메뉴 건너뛰기




Volumn 6, Issue , 2013, Pages 1399-1416

The emerging and diverse roles of sirtuins in cancer: A clinical perspective

Author keywords

Acetylation; Cancer; Deacetylation; Sirtuin; Sirtuin modulator

Indexed keywords

3 (3,5 DIBROMO 4 HYDROXYBENZYLIDENE) 1,3 DIHYDRO 5 IODO 2 INDOLONE; AC 93253; AGK 2; ARYLIDENINDOLINONE; BENZOIC ACID DERIVATIVE; BIPHENYLPOLYPHENOL; BISINDOLYLMALEIMIDE; CAMBINOL; CARBONICOTINAMIDE ADENINE DINUCLEOTIDE; ERBSTATIN; EX 527; H3K9TSU PEPTIDE 5; HYDROLASE INHIBITOR; NICOTINAMIDE; ROTTLERIN; SALERMIDE; SIRTINOL; SIRTUIN; SIRTUIN 1; SIRTUIN 2; SIRTUIN 3; SIRTUIN 4; SIRTUIN 5; SIRTUIN 6; SIRTUIN 7; SIRTUIN INHIBITOR; SPLITOMICIN; SURAMIN; TRYPTAMIDE; UNCLASSIFIED DRUG; UNINDEXED DRUG;

EID: 84886904734     PISSN: 11786930     EISSN: None     Source Type: Journal    
DOI: 10.2147/OTT.S37750     Document Type: Article
Times cited : (165)

References (259)
  • 1
    • 0021734287 scopus 로고
    • Characterization of two genes required for the position-effect control of yeast mating-type genes
    • Shore D, Squire M, Nasmyth KA. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J. 1984;3(12):2817-2823.
    • (1984) EMBO J , vol.3 , Issue.12 , pp. 2817-2823
    • Shore, D.1    Squire, M.2    Nasmyth, K.A.3
  • 2
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570-2580.
    • (1999) Genes Dev , vol.13 , Issue.19 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 3
    • 0035826271 scopus 로고    scopus 로고
    • Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
    • Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410(6825): 227-230.
    • (2001) Nature , vol.410 , Issue.6825 , pp. 227-230
    • Tissenbaum, H.A.1    Guarente, L.2
  • 4
    • 8644224064 scopus 로고    scopus 로고
    • Sir2 mediates longevity in the fly through a pathway related to calorie restriction
    • Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A. 2004;101(45):15998-16003.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.45 , pp. 15998-16003
    • Rogina, B.1    Helfand, S.L.2
  • 5
    • 78649482634 scopus 로고    scopus 로고
    • SIRT1: Recent lessons from mouse models
    • Herranz D, Serrano M. SIRT1: recent lessons from mouse models. Nat Rev Cancer. 2010;10(12):819-823.
    • (2010) Nat Rev Cancer , vol.10 , Issue.12 , pp. 819-823
    • Herranz, D.1    Serrano, M.2
  • 6
    • 78650758398 scopus 로고    scopus 로고
    • Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
    • Herranz D, Munoz-Martin M, Canamero M, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010;1:3.
    • (2010) Nat Commun , vol.1 , pp. 3
    • Herranz, D.1    Munoz-Martin, M.2    Canamero, M.3
  • 7
    • 80053134340 scopus 로고    scopus 로고
    • Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes
    • Viswanathan M, Guarente L. Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature. 2011;477(7365):E1-E2.
    • (2011) Nature , vol.477 , Issue.7365
    • Viswanathan, M.1    Guarente, L.2
  • 8
    • 80053460544 scopus 로고    scopus 로고
    • The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO
    • Rizki G, Iwata TN, Li J, et al. The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet. 2011;7(9):page typefirste1002235/page.
    • (2011) PLoS Genet , vol.7 , Issue.9
    • Rizki, G.1    Iwata, T.N.2    Li, J.3
  • 9
    • 80053168829 scopus 로고    scopus 로고
    • Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
    • Burnett C, Valentini S, Cabreiro F, et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011;477(7365):482-485.
    • (2011) Nature , vol.477 , Issue.7365 , pp. 482-485
    • Burnett, C.1    Valentini, S.2    Cabreiro, F.3
  • 10
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2): 793-798.
    • (2000) Biochem Biophys Res Commun , vol.273 , Issue.2 , pp. 793-798
    • Frye, R.A.1
  • 11
    • 0033600176 scopus 로고    scopus 로고
    • Characterization of five human cDNAs with homology to the yeast SIR2 gene:Sir2-like proteins(sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity
    • Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene:Sir2-like proteins(sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999;260(1):273-279.
    • (1999) Biochem Biophys Res Commun , vol.260 , Issue.1 , pp. 273-279
    • Frye, R.A.1
  • 12
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795-800.
    • (2000) Nature , vol.403 , Issue.6771 , pp. 795-800
    • Imai, S.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 13
    • 0034705129 scopus 로고    scopus 로고
    • The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases
    • Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000;97(11):5807-5811.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , Issue.11 , pp. 5807-5811
    • Landry, J.1    Sutton, A.2    Tafrov, S.T.3
  • 14
    • 0037291214 scopus 로고    scopus 로고
    • The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
    • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003;11(2):437-444.
    • (2003) Mol Cell , vol.11 , Issue.2 , pp. 437-444
    • North, B.J.1    Marshall, B.L.2    Borra, M.T.3    Denu, J.M.4    Verdin, E.5
  • 15
    • 0034687694 scopus 로고    scopus 로고
    • Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose
    • Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A. 2000;97(26):14178-14182.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , Issue.26 , pp. 14178-14182
    • Tanner, K.G.1    Landry, J.2    Sternglanz, R.3    Denu, J.M.4
  • 16
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126(5):941-954.
    • (2006) Cell , vol.126 , Issue.5 , pp. 941-954
    • Haigis, M.C.1    Mostoslavsky, R.2    Haigis, K.M.3
  • 17
    • 20444409132 scopus 로고    scopus 로고
    • Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase
    • Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 2005;280(22): 21313-21320.
    • (2005) J Biol Chem , vol.280 , Issue.22 , pp. 21313-21320
    • Liszt, G.1    Ford, E.2    Kurtev, M.3    Guarente, L.4
  • 18
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • Barber MF, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;487(7405):114-118.
    • (2012) Nature , vol.487 , Issue.7405 , pp. 114-118
    • Barber, M.F.1    Michishita-Kioi, E.2    Xi, Y.3
  • 19
    • 69249221533 scopus 로고    scopus 로고
    • Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
    • Michishita E, McCord RA, Boxer LD, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle. 2009;8(16):2664-2666.
    • (2009) Cell Cycle , vol.8 , Issue.16 , pp. 2664-2666
    • Michishita, E.1    McCord, R.A.2    Boxer, L.D.3
  • 20
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057):806-809.
    • (2011) Science , vol.334 , Issue.6057 , pp. 806-809
    • Du, J.1    Zhou, Y.2    Su, X.3
  • 21
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 2005;16(10): 4623-4635.
    • (2005) Mol Biol Cell , vol.16 , Issue.10 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 22
    • 34250365395 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
    • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 2007;282(9):6823-6832.
    • (2007) J Biol Chem , vol.282 , Issue.9 , pp. 6823-6832
    • Tanno, M.1    Sakamoto, J.2    Miura, T.3    Shimamoto, K.4    Horio, Y.5
  • 23
    • 0037207475 scopus 로고    scopus 로고
    • The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis
    • McBurney MW, Yang X, Jardine K, et al. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol. 2003;23(1):38-54.
    • (2003) Mol Cell Biol , vol.23 , Issue.1 , pp. 38-54
    • McBurney, M.W.1    Yang, X.2    Jardine, K.3
  • 24
    • 0141814680 scopus 로고    scopus 로고
    • Developmental defects and p53 hyperacetylation in Sir2 homolog(SIRT1)-deficient mice
    • Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog(SIRT1)-deficient mice. Proc Natl Acad Sci U S A. 2003;100(19):10794-10799.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.19 , pp. 10794-10799
    • Cheng, H.L.1    Mostoslavsky, R.2    Saito, S.3
  • 25
    • 51649112590 scopus 로고    scopus 로고
    • Sirt1-null mice develop an autoimmune-like condition
    • Sequeira J, Boily G, Bazinet S, et al. sirt1-null mice develop an autoimmune-like condition. Exp Cell Res. 2008;314(16):3069-3074.
    • (2008) Exp Cell Res , vol.314 , Issue.16 , pp. 3069-3074
    • Sequeira, J.1    Boily, G.2    Bazinet, S.3
  • 26
    • 70349440053 scopus 로고    scopus 로고
    • The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice
    • Zhang J, Lee SM, Shannon S, et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest. 2009;119(10):3048-3058.
    • (2009) J Clin Invest , vol.119 , Issue.10 , pp. 3048-3058
    • Zhang, J.1    Lee, S.M.2    Shannon, S.3
  • 27
    • 39149122568 scopus 로고    scopus 로고
    • Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
    • North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One. 2007;2(8):e784.
    • (2007) PLoS One , vol.2 , Issue.8
    • North, B.J.1    Verdin, E.2
  • 28
    • 33646550204 scopus 로고    scopus 로고
    • SirT2 is a histone deacetylase with preference for histone H4Lys 16 during mitosis
    • Vaquero A, Scher MB, Lee DH, et al. SirT2 is a histone deacetylase with preference for histone H4Lys 16 during mitosis. Genes Dev. 2006;20(10):1256-1261.
    • (2006) Genes Dev , vol.20 , Issue.10 , pp. 1256-1261
    • Vaquero, A.1    Scher, M.B.2    Lee, D.H.3
  • 29
    • 80054769188 scopus 로고    scopus 로고
    • SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
    • Kim HS, Vassilopoulos A, Wang RH, et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell. 2011;20(4):487-499.
    • (2011) Cancer Cell , vol.20 , Issue.4 , pp. 487-499
    • Kim, H.S.1    Vassilopoulos, A.2    Wang, R.H.3
  • 30
    • 0037108799 scopus 로고    scopus 로고
    • SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria
    • Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci U S A. 2002;99(21): 13653-13658.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , Issue.21 , pp. 13653-13658
    • Onyango, P.1    Celic, I.2    McCaffery, J.M.3    Boeke, J.D.4    Feinberg, A.P.5
  • 31
    • 0037135972 scopus 로고    scopus 로고
    • The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase
    • Schwer B, North BJ, Frye RA, Ott M, Verdin E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 2002;158(4):647-657.
    • (2002) J Cell Biol , vol.158 , Issue.4 , pp. 647-657
    • Schwer, B.1    North, B.J.2    Frye, R.A.3    Ott, M.4    Verdin, E.5
  • 32
    • 37549026223 scopus 로고    scopus 로고
    • Localization of mouse mitochondrial SIRT proteins:Shift of SIRT3 to nucleus by co-expression with SIRT5
    • Nakamura Y, Ogura M, Tanaka D, Inagaki N. Localization of mouse mitochondrial SIRT proteins:shift of SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res Commun. 2008;366(1):174-179.
    • (2008) Biochem Biophys Res Commun , vol.366 , Issue.1 , pp. 174-179
    • Nakamura, Y.1    Ogura, M.2    Tanaka, D.3    Inagaki, N.4
  • 33
    • 34247271282 scopus 로고    scopus 로고
    • SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress
    • Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 2007;21(8):920-928.
    • (2007) Genes Dev , vol.21 , Issue.8 , pp. 920-928
    • Scher, M.B.1    Vaquero, A.2    Reinberg, D.3
  • 34
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • Lombard DB, Alt FW, Cheng HL, et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 2007;27(24):8807-8814.
    • (2007) Mol Cell Biol , vol.27 , Issue.24 , pp. 8807-8814
    • Lombard, D.B.1    Alt, F.W.2    Cheng, H.L.3
  • 35
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010;17(1): 41-52.
    • (2010) Cancer Cell , vol.17 , Issue.1 , pp. 41-52
    • Kim, H.S.1    Patel, K.2    Muldoon-Jacobs, K.3
  • 36
    • 82455212901 scopus 로고    scopus 로고
    • SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
    • Hirschey MD, Shimazu T, Jing E, et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011;44(2):177-190.
    • (2011) Mol Cell , vol.44 , Issue.2 , pp. 177-190
    • Hirschey, M.D.1    Shimazu, T.2    Jing, E.3
  • 37
    • 79952501323 scopus 로고    scopus 로고
    • SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
    • Finley LW, Carracedo A, Lee J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell. 2011;19(3):416-428.
    • (2011) Cancer Cell , vol.19 , Issue.3 , pp. 416-428
    • Finley, L.W.1    Carracedo, A.2    Lee, J.3
  • 38
    • 77957762687 scopus 로고    scopus 로고
    • SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
    • Nasrin N, Wu X, Fortier E, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010;285(42):31995-32002.
    • (2010) J Biol Chem , vol.285 , Issue.42 , pp. 31995-32002
    • Nasrin, N.1    Wu, X.2    Fortier, E.3
  • 39
    • 36349030394 scopus 로고    scopus 로고
    • Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
    • Ahuja N, Schwer B, Carobbio S, et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem. 2007;282(46):33583-33592.
    • (2007) J Biol Chem , vol.282 , Issue.46 , pp. 33583-33592
    • Ahuja, N.1    Schwer, B.2    Carobbio, S.3
  • 40
    • 84876359638 scopus 로고    scopus 로고
    • SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
    • Jeong SM, Xiao C, Finley LW, et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell. 2013;23(4):450-463.
    • (2013) Cancer Cell , vol.23 , Issue.4 , pp. 450-463
    • Jeong, S.M.1    Xiao, C.2    Finley, L.W.3
  • 41
    • 34548627517 scopus 로고    scopus 로고
    • Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
    • Yang H, Yang T, Baur JA, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130(6):1095-1107.
    • (2007) Cell , vol.130 , Issue.6 , pp. 1095-1107
    • Yang, H.1    Yang, T.2    Baur, J.A.3
  • 42
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137(3):560-570.
    • (2009) Cell , vol.137 , Issue.3 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 43
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111.012658
    • Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 2011;10(12): M111.012658.
    • (2011) Mol Cell Proteomics , vol.10 , Issue.12
    • Peng, C.1    Lu, Z.2    Xie, Z.3
  • 44
    • 84880791239 scopus 로고    scopus 로고
    • SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
    • Park J, Chen Y, Tishkoff DX, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 2013;50(6): 919-930.
    • (2013) Mol Cell , vol.50 , Issue.6 , pp. 919-930
    • Park, J.1    Chen, Y.2    Tishkoff, D.X.3
  • 45
    • 78751700840 scopus 로고    scopus 로고
    • Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms
    • Matsushita N, Yonashiro R, Ogata Y, et al. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells. 2011;16(2):190-202.
    • (2011) Genes Cells , vol.16 , Issue.2 , pp. 190-202
    • Matsushita, N.1    Yonashiro, R.2    Ogata, Y.3
  • 46
    • 41349090663 scopus 로고    scopus 로고
    • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
    • Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452(7186):492-496.
    • (2008) Nature , vol.452 , Issue.7186 , pp. 492-496
    • Michishita, E.1    McCord, R.A.2    Berber, E.3
  • 47
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine
    • Jiang H, Khan S, Wang Y, et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013; 496(7443):110-113.
    • (2013) Nature , vol.496 , Issue.7443 , pp. 110-113
    • Jiang, H.1    Khan, S.2    Wang, Y.3
  • 48
    • 84863974838 scopus 로고    scopus 로고
    • Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence
    • Mao Z, Tian X, Van Meter M, et al. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci U S A. 2012;109(29):11800-11805.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.29 , pp. 11800-11805
    • Mao, Z.1    Tian, X.2    van Meter, M.3
  • 49
    • 77956315551 scopus 로고    scopus 로고
    • Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
    • Kim HS, Xiao C, Wang RH, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12(3):224-236.
    • (2010) Cell Metab , vol.12 , Issue.3 , pp. 224-236
    • Kim, H.S.1    Xiao, C.2    Wang, R.H.3
  • 50
    • 58149090925 scopus 로고    scopus 로고
    • SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
    • Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell. 2009;136(1):62-74.
    • (2009) Cell , vol.136 , Issue.1 , pp. 62-74
    • Kawahara, T.L.1    Michishita, E.2    Adler, A.S.3
  • 51
    • 74549142287 scopus 로고    scopus 로고
    • The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
    • Zhong L, D'Urso A, Toiber D, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 2010;140(2): 280-293.
    • (2010) Cell , vol.140 , Issue.2 , pp. 280-293
    • Zhong, L.1    D'Urso, A.2    Toiber, D.3
  • 52
    • 66049150672 scopus 로고    scopus 로고
    • SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair
    • McCord RA, Michishita E, Hong T, et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY). 2009;1(1):109-121.
    • (2009) Aging (Albany NY) , vol.1 , Issue.1 , pp. 109-121
    • McCord, R.A.1    Michishita, E.2    Hong, T.3
  • 53
    • 77956550868 scopus 로고    scopus 로고
    • Human SIRT6 promotes DNA end resection through CtIP deacetylation
    • Kaidi A, Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010;329(5997):1348-1353.
    • (2010) Science , vol.329 , Issue.5997 , pp. 1348-1353
    • Kaidi, A.1    Weinert, B.T.2    Choudhary, C.3    Jackson, S.P.4
  • 54
    • 78449248442 scopus 로고    scopus 로고
    • SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice
    • Xiao C, Kim HS, Lahusen T, et al. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem. 2010;285(47):36776-36784.
    • (2010) J Biol Chem , vol.285 , Issue.47 , pp. 36776-36784
    • Xiao, C.1    Kim, H.S.2    Lahusen, T.3
  • 55
    • 78650724968 scopus 로고    scopus 로고
    • Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity
    • Schwer B, Schumacher B, Lombard DB, et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci U S A. 2010;107(50):21790-21794.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.50 , pp. 21790-21794
    • Schwer, B.1    Schumacher, B.2    Lombard, D.B.3
  • 56
    • 79959363092 scopus 로고    scopus 로고
    • SIRT6 promotes DNA repair under stress by activating PARP1
    • Mao Z, Hine C, Tian X, et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 2011;332(6036):1443-1446.
    • (2011) Science , vol.332 , Issue.6036 , pp. 1443-1446
    • Mao, Z.1    Hine, C.2    Tian, X.3
  • 57
    • 80052399287 scopus 로고    scopus 로고
    • SIRT6 is required for maintenance of telomere position effect in human cells
    • Tennen RI, Bua DJ, Wright WE, Chua KF. SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun. 2011;2:433.
    • (2011) Nat Commun , vol.2 , pp. 433
    • Tennen, R.I.1    Bua, D.J.2    Wright, W.E.3    Chua, K.F.4
  • 58
    • 84869201195 scopus 로고    scopus 로고
    • The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun
    • Sundaresan NR, Vasudevan P, Zhong L, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012;18(11):1643-1650.
    • (2012) Nat Med , vol.18 , Issue.11 , pp. 1643-1650
    • Sundaresan, N.R.1    Vasudevan, P.2    Zhong, L.3
  • 59
    • 84871676013 scopus 로고    scopus 로고
    • The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
    • Dominy JE Jr, Lee Y, Jedrychowski MP, et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell. 2012;48(6):900-913.
    • (2012) Mol Cell , vol.48 , Issue.6 , pp. 900-913
    • Dominy Jr., J.E.1    Lee, Y.2    Jedrychowski, M.P.3
  • 60
    • 84870874690 scopus 로고    scopus 로고
    • The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
    • Sebastian C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell. 2012;151(6):1185-1199.
    • (2012) Cell , vol.151 , Issue.6 , pp. 1185-1199
    • Sebastian, C.1    Zwaans, B.M.2    Silberman, D.M.3
  • 61
    • 31044445366 scopus 로고    scopus 로고
    • Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
    • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315-329.
    • (2006) Cell , vol.124 , Issue.2 , pp. 315-329
    • Mostoslavsky, R.1    Chua, K.F.2    Lombard, D.B.3
  • 62
    • 84858000209 scopus 로고    scopus 로고
    • The sirtuin SIRT6 regulates lifespan in male mice
    • Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218-221.
    • (2012) Nature , vol.483 , Issue.7388 , pp. 218-221
    • Kanfi, Y.1    Naiman, S.2    Amir, G.3
  • 63
    • 64849107827 scopus 로고    scopus 로고
    • Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis
    • Grob A, Roussel P, Wright JE, et al. Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci. 2009;122(Pt 4):489-498.
    • (2009) J Cell Sci , vol.122 , Issue.PART 4 , pp. 489-498
    • Grob, A.1    Roussel, P.2    Wright, J.E.3
  • 64
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription
    • Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 2006;20(9):1075-1080.
    • (2006) Genes Dev , vol.20 , Issue.9 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3    Magin, C.4    Grummt, I.5    Guarente, L.6
  • 65
    • 41449083867 scopus 로고    scopus 로고
    • Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice
    • Vakhrusheva O, Smolka C, Gajawada P, et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res. 2008;102(6):703-710.
    • (2008) Circ Res , vol.102 , Issue.6 , pp. 703-710
    • Vakhrusheva, O.1    Smolka, C.2    Gajawada, P.3
  • 66
    • 84898009924 scopus 로고    scopus 로고
    • Sorting out functions of sirtuins in cancer
    • Epub
    • Roth M, Chen WY. Sorting out functions of sirtuins in cancer. Oncogene. 2013. [Epub]
    • (2013) Oncogene
    • Roth, M.1    Chen, W.Y.2
  • 67
    • 80052717162 scopus 로고    scopus 로고
    • Expression of DBC1 is associated with nuclear grade and HER2 expression in breast cancer
    • Hiraike H, Wada-Hiraike O, Nakagawa S, et al. Expression of DBC1 is associated with nuclear grade and HER2 expression in breast cancer. Exp Ther Med. 2011;2(6):1105-1109.
    • (2011) Exp Ther Med , vol.2 , Issue.6 , pp. 1105-1109
    • Hiraike, H.1    Wada-Hiraike, O.2    Nakagawa, S.3
  • 68
    • 78751567751 scopus 로고    scopus 로고
    • Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma
    • Lee H, Kim KR, Noh SJ, et al. Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma. Hum Pathol. 2011;42(2):204-213.
    • (2011) Hum Pathol , vol.42 , Issue.2 , pp. 204-213
    • Lee, H.1    Kim, K.R.2    Noh, S.J.3
  • 69
    • 84880308453 scopus 로고    scopus 로고
    • Expression of SIRT1 is associated with lymph node metastasis and poor prognosis in both operable triple-negative and non-triple-negative breast cancer
    • Wu M, Wei W, Xiao X, et al. Expression of SIRT1 is associated with lymph node metastasis and poor prognosis in both operable triple-negative and non-triple-negative breast cancer. Med Oncol. 2012;29(5): 3240-3249.
    • (2012) Med Oncol , vol.29 , Issue.5 , pp. 3240-3249
    • Wu, M.1    Wei, W.2    Xiao, X.3
  • 70
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • Chen WY, Wang DH, Yen RC, et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 2005;123(3):437-448.
    • (2005) Cell , vol.123 , Issue.3 , pp. 437-448
    • Chen, W.Y.1    Wang, D.H.2    Yen, R.C.3
  • 71
    • 79960391940 scopus 로고    scopus 로고
    • Mir-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells
    • Eades G, Yao Y, Yang M, et al. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem. 2011;286(29):25992-26002.
    • (2011) J Biol Chem , vol.286 , Issue.29 , pp. 25992-26002
    • Eades, G.1    Yao, Y.2    Yang, M.3
  • 72
    • 84874538962 scopus 로고    scopus 로고
    • SIRT1 positively regulates breast cancer associated human aromatase(CYP19A1) expression
    • Holloway KR, Barbieri A, Malyarchuk S, et al. SIRT1 positively regulates breast cancer associated human aromatase(CYP19A1) expression. Mol Endocrinol. 2013;27(3):480-490.
    • (2013) Mol Endocrinol , vol.27 , Issue.3 , pp. 480-490
    • Holloway, K.R.1    Barbieri, A.2    Malyarchuk, S.3
  • 73
    • 59649126261 scopus 로고    scopus 로고
    • Deacetylation of cortactin by SIRT1 promotes cell migration
    • Zhang Y, Zhang M, Dong H, et al. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene. 2009;28(3):445-460.
    • (2009) Oncogene , vol.28 , Issue.3 , pp. 445-460
    • Zhang, Y.1    Zhang, M.2    Dong, H.3
  • 74
    • 84879701384 scopus 로고    scopus 로고
    • SIRT1-Mediated FoxO1 Deacetylation Is Essential for Multidrug Resistance-Associated Protein 2 Expression in Tamoxifen-Resistant Breast Cancer Cells
    • Epub
    • Choi HK, Cho KB, Phuong NT, et al. SIRT1-Mediated FoxO1 Deacetylation Is Essential for Multidrug Resistance-Associated Protein 2 Expression in Tamoxifen-Resistant Breast Cancer Cells. Mol Pharm. 2013. [Epub]
    • (2013) Mol Pharm
    • Choi, H.K.1    Cho, K.B.2    Phuong, N.T.3
  • 75
    • 84860740807 scopus 로고    scopus 로고
    • SRT1720, a SIRT1 activator, promotes tumor cell migration, and lung metastasis of breast cancer in mice
    • Suzuki K, Hayashi R, Ichikawa T, et al. SRT1720, a SIRT1 activator, promotes tumor cell migration, and lung metastasis of breast cancer in mice. Oncol Rep. 2012;27(6):1726-1732.
    • (2012) Oncol Rep , vol.27 , Issue.6 , pp. 1726-1732
    • Suzuki, K.1    Hayashi, R.2    Ichikawa, T.3
  • 76
    • 84858795617 scopus 로고    scopus 로고
    • Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation
    • Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene. 2012;31(12):1546-1557.
    • (2012) Oncogene , vol.31 , Issue.12 , pp. 1546-1557
    • Wang, F.1    Chan, C.H.2    Chen, K.3    Guan, X.4    Lin, H.K.5    Tong, Q.6
  • 77
    • 34547100073 scopus 로고    scopus 로고
    • SIRT1 is significantly elevated in mouse and human prostate cancer
    • Huffman DM, Grizzle WE, Bamman MM, et al. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 2007;67(14): 6612-6618.
    • (2007) Cancer Res , vol.67 , Issue.14 , pp. 6612-6618
    • Huffman, D.M.1    Grizzle, W.E.2    Bamman, M.M.3
  • 78
    • 47249154705 scopus 로고    scopus 로고
    • A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells
    • Kojima K, Ohhashi R, Fujita Y, et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem Biophys Res Commun. 2008;373(3):423-428.
    • (2008) Biochem Biophys Res Commun , vol.373 , Issue.3 , pp. 423-428
    • Kojima, K.1    Ohhashi, R.2    Fujita, Y.3
  • 79
  • 80
    • 79952007931 scopus 로고    scopus 로고
    • NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response
    • Wang B, Hasan MK, Alvarado E, Yuan H, Wu H, Chen WY. NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response. Oncogene. 2011;30(8):907-921.
    • (2011) Oncogene , vol.30 , Issue.8 , pp. 907-921
    • Wang, B.1    Hasan, M.K.2    Alvarado, E.3    Yuan, H.4    Wu, H.5    Chen, W.Y.6
  • 81
    • 84875219611 scopus 로고    scopus 로고
    • SIRT1 enhances matrix metalloproteinase-2 expression and tumor cell invasion in prostate cancer cells
    • Lovaas JD, Zhu L, Chiao CY, Byles V, Faller DV, Dai Y. SIRT1 enhances matrix metalloproteinase-2 expression and tumor cell invasion in prostate cancer cells. Prostate. 2013;73(5):522-530.
    • (2013) Prostate , vol.73 , Issue.5 , pp. 522-530
    • Lovaas, J.D.1    Zhu, L.2    Chiao, C.Y.3    Byles, V.4    Faller, D.V.5    Dai, Y.6
  • 82
    • 84867901275 scopus 로고    scopus 로고
    • SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis
    • Byles V, Zhu L, Lovaas JD, et al. SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene. 2012;31(43):4619-4629.
    • (2012) Oncogene , vol.31 , Issue.43 , pp. 4619-4629
    • Byles, V.1    Zhu, L.2    Lovaas, J.D.3
  • 83
    • 84855187981 scopus 로고    scopus 로고
    • Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells
    • Nakane K, Fujita Y, Terazawa R, et al. Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells. Int J Urol. 2012;19(1):71-79.
    • (2012) Int J Urol , vol.19 , Issue.1 , pp. 71-79
    • Nakane, K.1    Fujita, Y.2    Terazawa, R.3
  • 84
    • 84883177488 scopus 로고    scopus 로고
    • SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency
    • Herranz D, Maraver A, Canamero M, et al. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene. 2013;32(34):4052-4056.
    • (2013) Oncogene , vol.32 , Issue.34 , pp. 4052-4056
    • Herranz, D.1    Maraver, A.2    Canamero, M.3
  • 85
    • 84878413968 scopus 로고    scopus 로고
    • Expression of SIRT1 and cortactin is associated with progression of non-small cell lung cancer
    • Noh SJ, Baek HA, Park HS, et al. Expression of SIRT1 and cortactin is associated with progression of non-small cell lung cancer. Pathol Res Pract. 2013;209(6):365-370.
    • (2013) Pathol Res Pract , vol.209 , Issue.6 , pp. 365-370
    • Noh, S.J.1    Baek, H.A.2    Park, H.S.3
  • 86
    • 67650445737 scopus 로고    scopus 로고
    • Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients
    • Tseng RC, Lee CC, Hsu HS, Tzao C, Wang YC. Distinct HIC1-SIRT1-p53 loop deregulation in lung squamous carcinoma and adenocarcinoma patients. Neoplasia. 2009;11(8):763-770.
    • (2009) Neoplasia , vol.11 , Issue.8 , pp. 763-770
    • Tseng, R.C.1    Lee, C.C.2    Hsu, H.S.3    Tzao, C.4    Wang, Y.C.5
  • 87
    • 84866523750 scopus 로고    scopus 로고
    • SIRT1 regulates endothelial Notch signaling in lung cancer
    • Xie M, Liu M, He CS. SIRT1 regulates endothelial Notch signaling in lung cancer. PLoS One. 2012;7(9):e45331.
    • (2012) PLoS One , vol.7 , Issue.9
    • Xie, M.1    Liu, M.2    He, C.S.3
  • 88
    • 84863103122 scopus 로고    scopus 로고
    • Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells
    • Liu G, Su L, Hao X, et al. Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med. 2012;16(7):1618-1628.
    • (2012) J Cell Mol Med , vol.16 , Issue.7 , pp. 1618-1628
    • Liu, G.1    Su, L.2    Hao, X.3
  • 89
    • 84856384698 scopus 로고    scopus 로고
    • The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop
    • Menssen A, Hydbring P, Kapelle K, et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc Natl Acad Sci U S A. 2012;109(4):E187-E196.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.4
    • Menssen, A.1    Hydbring, P.2    Kapelle, K.3
  • 90
    • 84872781106 scopus 로고    scopus 로고
    • Up-regulation of c-MYC and SIRT1 expression correlates with malignant transformation in the serrated route to colorectal cancer
    • Kriegl L, Vieth M, Kirchner T, Menssen A. Up-regulation of c-MYC and SIRT1 expression correlates with malignant transformation in the serrated route to colorectal cancer. Oncotarget. 2012;3(10):1182-1193.
    • (2012) Oncotarget , vol.3 , Issue.10 , pp. 1182-1193
    • Kriegl, L.1    Vieth, M.2    Kirchner, T.3    Menssen, A.4
  • 91
    • 67650691722 scopus 로고    scopus 로고
    • SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer
    • Nosho K, Shima K, Irahara N, et al. SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol. 2009;22(7): 922-932.
    • (2009) Mod Pathol , vol.22 , Issue.7 , pp. 922-932
    • Nosho, K.1    Shima, K.2    Irahara, N.3
  • 92
    • 78649633708 scopus 로고    scopus 로고
    • Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells
    • Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T. Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett. 2011;300(2):197-204.
    • (2011) Cancer Lett , vol.300 , Issue.2 , pp. 197-204
    • Akao, Y.1    Noguchi, S.2    Iio, A.3    Kojima, K.4    Takagi, T.5    Naoe, T.6
  • 93
    • 84860253067 scopus 로고    scopus 로고
    • Expression of SIRT1 in gastric cardiac cancer and its clinicopathologic significance
    • Feng AN, Zhang LH, Fan XS, et al. Expression of SIRT1 in gastric cardiac cancer and its clinicopathologic significance. Int J Surg Pathol. 2011;19(6):743-750.
    • (2011) Int J Surg Pathol , vol.19 , Issue.6 , pp. 743-750
    • Feng, A.N.1    Zhang, L.H.2    Fan, X.S.3
  • 94
    • 67650348173 scopus 로고    scopus 로고
    • Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma
    • Cha EJ, Noh SJ, Kwon KS, et al. Expression of DBC1 and SIRT1 is associated with poor prognosis of gastric carcinoma. Clin Cancer Res. 2009;15(13):4453-4459.
    • (2009) Clin Cancer Res , vol.15 , Issue.13 , pp. 4453-4459
    • Cha, E.J.1    Noh, S.J.2    Kwon, K.S.3
  • 95
    • 84857181300 scopus 로고    scopus 로고
    • Activating transcription factor 4 confers a multidrug resistance phenotype to gastric cancer cells through transactivation of SIRT1 expression
    • Zhu H, Xia L, Zhang Y, et al. Activating transcription factor 4 confers a multidrug resistance phenotype to gastric cancer cells through transactivation of SIRT1 expression. PLoS One. 2012;7(2): e31431.
    • (2012) PLoS One , vol.7 , Issue.2
    • Zhu, H.1    Xia, L.2    Zhang, Y.3
  • 96
    • 84865143188 scopus 로고    scopus 로고
    • SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis
    • Chen HC, Jeng YM, Yuan RH, Hsu HC, Chen YL. SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Ann Surg Oncol. 2012;19(6):2011-2019.
    • (2012) Ann Surg Oncol , vol.19 , Issue.6 , pp. 2011-2019
    • Chen, H.C.1    Jeng, Y.M.2    Yuan, R.H.3    Hsu, H.C.4    Chen, Y.L.5
  • 97
    • 79958185807 scopus 로고    scopus 로고
    • Expression and role of SIRT1 in hepatocellular carcinoma
    • Choi HN, Bae JS, Jamiyandorj U, et al. Expression and role of SIRT1 in hepatocellular carcinoma. Oncol Rep. 2011;26(2):503-510.
    • (2011) Oncol Rep , vol.26 , Issue.2 , pp. 503-510
    • Choi, H.N.1    Bae, J.S.2    Jamiyandorj, U.3
  • 98
    • 84876501728 scopus 로고    scopus 로고
    • Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo
    • Portmann S, Fahrner R, Lechleiter A, et al. Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol Cancer Ther. 2013;12(4):499-508.
    • (2013) Mol Cancer Ther , vol.12 , Issue.4 , pp. 499-508
    • Portmann, S.1    Fahrner, R.2    Lechleiter, A.3
  • 99
    • 79958787784 scopus 로고    scopus 로고
    • Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth
    • Chen J, Zhang B, Wong N, et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 2011;71(12): 4138-4149.
    • (2011) Cancer Res , vol.71 , Issue.12 , pp. 4138-4149
    • Chen, J.1    Zhang, B.2    Wong, N.3
  • 100
    • 84861563201 scopus 로고    scopus 로고
    • SIRT1 promotes tumorigenesis of hepatocellular carcinoma through PI3K/PTEN/AKT signaling
    • Wang H, Liu H, Chen K, et al. SIRT1 promotes tumorigenesis of hepatocellular carcinoma through PI3K/PTEN/AKT signaling. Oncol Rep. 2012;28(1):311-318.
    • (2012) Oncol Rep , vol.28 , Issue.1 , pp. 311-318
    • Wang, H.1    Liu, H.2    Chen, K.3
  • 101
    • 84866386083 scopus 로고    scopus 로고
    • SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas
    • Jang KY, Noh SJ, Lehwald N, et al. SIRT1 and c-Myc promote liver tumor cell survival and predict poor survival of human hepatocellular carcinomas. PLoS One. 2012;7(9):e45119.
    • (2012) PLoS One , vol.7 , Issue.9
    • Jang, K.Y.1    Noh, S.J.2    Lehwald, N.3
  • 102
    • 84878546600 scopus 로고    scopus 로고
    • Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model
    • Lou W, Chen Q, Ma L, et al. Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med (Berl). 2013;91(6):715-725.
    • (2013) J Mol Med (Berl) , vol.91 , Issue.6 , pp. 715-725
    • Lou, W.1    Chen, Q.2    Ma, L.3
  • 103
    • 84901191843 scopus 로고    scopus 로고
    • MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma
    • Epub
    • Bae HJ, Noh JH, Kim JK, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2013. [Epub]
    • (2013) Oncogene
    • Bae, H.J.1    Noh, J.H.2    Kim, J.K.3
  • 104
    • 80052600926 scopus 로고    scopus 로고
    • SIRT1 RNAi knockdown induces apoptosis and senescence, inhibits invasion and enhances chemosensitivity in pancreatic cancer cells
    • Zhao G, Cui J, Zhang JG, et al. SIRT1 RNAi knockdown induces apoptosis and senescence, inhibits invasion and enhances chemosensitivity in pancreatic cancer cells. Gene Ther. 2011;18(9): 920-928.
    • (2011) Gene Ther , vol.18 , Issue.9 , pp. 920-928
    • Zhao, G.1    Cui, J.2    Zhang, J.G.3
  • 105
    • 84878016063 scopus 로고    scopus 로고
    • Nicotinamide prohibits proliferation and enhances chemosensitivity of pancreatic cancer cells through deregulating SIRT1 and Ras/Akt pathways
    • Zhang JG, Zhao G, Qin Q, et al. Nicotinamide prohibits proliferation and enhances chemosensitivity of pancreatic cancer cells through deregulating SIRT1 and Ras/Akt pathways. Pancreatology. 2013;13(2):140-146.
    • (2013) Pancreatology , vol.13 , Issue.2 , pp. 140-146
    • Zhang, J.G.1    Zhao, G.2    Qin, Q.3
  • 106
    • 84875967350 scopus 로고    scopus 로고
    • Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer
    • Wauters E, Sanchez-Arevalo Lobo VJ, Pinho AV, et al. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer. Cancer Res. 2013;73(7):2357-2367.
    • (2013) Cancer Res , vol.73 , Issue.7 , pp. 2357-2367
    • Wauters, E.1    Sanchez-Arevalo, L.V.J.2    Pinho, A.V.3
  • 107
    • 84877762573 scopus 로고    scopus 로고
    • Up-regulation of MBD1 promotes pancreatic cancer cell epithelial-mesenchymal transition and invasion by epigenetic down-regulation of E-cadherin
    • Xu J, Zhu W, Xu W, et al. Up-regulation of MBD1 promotes pancreatic cancer cell epithelial-mesenchymal transition and invasion by epigenetic down-regulation of E-cadherin. Curr Mol Med. 2013;13(3): 387-400.
    • (2013) Curr Mol Med , vol.13 , Issue.3 , pp. 387-400
    • Xu, J.1    Zhu, W.2    Xu, W.3
  • 108
    • 68849097673 scopus 로고    scopus 로고
    • Expression and prognostic significance of SIRT1 in ovarian epithelial tumours
    • Jang KY, Kim KS, Hwang SH, et al. Expression and prognostic significance of SIRT1 in ovarian epithelial tumours. Pathology. 2009;41(4):366-371.
    • (2009) Pathology , vol.41 , Issue.4 , pp. 366-371
    • Jang, K.Y.1    Kim, K.S.2    Hwang, S.H.3
  • 109
    • 79954545155 scopus 로고    scopus 로고
    • Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle:Role of its regulation by the SIRT1 deacetylase
    • Benayoun BA, Georges AB, L'Hote D, et al. Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle:role of its regulation by the SIRT1 deacetylase. Hum Mol Genet. 2011; 20(9):1673-1686.
    • (2011) Hum Mol Genet , vol.20 , Issue.9 , pp. 1673-1686
    • Benayoun, B.A.1    Georges, A.B.2    L'Hote, D.3
  • 110
    • 65549154109 scopus 로고    scopus 로고
    • Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells
    • Allison SJ, Jiang M, Milner J. Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. Aging (Albany NY). 2009;1(3):316-327.
    • (2009) Aging (Albany NY) , vol.1 , Issue.3 , pp. 316-327
    • Allison, S.J.1    Jiang, M.2    Milner, J.3
  • 111
    • 79959837062 scopus 로고    scopus 로고
    • SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability
    • Marshall GM, Liu PY, Gherardi S, et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet. 2011;7(6):e1002135.
    • (2011) PLoS Genet , vol.7 , Issue.6
    • Marshall, G.M.1    Liu, P.Y.2    Gherardi, S.3
  • 112
    • 62849090437 scopus 로고    scopus 로고
    • SIRT1 regulates tyrosine hydroxylase expression and differentiation of neuroblastoma cells via FOXO3a
    • Kim MJ, Ahn K, Park SH, et al. SIRT1 regulates tyrosine hydroxylase expression and differentiation of neuroblastoma cells via FOXO3a. FEBS Lett. 2009;583(7):1183-1188.
    • (2009) FEBS Lett , vol.583 , Issue.7 , pp. 1183-1188
    • Kim, M.J.1    Ahn, K.2    Park, S.H.3
  • 113
    • 60349085855 scopus 로고    scopus 로고
    • Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression
    • Chang CJ, Hsu CC, Yung MC, et al. Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression. Biochem Biophys Res Commun. 2009; 380(2):236-242.
    • (2009) Biochem Biophys Res Commun , vol.380 , Issue.2 , pp. 236-242
    • Chang, C.J.1    Hsu, C.C.2    Yung, M.C.3
  • 114
    • 84857852626 scopus 로고    scopus 로고
    • Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor(TNFalpha)-induced apoptosis through SIRT1 inhibition
    • Dixit D, Sharma V, Ghosh S, Mehta VS, Sen E. Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor(TNFalpha)-induced apoptosis through SIRT1 inhibition. Cell Death Dis. 2012;3:e271.
    • (2012) Cell Death Dis , vol.3
    • Dixit, D.1    Sharma, V.2    Ghosh, S.3    Mehta, V.S.4    Sen, E.5
  • 115
    • 84873248807 scopus 로고    scopus 로고
    • Expression patterns and potential roles of SIRT1 in human medulloblastoma cells in vivo and in vitro
    • Ma JX, Li H, Chen XM, et al. Expression patterns and potential roles of SIRT1 in human medulloblastoma cells in vivo and in vitro. Neuropathology. 2013;33(1):7-16.
    • (2013) Neuropathology , vol.33 , Issue.1 , pp. 7-16
    • Ma, J.X.1    Li, H.2    Chen, X.M.3
  • 116
    • 84865535247 scopus 로고    scopus 로고
    • High expression of the longevity gene product SIRT1 and apoptosis induction by sirtinol in adult T-cell leukemia cells
    • Kozako T, Aikawa A, Shoji T, et al. High expression of the longevity gene product SIRT1 and apoptosis induction by sirtinol in adult T-cell leukemia cells. Int J Cancer. 2012;131(9):2044-2055.
    • (2012) Int J Cancer , vol.131 , Issue.9 , pp. 2044-2055
    • Kozako, T.1    Aikawa, A.2    Shoji, T.3
  • 117
    • 53449083751 scopus 로고    scopus 로고
    • SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma
    • Jang KY, Hwang SH, Kwon KS, et al. SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma. Am J Surg Pathol. 2008;32(10):1523-1531.
    • (2008) Am J Surg Pathol , vol.32 , Issue.10 , pp. 1523-1531
    • Jang, K.Y.1    Hwang, S.H.2    Kwon, K.S.3
  • 118
    • 27144475816 scopus 로고    scopus 로고
    • Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors
    • Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005;19(10):1751-1759.
    • (2005) Leukemia , vol.19 , Issue.10 , pp. 1751-1759
    • Bradbury, C.A.1    Khanim, F.L.2    Hayden, R.3
  • 119
    • 33646254136 scopus 로고    scopus 로고
    • Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes
    • Heltweg B, Gatbonton T, Schuler AD, et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 2006;66(8):4368-4377.
    • (2006) Cancer Res , vol.66 , Issue.8 , pp. 4368-4377
    • Heltweg, B.1    Gatbonton, T.2    Schuler, A.D.3
  • 120
    • 79960821550 scopus 로고    scopus 로고
    • Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells
    • Cea M, Soncini D, Fruscione F, et al. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells. PLoS One. 2011;6(7):e22739.
    • (2011) PLoS One , vol.6 , Issue.7
    • Cea, M.1    Soncini, D.2    Fruscione, F.3
  • 121
    • 84863011183 scopus 로고    scopus 로고
    • Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib
    • Li L, Wang L, Li L, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell. 2012;21(2):266-281.
    • (2012) Cancer Cell , vol.21 , Issue.2 , pp. 266-281
    • Li, L.1    Wang, L.2    Li, L.3
  • 122
    • 84863116364 scopus 로고    scopus 로고
    • Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis
    • Yuan H, Wang Z, Li L, et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood. 2012;119(8): 1904-1914.
    • (2012) Blood , vol.119 , Issue.8 , pp. 1904-1914
    • Yuan, H.1    Wang, Z.2    Li, L.3
  • 123
    • 84873408603 scopus 로고    scopus 로고
    • SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells
    • Wang Z, Yuan H, Roth M, Stark JM, Bhatia R, Chen WY. SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells. Oncogene. 2013;32(5):589-598.
    • (2013) Oncogene , vol.32 , Issue.5 , pp. 589-598
    • Wang, Z.1    Yuan, H.2    Roth, M.3    Stark, J.M.4    Bhatia, R.5    Chen, W.Y.6
  • 124
    • 84878116031 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1): A potential immunohistochemical marker and therapeutic target in soft tissue neoplasms with myoid differentiation
    • Dickson BC, Riddle ND, Brooks JS, Pasha TL, Zhang PJ. Sirtuin 1 (SIRT1): a potential immunohistochemical marker and therapeutic target in soft tissue neoplasms with myoid differentiation. Hum Pathol. 2013;44(6):1125-1130.
    • (2013) Hum Pathol , vol.44 , Issue.6 , pp. 1125-1130
    • Dickson, B.C.1    Riddle, N.D.2    Brooks, J.S.3    Pasha, T.L.4    Zhang, P.J.5
  • 125
    • 44849096876 scopus 로고    scopus 로고
    • The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One. 2008;3(4):e2020.
    • (2008) PLoS One , vol.3 , Issue.4
    • Firestein, R.1    Blander, G.2    Michan, S.3
  • 126
    • 53149137486 scopus 로고    scopus 로고
    • Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
    • Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14(4):312-323.
    • (2008) Cancer Cell , vol.14 , Issue.4 , pp. 312-323
    • Wang, R.H.1    Sengupta, K.2    Li, C.3
  • 127
    • 84875327104 scopus 로고    scopus 로고
    • SIRT1 expression is associated with good prognosis for head and neck squamous cell carcinoma patients
    • Noguchi A, Li X, Kubota A, et al. SIRT1 expression is associated with good prognosis for head and neck squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(3):385-392.
    • (2013) Oral Surg Oral Med Oral Pathol Oral Radiol , vol.115 , Issue.3 , pp. 385-392
    • Noguchi, A.1    Li, X.2    Kubota, A.3
  • 128
    • 67650563916 scopus 로고    scopus 로고
    • SirT1 is an inhibitor of proliferation and tumor formation in colon cancer
    • Kabra N, Li Z, Chen L, et al. SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J Biol Chem. 2009;284(27): 18210-18217.
    • (2009) J Biol Chem , vol.284 , Issue.27 , pp. 18210-18217
    • Kabra, N.1    Li, Z.2    Chen, L.3
  • 129
    • 84864549056 scopus 로고    scopus 로고
    • Loss of SIRT1 histone deacetylase expression associates with tumour progression in colorectal adenocarcinoma
    • Jang SH, Min KW, Paik SS, Jang KS. Loss of SIRT1 histone deacetylase expression associates with tumour progression in colorectal adenocarcinoma. J Clin Pathol. 2012;65(8):735-739.
    • (2012) J Clin Pathol , vol.65 , Issue.8 , pp. 735-739
    • Jang, S.H.1    Min, K.W.2    Paik, S.S.3    Jang, K.S.4
  • 130
    • 77955499804 scopus 로고    scopus 로고
    • Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
    • Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38(6):864-878.
    • (2010) Mol Cell , vol.38 , Issue.6 , pp. 864-878
    • Lim, J.H.1    Lee, Y.M.2    Chun, Y.S.3    Chen, J.4    Kim, J.E.5    Park, J.W.6
  • 131
    • 84876952651 scopus 로고    scopus 로고
    • SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis
    • Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M, Guarente L. SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep. 2013;3(4):1175-1186.
    • (2013) Cell Rep , vol.3 , Issue.4 , pp. 1175-1186
    • Simic, P.1    Williams, E.O.2    Bell, E.L.3    Gong, J.J.4    Bonkowski, M.5    Guarente, L.6
  • 132
    • 65349096174 scopus 로고    scopus 로고
    • A c-Myc-SIRT1 feedback loop regulates cell growth and transformation
    • Yuan J, Minter-Dykhouse K, Lou Z. A c-Myc-SIRT1 feedback loop regulates cell growth and transformation. J Cell Biol. 2009;185(2): 203-211.
    • (2009) J Cell Biol , vol.185 , Issue.2 , pp. 203-211
    • Yuan, J.1    Minter-Dykhouse, K.2    Lou, Z.3
  • 133
    • 84862852344 scopus 로고    scopus 로고
    • SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of beta-catenin
    • Cho IR, Koh SS, Malilas W, et al. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of beta-catenin. Biochem Biophys Res Commun. 2012;423(2):270-275.
    • (2012) Biochem Biophys Res Commun , vol.423 , Issue.2 , pp. 270-275
    • Cho, I.R.1    Koh, S.S.2    Malilas, W.3
  • 134
    • 84861537556 scopus 로고    scopus 로고
    • Hepatitis B virus X (HBX) protein upregulates beta-catenin in a human hepatic cell line by sequestering SIRT1 deacetylase
    • Srisuttee R, Koh SS, Kim SJ, et al. Hepatitis B virus X (HBX) protein upregulates beta-catenin in a human hepatic cell line by sequestering SIRT1 deacetylase. Oncol Rep. 2012;28(1):276-282.
    • (2012) Oncol Rep , vol.28 , Issue.1 , pp. 276-282
    • Srisuttee, R.1    Koh, S.S.2    Kim, S.J.3
  • 135
    • 84870391650 scopus 로고    scopus 로고
    • SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis
    • Srisuttee R, Koh SS, Malilas W, et al. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis. Biochem Biophys Res Commun. 2012; 429(1-2):45-50.
    • (2012) Biochem Biophys Res Commun , vol.429 , Issue.1-2 , pp. 45-50
    • Srisuttee, R.1    Koh, S.S.2    Malilas, W.3
  • 136
    • 0041829415 scopus 로고    scopus 로고
    • Proteomics-based identification of differentially expressed genes in human gliomas:Down-regulation of SIRT2 gene
    • Hiratsuka M, Inoue T, Toda T, et al. Proteomics-based identification of differentially expressed genes in human gliomas:down-regulation of SIRT2 gene. Biochem Biophys Res Commun. 2003;309(3):558-566.
    • (2003) Biochem Biophys Res Commun , vol.309 , Issue.3 , pp. 558-566
    • Hiratsuka, M.1    Inoue, T.2    Toda, T.3
  • 137
    • 78649704141 scopus 로고    scopus 로고
    • Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Study Group. A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia
    • Peters CJ, Rees JR, Hardwick RH, et al; Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) Study Group. A 4-gene signature predicts survival of patients with resected adenocarcinoma of the esophagus, junction, and gastric cardia. Gastroenterology. 2010;139(6):1995-2004. e15.
    • (2010) Gastroenterology , vol.139 , Issue.6
    • Peters, C.J.1    Rees, J.R.2    Hardwick, R.H.3
  • 139
    • 78650638268 scopus 로고    scopus 로고
    • SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis
    • Li Y, Matsumori H, Nakayama Y, et al. SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Genes Cells. 2011;16(1):34-45.
    • (2011) Genes Cells , vol.16 , Issue.1 , pp. 34-45
    • Li, Y.1    Matsumori, H.2    Nakayama, Y.3
  • 140
    • 84863033018 scopus 로고    scopus 로고
    • HDAC6 and SIRT2 promote bladder cancer cell migration and invasion by targeting cortactin
    • Zuo Q, Wu W, Li X, Zhao L, Chen W. HDAC6 and SIRT2 promote bladder cancer cell migration and invasion by targeting cortactin. Oncol Rep. 2012;27(3):819-824.
    • (2012) Oncol Rep , vol.27 , Issue.3 , pp. 819-824
    • Zuo, Q.1    Wu, W.2    Li, X.3    Zhao, L.4    Chen, W.5
  • 141
    • 84873736861 scopus 로고    scopus 로고
    • The histone deacetylase SIRT2 stabilizes Myc oncoproteins
    • Liu PY, Xu N, Malyukova A, et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 2013;20(3):503-514.
    • (2013) Cell Death Differ , vol.20 , Issue.3 , pp. 503-514
    • Liu, P.Y.1    Xu, N.2    Malyukova, A.3
  • 142
    • 84859447698 scopus 로고    scopus 로고
    • The role of sirtuin 2 activation by nicotinamide phosphoribosyltransferase in the aberrant proliferation and survival of myeloid leukemia cells
    • Dan L, Klimenkova O, Klimiankou M, et al. The role of sirtuin 2 activation by nicotinamide phosphoribosyltransferase in the aberrant proliferation and survival of myeloid leukemia cells. Haematologica. 2012;97(4):551-559.
    • (2012) Haematologica , vol.97 , Issue.4 , pp. 551-559
    • Dan, L.1    Klimenkova, O.2    Klimiankou, M.3
  • 143
    • 84878721346 scopus 로고    scopus 로고
    • Altered expression of SIRT gene family in head and neck squamous cell carcinoma
    • Lai CC, Lin PM, Lin SF, et al. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 2013;34(3): 1847-1854.
    • (2013) Tumour Biol , vol.34 , Issue.3 , pp. 1847-1854
    • Lai, C.C.1    Lin, P.M.2    Lin, S.F.3
  • 144
    • 84871271176 scopus 로고    scopus 로고
    • Low SIRT3 expression correlates with poor differentiation and unfavorable prognosis in primary hepatocellular carcinoma
    • Zhang CZ, Liu L, Cai M, et al. Low SIRT3 expression correlates with poor differentiation and unfavorable prognosis in primary hepatocellular carcinoma. PLoS One. 2012;7(12):e51703.
    • (2012) PLoS One , vol.7 , Issue.12
    • Zhang, C.Z.1    Liu, L.2    Cai, M.3
  • 145
    • 84862689176 scopus 로고    scopus 로고
    • Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation
    • Zhang YY, Zhou LM. Sirt3 inhibits hepatocellular carcinoma cell growth through reducing Mdm2-mediated p53 degradation. Biochem Biophys Res Commun. 2012;423(1):26-31.
    • (2012) Biochem Biophys Res Commun , vol.423 , Issue.1 , pp. 26-31
    • Zhang, Y.Y.1    Zhou, L.M.2
  • 146
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010;143(5):802-812.
    • (2010) Cell , vol.143 , Issue.5 , pp. 802-812
    • Someya, S.1    Yu, W.2    Hallows, W.C.3
  • 147
    • 84859951790 scopus 로고    scopus 로고
    • SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
    • Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J Biol Chem. 2012;287(17):14078-14086.
    • (2012) J Biol Chem , vol.287 , Issue.17 , pp. 14078-14086
    • Yu, W.1    Dittenhafer-Reed, K.E.2    Denu, J.M.3
  • 148
    • 79959819034 scopus 로고    scopus 로고
    • SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
    • Bell EL, Emerling BM, Ricoult SJ, Guarente L. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene. 2011;30(26):2986-2996.
    • (2011) Oncogene , vol.30 , Issue.26 , pp. 2986-2996
    • Bell, E.L.1    Emerling, B.M.2    Ricoult, S.J.3    Guarente, L.4
  • 149
    • 84863618431 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of Skp2 function
    • Inuzuka H, Gao D, Finley LW, et al. Acetylation-dependent regulation of Skp2 function. Cell. 2012;150(1):179-193.
    • (2012) Cell , vol.150 , Issue.1 , pp. 179-193
    • Inuzuka, H.1    Gao, D.2    Finley, L.W.3
  • 150
    • 33750212896 scopus 로고    scopus 로고
    • Altered sirtuin expression is associated with node-positive breast cancer
    • Ashraf N, Zino S, Macintyre A, et al. Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer. 2006;95(8): 1056-1061.
    • (2006) Br J Cancer , vol.95 , Issue.8 , pp. 1056-1061
    • Ashraf, N.1    Zino, S.2    Macintyre, A.3
  • 151
    • 79953799195 scopus 로고    scopus 로고
    • Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
    • Alhazzazi TY, Kamarajan P, Joo N, et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer. 2011;117(8):1670-1678.
    • (2011) Cancer , vol.117 , Issue.8 , pp. 1670-1678
    • Alhazzazi, T.Y.1    Kamarajan, P.2    Joo, N.3
  • 152
    • 84869500842 scopus 로고    scopus 로고
    • Receptor-interacting protein (RIP) and Sirtuin-3 (SIRT3) are on opposite sides of anoikis and tumorigenesis
    • Kamarajan P, Alhazzazi TY, Danciu T, D'silva NJ, Verdin E, Kapila YL. Receptor-interacting protein (RIP) and Sirtuin-3 (SIRT3) are on opposite sides of anoikis and tumorigenesis. Cancer. 2012;118(23):5800-5810.
    • (2012) Cancer , vol.118 , Issue.23 , pp. 5800-5810
    • Kamarajan, P.1    Alhazzazi, T.Y.2    Danciu, T.3    D'Silva, N.J.4    Verdin, E.5    Kapila, Y.L.6
  • 153
    • 77956295588 scopus 로고    scopus 로고
    • P53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase
    • Li S, Banck M, Mujtaba S, Zhou MM, Sugrue MM, Walsh MJ. p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase. PLoS One. 2010;5(5):e10486.
    • (2010) PLoS One , vol.5 , Issue.5
    • Li, S.1    Banck, M.2    Mujtaba, S.3    Zhou, M.M.4    Sugrue, M.M.5    Walsh, M.J.6
  • 154
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi A, Fendt SM, Li C, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 2013;153(4):840-854.
    • (2013) Cell , vol.153 , Issue.4 , pp. 840-854
    • Csibi, A.1    Fendt, S.M.2    Li, C.3
  • 155
    • 84883223984 scopus 로고    scopus 로고
    • SIRT6 dependent genetic and epigenetic alterations are associated with poor clinical outcome in HCC patients
    • Marquardt JU, Fischer K, Baus K, et al. SIRT6 dependent genetic and epigenetic alterations are associated with poor clinical outcome in HCC patients. Hepatology. 2013;58(3):1054-1064.
    • (2013) Hepatology , vol.58 , Issue.3 , pp. 1054-1064
    • Marquardt, J.U.1    Fischer, K.2    Baus, K.3
  • 156
    • 69249229772 scopus 로고    scopus 로고
    • The sirtuin SIRT6 deacetylates H3K56Ac in vivo to promote genomic stability
    • Yang B, Zwaans BM, Eckersdorff M, Lombard DB. The sirtuin SIRT6 deacetylates H3K56Ac in vivo to promote genomic stability. Cell Cycle. 2009;8(16):2662-2663.
    • (2009) Cell Cycle , vol.8 , Issue.16 , pp. 2662-2663
    • Yang, B.1    Zwaans, B.M.2    Eckersdorff, M.3    Lombard, D.B.4
  • 157
    • 65549113750 scopus 로고    scopus 로고
    • CBP/p300-mediated acetylation of histone H3 on lysine 56
    • Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature. 2009;459(7243): 113-117.
    • (2009) Nature , vol.459 , Issue.7243 , pp. 113-117
    • Das, C.1    Lucia, M.S.2    Hansen, K.C.3    Tyler, J.K.4
  • 158
    • 84869082071 scopus 로고    scopus 로고
    • Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin
    • Min L, Ji Y, Bakiri L, et al. Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol. 2012;14(11):1203-1211.
    • (2012) Nat Cell Biol , vol.14 , Issue.11 , pp. 1203-1211
    • Min, L.1    Ji, Y.2    Bakiri, L.3
  • 159
    • 80052908853 scopus 로고    scopus 로고
    • SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells
    • Van Meter M, Mao Z, Gorbunova V, Seluanov A. SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle. 2011;10(18):3153-3158.
    • (2011) Cell Cycle , vol.10 , Issue.18 , pp. 3153-3158
    • van Meter, M.1    Mao, Z.2    Gorbunova, V.3    Seluanov, A.4
  • 160
    • 84862804268 scopus 로고    scopus 로고
    • Histone deacetylase in chronic lymphocytic leukemia
    • Wang JC, Kafeel MI, Avezbakiyev B, et al. Histone deacetylase in chronic lymphocytic leukemia. Oncology. 2011;81(5-6):325-329.
    • (2011) Oncology , vol.81 , Issue.5-6 , pp. 325-329
    • Wang, J.C.1    Kafeel, M.I.2    Avezbakiyev, B.3
  • 161
    • 84878550317 scopus 로고    scopus 로고
    • SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer
    • Khongkow M, Olmos Y, Gong C, et al. SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer. Carcinogenesis. 2013;34(7):1476-1486.
    • (2013) Carcinogenesis , vol.34 , Issue.7 , pp. 1476-1486
    • Khongkow, M.1    Olmos, Y.2    Gong, C.3
  • 162
    • 84870363221 scopus 로고    scopus 로고
    • The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses
    • Bauer I, Grozio A, Lasiglie D, et al. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses. J Biol Chem. 2012;287(49):40924-40937.
    • (2012) J Biol Chem , vol.287 , Issue.49 , pp. 40924-40937
    • Bauer, I.1    Grozio, A.2    Lasiglie, D.3
  • 163
    • 0037011667 scopus 로고    scopus 로고
    • Isolation of a SIR-like gene, SIR-T8, that is overexpressed in thyroid carcinoma cell lines and tissues
    • De Nigris F, Cerutti J, Morelli C, et al. Isolation of a SIR-like gene, SIR-T8, that is overexpressed in thyroid carcinoma cell lines and tissues. Br J Cancer. 2002;87(12):1479.
    • (2002) Br J Cancer , vol.87 , Issue.12 , pp. 1479
    • de Nigris, F.1    Cerutti, J.2    Morelli, C.3
  • 164
    • 84874487252 scopus 로고    scopus 로고
    • Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b
    • Kim JK, Noh JH, Jung KH, et al. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology. 2013;57(3): 1055-1067.
    • (2013) Hepatology , vol.57 , Issue.3 , pp. 1055-1067
    • Kim, J.K.1    Noh, J.H.2    Jung, K.H.3
  • 165
    • 64049090625 scopus 로고    scopus 로고
    • Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging
    • Vakhrusheva O, Braeuer D, Liu Z, Braun T, Bober E. Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging. J Physiol Pharmacol. 2008;59 Suppl 9:201-212.
    • (2008) J Physiol Pharmacol , vol.59 , Issue.SUPPL. 9 , pp. 201-212
    • Vakhrusheva, O.1    Braeuer, D.2    Liu, Z.3    Braun, T.4    Bober, E.5
  • 166
    • 84880558721 scopus 로고    scopus 로고
    • Sirtuin-7 inhibits the activity of hypoxia-inducible factors
    • Hubbi ME, Hu H, Kshitiz NF, Gilkes DM, Semenza GL. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J Biol Chem. 2013;288(29):20768-20775.
    • (2013) J Biol Chem , vol.288 , Issue.29 , pp. 20768-20775
    • Hubbi, M.E.1    Hu, H.2    Kshitiz, N.F.3    Gilkes, D.M.4    Semenza, G.L.5
  • 167
    • 84880236916 scopus 로고    scopus 로고
    • Emerging roles of SIRT1 in cancer drug resistance
    • Wang Z, Chen W. Emerging roles of SIRT1 in cancer drug resistance. Genes and Cancer. 2013;4(3-4):82-90.
    • (2013) Genes and Cancer , vol.4 , Issue.3-4 , pp. 82-90
    • Wang, Z.1    Chen, W.2
  • 168
    • 53249121556 scopus 로고    scopus 로고
    • Sirtuins -novel therapeutic targets to treat age-associated diseases
    • Lavu S, Boss O, Elliott PJ, Lambert PD. Sirtuins -novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov. 2008; 7(10):841-853.
    • (2008) Nat Rev Drug Discov , vol.7 , Issue.10 , pp. 841-853
    • Lavu, S.1    Boss, O.2    Elliott, P.J.3    Lambert, P.D.4
  • 169
    • 77953292895 scopus 로고    scopus 로고
    • Sirtuins inhibitors:The approach to affinity and selectivity
    • Cen Y. Sirtuins inhibitors:the approach to affinity and selectivity. Biochim Biophys Acta. 2010;1804(8):1635-1644.
    • (2010) Biochim Biophys Acta , vol.1804 , Issue.8 , pp. 1635-1644
    • Cen, Y.1
  • 170
    • 84876717815 scopus 로고    scopus 로고
    • Rejuvenating sirtuins: The rise of a new family of cancer drug targets
    • Bruzzone S, Parenti MD, Grozio A, et al. Rejuvenating sirtuins: the rise of a new family of cancer drug targets. Curr Pharm Des. 2013;19(4): 614-623.
    • (2013) Curr Pharm Des , vol.19 , Issue.4 , pp. 614-623
    • Bruzzone, S.1    Parenti, M.D.2    Grozio, A.3
  • 172
    • 42949114938 scopus 로고    scopus 로고
    • Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator
    • Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13(5):454-463.
    • (2008) Cancer Cell , vol.13 , Issue.5 , pp. 454-463
    • Lain, S.1    Hollick, J.J.2    Campbell, J.3
  • 173
    • 85170263903 scopus 로고    scopus 로고
    • Sirtuin and pan-class I/II deacetylase (DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma
    • Amengual JE, Clark-Garvey S, Kalac M, et al. Sirtuin and pan-class I/II deacetylase (DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma. Blood. 2013;120:2725.
    • Blood , vol.2013 , pp. 120
    • Amengual, J.E.1    Clark-Garvey, S.2    Kalac, M.3
  • 176
    • 69949151709 scopus 로고    scopus 로고
    • Crystal structures of human SIRT3 displaying substrate-induced conformational changes
    • Jin L, Wei W, Jiang Y, et al. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. J Biol Chem. 2009;284(36):24394-24405.
    • (2009) J Biol Chem , vol.284 , Issue.36 , pp. 24394-24405
    • Jin, L.1    Wei, W.2    Jiang, Y.3
  • 177
    • 33847635635 scopus 로고    scopus 로고
    • Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
    • Schuetz A, Min J, Antoshenko T, et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure. 2007;15(3):377-389.
    • (2007) Structure , vol.15 , Issue.3 , pp. 377-389
    • Schuetz, A.1    Min, J.2    Antoshenko, T.3
  • 179
    • 84873929641 scopus 로고    scopus 로고
    • The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition
    • Zhao X, Allison D, Condon B, et al. The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J Med Chem. 2013;56(3):963-969.
    • (2013) J Med Chem , vol.56 , Issue.3 , pp. 963-969
    • Zhao, X.1    Allison, D.2    Condon, B.3
  • 180
    • 84877714749 scopus 로고    scopus 로고
    • Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3
    • Disch JS, Evindar G, Chiu CH, et al. Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. J Med Chem. 2013;56(9):3666-3679.
    • (2013) J Med Chem , vol.56 , Issue.9 , pp. 3666-3679
    • Disch, J.S.1    Evindar, G.2    Chiu, C.H.3
  • 181
    • 84856076413 scopus 로고    scopus 로고
    • SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity
    • Pan M, Yuan H, Brent M, Ding EC, Marmorstein R. SIRT1 contains N- and C-terminal regions that potentiate deacetylase activity. J Biol Chem. 2012;287(4):2468-2476.
    • (2012) J Biol Chem , vol.287 , Issue.4 , pp. 2468-2476
    • Pan, M.1    Yuan, H.2    Brent, M.3    Ding, E.C.4    Marmorstein, R.5
  • 182
    • 84874721105 scopus 로고    scopus 로고
    • Evidence for a common mechanism of SIRT1 regulation by allosteric activators
    • Hubbard BP, Gomes AP, Dai H, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013;339(6124):1216-1219.
    • (2013) Science , vol.339 , Issue.6124 , pp. 1216-1219
    • Hubbard, B.P.1    Gomes, A.P.2    Dai, H.3
  • 183
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A. 2006;103(27):10230-10235.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , Issue.27 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 184
    • 79960620082 scopus 로고    scopus 로고
    • The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy
    • Sundaresan NR, Pillai VB, Wolfgeher D, et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011;4(182):ra46.
    • (2011) Sci Signal , vol.4 , Issue.182
    • Sundaresan, N.R.1    Pillai, V.B.2    Wolfgeher, D.3
  • 185
    • 33750367457 scopus 로고    scopus 로고
    • Hormonal control of androgen receptor function through SIRT1
    • Fu M, Liu M, Sauve AA, et al. Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol. 2006;26(21):8122-8135.
    • (2006) Mol Cell Biol , vol.26 , Issue.21 , pp. 8122-8135
    • Fu, M.1    Liu, M.2    Sauve, A.A.3
  • 186
    • 77950351604 scopus 로고    scopus 로고
    • SIRT1 deacetylates APE1 and regulates cellular base excision repair
    • Yamamori T, DeRicco J, Naqvi A, et al. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 2010;38(3): 832-845.
    • (2010) Nucleic Acids Res , vol.38 , Issue.3 , pp. 832-845
    • Yamamori, T.1    Dericco, J.2    Naqvi, A.3
  • 187
    • 41549138483 scopus 로고    scopus 로고
    • A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy
    • Lee IH, Cao L, Mostoslavsky R, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008;105(9):3374-3379.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.9 , pp. 3374-3379
    • Lee, I.H.1    Cao, L.2    Mostoslavsky, R.3
  • 188
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329-340.
    • (2008) Cell , vol.134 , Issue.2 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3
  • 189
    • 83755224391 scopus 로고    scopus 로고
    • SIRT1 links CIITA deacetylation to MHC II activation
    • Wu X, Kong X, Chen D, et al. SIRT1 links CIITA deacetylation to MHC II activation. Nucleic Acids Res. 2011;39(22):9549-9558.
    • (2011) Nucleic Acids Res , vol.39 , Issue.22 , pp. 9549-9558
    • Wu, X.1    Kong, X.2    Chen, D.3
  • 190
    • 80053377582 scopus 로고    scopus 로고
    • Sirt1 deacetylates c-Myc and promotes c-Myc/Max association
    • Mao B, Zhao G, Lv X, et al. Sirt1 deacetylates c-Myc and promotes c-Myc/Max association. Int J Biochem Cell Biol. 2011;43(11): 1573-1581.
    • (2011) Int J Biochem Cell Biol , vol.43 , Issue.11 , pp. 1573-1581
    • Mao, B.1    Zhao, G.2    Lv, X.3
  • 191
    • 84855563516 scopus 로고    scopus 로고
    • Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
    • Jeong H, Cohen DE, Cui L, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med. 2011;18(1):159-165.
    • (2011) Nat Med , vol.18 , Issue.1 , pp. 159-165
    • Jeong, H.1    Cohen, D.E.2    Cui, L.3
  • 192
    • 56249100986 scopus 로고    scopus 로고
    • A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
    • Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008;456(7219):269-273.
    • (2008) Nature , vol.456 , Issue.7219 , pp. 269-273
    • Liu, Y.1    Dentin, R.2    Chen, D.3
  • 193
    • 83255186739 scopus 로고    scopus 로고
    • SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities
    • Peng L, Yuan Z, Ling H, et al. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol. 2011;31(23):4720-4734.
    • (2011) Mol Cell Biol , vol.31 , Issue.23 , pp. 4720-4734
    • Peng, L.1    Yuan, Z.2    Ling, H.3
  • 194
    • 79957718333 scopus 로고    scopus 로고
    • EVI1 up-regulates the stress responsive gene SIRT1 which triggers deacetylation and degradation of EVI1
    • Pradhan AK, Kuila N, Singh S, Chakraborty S. EVI1 up-regulates the stress responsive gene SIRT1 which triggers deacetylation and degradation of EVI1. Biochim Biophys Acta. 2011;1809(4-6):269-275.
    • (2011) Biochim Biophys Acta , vol.1809 , Issue.4-6 , pp. 269-275
    • Pradhan, A.K.1    Kuila, N.2    Singh, S.3    Chakraborty, S.4
  • 195
    • 35549008884 scopus 로고    scopus 로고
    • SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
    • Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 2007;104(37): 14855-14860.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.37 , pp. 14855-14860
    • Mattagajasingh, I.1    Kim, C.S.2    Naqvi, A.3
  • 196
    • 80052433662 scopus 로고    scopus 로고
    • Reciprocal roles of DBC1 and SIRT1 in regulating estrogen receptor alpha activity and co-activator synergy
    • Yu EJ, Kim SH, Heo K, Ou CY, Stallcup MR, Kim JH. Reciprocal roles of DBC1 and SIRT1 in regulating estrogen receptor alpha activity and co-activator synergy. Nucleic Acids Res. 2011;39(16):6932-6943.
    • (2011) Nucleic Acids Res , vol.39 , Issue.16 , pp. 6932-6943
    • Yu, E.J.1    Kim, S.H.2    Heo, K.3    Ou, C.Y.4    Stallcup, M.R.5    Kim, J.H.6
  • 197
    • 3042750643 scopus 로고    scopus 로고
    • Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity
    • Daitoku H, Hatta M, Matsuzaki H, et al. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A. 2004;101(27):10042-10047.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , Issue.27 , pp. 10042-10047
    • Daitoku, H.1    Hatta, M.2    Matsuzaki, H.3
  • 198
    • 12144290563 scopus 로고    scopus 로고
    • Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    • Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011-2015.
    • (2004) Science , vol.303 , Issue.5666 , pp. 2011-2015
    • Brunet, A.1    Sweeney, L.B.2    Sturgill, J.F.3
  • 199
    • 1342264308 scopus 로고    scopus 로고
    • Mammalian SIRT1 represses forkhead transcription factors
    • Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551-563.
    • (2004) Cell , vol.116 , Issue.4 , pp. 551-563
    • Motta, M.C.1    Divecha, N.2    Lemieux, M.3
  • 200
    • 77649225958 scopus 로고    scopus 로고
    • Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization
    • van Loosdregt J, Vercoulen Y, Guichelaar T, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood. 2010;115(5):965-974.
    • (2010) Blood , vol.115 , Issue.5 , pp. 965-974
    • van Loosdregt, J.1    Vercoulen, Y.2    Guichelaar, T.3
  • 201
    • 70350606061 scopus 로고    scopus 로고
    • FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states
    • Kemper JK, Xiao Z, Ponugoti B, et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 2009;10(5):392-404.
    • (2009) Cell Metab , vol.10 , Issue.5 , pp. 392-404
    • Kemper, J.K.1    Xiao, Z.2    Ponugoti, B.3
  • 202
    • 66749129781 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1
    • Dioum EM, Chen R, Alexander MS, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science. 2009;324(5932):1289-1293.
    • (2009) Science , vol.324 , Issue.5932 , pp. 1289-1293
    • Dioum, E.M.1    Chen, R.2    Alexander, M.S.3
  • 203
    • 60749101582 scopus 로고    scopus 로고
    • Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1
    • Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science. 2009;323(5917):1063-1066.
    • (2009) Science , vol.323 , Issue.5917 , pp. 1063-1066
    • Westerheide, S.D.1    Anckar, J.2    Stevens Jr., S.M.3    Sistonen, L.4    Morimoto, R.I.5
  • 204
    • 33847647624 scopus 로고    scopus 로고
    • SIRT1 promotes DNA repair activity and deacetylation of Ku70
    • Jeong J, Juhn K, Lee H, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med. 2007;39(1):8-13.
    • (2007) Exp Mol Med , vol.39 , Issue.1 , pp. 8-13
    • Jeong, J.1    Juhn, K.2    Lee, H.3
  • 205
    • 34948883324 scopus 로고    scopus 로고
    • SIRT1 deacetylates and positively regulates the nuclear receptor LXR
    • Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell. 2007;28(1):91-106.
    • (2007) Mol Cell , vol.28 , Issue.1 , pp. 91-106
    • Li, X.1    Zhang, S.2    Blander, G.3    Tse, J.G.4    Krieger, M.5    Guarente, L.6
  • 206
    • 84863808547 scopus 로고    scopus 로고
    • SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression
    • Zocchi L, Sassone-Corsi P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics. 2012;7(7):695-700.
    • (2012) Epigenetics , vol.7 , Issue.7 , pp. 695-700
    • Zocchi, L.1    Sassone-Corsi, P.2
  • 207
    • 0043244921 scopus 로고    scopus 로고
    • Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
    • Fulco M, Schiltz RL, Iezzi S, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell. 2003;12(1):51-62.
    • (2003) Mol Cell , vol.12 , Issue.1 , pp. 51-62
    • Fulco, M.1    Schiltz, R.L.2    Iezzi, S.3
  • 208
    • 34250897968 scopus 로고    scopus 로고
    • SIRT1 regulates the function of the Nijmegen breakage syndrome protein
    • Yuan Z, Zhang X, Sengupta N, Lane WS, Seto E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell. 2007;27(1):149-162.
    • (2007) Mol Cell , vol.27 , Issue.1 , pp. 149-162
    • Yuan, Z.1    Zhang, X.2    Sengupta, N.3    Lane, W.S.4    Seto, E.5
  • 209
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
    • Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369-2380.
    • (2004) EMBO J , vol.23 , Issue.12 , pp. 2369-2380
    • Yeung, F.1    Hoberg, J.E.2    Ramsey, C.S.3
  • 210
    • 84455169414 scopus 로고    scopus 로고
    • SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive
    • Libert S, Pointer K, Bell EL, et al. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell. 2011;147(7): 1459-1472.
    • (2011) Cell , vol.147 , Issue.7 , pp. 1459-1472
    • Libert, S.1    Pointer, K.2    Bell, E.L.3
  • 211
    • 68249094672 scopus 로고    scopus 로고
    • Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNA-dependent silencing
    • Zhou Y, Schmitz KM, Mayer C, Yuan X, Akhtar A, Grummt I. Reversible acetylation of the chromatin remodelling complex NoRC is required for non-coding RNA-dependent silencing. Nat Cell Biol. 2009;11(8):1010-1016.
    • (2009) Nat Cell Biol , vol.11 , Issue.8 , pp. 1010-1016
    • Zhou, Y.1    Schmitz, K.M.2    Mayer, C.3    Yuan, X.4    Akhtar, A.5    Grummt, I.6
  • 212
    • 79955926985 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase
    • Guarani V, Deflorian G, Franco CA, et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature. 2011;473(7346):234-238.
    • (2011) Nature , vol.473 , Issue.7346 , pp. 234-238
    • Guarani, V.1    Deflorian, G.2    Franco, C.A.3
  • 213
    • 15444377466 scopus 로고    scopus 로고
    • SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
    • Bouras T, Fu M, Sauve AA, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem. 2005;280(11):10264-10276.
    • (2005) J Biol Chem , vol.280 , Issue.11 , pp. 10264-10276
    • Bouras, T.1    Fu, M.2    Sauve, A.A.3
  • 214
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2alpha promotes cell survival under stress
    • Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell. 2001;107(2):137-148.
    • (2001) Cell , vol.107 , Issue.2 , pp. 137-148
    • Luo, J.1    Nikolaev, A.Y.2    Imai, S.3
  • 215
    • 0035913903 scopus 로고    scopus 로고
    • Hsir2(SIRT1) functions as an NAD-dependent p53 deacetylase
    • Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149-159.
    • (2001) Cell , vol.107 , Issue.2 , pp. 149-159
    • Vaziri, H.1    Dessain, S.K.2    Ng, E.E.3
  • 216
    • 67651210858 scopus 로고    scopus 로고
    • SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1
    • Rajamohan SB, Pillai VB, Gupta M, et al. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol. 2009;29(15): 4116-4129.
    • (2009) Mol Cell Biol , vol.29 , Issue.15 , pp. 4116-4129
    • Rajamohan, S.B.1    Pillai, V.B.2    Gupta, M.3
  • 217
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2): 317-328.
    • (2008) Cell , vol.134 , Issue.2 , pp. 317-328
    • Asher, G.1    Gatfield, D.2    Stratmann, M.3
  • 218
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113-118.
    • (2005) Nature , vol.434 , Issue.7029 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 219
    • 77955452426 scopus 로고    scopus 로고
    • SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals
    • Akieda-Asai S, Zaima N, Ikegami K, et al. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals. PLoS One. 2010;5(7):e11755.
    • (2010) PLoS One , vol.5 , Issue.7
    • Akieda-Asai, S.1    Zaima, N.2    Ikegami, K.3
  • 220
    • 52049102233 scopus 로고    scopus 로고
    • PTEN acetylation modulates its interaction with PDZ domain
    • Ikenoue T, Inoki K, Zhao B, Guan KL. PTEN acetylation modulates its interaction with PDZ domain. Cancer Res. 2008;68(17): 6908-6912.
    • (2008) Cancer Res , vol.68 , Issue.17 , pp. 6908-6912
    • Ikenoue, T.1    Inoki, K.2    Zhao, B.3    Guan, K.L.4
  • 221
    • 77955046461 scopus 로고    scopus 로고
    • SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
    • Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell. 2010;142(2):320-332.
    • (2010) Cell , vol.142 , Issue.2 , pp. 320-332
    • Donmez, G.1    Wang, D.2    Cohen, D.E.3    Guarente, L.4
  • 222
    • 35748949600 scopus 로고    scopus 로고
    • Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1
    • Wong S, Weber JD. Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J. 2007;407(3):451-460.
    • (2007) Biochem J , vol.407 , Issue.3 , pp. 451-460
    • Wong, S.1    Weber, J.D.2
  • 223
    • 33846976509 scopus 로고    scopus 로고
    • SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation
    • Kume S, Haneda M, Kanasaki K, et al. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem. 2007;282(1):151-158.
    • (2007) J Biol Chem , vol.282 , Issue.1 , pp. 151-158
    • Kume, S.1    Haneda, M.2    Kanasaki, K.3
  • 224
    • 77958595135 scopus 로고    scopus 로고
    • SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism
    • Ponugoti B, Kim DH, Xiao Z, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem. 2010;285(44):33959-33970.
    • (2010) J Biol Chem , vol.285 , Issue.44 , pp. 33959-33970
    • Ponugoti, B.1    Kim, D.H.2    Xiao, Z.3
  • 225
    • 64049109876 scopus 로고    scopus 로고
    • STAT3 inhibition of gluconeogenesis is downregulated by SirT1
    • Nie Y, Erion DM, Yuan Z, et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol. 2009;11(4):492-500.
    • (2009) Nat Cell Biol , vol.11 , Issue.4 , pp. 492-500
    • Nie, Y.1    Erion, D.M.2    Yuan, Z.3
  • 226
    • 53149144656 scopus 로고    scopus 로고
    • Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis
    • Wang RH, Zheng Y, Kim HS, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell. 2008;32(1):11-20.
    • (2008) Mol Cell , vol.32 , Issue.1 , pp. 11-20
    • Wang, R.H.1    Zheng, Y.2    Kim, H.S.3
  • 227
    • 36248954501 scopus 로고    scopus 로고
    • SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation
    • Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007;450(7168): 440-444.
    • (2007) Nature , vol.450 , Issue.7168 , pp. 440-444
    • Vaquero, A.1    Scher, M.2    Erdjument-Bromage, H.3    Tempst, P.4    Serrano, L.5    Reinberg, D.6
  • 228
    • 20144372893 scopus 로고    scopus 로고
    • SIRT1 regulates HIV transcription via Tat deacetylation
    • Pagans S, Pedal A, North BJ, et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 2005;3(2):e41.
    • (2005) PLoS Biol , vol.3 , Issue.2
    • Pagans, S.1    Pedal, A.2    North, B.J.3
  • 229
    • 84864020743 scopus 로고    scopus 로고
    • SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60
    • Peng L, Ling H, Yuan Z, et al. SIRT1 negatively regulates the activities, functions, and protein levels of hMOF and TIP60. Mol Cell Biol. 2012;32(14):2823-2836.
    • (2012) Mol Cell Biol , vol.32 , Issue.14 , pp. 2823-2836
    • Peng, L.1    Ling, H.2    Yuan, Z.3
  • 230
    • 43149118368 scopus 로고    scopus 로고
    • Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation
    • Li K, Casta A, Wang R, et al. Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. J Biol Chem. 2008;283(12):7590-7598.
    • (2008) J Biol Chem , vol.283 , Issue.12 , pp. 7590-7598
    • Li, K.1    Casta, A.2    Wang, R.3
  • 231
    • 79551474362 scopus 로고    scopus 로고
    • Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation
    • Wang FM, Chen YJ, Ouyang HJ. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. Biochem J. 2011;433(1):245-252.
    • (2011) Biochem J , vol.433 , Issue.1 , pp. 245-252
    • Wang, F.M.1    Chen, Y.J.2    Ouyang, H.J.3
  • 232
    • 77955501963 scopus 로고    scopus 로고
    • SIRT1 regulates UV-induced DNA repair through deacetylating XPA
    • Fan W, Luo J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell. 2010;39(2):247-258.
    • (2010) Mol Cell , vol.39 , Issue.2 , pp. 247-258
    • Fan, W.1    Luo, J.2
  • 233
    • 78651105018 scopus 로고    scopus 로고
    • Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C
    • Ming M, Shea CR, Guo X, et al. Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci U S A. 2010;107(52):22623-22628.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.52 , pp. 22623-22628
    • Ming, M.1    Shea, C.R.2    Guo, X.3
  • 234
    • 34250848194 scopus 로고    scopus 로고
    • Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice:A crucial role of tubulin deacetylation
    • Suzuki K, Koike T. Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice:a crucial role of tubulin deacetylation. Neuroscience. 2007;147(3):599-612.
    • (2007) Neuroscience , vol.147 , Issue.3 , pp. 599-612
    • Suzuki, K.1    Koike, T.2
  • 235
    • 34547397081 scopus 로고    scopus 로고
    • SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
    • Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6(2): 105-114.
    • (2007) Cell Metab , vol.6 , Issue.2 , pp. 105-114
    • Jing, E.1    Gesta, S.2    Kahn, C.R.3
  • 236
    • 84874394209 scopus 로고    scopus 로고
    • Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation
    • Snider NT, Leonard JM, Kwan R, Griggs NW, Rui L, Omary MB. Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation. J Cell Biol. 2013;200(3):241-247.
    • (2013) J Cell Biol , vol.200 , Issue.3 , pp. 241-247
    • Snider, N.T.1    Leonard, J.M.2    Kwan, R.3    Griggs, N.W.4    Rui, L.5    Omary, M.B.6
  • 237
    • 78649738291 scopus 로고    scopus 로고
    • SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310
    • Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci. 2010;123(Pt 24): 4251-4258.
    • (2010) J Cell Sci , vol.123 , Issue.PART 24 , pp. 4251-4258
    • Rothgiesser, K.M.1    Erener, S.2    Waibel, S.3    Luscher, B.4    Hottiger, M.O.5
  • 238
    • 55049117907 scopus 로고    scopus 로고
    • The SIRT2 deacetylase regulates autoacetylation of p300
    • Black JC, Mosley A, Kitada T, Washburn M, Carey M. The SIRT2 deacetylase regulates autoacetylation of p300. Mol Cell. 2008;32(3): 449-455.
    • (2008) Mol Cell , vol.32 , Issue.3 , pp. 449-455
    • Black, J.C.1    Mosley, A.2    Kitada, T.3    Washburn, M.4    Carey, M.5
  • 239
    • 80055085172 scopus 로고    scopus 로고
    • Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling
    • Beirowski B, Gustin J, Armour SM, et al. Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci U S A. 2011;108(43):E952-E961.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , Issue.43
    • Beirowski, B.1    Gustin, J.2    Armour, S.M.3
  • 240
    • 79959906869 scopus 로고    scopus 로고
    • Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase
    • Jiang W, Wang S, Xiao M, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011;43(1):33-44.
    • (2011) Mol Cell , vol.43 , Issue.1 , pp. 33-44
    • Jiang, W.1    Wang, S.2    Xiao, M.3
  • 241
    • 84875309392 scopus 로고    scopus 로고
    • The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation
    • Serrano L, Martinez-Redondo P, Marazuela-Duque A, et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 2013;27(6):639-653.
    • (2013) Genes Dev , vol.27 , Issue.6 , pp. 639-653
    • Serrano, L.1    Martinez-Redondo, P.2    Marazuela-Duque, A.3
  • 242
    • 84870999850 scopus 로고    scopus 로고
    • The NAD-dependent deacetylase SIRT2 is required for programmed necrosis
    • Narayan N, Lee IH, Borenstein R, et al. The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature. 2012;492(7428):199-204.
    • (2012) Nature , vol.492 , Issue.7428 , pp. 199-204
    • Narayan, N.1    Lee, I.H.2    Borenstein, R.3
  • 243
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A. 2006;103(27):10224-10229.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , Issue.27 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3    Andersen, J.S.4    Verdin, E.5
  • 244
    • 77951176793 scopus 로고    scopus 로고
    • Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
    • Shulga N, Wilson-Smith R, Pastorino JG. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci. 2010;123(Pt 6):894-902.
    • (2010) J Cell Sci , vol.123 , Issue.PART 6 , pp. 894-902
    • Shulga, N.1    Wilson-Smith, R.2    Pastorino, J.G.3
  • 245
    • 79952266729 scopus 로고    scopus 로고
    • Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
    • Hafner AV, Dai J, Gomes AP, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY). 2010;2(12):914-923.
    • (2010) Aging (Albany NY) , vol.2 , Issue.12 , pp. 914-923
    • Hafner, A.V.1    Dai, J.2    Gomes, A.P.3
  • 246
    • 84879059766 scopus 로고    scopus 로고
    • SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage
    • Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63C:222-234.
    • (2013) Free Radic Biol Med , vol.63 C , pp. 222-234
    • Tseng, A.H.1    Shieh, S.S.2    Wang, D.L.3
  • 247
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 2008;382(3): 790-801.
    • (2008) J Mol Biol , vol.382 , Issue.3 , pp. 790-801
    • Schlicker, C.1    Gertz, M.2    Papatheodorou, P.3    Kachholz, B.4    Becker, C.F.5    Steegborn, C.6
  • 248
    • 53549105529 scopus 로고    scopus 로고
    • SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
    • Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008;28(20):6384-6401.
    • (2008) Mol Cell Biol , vol.28 , Issue.20 , pp. 6384-6401
    • Sundaresan, N.R.1    Samant, S.A.2    Pillai, V.B.3    Rajamohan, S.B.4    Gupta, M.P.5
  • 249
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey MD, Shimazu T, Goetzman E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464(7285):121-125.
    • (2010) Nature , vol.464 , Issue.7285 , pp. 121-125
    • Hirschey, M.D.1    Shimazu, T.2    Goetzman, E.3
  • 250
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
    • Pillai VB, Sundaresan NR, Kim G, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010;285(5):3133-3144.
    • (2010) J Biol Chem , vol.285 , Issue.5 , pp. 3133-3144
    • Pillai, V.B.1    Sundaresan, N.R.2    Kim, G.3
  • 251
    • 78649509214 scopus 로고    scopus 로고
    • SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
    • Shimazu T, Hirschey MD, Hua L, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010;12(6):654-661.
    • (2010) Cell Metab , vol.12 , Issue.6 , pp. 654-661
    • Shimazu, T.1    Hirschey, M.D.2    Hua, L.3
  • 252
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • Tao R, Coleman MC, Pennington JD, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010;40(6):893-904.
    • (2010) Mol Cell , vol.40 , Issue.6 , pp. 893-904
    • Tao, R.1    Coleman, M.C.2    Pennington, J.D.3
  • 253
    • 77951235122 scopus 로고    scopus 로고
    • NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
    • Yang Y, Cimen H, Han MJ, et al. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem. 2010;285(10): 7417-7429.
    • (2010) J Biol Chem , vol.285 , Issue.10 , pp. 7417-7429
    • Yang, Y.1    Cimen, H.2    Han, M.J.3
  • 254
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105(38):14447-14452.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.38 , pp. 14447-14452
    • Ahn, B.H.1    Kim, H.S.2    Song, S.3
  • 255
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • Hallows WC, Yu W, Smith BC, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol Cell. 2011;41(2): 139-149.
    • (2011) Mol Cell , vol.41 , Issue.2 , pp. 139-149
    • Hallows, W.C.1    Yu, W.2    Smith, B.C.3
  • 256
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry. 2010;49(2):304-311.
    • (2010) Biochemistry , vol.49 , Issue.2 , pp. 304-311
    • Cimen, H.1    Han, M.J.2    Yang, Y.3    Tong, Q.4    Koc, H.5    Koc, E.C.6
  • 257
    • 80051716282 scopus 로고    scopus 로고
    • Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
    • Finley LW, Haas W, Desquiret-Dumas V, et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One. 2011;6(8):e23295.
    • (2011) PLoS One , vol.6 , Issue.8
    • Finley, L.W.1    Haas, W.2    Desquiret-Dumas, V.3
  • 258
    • 84878891625 scopus 로고    scopus 로고
    • SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
    • Laurent G, German NJ, Saha AK, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell. 2013;50(5):686-698.
    • (2013) Mol Cell , vol.50 , Issue.5 , pp. 686-698
    • Laurent, G.1    German, N.J.2    Saha, A.K.3
  • 259
    • 79952806932 scopus 로고    scopus 로고
    • Sirtuins at a glance
    • Nakagawa T, Guarente L. Sirtuins at a glance. J Cell Sci. 2011;124(Pt 6):833-838.
    • (2011) J Cell Sci , vol.124 , Issue.PART 6 , pp. 833-838
    • Nakagawa, T.1    Guarente, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.