.ccr.2008.03.004, PII S1535610808000895
-
Lain S, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13(5):454-463. (Pubitemid 351609441)
-
(2008)
Cancer Cell
, vol.13
, Issue.5
, pp. 454-463
-
-
Lain, S.1
Hollick, J.J.2
Campbell, J.3
Staples, O.D.4
Higgins, M.5
Aoubala, M.6
McCarthy, A.7
Appleyard, V.8
Murray, K.E.9
Baker, L.10
Thompson, A.11
Mathers, J.12
Holland, S.J.13
Stark, M.J.R.14
Pass, G.15
Woods, J.16
Lane, D.P.17
Westwood, N.J.18
-
92
-
-
84860740807
-
SRT1720, a SIRT1 activator, promotes tumor cell migration, and lung metastasis of breast cancer in mice
-
Suzuki K, et al. SRT1720, a SIRT1 activator, promotes tumor cell migration, and lung metastasis of breast cancer in mice. Oncology reports. 2012; 27(6):1726-1732.
-
(2012)
Oncology Reports
, vol.27
, Issue.6
, pp. 1726-1732
-
-
Suzuki, K.1
-
93
-
-
79955469653
-
Sirtuin 1 in malignant transformation: Friend or foe?
-
Fang Y, Nicholl MB. Sirtuin 1 in malignant transformation: friend or foe? Cancer Lett. 2011;306(1):10-14.
-
(2011)
Cancer Lett
, vol.306
, Issue.1
, pp. 10-14
-
-
Fang, Y.1
Nicholl, M.B.2
-
94
-
-
53149144656
-
Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis
-
Wang RH, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell. 2008;32(1):11-20.
-
(2008)
Mol Cell
, vol.32
, Issue.1
, pp. 11-20
-
-
Wang, R.H.1
-
95
-
-
77955499804
-
Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
-
Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38(6):864-878.
-
(2010)
Mol Cell
, vol.38
, Issue.6
, pp. 864-878
-
-
Lim, J.H.1
Lee, Y.M.2
Chun, Y.S.3
Chen, J.4
Kim, J.E.5
Park, J.W.6
-
96
-
-
44849096876
-
The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
-
Firestein R, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PloS One. 2008;3(4):e2020.
-
(2008)
PloS One
, vol.3
, Issue.4
-
-
Firestein, R.1
-
97
-
-
53149137486
-
Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
-
Wang RH, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14(4):312-323.
-
(2008)
Cancer Cell.
, vol.14
, Issue.4
, pp. 312-323
-
-
Wang, R.H.1
-
98
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
Herranz D, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010;1:3.
-
(2010)
Nat Commun
, vol.1
, pp. 3
-
-
Herranz, D.1
-
99
-
-
34547098165
-
Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation
-
DOI 10.1074/jbc.M702990200
-
North BJ, Verdin E. Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J Biol Chem. 2007;282(27):19546-19555. (Pubitemid 47100062)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.27
, pp. 19546-19555
-
-
North, B.J.1
Verdin, E.2
-
100
-
-
40849113090
-
The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility
-
DOI 10.1083/jcb.200707126
-
Pandithage R, et al. The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol. 2008;180(5):915-929. (Pubitemid 351398419)
-
(2008)
Journal of Cell Biology
, vol.180
, Issue.5
, pp. 915-929
-
-
Pandithage, R.1
Lilischkis, R.2
Harting, K.3
Wolf, A.4
Jedamzik, B.5
Luscher-Firzlaff, J.6
Vervoorts, J.7
Lasonder, E.8
Kremmer, E.9
Knoll, B.10
Luscher, B.11
-
101
-
-
0037405043
-
Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle
-
DOI 10.1128/MCB.23.9.3173-3185.2003
-
Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003;23(9):3173-3185. (Pubitemid 36459231)
-
(2003)
Molecular and Cellular Biology
, vol.23
, Issue.9
, pp. 3173-3185
-
-
Dryden, S.C.1
Nahhas, F.A.2
Nowak, J.E.3
Goustin, A.-S.4
Tainsky, M.A.5
-
102
-
-
65549113750
-
CBP/ p300-mediated acetylation of histone H3 on lysine 56
-
Das C, Lucia MS, Hansen KC, Tyler JK. CBP/ p300-mediated acetylation of histone H3 on lysine 56. Nature. 2009;459(7243):113-117.
-
(2009)
Nature
, vol.459
, Issue.7243
, pp. 113-117
-
-
Das, C.1
Lucia, M.S.2
Hansen, K.C.3
Tyler, J.K.4
-
103
-
-
33646550204
-
SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
-
DOI 10.1101/gad.1412706
-
Vaquero A, et al. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006;20(10):1256-1261. (Pubitemid 43727586)
-
(2006)
Genes and Development
, vol.20
, Issue.10
, pp. 1256-1261
-
-
Vaquero, A.1
Scher, M.B.2
Dong, H.L.3
Sutton, A.4
Cheng, H.-L.5
Alt, F.W.6
Serrano, L.7
Sternglanz, R.8
Reinberg, D.9
-
104
-
-
80054769188
-
SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
-
Kim HS, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011;20(4):487-499.
-
(2011)
Cancer Cell
, vol.20
, Issue.4
, pp. 487-499
-
-
Kim, H.S.1
-
105
-
-
39749143163
-
Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53
-
Jin YH, et al. Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun. 2008;368(3):690-695.
-
(2008)
Biochem Biophys Res Commun
, vol.368
, Issue.3
, pp. 690-695
-
-
Jin, Y.H.1
-
106
-
-
84861161546
-
SIRT3 is a mitochondrial tumor suppressor: A scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis
-
Haigis MC, Deng CX, Finley LW, Kim HS, Gius D. SIRT3 is a mitochondrial tumor suppressor: a scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res. 2012;72(10):2468-2472.
-
(2012)
Cancer Res
, vol.72
, Issue.10
, pp. 2468-2472
-
-
Haigis, M.C.1
Deng, C.X.2
Finley, L.W.3
Kim, H.S.4
Gius, D.5
-
107
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
Tao R, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010; 40(6):893-904.
-
(2010)
Mol Cell
, vol.40
, Issue.6
, pp. 893-904
-
-
Tao, R.1
-
108
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010; 12(6):662-667.
-
(2010)
Cell Metab
, vol.12
, Issue.6
, pp. 662-667
-
-
Qiu, X.1
Brown, K.2
Hirschey, M.D.3
Verdin, E.4
Chen, D.5
-
109
-
-
79952501323
-
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
-
Finley LW, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell. 2011;19(3):416-428.
-
(2011)
Cancer Cell
, vol.19
, Issue.3
, pp. 416-428
-
-
Finley, L.W.1
-
110
-
-
79957441575
-
SIRT3 and cancer: Tumor promoter or suppressor?
-
Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL. SIRT3 and cancer: tumor promoter or suppressor? Biochim Biophys Acta. 2011;1816(1):80-88.
-
(2011)
Biochim Biophys Acta
, vol.1816
, Issue.1
, pp. 80-88
-
-
Alhazzazi, T.Y.1
Kamarajan, P.2
Verdin, E.3
Kapila, Y.L.4
-
111
-
-
79959363092
-
SIRT6 promotes DNA repair under stress by activating PARP1
-
Mao Z, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011; 332(6036):1443-1446.
-
(2011)
Science
, vol.332
, Issue.6036
, pp. 1443-1446
-
-
Mao, Z.1
-
112
-
-
84863453769
-
SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
-
Barber MF, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;487(7405):114-118.
-
(2012)
Nature
, vol.487
, Issue.7405
, pp. 114-118
-
-
Barber, M.F.1
-
113
-
-
65649142216
-
Global levels of histone modifications predict prognosis in different cancers
-
Seligson DB, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol. 2009;174(5):1619-1628.
-
(2009)
Am J Pathol
, vol.174
, Issue.5
, pp. 1619-1628
-
-
Seligson, D.B.1
-
114
-
-
77955046461
-
SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
-
Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell. 2010; 142(2):320-332.
-
(2010)
Cell
, vol.142
, Issue.2
, pp. 320-332
-
-
Donmez, G.1
Wang, D.2
Cohen, D.E.3
Guarente, L.4
-
115
-
-
84855563516
-
Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
-
Jeong H, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med. 2012; 18(1):159-165.
-
(2012)
Nat Med
, vol.18
, Issue.1
, pp. 159-165
-
-
Jeong, H.1
-
116
-
-
84855544817
-
Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
-
Jiang M, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat Med. 2012;18(1):153-158.
-
(2012)
Nat Med
, vol.18
, Issue.1
, pp. 153-158
-
-
Jiang, M.1
-
117
-
-
84855929223
-
SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones
-
Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L. SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci. 2012;32(1):124-132.
-
(2012)
J Neurosci
, vol.32
, Issue.1
, pp. 124-132
-
-
Donmez, G.1
Arun, A.2
Chung, C.Y.3
McLean, P.J.4
Lindquist, S.5
Guarente, L.6
-
118
-
-
33748174151
-
Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy
-
DOI 10.1523/JNEUROSCI.2320-06.2006
-
Sasaki Y, Araki T, Milbrandt J. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J Neurosci. 2006;26(33):8484-8491. (Pubitemid 44316176)
-
(2006)
Journal of Neuroscience
, vol.26
, Issue.33
, pp. 8484-8491
-
-
Sasaki, Y.1
Araki, T.2
Milbrandt, J.3
-
119
-
-
4043165678
-
Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration
-
DOI 10.1126/science.1098014
-
Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305(5686):1010-1013. (Pubitemid 39071777)
-
(2004)
Science
, vol.305
, Issue.5686
, pp. 1010-1013
-
-
Araki, T.1
Sasaki, Y.2
Milbrandt, J.3
-
120
-
-
53249114029
-
Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease
-
Pallos J, et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease. Hum Mol Genet. 2008;17(23):3767-3775.
-
(2008)
Hum Mol Genet
, vol.17
, Issue.23
, pp. 3767-3775
-
-
Pallos, J.1
-
121
-
-
77952413052
-
SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis
-
Luthi-Carter R, et al. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A. 2010;107(17):7927- 7932.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.17
, pp. 7927-7932
-
-
Luthi-Carter, R.1
-
122
-
-
34547599329
-
Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson's disease
-
DOI 10.1126/science.1143780
-
Outeiro TF, et al. Sirtuin 2 inhibitors rescue alphasynuclein-mediated toxicity in models of Parkinson's disease. Science. 2007;317(5837):516-519. (Pubitemid 47196116)
-
(2007)
Science
, vol.317
, Issue.5837
, pp. 516-519
-
-
Outeiro, T.F.1
Kontopoulos, E.2
Altmann, S.M.3
Kufareva, I.4
Strathearn, K.E.5
Amore, A.M.6
Volk, C.B.7
Maxwell, M.M.8
Rochet, J.-C.9
McLean, P.J.10
Young, A.B.11
Abagyan, R.12
Feany, M.B.13
Hyman, B.T.14
Kazantsev, A.G.15
-
123
-
-
84866529842
-
SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo
-
Bobrowska A, Donmez G, Weiss A, Guarente L, Bates G. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. PLoS One. 2012;7(4):e34805.
-
(2012)
PLoS One
, vol.7
, Issue.4
-
-
Bobrowska, A.1
Donmez, G.2
Weiss, A.3
Guarente, L.4
Bates, G.5
-
124
-
-
80055085172
-
Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling
-
Beirowski B, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A. 2011;108(43):E952-E961.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, Issue.43
-
-
Beirowski, B.1
-
125
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;143(5):802-812.
-
(2010)
Cell
, vol.143
, Issue.5
, pp. 802-812
-
-
Someya, S.1
|