메뉴 건너뛰기




Volumn 5, Issue 2, 2016, Pages

Advances in autophagy regulatory mechanisms

Author keywords

Amino acids; ATG14L; Autophagosome; Autophagy; Beclin 1; Isolation membrane; MTOR; ULK; VPS34

Indexed keywords

BECLIN 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MITOFUSIN 2; PHOSPHATIDYLINOSITIDE; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHOPROTEIN PHOSPHATASE 2A; SYNTAXIN;

EID: 85056746546     PISSN: None     EISSN: 20734409     Source Type: Journal    
DOI: 10.3390/cells5020024     Document Type: Review
Times cited : (119)

References (200)
  • 1
    • 77956416339 scopus 로고    scopus 로고
    • Autophagy in mammalian development and differentiation
    • Mizushima, N.; Levine, B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 2010, 12, 823-830
    • (2010) Nat. Cell Biol , vol.12 , pp. 823-830
    • Mizushima, N.1    Levine, B.2
  • 3
    • 84891738225 scopus 로고    scopus 로고
    • Autophagy and human diseases
    • Jiang, P.; Mizushima, N. Autophagy and human diseases. Cell Res. 2014, 24, 69-79
    • (2014) Cell Res , vol.24 , pp. 69-79
    • Jiang, P.1    Mizushima, N.2
  • 5
    • 84882254367 scopus 로고    scopus 로고
    • The role of autophagy in neurodegenerative disease
    • Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 2013, 19, 983-997
    • (2013) Nat. Med , vol.19 , pp. 983-997
    • Nixon, R.A.1
  • 8
    • 84891745088 scopus 로고    scopus 로고
    • Historical landmarks of autophagy research
    • Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 2014, 24, 9-23
    • (2014) Cell Res , vol.24 , pp. 9-23
    • Ohsumi, Y.1
  • 9
    • 84905405893 scopus 로고    scopus 로고
    • Getting ready for building: Signaling and autophagosome biogenesis
    • Abada, A.; Elazar, Z. Getting ready for building: Signaling and autophagosome biogenesis. EMBO Rep. 2014, 15, 839-852
    • (2014) EMBO Rep , vol.15 , pp. 839-852
    • Abada, A.1    Elazar, Z.2
  • 10
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell, R.C.; Yuan, H.X.; Guan, K.L. Autophagy regulation by nutrient signaling. Cell Res. 2014, 24, 42-57
    • (2014) Cell Res , vol.24 , pp. 42-57
    • Russell, R.C.1    Yuan, H.X.2    Guan, K.L.3
  • 11
    • 0025363276 scopus 로고
    • Studies on the mechanisms of autophagy: Formation of the autophagic vacuole
    • Dunn, W.A., Jr. Studies on the mechanisms of autophagy: Formation of the autophagic vacuole. J. Cell Biol. 1990, 110, 1923-1933
    • (1990) J. Cell Biol , vol.110 , pp. 1923-1933
    • Dunn, W.A.1
  • 12
    • 84878562770 scopus 로고    scopus 로고
    • Autophagic processes in yeast: Mechanism, machinery and regulation
    • Reggiori, F.; Klionsky, D.J. Autophagic processes in yeast: Mechanism, machinery and regulation. Genetics 2013, 194, 341-361
    • (2013) Genetics , vol.194 , pp. 341-361
    • Reggiori, F.1    Klionsky, D.J.2
  • 13
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: Origins unknown, biogenesis complex
    • Lamb, C.A.; Yoshimori, T.; Tooze, S.A. The autophagosome: Origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 2013, 14, 759-774
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 759-774
    • Lamb, C.A.1    Yoshimori, T.2    Tooze, S.A.3
  • 14
    • 84891748139 scopus 로고    scopus 로고
    • A current perspective of autophagosome biogenesis
    • Shibutani, S.T.; Yoshimori, T. A current perspective of autophagosome biogenesis. Cell Res. 2014, 24, 58-68
    • (2014) Cell Res , vol.24 , pp. 58-68
    • Shibutani, S.T.1    Yoshimori, T.2
  • 15
    • 84921396314 scopus 로고    scopus 로고
    • Membrane dynamics in autophagosome biogenesis
    • Carlsson, S.R.; Simonsen, A. Membrane dynamics in autophagosome biogenesis. J. Cell Sci. 2015, 128, 193-205
    • (2015) J. Cell Sci , vol.128 , pp. 193-205
    • Carlsson, S.R.1    Simonsen, A.2
  • 16
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe, E.L.; Walker, S.A.; Manifava, M.; Chandra, P.; Roderick, H.L.; Habermann, A.; Griffiths, G.; Ktistakis, N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008, 182, 685-701
    • (2008) J. Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3    Chandra, P.4    Roderick, H.L.5    Habermann, A.6    Griffiths, G.7    Ktistakis, N.T.8
  • 19
    • 71649112895 scopus 로고    scopus 로고
    • 3D tomography reveals connections between the phagophore and endoplasmic reticulum
    • Yla-Anttila, P.; Vihinen, H.; Jokitalo, E.; Eskelinen, E.L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009, 5, 1180-1185
    • (2009) Autophagy , vol.5 , pp. 1180-1185
    • Yla-Anttila, P.1    Vihinen, H.2    Jokitalo, E.3    Eskelinen, E.L.4
  • 21
    • 84939209368 scopus 로고    scopus 로고
    • Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis
    • Shpilka, T.; Welter, E.; Borovsky, N.; Amar, N.; Mari, M.; Reggiori, F.; Elazar, Z. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 2015, 34, 2117-2131
    • (2015) EMBO J , vol.34 , pp. 2117-2131
    • Shpilka, T.1    Welter, E.2    Borovsky, N.3    Amar, N.4    Mari, M.5    Reggiori, F.6    Elazar, Z.7
  • 25
    • 64049113909 scopus 로고    scopus 로고
    • Distinct regulation of autophagic activity by ATG14l and rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex
    • Zhong, Y.; Wang, Q.J.; Li, X.; Yan, Y.; Backer, J.M.; Chait, B.T.; Heintz, N.; Yue, Z. Distinct regulation of autophagic activity by ATG14l and rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 2009, 11, 468-476
    • (2009) Nat. Cell Biol , vol.11 , pp. 468-476
    • Zhong, Y.1    Wang, Q.J.2    Li, X.3    Yan, Y.4    Backer, J.M.5    Chait, B.T.6    Heintz, N.7    Yue, Z.8
  • 28
    • 79956358522 scopus 로고    scopus 로고
    • Autophagosome targeting and membrane curvature sensing by barkor/ATG14(L). Proc
    • Fan, W.; Nassiri, A.; Zhong, Q. Autophagosome targeting and membrane curvature sensing by barkor/ATG14(l). Proc. Natl. Acad. Sci. USA 2011, 108, 7769-7774
    • (2011) Natl. Acad. Sci. USA , vol.108 , pp. 7769-7774
    • Fan, W.1    Nassiri, A.2    Zhong, Q.3
  • 31
    • 84871726622 scopus 로고    scopus 로고
    • Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (mam)
    • Raturi, A.; Simmen, T. Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (mam). Biochim. Biophys. Acta 2013, 1833, 213-224
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 213-224
    • Raturi, A.1    Simmen, T.2
  • 32
    • 84885662059 scopus 로고    scopus 로고
    • Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site
    • Koyama-Honda, I.; Itakura, E.; Fujiwara, T.K.; Mizushima, N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 2013, 9, 1491-1499
    • (2013) Autophagy , vol.9 , pp. 1491-1499
    • Koyama-Honda, I.1    Itakura, E.2    Fujiwara, T.K.3    Mizushima, N.4
  • 33
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored snare syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The hairpin-type tail-anchored snare syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151, 1256-1269
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 34
    • 84921366480 scopus 로고    scopus 로고
    • Wipi proteins: Essential Ptdins3P effectors at the nascent autophagosome
    • Proikas-Cezanne, T.; Takacs, Z.; Donnes, P.; Kohlbacher, O. Wipi proteins: Essential Ptdins3P effectors at the nascent autophagosome. J. Cell Sci. 2015, 128, 207-217
    • (2015) J. Cell Sci , vol.128 , pp. 207-217
    • Proikas-Cezanne, T.1    Takacs, Z.2    Donnes, P.3    Kohlbacher, O.4
  • 35
    • 84904575441 scopus 로고    scopus 로고
    • WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting ATG12-5-16l1
    • Dooley, H.C.; Razi, M.; Polson, H.E.; Girardin, S.E.; Wilson, M.I.; Tooze, S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting ATG12-5-16l1. Mol. Cell 2014, 55, 238-252
    • (2014) Mol. Cell , vol.55 , pp. 238-252
    • Dooley, H.C.1    Razi, M.2    Polson, H.E.3    Girardin, S.E.4    Wilson, M.I.5    Tooze, S.A.6
  • 36
    • 43949143804 scopus 로고    scopus 로고
    • The ATG16l complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
    • Fujita, N.; Itoh, T.; Omori, H.; Fukuda, M.; Noda, T.; Yoshimori, T. The ATG16l complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 2008, 19, 2092-2100
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2092-2100
    • Fujita, N.1    Itoh, T.2    Omori, H.3    Fukuda, M.4    Noda, T.5    Yoshimori, T.6
  • 38
    • 77955131007 scopus 로고    scopus 로고
    • Plasma membrane contributes to the formation of pre-autophagosomal structures
    • Ravikumar, B.; Moreau, K.; Jahreiss, L.; Puri, C.; Rubinsztein, D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 2010, 12, 747-757
    • (2010) Nat. Cell Biol , vol.12 , pp. 747-757
    • Ravikumar, B.1    Moreau, K.2    Jahreiss, L.3    Puri, C.4    Rubinsztein, D.C.5
  • 39
    • 84862611041 scopus 로고    scopus 로고
    • Tbc1d14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes
    • Longatti, A.; Lamb, C.A.; Razi, M.; Yoshimura, S.; Barr, F.A.; Tooze, S.A. Tbc1d14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J. Cell Biol. 2012, 197, 659-675
    • (2012) J. Cell Biol , vol.197 , pp. 659-675
    • Longatti, A.1    Lamb, C.A.2    Razi, M.3    Yoshimura, S.4    Barr, F.A.5    Tooze, S.A.6
  • 40
    • 84884220705 scopus 로고    scopus 로고
    • Diverse autophagosome membrane sources coalesce in recycling endosomes
    • Puri, C.; Renna, M.; Bento, C.F.; Moreau, K.; Rubinsztein, D.C. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 2013, 154, 1285-1299
    • (2013) Cell , vol.154 , pp. 1285-1299
    • Puri, C.1    Renna, M.2    Bento, C.F.3    Moreau, K.4    Rubinsztein, D.C.5
  • 41
    • 84953373631 scopus 로고    scopus 로고
    • Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130
    • Joachim, J.; Jefferies, H.B.; Razi, M.; Frith, D.; Snijders, A.P.; Chakravarty, P.; Judith, D.; Tooze, S.A. Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol. Cell 2015, 60, 899-913
    • (2015) Mol. Cell , vol.60 , pp. 899-913
    • Joachim, J.1    Jefferies, H.B.2    Razi, M.3    Frith, D.4    Snijders, A.P.5    Chakravarty, P.6    Judith, D.7    Tooze, S.A.8
  • 42
    • 77955239270 scopus 로고    scopus 로고
    • Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites
    • Zoppino, F.C.; Militello, R.D.; Slavin, I.; Alvarez, C.; Colombo, M.I. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010, 11, 1246-1261
    • (2010) Traffic , vol.11 , pp. 1246-1261
    • Zoppino, F.C.1    Militello, R.D.2    Slavin, I.3    Alvarez, C.4    Colombo, M.I.5
  • 43
    • 84921325989 scopus 로고    scopus 로고
    • ERES: Sites for autophagosome biogenesis and maturation
    • Sanchez-Wandelmer, J.; Ktistakis, N.T.; Reggiori, F. ERES: Sites for autophagosome biogenesis and maturation? J. Cell Sci. 2015, 128, 185-192
    • (2015) J. Cell Sci , vol.128 , pp. 185-192
    • Sanchez-Wandelmer, J.1    Ktistakis, N.T.2    Reggiori, F.3
  • 44
    • 84878253184 scopus 로고    scopus 로고
    • Organization of the ER-golgi interface for membrane traffic control
    • Brandizzi, F.; Barlowe, C. Organization of the ER-golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 2013, 14, 382-392
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 382-392
    • Brandizzi, F.1    Barlowe, C.2
  • 45
    • 84884487128 scopus 로고    scopus 로고
    • ER exit sites are physical and functional core autophagosome biogenesis components
    • Graef, M.; Friedman, J.R.; Graham, C.; Babu, M.; Nunnari, J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 2013, 24, 2918-2931
    • (2013) Mol. Biol. Cell , vol.24 , pp. 2918-2931
    • Graef, M.1    Friedman, J.R.2    Graham, C.3    Babu, M.4    Nunnari, J.5
  • 46
    • 84881506338 scopus 로고    scopus 로고
    • The ER-golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
    • Ge, L.; Melville, D.; Zhang, M.; Schekman, R. The ER-golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2013, 2, e00947
    • (2013) Elife , vol.2
    • Ge, L.1    Melville, D.2    Zhang, M.3    Schekman, R.4
  • 47
    • 84927720203 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase and copii generate LC3 lipidation vesicles from the ER-golgi intermediate compartment
    • Ge, L.; Zhang, M.; Schekman, R. Phosphatidylinositol 3-kinase and copii generate LC3 lipidation vesicles from the ER-golgi intermediate compartment. Elife 2014, 3, e04135
    • (2014) Elife , vol.3
    • Ge, L.1    Zhang, M.2    Schekman, R.3
  • 48
    • 84943798225 scopus 로고    scopus 로고
    • Ultrastructural relationship of the phagophore with surrounding organelles
    • Biazik, J.; Yla-Anttila, P.; Vihinen, H.; Jokitalo, E.; Eskelinen, E.L. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 2015, 11, 439-451
    • (2015) Autophagy , vol.11 , pp. 439-451
    • Biazik, J.1    Yla-Anttila, P.2    Vihinen, H.3    Jokitalo, E.4    Eskelinen, E.L.5
  • 49
    • 84907042842 scopus 로고    scopus 로고
    • Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
    • Kishi-Itakura, C.; Koyama-Honda, I.; Itakura, E.; Mizushima, N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 2014, 127, 4089-4102
    • (2014) J. Cell Sci , vol.127 , pp. 4089-4102
    • Kishi-Itakura, C.1    Koyama-Honda, I.2    Itakura, E.3    Mizushima, N.4
  • 50
    • 84861158462 scopus 로고    scopus 로고
    • Dynamic and transient interactions of ATG9 with autophagosomes, but not membrane integration, are required for autophagy
    • Orsi, A.; Razi, M.; Dooley, H.C.; Robinson, D.; Weston, A.E.; Collinson, L.M.; Tooze, S.A. Dynamic and transient interactions of ATG9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 2012, 23, 1860-1873
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1860-1873
    • Orsi, A.1    Razi, M.2    Dooley, H.C.3    Robinson, D.4    Weston, A.E.5    Collinson, L.M.6    Tooze, S.A.7
  • 52
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian ATG proteins
    • Itakura, E.; Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian ATG proteins. Autophagy 2010, 6, 764-776
    • (2010) Autophagy , vol.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 53
    • 84928550400 scopus 로고    scopus 로고
    • Vivona, S.; et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
    • Diao, J.; Liu, R.; Rong, Y.; Zhao, M.; Zhang, J.; Lai, Y.; Zhou, Q.; Wilz, L.M.; Li, J.; Vivona, S.; et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 2015, 520, 563-566
    • (2015) Nature , vol.520 , pp. 563-566
    • Diao, J.1    Liu, R.2    Rong, Y.3    Zhao, M.4    Zhang, J.5    Lai, Y.6    Zhou, Q.7    Wilz, L.M.8    Li, J.9
  • 55
    • 84940538301 scopus 로고    scopus 로고
    • Capz regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane
    • Mi, N.; Chen, Y.; Wang, S.; Chen, M.; Zhao, M.; Yang, G.; Ma, M.; Su, Q.; Luo, S.; Shi, J.; et al. Capz regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 2015, 17, 1112-1123
    • (2015) Nat. Cell Biol , vol.17 , pp. 1112-1123
    • Mi, N.1    Chen, Y.2    Wang, S.3    Chen, M.4    Zhao, M.5    Yang, G.6    Ma, M.7    Su, Q.8    Luo, S.9    Shi, J.10
  • 57
    • 84934449988 scopus 로고    scopus 로고
    • Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
    • Mochida, K.; Oikawa, Y.; Kimura, Y.; Kirisako, H.; Hirano, H.; Ohsumi, Y.; Nakatogawa, H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015, 522, 359-362
    • (2015) Nature , vol.522 , pp. 359-362
    • Mochida, K.1    Oikawa, Y.2    Kimura, Y.3    Kirisako, H.4    Hirano, H.5    Ohsumi, Y.6    Nakatogawa, H.7
  • 58
    • 84908466248 scopus 로고    scopus 로고
    • Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
    • Dowdle, W.E.; Nyfeler, B.; Nagel, J.; Elling, R.A.; Liu, S.; Triantafellow, E.; Menon, S.; Wang, Z.; Honda, A.; Pardee, G.; et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 2014, 16, 1069-1079
    • (2014) Nat. Cell Biol , vol.16 , pp. 1069-1079
    • Dowdle, W.E.1    Nyfeler, B.2    Nagel, J.3    Elling, R.A.4    Liu, S.5    Triantafellow, E.6    Menon, S.7    Wang, Z.8    Honda, A.9    Pardee, G.10
  • 62
    • 84877323647 scopus 로고    scopus 로고
    • Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2
    • McAlpine, F.; Williamson, L.E.; Tooze, S.A.; Chan, E.Y. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 2013, 9, 361-373
    • (2013) Autophagy , vol.9 , pp. 361-373
    • McAlpine, F.1    Williamson, L.E.2    Tooze, S.A.3    Chan, E.Y.4
  • 64
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and MTOR regulate autophagy through direct phosphorylation of ULK1
    • Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and MTOR regulate autophagy through direct phosphorylation of ULK1. Nat. Cell Biol. 2011, 13, 132-141
    • (2011) Nat. Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 66
    • 84863499345 scopus 로고    scopus 로고
    • Regulation and function of uncoordinated-51 like kinase proteins
    • Chan, E.Y. Regulation and function of uncoordinated-51 like kinase proteins. Antioxid. Redox Signl. 2012, 17, 775-785
    • (2012) Antioxid. Redox Signl , vol.17 , pp. 775-785
    • Chan, E.Y.1
  • 68
    • 84860172051 scopus 로고    scopus 로고
    • Ruan, K.; et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy
    • Lin, S.Y.; Li, T.Y.; Liu, Q.; Zhang, C.; Li, X.; Chen, Y.; Zhang, S.M.; Lian, G.; Liu, Q.; Ruan, K.; et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 2012, 336, 477-481
    • (2012) Science , vol.336 , pp. 477-481
    • Lin, S.Y.1    Li, T.Y.2    Liu, Q.3    Zhang, C.4    Li, X.5    Chen, Y.6    Zhang, S.M.7    Lian, G.8    Liu, Q.9
  • 70
    • 84941774038 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane E3 ligase mul1 ubiquitinates ULK1 and regulates selenite-induced mitophagy
    • Li, J.; Qi, W.; Chen, G.; Feng, D.; Liu, J.; Ma, B.; Zhou, C.; Mu, C.; Zhang, W.; Chen, Q.; et al. Mitochondrial outer-membrane E3 ligase mul1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy 2015, 11, 1216-1229
    • (2015) Autophagy , vol.11 , pp. 1216-1229
    • Li, J.1    Qi, W.2    Chen, G.3    Feng, D.4    Liu, J.5    Ma, B.6    Zhou, C.7    Mu, C.8    Zhang, W.9    Chen, Q.10
  • 71
    • 84953637768 scopus 로고    scopus 로고
    • Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination
    • Liu, C.C.; Lin, Y.C.; Chen, Y.H.; Chen, C.M.; Pang, L.Y.; Chen, H.A.; Wu, P.R.; Lin, M.Y.; Jiang, S.T.; Tsai, T.F.; et al. Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol. Cell 2016, 61, 84-97
    • (2016) Mol. Cell , vol.61 , pp. 84-97
    • Liu, C.C.1    Lin, Y.C.2    Chen, Y.H.3    Chen, C.M.4    Pang, L.Y.5    Chen, H.A.6    Wu, P.R.7    Lin, M.Y.8    Jiang, S.T.9    Tsai, T.F.10
  • 72
    • 79953211917 scopus 로고    scopus 로고
    • Nutrient starvation elicits an acute autophagic response mediated by ULK1 dephosphorylation and its subsequent dissociation from AMPK
    • Shang, L.; Chen, S.; Du, F.; Li, S.; Zhao, L.; Wang, X. Nutrient starvation elicits an acute autophagic response mediated by ULK1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. USA 2011, 108, 4788-4793
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 4788-4793
    • Shang, L.1    Chen, S.2    Du, F.3    Li, S.4    Zhao, L.5    Wang, X.6
  • 73
    • 84940550513 scopus 로고    scopus 로고
    • Regulation of autophagy by coordinated action of MTORC1 and protein phosphatase 2A
    • Wong, P.M.; Feng, Y.; Wang, J.; Shi, R.; Jiang, X. Regulation of autophagy by coordinated action of MTORC1 and protein phosphatase 2A. Nat. Commun. 2015, 6, 8048
    • (2015) Nat. Commun , vol.6 , pp. 8048
    • Wong, P.M.1    Feng, Y.2    Wang, J.3    Shi, R.4    Jiang, X.5
  • 79
    • 84922743269 scopus 로고    scopus 로고
    • The amino acid transporter SLC38A9 is a key component of a lysosomal membrane complex that signals arginine sufficiency to MTORC1
    • Wang, S.; Tsun, Z.-Y.; Wolfson, R.; Shen, K.; Wyant, G.A.; Plovanich, M.E.; Yuan, E.D.; Jones, T.D.; Chantranupong, L.; Comb, W.; et al. The amino acid transporter SLC38A9 is a key component of a lysosomal membrane complex that signals arginine sufficiency to MTORC1. Science 2015, 347, 188-194
    • (2015) Science , vol.347 , pp. 188-194
    • Wang, S.1    Tsun, Z.-Y.2    Wolfson, R.3    Shen, K.4    Wyant, G.A.5    Plovanich, M.E.6    Yuan, E.D.7    Jones, T.D.8    Chantranupong, L.9    Comb, W.10
  • 80
    • 84894105147 scopus 로고    scopus 로고
    • Hexokinase-II positively regulates glucose starvation-induced autophagy through Torc1 inhibition
    • Roberts, D.J.; Tan-Sah, V.P.; Ding, E.Y.; Smith, J.M.; Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through Torc1 inhibition. Mol. Cell 2014, 53, 521-533
    • (2014) Mol. Cell , vol.53 , pp. 521-533
    • Roberts, D.J.1    Tan-Sah, V.P.2    Ding, E.Y.3    Smith, J.M.4    Miyamoto, S.5
  • 82
    • 0027296748 scopus 로고
    • Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors
    • Holen, I.; Gordon, P.B.; Seglen, P.O. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur. J. Biochem. 1993, 215, 113-122
    • (1993) Eur. J. Biochem. , vol.215 , pp. 113-122
    • Holen, I.1    Gordon, P.B.2    Seglen, P.O.3
  • 84
    • 84880535847 scopus 로고    scopus 로고
    • Methionine inhibits autophagy and promotes growth by inducing the sam-responsive methylation of PP2A
    • Sutter, B.M.; Wu, X.; Laxman, S.; Tu, B.P. Methionine inhibits autophagy and promotes growth by inducing the sam-responsive methylation of PP2A. Cell 2013, 154, 403-415
    • (2013) Cell , vol.154 , pp. 403-415
    • Sutter, B.M.1    Wu, X.2    Laxman, S.3    Tu, B.P.4
  • 85
    • 84862297232 scopus 로고    scopus 로고
    • PP2A regulates autophagy in two alternative ways in drosophila
    • Banreti, A.; Lukacsovich, T.; Csikos, G.; Erdelyi, M.; Sass, M. PP2A regulates autophagy in two alternative ways in drosophila. Autophagy 2012, 8, 623-636
    • (2012) Autophagy , vol.8 , pp. 623-636
    • Banreti, A.1    Lukacsovich, T.2    Csikos, G.3    Erdelyi, M.4    Sass, M.5
  • 86
    • 77952220270 scopus 로고    scopus 로고
    • Protein phosphatase 2A cooperates with the autophagy-related kinase unc-51 to regulate axon guidance in caenorhabditis elegans
    • Ogura, K.; Okada, T.; Mitani, S.; Gengyo-Ando, K.; Baillie, D.L.; Kohara, Y.; Goshima, Y. Protein phosphatase 2A cooperates with the autophagy-related kinase unc-51 to regulate axon guidance in caenorhabditis elegans. Development 2010, 137, 1657-1667
    • (2010) Development , vol.137 , pp. 1657-1667
    • Ogura, K.1    Okada, T.2    Mitani, S.3    Gengyo-Ando, K.4    Baillie, D.L.5    Kohara, Y.6    Goshima, Y.7
  • 87
    • 67650237693 scopus 로고    scopus 로고
    • Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy
    • Yorimitsu, T.; He, C.; Wang, K.; Klionsky, D.J. Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy. Autophagy 2009, 5, 616-624
    • (2009) Autophagy , vol.5 , pp. 616-624
    • Yorimitsu, T.1    He, C.2    Wang, K.3    Klionsky, D.J.4
  • 88
    • 84929414337 scopus 로고    scopus 로고
    • PP2A: The wolf in sheep’s clothing?
    • Kiely, M.; Kiely, P.A. PP2A: The wolf in sheep’s clothing? Cancers 2015, 7, 648-669
    • (2015) Cancers , vol.7 , pp. 648-669
    • Kiely, M.1    Kiely, P.A.2
  • 90
    • 77954237882 scopus 로고    scopus 로고
    • Network organization of the human autophagy system
    • Behrends, C.; Sowa, M.E.; Gygi, S.P.; Harper, J.W. Network organization of the human autophagy system. Nature 2010, 466, 68-76
    • (2010) Nature , vol.466 , pp. 68-76
    • Behrends, C.1    Sowa, M.E.2    Gygi, S.P.3    Harper, J.W.4
  • 91
    • 78149476877 scopus 로고    scopus 로고
    • The association of ampk with ULK1 regulates autophagy
    • Lee, J.W.; Park, S.; Takahashi, Y.; Wang, H.G. The association of ampk with ULK1 regulates autophagy. PLoS ONE 2010, 5, e15394
    • (2010) Plos ONE , vol.5
    • Lee, J.W.1    Park, S.2    Takahashi, Y.3    Wang, H.G.4
  • 92
    • 81155123729 scopus 로고    scopus 로고
    • The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
    • Bach, M.; Larance, M.; James, D.E.; Ramm, G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J. 2011, 440, 283-291
    • (2011) Biochem. J , vol.440 , pp. 283-291
    • Bach, M.1    Larance, M.2    James, D.E.3    Ramm, G.4
  • 93
    • 84866061320 scopus 로고    scopus 로고
    • AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
    • Mack, H.I.; Zheng, B.; Asara, J.M.; Thomas, S.M. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 2012, 8, 1197-1214
    • (2012) Autophagy , vol.8 , pp. 1197-1214
    • Mack, H.I.1    Zheng, B.2    Asara, J.M.3    Thomas, S.M.4
  • 94
    • 84886789626 scopus 로고    scopus 로고
    • Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of sting to prevent sustained innate immune signaling
    • Konno, H.; Konno, K.; Barber, G.N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of sting to prevent sustained innate immune signaling. Cell 2013, 155, 688-698
    • (2013) Cell , vol.155 , pp. 688-698
    • Konno, H.1    Konno, K.2    Barber, G.N.3
  • 95
    • 79960323911 scopus 로고    scopus 로고
    • AMPK Ñ ULK1 Ñ Autophagy
    • Roach, P.J. AMPK Ñ ULK1 Ñ Autophagy. Mol. Cell. Biol. 2011, 31, 3082-3084
    • (2011) Mol. Cell. Biol , vol.31 , pp. 3082-3084
    • Roach, P.J.1
  • 96
    • 84934443098 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 by ampk regulates translocation of ULK1 to mitochondria and mitophagy
    • Tian, W.; Li, W.; Chen, Y.; Yan, Z.; Huang, X.; Zhuang, H.; Zhong, W.; Chen, Y.; Wu, W.; Lin, C.; et al. Phosphorylation of ULK1 by ampk regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 2015, 589, 1847-1854
    • (2015) FEBS Lett , vol.589 , pp. 1847-1854
    • Tian, W.1    Li, W.2    Chen, Y.3    Yan, Z.4    Huang, X.5    Zhuang, H.6    Zhong, W.7    Chen, Y.8    Wu, W.9    Lin, C.10
  • 97
    • 84899789746 scopus 로고    scopus 로고
    • ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
    • Wu, W.; Tian, W.; Hu, Z.; Chen, G.; Huang, L.; Li, W.; Zhang, X.; Xue, P.; Zhou, C.; Liu, L.; et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 2014, 15, 566-575
    • (2014) EMBO Rep , vol.15 , pp. 566-575
    • Wu, W.1    Tian, W.2    Hu, Z.3    Chen, G.4    Huang, L.5    Li, W.6    Zhang, X.7    Xue, P.8    Zhou, C.9    Liu, L.10
  • 99
    • 84957900248 scopus 로고    scopus 로고
    • ATG13 is essential for autophagy and cardiac development in mice
    • Kaizuka, T.; Mizushima, N. ATG13 is essential for autophagy and cardiac development in mice. Mol. Cell Biol. 2015, 36, 585-595
    • (2015) Mol. Cell Biol , vol.36 , pp. 585-595
    • Kaizuka, T.1    Mizushima, N.2
  • 100
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates MTOR signaling and is essential for autophagy
    • Ganley, I.G.; Lam du, H.; Wang, J.; Ding, X.; Chen, S.; Jiang, X. ULK1.ATG13.FIP200 complex mediates MTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284, 12297-12305
    • (2009) J. Biol. Chem , vol.284 , pp. 12297-12305
    • Ganley, I.G.1    Lam Du, H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 101
    • 43149090064 scopus 로고    scopus 로고
    • FIP200, aULK-interacting protein, is required for autophagosome formation in mammalian cells
    • Hara, T.; Takamura, A.; Kishi, C.; Iemura, S.; Natsume, T.; Guan, J.L.; Mizushima, N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 2008, 181, 497-510
    • (2008) J. Cell Biol , vol.181 , pp. 497-510
    • Hara, T.1    Takamura, A.2    Kishi, C.3    Iemura, S.4    Natsume, T.5    Guan, J.L.6    Mizushima, N.7
  • 103
    • 58149473473 scopus 로고    scopus 로고
    • Proteins inhibit autophagy via their conserved C-terminal domains using an ATG13-independent mechanism
    • Chan, E.Y.; Longatti, A.; McKnight, N.C.; Tooze, S.A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an ATG13-independent mechanism. Mol. Cell Biol. 2009, 29, 157-171
    • (2009) Mol. Cell Biol , vol.29 , pp. 157-171
    • Chan, E.Y.1    Longatti, A.2    McKnight, N.C.3    Tooze, S.A.4    Kinase-Inactivated, U.5
  • 104
    • 34548482499 scopus 로고    scopus 로고
    • Sirna screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
    • Chan, E.Y.; Kir, S.; Tooze, S.A. Sirna screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 2007, 282, 25464-25474
    • (2007) J. Biol. Chem , vol.282 , pp. 25464-25474
    • Chan, E.Y.1    Kir, S.2    Tooze, S.A.3
  • 106
    • 84936846861 scopus 로고    scopus 로고
    • Structure of the ATG101-ATG13 complex reveals essential roles of ATG101 in autophagy initiation
    • Suzuki, H.; Kaizuka, T.; Mizushima, N.; Noda, N.N. Structure of the ATG101-ATG13 complex reveals essential roles of ATG101 in autophagy initiation. Nat. Struct. Mol. Biol. 2015, 22, 572-580
    • (2015) Nat. Struct. Mol. Biol , vol.22 , pp. 572-580
    • Suzuki, H.1    Kaizuka, T.2    Mizushima, N.3    Noda, N.N.4
  • 107
    • 84873569898 scopus 로고    scopus 로고
    • Interaction between FIP200 and ATG16l1 distinguishes ULK1 complex-dependent and -independent autophagy
    • Gammoh, N.; Florey, O.; Overholtzer, M.; Jiang, X. Interaction between FIP200 and ATG16l1 distinguishes ULK1 complex-dependent and -independent autophagy. Nat. Struct. Mol. Biol. 2013, 20, 144-149
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 144-149
    • Gammoh, N.1    Florey, O.2    Overholtzer, M.3    Jiang, X.4
  • 111
    • 84928806944 scopus 로고    scopus 로고
    • Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (MTOR)-dependentautophagy
    • Petherick, K.J.; Conway, O.J.; Mpamhanga, C.; Osborne, S.A.; Kamal, A.; Saxty, B.; Ganley, I.G. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (MTOR)-dependent autophagy. J. Biol. Chem. 2015, 290, 11376-11383
    • (2015) J. Biol. Chem , vol.290 , pp. 11376-11383
    • Petherick, K.J.1    Conway, O.J.2    Mpamhanga, C.3    Osborne, S.A.4    Kamal, A.5    Saxty, B.6    Ganley, I.G.7
  • 113
    • 84871581862 scopus 로고    scopus 로고
    • Architecture of the ATG17 complex as a scaffold for autophagosome biogenesis
    • Ragusa, M.J.; Stanley, R.E.; Hurley, J.H. Architecture of the ATG17 complex as a scaffold for autophagosome biogenesis. Cell 2012, 151, 1501-1512
    • (2012) Cell , vol.151 , pp. 1501-1512
    • Ragusa, M.J.1    Stanley, R.E.2    Hurley, J.H.3
  • 116
    • 84930188743 scopus 로고    scopus 로고
    • Solution structure of the ATG1 complex: Implications for the architecture of the phagophore assembly site
    • Kofinger, J.; Ragusa, M.J.; Lee, I.H.; Hummer, G.; Hurley, J.H. Solution structure of the ATG1 complex: Implications for the architecture of the phagophore assembly site. Structure 2015, 23, 809-818
    • (2015) Structure , vol.23 , pp. 809-818
    • Kofinger, J.1    Ragusa, M.J.2    Lee, I.H.3    Hummer, G.4    Hurley, J.H.5
  • 117
    • 84943777762 scopus 로고    scopus 로고
    • Molecular interactions of the saccharomyces cerevisiae ATG1 complex provide insights into assembly and regulatory mechanisms
    • Chew, L.H.; Lu, S.; Liu, X.; Li, F.K.; Yu, A.Y.; Klionsky, D.J.; Dong, M.Q.; Yip, C.K. Molecular interactions of the saccharomyces cerevisiae ATG1 complex provide insights into assembly and regulatory mechanisms. Autophagy 2015, 11, 891-905
    • (2015) Autophagy , vol.11 , pp. 891-905
    • Chew, L.H.1    Lu, S.2    Liu, X.3    Li, F.K.4    Yu, A.Y.5    Klionsky, D.J.6    Dong, M.Q.7    Yip, C.K.8
  • 120
    • 84921417671 scopus 로고    scopus 로고
    • Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors
    • Lazarus, M.B.; Novotny, C.J.; Shokat, K.M. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem. Biol. 2015, 10, 257-261
    • (2015) ACS Chem. Biol , vol.10 , pp. 257-261
    • Lazarus, M.B.1    Novotny, C.J.2    Shokat, K.M.3
  • 122
    • 79960014848 scopus 로고    scopus 로고
    • ULK1 inhibits MTORC1 signaling, promotes multisite raptor phosphorylation and hinders substrate binding
    • Dunlop, E.A.; Hunt, D.K.; Acosta-Jaquez, H.A.; Fingar, D.C.; Tee, A.R. ULK1 inhibits MTORC1 signaling, promotes multisite raptor phosphorylation and hinders substrate binding. Autophagy 2011, 7, 737-747
    • (2011) Autophagy , vol.7 , pp. 737-747
    • Dunlop, E.A.1    Hunt, D.K.2    Acosta-Jaquez, H.A.3    Fingar, D.C.4    Tee, A.R.5
  • 124
    • 84908371000 scopus 로고    scopus 로고
    • Sestrin2 promotes unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1
    • Ro, S.H.; Semple, I.A.; Park, H.; Park, H.; Park, H.W.; Kim, M.; Kim, J.S.; Lee, J.H. Sestrin2 promotes unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J. 2014, 281, 3816-3827
    • (2014) FEBS J , vol.281 , pp. 3816-3827
    • Ro, S.H.1    Semple, I.A.2    Park, H.3    Park, H.4    Park, H.W.5    Kim, M.6    Kim, J.S.7    Lee, J.H.8
  • 126
    • 79951805767 scopus 로고    scopus 로고
    • ATG1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy
    • Tang, H.W.; Wang, Y.B.; Wang, S.L.; Wu, M.H.; Lin, S.Y.; Chen, G.C. ATG1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J. 2011, 30, 636-651
    • (2011) EMBO J , vol.30 , pp. 636-651
    • Tang, H.W.1    Wang, Y.B.2    Wang, S.L.3    Wu, M.H.4    Lin, S.Y.5    Chen, G.C.6
  • 129
    • 12344309528 scopus 로고    scopus 로고
    • The conserved kinase unc-51 acts with VAB-8 and unc-14 to regulate axon outgrowth in C
    • Lai, T.; Garriga, G. The conserved kinase unc-51 acts with VAB-8 and unc-14 to regulate axon outgrowth in C. elegans. Development 2004, 131, 5991-6000
    • (2004) Elegans. Development , vol.131 , pp. 5991-6000
    • Lai, T.1    Garriga, G.2
  • 132
    • 84962675891 scopus 로고    scopus 로고
    • The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery viabinding and phosphorylating ATG14
    • Park, J.M.; Jung, C.H.; Seo, M.; Otto, N.M.; Grunwald, D.; Kim, K.H.; Moriarity, B.; Kim, Y.M.; Starker, C.; Nho, R.S.; et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 2016, 12, 547-564
    • (2016) Autophagy , vol.12 , pp. 547-564
    • Park, J.M.1    Jung, C.H.2    Seo, M.3    Otto, N.M.4    Grunwald, D.5    Kim, K.H.6    Moriarity, B.7    Kim, Y.M.8    Starker, C.9    Nho, R.S.10
  • 134
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes by MTOR in nutrientstress-induced autophagy
    • Yuan, H.X.; Russell, R.C.; Guan, K.L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 2013, 9, 1983-1995
    • (2013) Autophagy , vol.9 , pp. 1983-1995
    • Yuan, H.X.1    Russell, R.C.2    Guan, K.L.3
  • 135
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct VPS34 complexes by ampk in nutrient stress and autophagy
    • Kim, J.; Kim, Y.C.; Fang, C.; Russell, R.C.; Kim, J.H.; Fan, W.; Liu, R.; Zhong, Q.; Guan, K.L. Differential regulation of distinct VPS34 complexes by ampk in nutrient stress and autophagy. Cell 2013, 152, 290-303
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1    Kim, Y.C.2    Fang, C.3    Russell, R.C.4    Kim, J.H.5    Fan, W.6    Liu, R.7    Zhong, Q.8    Guan, K.L.9
  • 137
  • 138
    • 84884262668 scopus 로고    scopus 로고
    • EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression,and tumor chemoresistance
    • Wei, Y.; Zou, Z.; Becker, N.; Anderson, M.; Sumpter, R.; Xiao, G.; Kinch, L.; Koduru, P.; Christudass, C.S.; Veltri, R.W.; et al. EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013, 154, 1269-1284
    • (2013) Cell , vol.154 , pp. 1269-1284
    • Wei, Y.1    Zou, Z.2    Becker, N.3    Anderson, M.4    Sumpter, R.5    Xiao, G.6    Kinch, L.7    Koduru, P.8    Christudass, C.S.9    Veltri, R.W.10
  • 139
    • 84869147050 scopus 로고    scopus 로고
    • Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation
    • Wang, R.C.; Wei, Y.; An, Z.; Zou, Z.; Xiao, G.; Bhagat, G.; White, M.; Reichelt, J.; Levine, B. Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation. Science 2012, 338, 956-959
    • (2012) Science , vol.338 , pp. 956-959
    • Wang, R.C.1    Wei, Y.2    An, Z.3    Zou, Z.4    Xiao, G.5    Bhagat, G.6    White, M.7    Reichelt, J.8    Levine, B.9
  • 140
    • 61849102389 scopus 로고    scopus 로고
    • DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation ofbeclin 1 from Bcl-XL and induction of autophagy
    • Zalckvar, E.; Berissi, H.; Mizrachy, L.; Idelchuk, Y.; Koren, I.; Eisenstein, M.; Sabanay, H.; Pinkas-Kramarski, R.; Kimchi, A. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 2009, 10, 285-292
    • (2009) EMBO Rep , vol.10 , pp. 285-292
    • Zalckvar, E.1    Berissi, H.2    Mizrachy, L.3    Idelchuk, Y.4    Koren, I.5    Eisenstein, M.6    Sabanay, H.7    Pinkas-Kramarski, R.8    Kimchi, A.9
  • 141
    • 85003048223 scopus 로고    scopus 로고
    • The stress-responsivekinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through beclin 1 phosphorylation
    • Wei, Y.; An, Z.; Zou, Z.; Sumpter, R.; Su, M.; Zang, X.; Sinha, S.; Gaestel, M.; Levine, B. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through beclin 1 phosphorylation. Elife 2015, 4
    • (2015) Elife
    • Wei, Y.1    An, Z.2    Zou, Z.3    Sumpter, R.4    Su, M.5    Zang, X.6    Sinha, S.7    Gaestel, M.8    Levine, B.9
  • 143
    • 80053430528 scopus 로고    scopus 로고
    • ULK1 inhibits the kinase activity of MTORC1 and cell proliferation
    • Jung, C.H.; Seo, M.; Otto, N.M.; Kim, D.H. ULK1 inhibits the kinase activity of MTORC1 and cell proliferation. Autophagy 2011, 7, 1212-1221
    • (2011) Autophagy , vol.7 , pp. 1212-1221
    • Jung, C.H.1    Seo, M.2    Otto, N.M.3    Kim, D.H.4
  • 144
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante, M.; Sabatini, D.M. MTOR signaling in growth control and disease. Cell 2012, 149, 274-293
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 145
    • 0028113443 scopus 로고
    • Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptideLeu8-Lys4-Lys2-Lys-beta Ala
    • Miotto, G.; Venerando, R.; Marin, O.; Siliprandi, N.; Mortimore, G.E. Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptide Leu8-Lys4-Lys2-Lys-beta Ala. J. Biol. Chem. 1994, 269, 25348-25353
    • (1994) J. Biol. Chem , vol.269 , pp. 25348-25353
    • Miotto, G.1    Venerando, R.2    Marin, O.3    Siliprandi, N.4    Mortimore, G.E.5
  • 146
    • 85006216312 scopus 로고    scopus 로고
    • L-type amino acid transport and cancer: Targeting the MTORC1 pathway to inhibit neoplasia
    • Wang, Q.; Holst, J. L-type amino acid transport and cancer: Targeting the MTORC1 pathway to inhibit neoplasia. Am. J. Cancer Res. 2015, 5, 1281-1294
    • (2015) Am. J. Cancer Res , vol.5 , pp. 1281-1294
    • Wang, Q.1    Holst, J.2
  • 147
    • 34247245816 scopus 로고    scopus 로고
    • Structure and function of cationic amino acid transporters (CATs)
    • Closs, E.I.; Boissel, J.P.; Habermeier, A.; Rotmann, A. Structure and function of cationic amino acid transporters (CATs). J. Membr. Biol. 2006, 213, 67-77
    • (2006) J. Membr. Biol , vol.213 , pp. 67-77
    • Closs, E.I.1    Boissel, J.P.2    Habermeier, A.3    Rotmann, A.4
  • 148
    • 0034254798 scopus 로고    scopus 로고
    • The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine
    • Broer, A.; Wagner, C.A.; Lang, F.; Broer, S. The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem. J. 2000, 349 Pt 3, 787-795
    • (2000) Biochem. J , vol.349 , pp. 787-795
    • Broer, A.1    Wagner, C.A.2    Lang, F.3    Broer, S.4
  • 149
    • 84986915942 scopus 로고    scopus 로고
    • Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health
    • Pochini, L.; Scalise, M.; Galluccio, M.; Indiveri, C. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health. Front. Chem. 2014, 2, 61
    • (2014) Front. Chem. , vol.2
    • Pochini, L.1    Scalise, M.2    Galluccio, M.3    Indiveri, C.4
  • 151
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334, 678-683
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3    Wang, S.4    Sancak, Y.5    Sabatini, D.M.6
  • 152
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human MTOR complex i and its implications for rapamycin inhibition
    • Yip, C.K.; Murata, K.; Walz, T.; Sabatini, D.M.; Kang, S.A. Structure of the human MTOR complex i and its implications for rapamycin inhibition. Mol. Cell 2010, 38, 768-774
    • (2010) Mol. Cell , vol.38 , pp. 768-774
    • Yip, C.K.1    Murata, K.2    Walz, T.3    Sabatini, D.M.4    Kang, S.A.5
  • 158
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-rag complex targets MTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-rag complex targets MTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141, 290-303
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 159
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a gef for the rag GTPases that signal amino acid levels to MTORC1
    • Bar-Peled, L.; Schweitzer, L.D.; Zoncu, R.; Sabatini, D.M. Ragulator is a gef for the rag GTPases that signal amino acid levels to MTORC1. Cell 2012, 150, 1196-1208
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 160
    • 84932638310 scopus 로고    scopus 로고
    • Amino acid-dependent MTORC1 regulation by the lysosomal membrane protein SLC38A9
    • Jung, J.; Genau, H.M.; Behrends, C. Amino acid-dependent MTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 2015, 35, 2479-2494
    • (2015) Mol. Cell. Biol , vol.35 , pp. 2479-2494
    • Jung, J.1    Genau, H.M.2    Behrends, C.3
  • 161
    • 84929997950 scopus 로고    scopus 로고
    • LAPTM4B recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes MTORC1 activation
    • Milkereit, R.; Persaud, A.; Vanoaica, L.; Guetg, A.; Verrey, F.; Rotin, D. LAPTM4B recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes MTORC1 activation. Nat. Commun. 2015, 6, 7250
    • (2015) Nat. Commun , vol.6 , pp. 7250
    • Milkereit, R.1    Persaud, A.2    Vanoaica, L.3    Guetg, A.4    Verrey, F.5    Rotin, D.6
  • 162
    • 43149104361 scopus 로고    scopus 로고
    • Molecular physiology and pathophysiology of lysosomal membrane transporters
    • Sagne, C.; Gasnier, B. Molecular physiology and pathophysiology of lysosomal membrane transporters. J. Inherit. Metab. Dis. 2008, 31, 258-266
    • (2008) J. Inherit. Metab. Dis , vol.31 , pp. 258-266
    • Sagne, C.1    Gasnier, B.2
  • 163
    • 84863997137 scopus 로고    scopus 로고
    • LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis
    • Liu, B.; Du, H.; Rutkowski, R.; Gartner, A.; Wang, X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 2012, 337, 351-354
    • (2012) Science , vol.337 , pp. 351-354
    • Liu, B.1    Du, H.2    Rutkowski, R.3    Gartner, A.4    Wang, X.5
  • 164
    • 84862777407 scopus 로고    scopus 로고
    • Leucyl-tRNA synthetase is an intracellular leucine sensor for the MTORC1-signaling pathway
    • Han, J.M.; Jeong, S.J.; Park, M.C.; Kim, G.; Kwon, N.H.; Kim, H.K.; Ha, S.H.; Ryu, S.H.; Kim, S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the MTORC1-signaling pathway. Cell 2012, 149, 410-424
    • (2012) Cell , vol.149 , pp. 410-424
    • Han, J.M.1    Jeong, S.J.2    Park, M.C.3    Kim, G.4    Kwon, N.H.5    Kim, H.K.6    Ha, S.H.7    Ryu, S.H.8    Kim, S.9
  • 165
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to MTORC1
    • Tsun, Z.Y.; Bar-Peled, L.; Chantranupong, L.; Zoncu, R.; Wang, T.; Kim, C.; Spooner, E.; Sabatini, D.M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to MTORC1. Mol. Cell 2013, 52, 495-505
    • (2013) Mol. Cell , vol.52 , pp. 495-505
    • Tsun, Z.Y.1    Bar-Peled, L.2    Chantranupong, L.3    Zoncu, R.4    Wang, T.5    Kim, C.6    Spooner, E.7    Sabatini, D.M.8
  • 166
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of rag GTPases
    • Petit, C.S.; Roczniak-Ferguson, A.; Ferguson, S.M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of rag GTPases. J. Cell Biol. 2013, 202, 1107-1122
    • (2013) J. Cell Biol , vol.202 , pp. 1107-1122
    • Petit, C.S.1    Roczniak-Ferguson, A.2    Ferguson, S.M.3
  • 169
    • 84880816067 scopus 로고    scopus 로고
    • Review series: Rab GTPases and membrane identity: Causal or inconsequential
    • Barr, F.A. Review series: Rab GTPases and membrane identity: Causal or inconsequential? J. Cell Biol. 2013, 202, 191-199
    • (2013) J. Cell Biol , vol.202 , pp. 191-199
    • Barr, F.A.1
  • 170
    • 75149142796 scopus 로고    scopus 로고
    • Differential requirement of CAAX-mediated posttranslational processing for RHEB localization and signaling
    • Hanker, A.B.; Mitin, N.; Wilder, R.S.; Henske, E.P.; Tamanoi, F.; Cox, A.D.; Der, C.J. Differential requirement of CAAX-mediated posttranslational processing for RHEB localization and signaling. Oncogene 2009, 29, 380-391
    • (2009) Oncogene , vol.29 , pp. 380-391
    • Hanker, A.B.1    Mitin, N.2    Wilder, R.S.3    Henske, E.P.4    Tamanoi, F.5    Cox, A.D.6    Der, C.J.7
  • 171
  • 179
    • 84889681863 scopus 로고    scopus 로고
    • Sestrins orchestrate cellular metabolism to attenuate aging
    • Lee, J.H.; Budanov, A.V.; Karin, M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab. 2013, 18, 792-801
    • (2013) Cell Metab , vol.18 , pp. 792-801
    • Lee, J.H.1    Budanov, A.V.2    Karin, M.3
  • 180
    • 2142815107 scopus 로고    scopus 로고
    • Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD
    • Budanov, A.V.; Sablina, A.A.; Feinstein, E.; Koonin, E.V.; Chumakov, P.M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 2004, 304, 596-600
    • (2004) Science , vol.304 , pp. 596-600
    • Budanov, A.V.1    Sablina, A.A.2    Feinstein, E.3    Koonin, E.V.4    Chumakov, P.M.5
  • 181
    • 60749125535 scopus 로고    scopus 로고
    • Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid
    • Woo, H.A.; Bae, S.H.; Park, S.; Rhee, S.G. Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid. Redox signal. 2009, 11, 739-745
    • (2009) Redox Signal , vol.11 , pp. 739-745
    • Woo, H.A.1    Bae, S.H.2    Park, S.3    Rhee, S.G.4
  • 182
    • 48449101433 scopus 로고    scopus 로고
    • P53 target genes sestrin1 and sestrin2 connect genotoxic stress and MTOR signaling
    • Budanov, A.V.; Karin, M. P53 target genes sestrin1 and sestrin2 connect genotoxic stress and MTOR signaling. Cell 2008, 134, 451-460
    • (2008) Cell , vol.134 , pp. 451-460
    • Budanov, A.V.1    Karin, M.2
  • 183
    • 84907525131 scopus 로고    scopus 로고
    • Sestrins function as guanine nucleotide dissociation inhibitors for rag GTPases to control MTORC1 signaling
    • Peng, M.; Yin, N.; Li, M.O. Sestrins function as guanine nucleotide dissociation inhibitors for rag GTPases to control MTORC1 signaling. Cell 2014, 159, 122-133
    • (2014) Cell , vol.159 , pp. 122-133
    • Peng, M.1    Yin, N.2    Li, M.O.3
  • 186
    • 84872137966 scopus 로고    scopus 로고
    • Sestrins activateNrf2 by promoting p62-dependent autophagic degradation of keap1 and prevent oxidative liver damage
    • Bae, S.H.; Sung, S.H.; Oh, S.Y.; Lim, J.M.; Lee, S.K.; Park, Y.N.; Lee, H.E.; Kang, D.; Rhee, S.G. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of keap1 and prevent oxidative liver damage. Cell Metab. 2013, 17, 73-84
    • (2013) Cell Metab , vol.17 , pp. 73-84
    • Bae, S.H.1    Sung, S.H.2    Oh, S.Y.3    Lim, J.M.4    Lee, S.K.5    Park, Y.N.6    Lee, H.E.7    Kang, D.8    Rhee, S.G.9
  • 189
    • 0036713778 scopus 로고    scopus 로고
    • Tsc2 is phosphorylated and inhibited by AKT and suppresses MTOR signalling
    • Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.L. Tsc2 is phosphorylated and inhibited by AKT and suppresses MTOR signalling. Nat. Cell Biol. 2002, 4, 648-657
    • (2002) Nat. Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 190
    • 84894212463 scopus 로고    scopus 로고
    • Regulation of torc1 in response to amino acid starvation via lysosomal recruitment of TSC2
    • Demetriades, C.; Doumpas, N.; Teleman, A.A. Regulation of torc1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156, 786-799
    • (2014) Cell , vol.156 , pp. 786-799
    • Demetriades, C.1    Doumpas, N.2    Teleman, A.A.3
  • 192
    • 80053387765 scopus 로고    scopus 로고
    • Impaired autophagy due to constitutive MTOR activation sensitizes TSC2-null cells to cell death under stress
    • Ng, S.; Wu, Y.T.; Chen, B.; Zhou, J.; Shen, H.M. Impaired autophagy due to constitutive MTOR activation sensitizes TSC2-null cells to cell death under stress. Autophagy 2011, 7, 1173-1186
    • (2011) Autophagy , vol.7 , pp. 1173-1186
    • Ng, S.1    Wu, Y.T.2    Chen, B.3    Zhou, J.4    Shen, H.M.5
  • 193
    • 84876408458 scopus 로고    scopus 로고
    • Activation of lysosomal function in the course of autophagy via MTORC1 suppression and autophagosome-lysosomefusion
    • Zhou, J.; Tan, S.H.; Nicolas, V.; Bauvy, C.; Yang, N.D.; Zhang, J.; Xue, Y.; Codogno, P.; Shen, H.M. Activation of lysosomal function in the course of autophagy via MTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 2013, 23, 508-523
    • (2013) Cell Res , vol.23 , pp. 508-523
    • Zhou, J.1    Tan, S.H.2    Nicolas, V.3    Bauvy, C.4    Yang, N.D.5    Zhang, J.6    Xue, Y.7    Codogno, P.8    Shen, H.M.9
  • 198
    • 84902491123 scopus 로고    scopus 로고
    • Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization
    • Lang, M.J.; Martinez-Marquez, J.Y.; Prosser, D.C.; Ganser, L.R.; Buelto, D.; Wendland, B.; Duncan, M.C. Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling. J. Biol. Chem. 2014, 289, 16736-16747
    • (2014) J. Biol. Chem , vol.289 , pp. 16736-16747
    • Lang, M.J.1    Martinez-Marquez, J.Y.2    Prosser, D.C.3    Ganser, L.R.4    Buelto, D.5    Wendland, B.6    Duncan, M.C.7
  • 200
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal V-ATPase-ragulator complex is a common activator for ampk and MTORC1, acting as a switchbetween catabolism and anabolism
    • Zhang, C.S.; Jiang, B.; Li, M.; Zhu, M.; Peng, Y.; Zhang, Y.L.; Wu, Y.Q.; Li, T.Y.; Liang, Y.; Lu, Z.; et al. The lysosomal V-ATPase-ragulator complex is a common activator for ampk and MTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014, 20, 526-540
    • (2014) Cell Metab , vol.20 , pp. 526-540
    • Zhang, C.S.1    Jiang, B.2    Li, M.3    Zhu, M.4    Peng, Y.5    Zhang, Y.L.6    Wu, Y.Q.7    Li, T.Y.8    Liang, Y.9    Lu, Z.10


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.