-
1
-
-
77956416339
-
Autophagy in mammalian development and differentiation
-
Mizushima, N.; Levine, B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 2010, 12, 823-830
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 823-830
-
-
Mizushima, N.1
Levine, B.2
-
2
-
-
84920421073
-
Essential role for autophagy in life span extension
-
Madeo, F.; Zimmermann, A.; Maiuri, M.C.; Kroemer, G. Essential role for autophagy in life span extension. J. Clin. Investig. 2015, 125, 85-93
-
(2015)
J. Clin. Investig
, vol.125
, pp. 85-93
-
-
Madeo, F.1
Zimmermann, A.2
Maiuri, M.C.3
Kroemer, G.4
-
3
-
-
84891738225
-
Autophagy and human diseases
-
Jiang, P.; Mizushima, N. Autophagy and human diseases. Cell Res. 2014, 24, 69-79
-
(2014)
Cell Res
, vol.24
, pp. 69-79
-
-
Jiang, P.1
Mizushima, N.2
-
4
-
-
84920463916
-
Autophagy in cellular metabolism and cancer
-
Jiang, X.; Overholtzer, M.; Thompson, C.B. Autophagy in cellular metabolism and cancer. J. Clin. Investig. 2015, 125, 47-54
-
(2015)
J. Clin. Investig.
, vol.125
, pp. 47-54
-
-
Jiang, X.1
Overholtzer, M.2
Thompson, C.B.3
-
5
-
-
84882254367
-
The role of autophagy in neurodegenerative disease
-
Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 2013, 19, 983-997
-
(2013)
Nat. Med
, vol.19
, pp. 983-997
-
-
Nixon, R.A.1
-
6
-
-
84859386792
-
Autophagy and the immune system
-
Kuballa, P.; Nolte, W.M.; Castoreno, A.B.; Xavier, R.J. Autophagy and the immune system. Annu. Rev. Immunol. 2012, 30, 611-646
-
(2012)
Annu. Rev. Immunol
, vol.30
, pp. 611-646
-
-
Kuballa, P.1
Nolte, W.M.2
Castoreno, A.B.3
Xavier, R.J.4
-
7
-
-
84920463081
-
Immunologic manifestations of autophagy
-
Deretic, V.; Kimura, T.; Timmins, G.; Moseley, P.; Chauhan, S.; Mandell, M. Immunologic manifestations of autophagy. J. Clin. Investig. 2015, 125, 75-84
-
(2015)
J. Clin. Investig
, vol.125
, pp. 75-84
-
-
Deretic, V.1
Kimura, T.2
Timmins, G.3
Moseley, P.4
Chauhan, S.5
Mandell, M.6
-
8
-
-
84891745088
-
Historical landmarks of autophagy research
-
Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 2014, 24, 9-23
-
(2014)
Cell Res
, vol.24
, pp. 9-23
-
-
Ohsumi, Y.1
-
9
-
-
84905405893
-
Getting ready for building: Signaling and autophagosome biogenesis
-
Abada, A.; Elazar, Z. Getting ready for building: Signaling and autophagosome biogenesis. EMBO Rep. 2014, 15, 839-852
-
(2014)
EMBO Rep
, vol.15
, pp. 839-852
-
-
Abada, A.1
Elazar, Z.2
-
10
-
-
84891745585
-
Autophagy regulation by nutrient signaling
-
Russell, R.C.; Yuan, H.X.; Guan, K.L. Autophagy regulation by nutrient signaling. Cell Res. 2014, 24, 42-57
-
(2014)
Cell Res
, vol.24
, pp. 42-57
-
-
Russell, R.C.1
Yuan, H.X.2
Guan, K.L.3
-
11
-
-
0025363276
-
Studies on the mechanisms of autophagy: Formation of the autophagic vacuole
-
Dunn, W.A., Jr. Studies on the mechanisms of autophagy: Formation of the autophagic vacuole. J. Cell Biol. 1990, 110, 1923-1933
-
(1990)
J. Cell Biol
, vol.110
, pp. 1923-1933
-
-
Dunn, W.A.1
-
12
-
-
84878562770
-
Autophagic processes in yeast: Mechanism, machinery and regulation
-
Reggiori, F.; Klionsky, D.J. Autophagic processes in yeast: Mechanism, machinery and regulation. Genetics 2013, 194, 341-361
-
(2013)
Genetics
, vol.194
, pp. 341-361
-
-
Reggiori, F.1
Klionsky, D.J.2
-
13
-
-
84888380983
-
The autophagosome: Origins unknown, biogenesis complex
-
Lamb, C.A.; Yoshimori, T.; Tooze, S.A. The autophagosome: Origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 2013, 14, 759-774
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 759-774
-
-
Lamb, C.A.1
Yoshimori, T.2
Tooze, S.A.3
-
14
-
-
84891748139
-
A current perspective of autophagosome biogenesis
-
Shibutani, S.T.; Yoshimori, T. A current perspective of autophagosome biogenesis. Cell Res. 2014, 24, 58-68
-
(2014)
Cell Res
, vol.24
, pp. 58-68
-
-
Shibutani, S.T.1
Yoshimori, T.2
-
15
-
-
84921396314
-
Membrane dynamics in autophagosome biogenesis
-
Carlsson, S.R.; Simonsen, A. Membrane dynamics in autophagosome biogenesis. J. Cell Sci. 2015, 128, 193-205
-
(2015)
J. Cell Sci
, vol.128
, pp. 193-205
-
-
Carlsson, S.R.1
Simonsen, A.2
-
16
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe, E.L.; Walker, S.A.; Manifava, M.; Chandra, P.; Roderick, H.L.; Habermann, A.; Griffiths, G.; Ktistakis, N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008, 182, 685-701
-
(2008)
J. Cell Biol
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
Griffiths, G.7
Ktistakis, N.T.8
-
17
-
-
0035911162
-
Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
-
Mizushima, N.; Yamamoto, A.; Hatano, M.; Kobayashi, Y.; Kabeya, Y.; Suzuki, K.; Tokuhisa, T.; Ohsumi, Y.; Yoshimori, T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 2001, 152, 657-668
-
(2001)
J. Cell Biol
, vol.152
, pp. 657-668
-
-
Mizushima, N.1
Yamamoto, A.2
Hatano, M.3
Kobayashi, Y.4
Kabeya, Y.5
Suzuki, K.6
Tokuhisa, T.7
Ohsumi, Y.8
Yoshimori, T.9
-
18
-
-
58149290220
-
An ATG4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure
-
Fujita, N.; Hayashi-Nishino, M.; Fukumoto, H.; Omori, H.; Yamamoto, A.; Noda, T.; Yoshimori, T. An ATG4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 2008, 19, 4651-4659
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4651-4659
-
-
Fujita, N.1
Hayashi-Nishino, M.2
Fukumoto, H.3
Omori, H.4
Yamamoto, A.5
Noda, T.6
Yoshimori, T.7
-
19
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
Yla-Anttila, P.; Vihinen, H.; Jokitalo, E.; Eskelinen, E.L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009, 5, 1180-1185
-
(2009)
Autophagy
, vol.5
, pp. 1180-1185
-
-
Yla-Anttila, P.1
Vihinen, H.2
Jokitalo, E.3
Eskelinen, E.L.4
-
20
-
-
84896542255
-
Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis
-
Dupont, N.; Chauhan, S.; Arko-Mensah, J.; Castillo, E.F.; Masedunskas, A.; Weigert, R.; Robenek, H.; Proikas-Cezanne, T.; Deretic, V. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr. Biol. 2014, 24, 609-620
-
(2014)
Curr. Biol
, vol.24
, pp. 609-620
-
-
Dupont, N.1
Chauhan, S.2
Arko-Mensah, J.3
Castillo, E.F.4
Masedunskas, A.5
Weigert, R.6
Robenek, H.7
Proikas-Cezanne, T.8
Deretic, V.9
-
21
-
-
84939209368
-
Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis
-
Shpilka, T.; Welter, E.; Borovsky, N.; Amar, N.; Mari, M.; Reggiori, F.; Elazar, Z. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 2015, 34, 2117-2131
-
(2015)
EMBO J
, vol.34
, pp. 2117-2131
-
-
Shpilka, T.1
Welter, E.2
Borovsky, N.3
Amar, N.4
Mari, M.5
Reggiori, F.6
Elazar, Z.7
-
22
-
-
71649087199
-
Subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino, M.; Fujita, N.; Noda, T.; Yamaguchi, A.; Yoshimori, T.; Yamamoto, A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 2009, 11, 1433-1437
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.A.6
-
23
-
-
84897557665
-
Cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane
-
Uemura, T.; Yamamoto, M.; Kametaka, A.; Sou, Y.S.; Yabashi, A.; Yamada, A.; Annoh, H.; Kametaka, S.; Komatsu, M.; Waguri, S. A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol. Cell. Biol. 2014, 34, 1695-1706
-
(2014)
Mol. Cell. Biol
, vol.34
, pp. 1695-1706
-
-
Uemura, T.1
Yamamoto, M.2
Kametaka, A.3
Sou, Y.S.4
Yabashi, A.5
Yamada, A.6
Annoh, H.7
Kametaka, S.8
Komatsu, M.9
Waguri, S.A.10
-
24
-
-
80054025654
-
The role of ATG proteins in autophagosome formation
-
Mizushima, N.; Yoshimori, T.; Ohsumi, Y. The role of ATG proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27, 107-132
-
(2011)
Annu. Rev. Cell Dev. Biol
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
25
-
-
64049113909
-
Distinct regulation of autophagic activity by ATG14l and rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex
-
Zhong, Y.; Wang, Q.J.; Li, X.; Yan, Y.; Backer, J.M.; Chait, B.T.; Heintz, N.; Yue, Z. Distinct regulation of autophagic activity by ATG14l and rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell Biol. 2009, 11, 468-476
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 468-476
-
-
Zhong, Y.1
Wang, Q.J.2
Li, X.3
Yan, Y.4
Backer, J.M.5
Chait, B.T.6
Heintz, N.7
Yue, Z.8
-
26
-
-
64049086758
-
Two beclin 1-binding proteins, ATG14l and rubicon, reciprocally regulate autophagy at different stages
-
Matsunaga, K.; Saitoh, T.; Tabata, K.; Omori, H.; Satoh, T.; Kurotori, N.; Maejima, I.; Shirahama-Noda, K.; Ichimura, T.; Isobe, T.; et al. Two beclin 1-binding proteins, ATG14l and rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 2009, 11, 385-396
-
(2009)
Nat. Cell Biol
, vol.11
, pp. 385-396
-
-
Matsunaga, K.1
Saitoh, T.2
Tabata, K.3
Omori, H.4
Satoh, T.5
Kurotori, N.6
Maejima, I.7
Shirahama-Noda, K.8
Ichimura, T.9
Isobe, T.10
-
27
-
-
77955895424
-
Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via ATG14l
-
Matsunaga, K.; Morita, E.; Saitoh, T.; Akira, S.; Ktistakis, N.T.; Izumi, T.; Noda, T.; Yoshimori, T. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via ATG14l. J. Cell Biol. 2010, 190, 511-521
-
(2010)
J. Cell Biol
, vol.190
, pp. 511-521
-
-
Matsunaga, K.1
Morita, E.2
Saitoh, T.3
Akira, S.4
Ktistakis, N.T.5
Izumi, T.6
Noda, T.7
Yoshimori, T.8
-
28
-
-
79956358522
-
Autophagosome targeting and membrane curvature sensing by barkor/ATG14(L). Proc
-
Fan, W.; Nassiri, A.; Zhong, Q. Autophagosome targeting and membrane curvature sensing by barkor/ATG14(l). Proc. Natl. Acad. Sci. USA 2011, 108, 7769-7774
-
(2011)
Natl. Acad. Sci. USA
, vol.108
, pp. 7769-7774
-
-
Fan, W.1
Nassiri, A.2
Zhong, Q.3
-
29
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey, D.W.; Rambold, A.S.; Satpute-Krishnan, P.; Mitra, K.; Sougrat, R.; Kim, P.K.; Lippincott-Schwartz, J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141, 656-667
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
Kim, P.K.6
Lippincott-Schwartz, J.7
-
30
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki, M.; Furuta, N.; Matsuda, A.; Nezu, A.; Yamamoto, A.; Fujita, N.; Oomori, H.; Noda, T.; Haraguchi, T.; Hiraoka, Y.; et al. Autophagosomes form at ER-mitochondria contact sites. Nature 2013, 495, 389-393
-
(2013)
Nature
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
-
31
-
-
84871726622
-
Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (mam)
-
Raturi, A.; Simmen, T. Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (mam). Biochim. Biophys. Acta 2013, 1833, 213-224
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 213-224
-
-
Raturi, A.1
Simmen, T.2
-
32
-
-
84885662059
-
Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site
-
Koyama-Honda, I.; Itakura, E.; Fujiwara, T.K.; Mizushima, N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 2013, 9, 1491-1499
-
(2013)
Autophagy
, vol.9
, pp. 1491-1499
-
-
Koyama-Honda, I.1
Itakura, E.2
Fujiwara, T.K.3
Mizushima, N.4
-
33
-
-
84870880174
-
The hairpin-type tail-anchored snare syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The hairpin-type tail-anchored snare syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151, 1256-1269
-
(2012)
Cell
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi-Itakura, C.2
Mizushima, N.3
-
34
-
-
84921366480
-
Wipi proteins: Essential Ptdins3P effectors at the nascent autophagosome
-
Proikas-Cezanne, T.; Takacs, Z.; Donnes, P.; Kohlbacher, O. Wipi proteins: Essential Ptdins3P effectors at the nascent autophagosome. J. Cell Sci. 2015, 128, 207-217
-
(2015)
J. Cell Sci
, vol.128
, pp. 207-217
-
-
Proikas-Cezanne, T.1
Takacs, Z.2
Donnes, P.3
Kohlbacher, O.4
-
35
-
-
84904575441
-
WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting ATG12-5-16l1
-
Dooley, H.C.; Razi, M.; Polson, H.E.; Girardin, S.E.; Wilson, M.I.; Tooze, S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting ATG12-5-16l1. Mol. Cell 2014, 55, 238-252
-
(2014)
Mol. Cell
, vol.55
, pp. 238-252
-
-
Dooley, H.C.1
Razi, M.2
Polson, H.E.3
Girardin, S.E.4
Wilson, M.I.5
Tooze, S.A.6
-
36
-
-
43949143804
-
The ATG16l complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
-
Fujita, N.; Itoh, T.; Omori, H.; Fukuda, M.; Noda, T.; Yoshimori, T. The ATG16l complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 2008, 19, 2092-2100
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2092-2100
-
-
Fujita, N.1
Itoh, T.2
Omori, H.3
Fukuda, M.4
Noda, T.5
Yoshimori, T.6
-
37
-
-
84876191754
-
ATG12-ATG5 conjugate enhances E2 activity of ATG3 by rearranging its catalytic site
-
Sakoh-Nakatogawa, M.; Matoba, K.; Asai, E.; Kirisako, H.; Ishii, J.; Noda, N.N.; Inagaki, F.; Nakatogawa, H.; Ohsumi, Y. ATG12-ATG5 conjugate enhances E2 activity of ATG3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 2013, 20, 433-439
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 433-439
-
-
Sakoh-Nakatogawa, M.1
Matoba, K.2
Asai, E.3
Kirisako, H.4
Ishii, J.5
Noda, N.N.6
Inagaki, F.7
Nakatogawa, H.8
Ohsumi, Y.9
-
38
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
Ravikumar, B.; Moreau, K.; Jahreiss, L.; Puri, C.; Rubinsztein, D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 2010, 12, 747-757
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
39
-
-
84862611041
-
Tbc1d14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes
-
Longatti, A.; Lamb, C.A.; Razi, M.; Yoshimura, S.; Barr, F.A.; Tooze, S.A. Tbc1d14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J. Cell Biol. 2012, 197, 659-675
-
(2012)
J. Cell Biol
, vol.197
, pp. 659-675
-
-
Longatti, A.1
Lamb, C.A.2
Razi, M.3
Yoshimura, S.4
Barr, F.A.5
Tooze, S.A.6
-
40
-
-
84884220705
-
Diverse autophagosome membrane sources coalesce in recycling endosomes
-
Puri, C.; Renna, M.; Bento, C.F.; Moreau, K.; Rubinsztein, D.C. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 2013, 154, 1285-1299
-
(2013)
Cell
, vol.154
, pp. 1285-1299
-
-
Puri, C.1
Renna, M.2
Bento, C.F.3
Moreau, K.4
Rubinsztein, D.C.5
-
41
-
-
84953373631
-
Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130
-
Joachim, J.; Jefferies, H.B.; Razi, M.; Frith, D.; Snijders, A.P.; Chakravarty, P.; Judith, D.; Tooze, S.A. Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130. Mol. Cell 2015, 60, 899-913
-
(2015)
Mol. Cell
, vol.60
, pp. 899-913
-
-
Joachim, J.1
Jefferies, H.B.2
Razi, M.3
Frith, D.4
Snijders, A.P.5
Chakravarty, P.6
Judith, D.7
Tooze, S.A.8
-
42
-
-
77955239270
-
Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites
-
Zoppino, F.C.; Militello, R.D.; Slavin, I.; Alvarez, C.; Colombo, M.I. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 2010, 11, 1246-1261
-
(2010)
Traffic
, vol.11
, pp. 1246-1261
-
-
Zoppino, F.C.1
Militello, R.D.2
Slavin, I.3
Alvarez, C.4
Colombo, M.I.5
-
43
-
-
84921325989
-
ERES: Sites for autophagosome biogenesis and maturation
-
Sanchez-Wandelmer, J.; Ktistakis, N.T.; Reggiori, F. ERES: Sites for autophagosome biogenesis and maturation? J. Cell Sci. 2015, 128, 185-192
-
(2015)
J. Cell Sci
, vol.128
, pp. 185-192
-
-
Sanchez-Wandelmer, J.1
Ktistakis, N.T.2
Reggiori, F.3
-
44
-
-
84878253184
-
Organization of the ER-golgi interface for membrane traffic control
-
Brandizzi, F.; Barlowe, C. Organization of the ER-golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 2013, 14, 382-392
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 382-392
-
-
Brandizzi, F.1
Barlowe, C.2
-
45
-
-
84884487128
-
ER exit sites are physical and functional core autophagosome biogenesis components
-
Graef, M.; Friedman, J.R.; Graham, C.; Babu, M.; Nunnari, J. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 2013, 24, 2918-2931
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 2918-2931
-
-
Graef, M.1
Friedman, J.R.2
Graham, C.3
Babu, M.4
Nunnari, J.5
-
46
-
-
84881506338
-
The ER-golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
-
Ge, L.; Melville, D.; Zhang, M.; Schekman, R. The ER-golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. Elife 2013, 2, e00947
-
(2013)
Elife
, vol.2
-
-
Ge, L.1
Melville, D.2
Zhang, M.3
Schekman, R.4
-
47
-
-
84927720203
-
Phosphatidylinositol 3-kinase and copii generate LC3 lipidation vesicles from the ER-golgi intermediate compartment
-
Ge, L.; Zhang, M.; Schekman, R. Phosphatidylinositol 3-kinase and copii generate LC3 lipidation vesicles from the ER-golgi intermediate compartment. Elife 2014, 3, e04135
-
(2014)
Elife
, vol.3
-
-
Ge, L.1
Zhang, M.2
Schekman, R.3
-
48
-
-
84943798225
-
Ultrastructural relationship of the phagophore with surrounding organelles
-
Biazik, J.; Yla-Anttila, P.; Vihinen, H.; Jokitalo, E.; Eskelinen, E.L. Ultrastructural relationship of the phagophore with surrounding organelles. Autophagy 2015, 11, 439-451
-
(2015)
Autophagy
, vol.11
, pp. 439-451
-
-
Biazik, J.1
Yla-Anttila, P.2
Vihinen, H.3
Jokitalo, E.4
Eskelinen, E.L.5
-
49
-
-
84907042842
-
Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
-
Kishi-Itakura, C.; Koyama-Honda, I.; Itakura, E.; Mizushima, N. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 2014, 127, 4089-4102
-
(2014)
J. Cell Sci
, vol.127
, pp. 4089-4102
-
-
Kishi-Itakura, C.1
Koyama-Honda, I.2
Itakura, E.3
Mizushima, N.4
-
50
-
-
84861158462
-
Dynamic and transient interactions of ATG9 with autophagosomes, but not membrane integration, are required for autophagy
-
Orsi, A.; Razi, M.; Dooley, H.C.; Robinson, D.; Weston, A.E.; Collinson, L.M.; Tooze, S.A. Dynamic and transient interactions of ATG9 with autophagosomes, but not membrane integration, are required for autophagy. Mol. Biol. Cell 2012, 23, 1860-1873
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 1860-1873
-
-
Orsi, A.1
Razi, M.2
Dooley, H.C.3
Robinson, D.4
Weston, A.E.5
Collinson, L.M.6
Tooze, S.A.7
-
51
-
-
85117875210
-
TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic
-
Lamb, C.A.; Nuhlen, S.; Judith, D.; Frith, D.; Snijders, A.P.; Behrends, C.; Tooze, S.A. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J. 2015
-
(2015)
EMBO J
-
-
Lamb, C.A.1
Nuhlen, S.2
Judith, D.3
Frith, D.4
Snijders, A.P.5
Behrends, C.6
Tooze, S.A.7
-
52
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian ATG proteins
-
Itakura, E.; Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian ATG proteins. Autophagy 2010, 6, 764-776
-
(2010)
Autophagy
, vol.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
53
-
-
84928550400
-
Vivona, S.; et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes
-
Diao, J.; Liu, R.; Rong, Y.; Zhao, M.; Zhang, J.; Lai, Y.; Zhou, Q.; Wilz, L.M.; Li, J.; Vivona, S.; et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 2015, 520, 563-566
-
(2015)
Nature
, vol.520
, pp. 563-566
-
-
Diao, J.1
Liu, R.2
Rong, Y.3
Zhao, M.4
Zhang, J.5
Lai, Y.6
Zhou, Q.7
Wilz, L.M.8
Li, J.9
-
54
-
-
84899844485
-
Lipidation of the LC3/gabarap family of autophagy proteins relies on a membrane-curvature-sensing domain in ATG3
-
Nath, S.; Dancourt, J.; Shteyn, V.; Puente, G.; Fong, W.M.; Nag, S.; Bewersdorf, J.; Yamamoto, A.; Antonny, B.; Melia, T.J. Lipidation of the LC3/gabarap family of autophagy proteins relies on a membrane-curvature-sensing domain in ATG3. Nat. Cell Biol. 2014, 16, 415-424
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 415-424
-
-
Nath, S.1
Dancourt, J.2
Shteyn, V.3
Puente, G.4
Fong, W.M.5
Nag, S.6
Bewersdorf, J.7
Yamamoto, A.8
Antonny, B.9
Melia, T.J.10
-
55
-
-
84940538301
-
Capz regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane
-
Mi, N.; Chen, Y.; Wang, S.; Chen, M.; Zhao, M.; Yang, G.; Ma, M.; Su, Q.; Luo, S.; Shi, J.; et al. Capz regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat. Cell Biol. 2015, 17, 1112-1123
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 1112-1123
-
-
Mi, N.1
Chen, Y.2
Wang, S.3
Chen, M.4
Zhao, M.5
Yang, G.6
Ma, M.7
Su, Q.8
Luo, S.9
Shi, J.10
-
56
-
-
84934449989
-
Regulation of endoplasmic reticulum turnover by selective autophagy
-
Khaminets, A.; Heinrich, T.; Mari, M.; Grumati, P.; Huebner, A.K.; Akutsu, M.; Liebmann, L.; Stolz, A.; Nietzsche, S.; Koch, N.; et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015, 522, 354-358
-
(2015)
Nature
, vol.522
, pp. 354-358
-
-
Khaminets, A.1
Heinrich, T.2
Mari, M.3
Grumati, P.4
Huebner, A.K.5
Akutsu, M.6
Liebmann, L.7
Stolz, A.8
Nietzsche, S.9
Koch, N.10
-
57
-
-
84934449988
-
Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
-
Mochida, K.; Oikawa, Y.; Kimura, Y.; Kirisako, H.; Hirano, H.; Ohsumi, Y.; Nakatogawa, H. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 2015, 522, 359-362
-
(2015)
Nature
, vol.522
, pp. 359-362
-
-
Mochida, K.1
Oikawa, Y.2
Kimura, Y.3
Kirisako, H.4
Hirano, H.5
Ohsumi, Y.6
Nakatogawa, H.7
-
58
-
-
84908466248
-
Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
-
Dowdle, W.E.; Nyfeler, B.; Nagel, J.; Elling, R.A.; Liu, S.; Triantafellow, E.; Menon, S.; Wang, Z.; Honda, A.; Pardee, G.; et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 2014, 16, 1069-1079
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 1069-1079
-
-
Dowdle, W.E.1
Nyfeler, B.2
Nagel, J.3
Elling, R.A.4
Liu, S.5
Triantafellow, E.6
Menon, S.7
Wang, Z.8
Honda, A.9
Pardee, G.10
-
59
-
-
84911906578
-
A highly potent and selective VPS34 inhibitor alters vesicle trafficking and autophagy
-
Ronan, B.; Flamand, O.; Vescovi, L.; Dureuil, C.; Durand, L.; Fassy, F.; Bachelot, M.F.; Lamberton, A.; Mathieu, M.; Bertrand, T.; et al. A highly potent and selective VPS34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 2014, 10, 1013-1019
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 1013-1019
-
-
Ronan, B.1
Flamand, O.2
Vescovi, L.3
Dureuil, C.4
Durand, L.5
Fassy, F.6
Bachelot, M.F.7
Lamberton, A.8
Mathieu, M.9
Bertrand, T.10
-
60
-
-
84935890863
-
PI3K inhibitors in inflammation, autoimmunity and cancer
-
Stark, A.K.; Sriskantharajah, S.; Hessel, E.M.; Okkenhaug, K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr. Opin. Pharmacol. 2015, 23, 82-91
-
(2015)
Curr. Opin. Pharmacol
, vol.23
, pp. 82-91
-
-
Stark, A.K.1
Sriskantharajah, S.2
Hessel, E.M.3
Okkenhaug, K.4
-
61
-
-
84943665694
-
Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex
-
Baskaran, S.; Carlson, L.A.; Stjepanovic, G.; Young, L.N.; Kim do, J.; Grob, P.; Stanley, R.E.; Nogales, E.; Hurley, J.H. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. Elife 2014, 3
-
(2014)
Elife
-
-
Baskaran, S.1
Carlson, L.A.2
Stjepanovic, G.3
Young, L.N.4
Kim Do, J.5
Grob, P.6
Stanley, R.E.7
Nogales, E.8
Hurley, J.H.9
-
62
-
-
84877323647
-
Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2
-
McAlpine, F.; Williamson, L.E.; Tooze, S.A.; Chan, E.Y. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 2013, 9, 361-373
-
(2013)
Autophagy
, vol.9
, pp. 361-373
-
-
McAlpine, F.1
Williamson, L.E.2
Tooze, S.A.3
Chan, E.Y.4
-
63
-
-
79960585318
-
Ammonia-induced autophagy is independent of ULK1/ULK2 kinases
-
Cheong, H.; Lindsten, T.; Wu, J.; Lu, C.; Thompson, C.B. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc. Natl. Acad. Sci. USA 2011, 108, 11121-11126
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 11121-11126
-
-
Cheong, H.1
Lindsten, T.2
Wu, J.3
Lu, C.4
Thompson, C.B.5
-
64
-
-
79551598347
-
AMPK and MTOR regulate autophagy through direct phosphorylation of ULK1
-
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and MTOR regulate autophagy through direct phosphorylation of ULK1. Nat. Cell Biol. 2011, 13, 132-141
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
65
-
-
79251587803
-
Phosphorylation of ULK1 (HATG1) by amp-activated protein kinase connects energy sensing to mitophagy
-
Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.; Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R.; et al. Phosphorylation of ULK1 (hATG1) by amp-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331, 456-461
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
Mair, W.6
Vasquez, D.S.7
Joshi, A.8
Gwinn, D.M.9
Taylor, R.10
-
66
-
-
84863499345
-
Regulation and function of uncoordinated-51 like kinase proteins
-
Chan, E.Y. Regulation and function of uncoordinated-51 like kinase proteins. Antioxid. Redox Signl. 2012, 17, 775-785
-
(2012)
Antioxid. Redox Signl
, vol.17
, pp. 775-785
-
-
Chan, E.Y.1
-
67
-
-
84947583662
-
Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy
-
Driessen, S.; Berleth, N.; Friesen, O.; Loffler, A.S.; Bohler, P.; Hieke, N.; Stuhldreier, F.; Peter, C.; Schink, K.O.; Schultz, S.W.; et al. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy 2015, 11, 1458-1470
-
(2015)
Autophagy
, vol.11
, pp. 1458-1470
-
-
Driessen, S.1
Berleth, N.2
Friesen, O.3
Loffler, A.S.4
Bohler, P.5
Hieke, N.6
Stuhldreier, F.7
Peter, C.8
Schink, K.O.9
Schultz, S.W.10
-
68
-
-
84860172051
-
Ruan, K.; et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy
-
Lin, S.Y.; Li, T.Y.; Liu, Q.; Zhang, C.; Li, X.; Chen, Y.; Zhang, S.M.; Lian, G.; Liu, Q.; Ruan, K.; et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 2012, 336, 477-481
-
(2012)
Science
, vol.336
, pp. 477-481
-
-
Lin, S.Y.1
Li, T.Y.2
Liu, Q.3
Zhang, C.4
Li, X.5
Chen, Y.6
Zhang, S.M.7
Lian, G.8
Liu, Q.9
-
69
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through ambra1 and traf6
-
Nazio, F.; Strappazzon, F.; Antonioli, M.; Bielli, P.; Cianfanelli, V.; Bordi, M.; Gretzmeier, C.; Dengjel, J.; Piacentini, M.; Fimia, G.M.; et al. MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through ambra1 and traf6. Nat. Cell Biol. 2013, 15, 406-416
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
Bielli, P.4
Cianfanelli, V.5
Bordi, M.6
Gretzmeier, C.7
Dengjel, J.8
Piacentini, M.9
Fimia, G.M.10
-
70
-
-
84941774038
-
Mitochondrial outer-membrane E3 ligase mul1 ubiquitinates ULK1 and regulates selenite-induced mitophagy
-
Li, J.; Qi, W.; Chen, G.; Feng, D.; Liu, J.; Ma, B.; Zhou, C.; Mu, C.; Zhang, W.; Chen, Q.; et al. Mitochondrial outer-membrane E3 ligase mul1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy 2015, 11, 1216-1229
-
(2015)
Autophagy
, vol.11
, pp. 1216-1229
-
-
Li, J.1
Qi, W.2
Chen, G.3
Feng, D.4
Liu, J.5
Ma, B.6
Zhou, C.7
Mu, C.8
Zhang, W.9
Chen, Q.10
-
71
-
-
84953637768
-
Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination
-
Liu, C.C.; Lin, Y.C.; Chen, Y.H.; Chen, C.M.; Pang, L.Y.; Chen, H.A.; Wu, P.R.; Lin, M.Y.; Jiang, S.T.; Tsai, T.F.; et al. Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol. Cell 2016, 61, 84-97
-
(2016)
Mol. Cell
, vol.61
, pp. 84-97
-
-
Liu, C.C.1
Lin, Y.C.2
Chen, Y.H.3
Chen, C.M.4
Pang, L.Y.5
Chen, H.A.6
Wu, P.R.7
Lin, M.Y.8
Jiang, S.T.9
Tsai, T.F.10
-
72
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by ULK1 dephosphorylation and its subsequent dissociation from AMPK
-
Shang, L.; Chen, S.; Du, F.; Li, S.; Zhao, L.; Wang, X. Nutrient starvation elicits an acute autophagic response mediated by ULK1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. USA 2011, 108, 4788-4793
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 4788-4793
-
-
Shang, L.1
Chen, S.2
Du, F.3
Li, S.4
Zhao, L.5
Wang, X.6
-
73
-
-
84940550513
-
Regulation of autophagy by coordinated action of MTORC1 and protein phosphatase 2A
-
Wong, P.M.; Feng, Y.; Wang, J.; Shi, R.; Jiang, X. Regulation of autophagy by coordinated action of MTORC1 and protein phosphatase 2A. Nat. Commun. 2015, 6, 8048
-
(2015)
Nat. Commun
, vol.6
, pp. 8048
-
-
Wong, P.M.1
Feng, Y.2
Wang, J.3
Shi, R.4
Jiang, X.5
-
74
-
-
84937523899
-
Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates
-
Egan, D.F.; Chun, M.G.; Vamos, M.; Zou, H.; Rong, J.; Miller, C.J.; Lou, H.J.; Raveendra-Panickar, D.; Yang, C.C.; Sheffler, D.J.; et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 2015, 59, 285-297
-
(2015)
Mol. Cell
, vol.59
, pp. 285-297
-
-
Egan, D.F.1
Chun, M.G.2
Vamos, M.3
Zou, H.4
Rong, J.5
Miller, C.J.6
Lou, H.J.7
Raveendra-Panickar, D.8
Yang, C.C.9
Sheffler, D.J.10
-
75
-
-
84880709668
-
MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
-
Kang, S.A.; Pacold, M.E.; Cervantes, C.L.; Lim, D.; Lou, H.J.; Ottina, K.; Gray, N.S.; Turk, B.E.; Yaffe, M.B.; Sabatini, D.M. MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 2013, 341, 1236566
-
(2013)
Science
, vol.341
-
-
Kang, S.A.1
Pacold, M.E.2
Cervantes, C.L.3
Lim, D.4
Lou, H.J.5
Ottina, K.6
Gray, N.S.7
Turk, B.E.8
Yaffe, M.B.9
Sabatini, D.M.10
-
76
-
-
84922689340
-
Degradation of ampk by a cancer-specific ubiquitin ligase
-
Pineda, C.T.; Ramanathan, S.; Fon Tacer, K.; Weon, J.L.; Potts, M.B.; Ou, Y.H.; White, M.A.; Potts, P.R. Degradation of ampk by a cancer-specific ubiquitin ligase. Cell 2015, 160, 715-728
-
(2015)
Cell
, vol.160
, pp. 715-728
-
-
Pineda, C.T.1
Ramanathan, S.2
Fon Tacer, K.3
Weon, J.L.4
Potts, M.B.5
Ou, Y.H.6
White, M.A.7
Potts, P.R.8
-
77
-
-
84873665112
-
Regulation of MTORC1 by the rag gtpases is necessary for neonatal autophagy and survival
-
Efeyan, A.; Zoncu, R.; Chang, S.; Gumper, I.; Snitkin, H.; Wolfson, R.L.; Kirak, O.; Sabatini, D.D.; Sabatini, D.M. Regulation of MTORC1 by the rag gtpases is necessary for neonatal autophagy and survival. Nature 2013, 493, 679-683
-
(2013)
Nature
, vol.493
, pp. 679-683
-
-
Efeyan, A.1
Zoncu, R.2
Chang, S.3
Gumper, I.4
Snitkin, H.5
Wolfson, R.L.6
Kirak, O.7
Sabatini, D.D.8
Sabatini, D.M.9
-
78
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls MTORC1
-
Rebsamen, M.; Pochini, L.; Stasyk, T.; de Araujo, M.E.G.; Galluccio, M.; Kandasamy, R.K.; Snijder, B.; Fauster, A.; Rudashevskaya, E.L.; Bruckner, M.; et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls MTORC1. Nature 2015, 519, 477-481
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
De Araujo, M.E.G.4
Galluccio, M.5
Kandasamy, R.K.6
Snijder, B.7
Fauster, A.8
Rudashevskaya, E.L.9
Bruckner, M.10
-
79
-
-
84922743269
-
The amino acid transporter SLC38A9 is a key component of a lysosomal membrane complex that signals arginine sufficiency to MTORC1
-
Wang, S.; Tsun, Z.-Y.; Wolfson, R.; Shen, K.; Wyant, G.A.; Plovanich, M.E.; Yuan, E.D.; Jones, T.D.; Chantranupong, L.; Comb, W.; et al. The amino acid transporter SLC38A9 is a key component of a lysosomal membrane complex that signals arginine sufficiency to MTORC1. Science 2015, 347, 188-194
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.-Y.2
Wolfson, R.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
Yuan, E.D.7
Jones, T.D.8
Chantranupong, L.9
Comb, W.10
-
80
-
-
84894105147
-
Hexokinase-II positively regulates glucose starvation-induced autophagy through Torc1 inhibition
-
Roberts, D.J.; Tan-Sah, V.P.; Ding, E.Y.; Smith, J.M.; Miyamoto, S. Hexokinase-II positively regulates glucose starvation-induced autophagy through Torc1 inhibition. Mol. Cell 2014, 53, 521-533
-
(2014)
Mol. Cell
, vol.53
, pp. 521-533
-
-
Roberts, D.J.1
Tan-Sah, V.P.2
Ding, E.Y.3
Smith, J.M.4
Miyamoto, S.5
-
81
-
-
84928586627
-
Central role of ULK1 in type I interferon signaling
-
Saleiro, D.; Mehrotra, S.; Kroczynska, B.; Beauchamp, E.M.; Lisowski, P.; Majchrzak-Kita, B.; Bhagat, T.D.; Stein, B.L.; McMahon, B.; Altman, J.K.; et al. Central role of ULK1 in type I interferon signaling. Cell Rep. 2015, 11, 605-617
-
(2015)
Cell Rep
, vol.11
, pp. 605-617
-
-
Saleiro, D.1
Mehrotra, S.2
Kroczynska, B.3
Beauchamp, E.M.4
Lisowski, P.5
Majchrzak-Kita, B.6
Bhagat, T.D.7
Stein, B.L.8
McMahon, B.9
Altman, J.K.10
-
82
-
-
0027296748
-
Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors
-
Holen, I.; Gordon, P.B.; Seglen, P.O. Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur. J. Biochem. 1993, 215, 113-122
-
(1993)
Eur. J. Biochem.
, vol.215
, pp. 113-122
-
-
Holen, I.1
Gordon, P.B.2
Seglen, P.O.3
-
83
-
-
84870512554
-
PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins
-
Magnaudeix, A.; Wilson, C.M.; Page, G.; Bauvy, C.; Codogno, P.; Leveque, P.; Labrousse, F.; Corre-Delage, M.; Yardin, C.; Terro, F. PP2A blockade inhibits autophagy and causes intraneuronal accumulation of ubiquitinated proteins. Neurobiol. Aging 2013, 34, 770-790
-
(2013)
Neurobiol. Aging
, vol.34
, pp. 770-790
-
-
Magnaudeix, A.1
Wilson, C.M.2
Page, G.3
Bauvy, C.4
Codogno, P.5
Leveque, P.6
Labrousse, F.7
Corre-Delage, M.8
Yardin, C.9
Terro, F.10
-
84
-
-
84880535847
-
Methionine inhibits autophagy and promotes growth by inducing the sam-responsive methylation of PP2A
-
Sutter, B.M.; Wu, X.; Laxman, S.; Tu, B.P. Methionine inhibits autophagy and promotes growth by inducing the sam-responsive methylation of PP2A. Cell 2013, 154, 403-415
-
(2013)
Cell
, vol.154
, pp. 403-415
-
-
Sutter, B.M.1
Wu, X.2
Laxman, S.3
Tu, B.P.4
-
85
-
-
84862297232
-
PP2A regulates autophagy in two alternative ways in drosophila
-
Banreti, A.; Lukacsovich, T.; Csikos, G.; Erdelyi, M.; Sass, M. PP2A regulates autophagy in two alternative ways in drosophila. Autophagy 2012, 8, 623-636
-
(2012)
Autophagy
, vol.8
, pp. 623-636
-
-
Banreti, A.1
Lukacsovich, T.2
Csikos, G.3
Erdelyi, M.4
Sass, M.5
-
86
-
-
77952220270
-
Protein phosphatase 2A cooperates with the autophagy-related kinase unc-51 to regulate axon guidance in caenorhabditis elegans
-
Ogura, K.; Okada, T.; Mitani, S.; Gengyo-Ando, K.; Baillie, D.L.; Kohara, Y.; Goshima, Y. Protein phosphatase 2A cooperates with the autophagy-related kinase unc-51 to regulate axon guidance in caenorhabditis elegans. Development 2010, 137, 1657-1667
-
(2010)
Development
, vol.137
, pp. 1657-1667
-
-
Ogura, K.1
Okada, T.2
Mitani, S.3
Gengyo-Ando, K.4
Baillie, D.L.5
Kohara, Y.6
Goshima, Y.7
-
87
-
-
67650237693
-
Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy
-
Yorimitsu, T.; He, C.; Wang, K.; Klionsky, D.J. Tap42-associated protein phosphatase type 2A negatively regulates induction of autophagy. Autophagy 2009, 5, 616-624
-
(2009)
Autophagy
, vol.5
, pp. 616-624
-
-
Yorimitsu, T.1
He, C.2
Wang, K.3
Klionsky, D.J.4
-
88
-
-
84929414337
-
PP2A: The wolf in sheep’s clothing?
-
Kiely, M.; Kiely, P.A. PP2A: The wolf in sheep’s clothing? Cancers 2015, 7, 648-669
-
(2015)
Cancers
, vol.7
, pp. 648-669
-
-
Kiely, M.1
Kiely, P.A.2
-
89
-
-
84877727703
-
Structural basis of protein phosphatase 2A stable latency
-
Jiang, L.; Stanevich, V.; Satyshur, K.A.; Kong, M.; Watkins, G.R.; Wadzinski, B.E.; Sengupta, R.; Xing, Y. Structural basis of protein phosphatase 2A stable latency. Nat. Commun. 2013, 4, 1699
-
(2013)
Nat. Commun
, vol.4
-
-
Jiang, L.1
Stanevich, V.2
Satyshur, K.A.3
Kong, M.4
Watkins, G.R.5
Wadzinski, B.E.6
Sengupta, R.7
Xing, Y.8
-
90
-
-
77954237882
-
Network organization of the human autophagy system
-
Behrends, C.; Sowa, M.E.; Gygi, S.P.; Harper, J.W. Network organization of the human autophagy system. Nature 2010, 466, 68-76
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
91
-
-
78149476877
-
The association of ampk with ULK1 regulates autophagy
-
Lee, J.W.; Park, S.; Takahashi, Y.; Wang, H.G. The association of ampk with ULK1 regulates autophagy. PLoS ONE 2010, 5, e15394
-
(2010)
Plos ONE
, vol.5
-
-
Lee, J.W.1
Park, S.2
Takahashi, Y.3
Wang, H.G.4
-
92
-
-
81155123729
-
The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
-
Bach, M.; Larance, M.; James, D.E.; Ramm, G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem. J. 2011, 440, 283-291
-
(2011)
Biochem. J
, vol.440
, pp. 283-291
-
-
Bach, M.1
Larance, M.2
James, D.E.3
Ramm, G.4
-
93
-
-
84866061320
-
AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
-
Mack, H.I.; Zheng, B.; Asara, J.M.; Thomas, S.M. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 2012, 8, 1197-1214
-
(2012)
Autophagy
, vol.8
, pp. 1197-1214
-
-
Mack, H.I.1
Zheng, B.2
Asara, J.M.3
Thomas, S.M.4
-
94
-
-
84886789626
-
Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of sting to prevent sustained innate immune signaling
-
Konno, H.; Konno, K.; Barber, G.N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of sting to prevent sustained innate immune signaling. Cell 2013, 155, 688-698
-
(2013)
Cell
, vol.155
, pp. 688-698
-
-
Konno, H.1
Konno, K.2
Barber, G.N.3
-
95
-
-
79960323911
-
AMPK Ñ ULK1 Ñ Autophagy
-
Roach, P.J. AMPK Ñ ULK1 Ñ Autophagy. Mol. Cell. Biol. 2011, 31, 3082-3084
-
(2011)
Mol. Cell. Biol
, vol.31
, pp. 3082-3084
-
-
Roach, P.J.1
-
96
-
-
84934443098
-
Phosphorylation of ULK1 by ampk regulates translocation of ULK1 to mitochondria and mitophagy
-
Tian, W.; Li, W.; Chen, Y.; Yan, Z.; Huang, X.; Zhuang, H.; Zhong, W.; Chen, Y.; Wu, W.; Lin, C.; et al. Phosphorylation of ULK1 by ampk regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 2015, 589, 1847-1854
-
(2015)
FEBS Lett
, vol.589
, pp. 1847-1854
-
-
Tian, W.1
Li, W.2
Chen, Y.3
Yan, Z.4
Huang, X.5
Zhuang, H.6
Zhong, W.7
Chen, Y.8
Wu, W.9
Lin, C.10
-
97
-
-
84899789746
-
ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy
-
Wu, W.; Tian, W.; Hu, Z.; Chen, G.; Huang, L.; Li, W.; Zhang, X.; Xue, P.; Zhou, C.; Liu, L.; et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 2014, 15, 566-575
-
(2014)
EMBO Rep
, vol.15
, pp. 566-575
-
-
Wu, W.1
Tian, W.2
Hu, Z.3
Chen, G.4
Huang, L.5
Li, W.6
Zhang, X.7
Xue, P.8
Zhou, C.9
Liu, L.10
-
98
-
-
80051729441
-
Hsp90-Cdc37 chaperone complex regulates ULK1- and ATG13-mediatedmitophagy
-
Joo, J.H.; Dorsey, F.C.; Joshi, A.; Hennessy-Walters, K.M.; Rose, K.L.; McCastlain, K.; Zhang, J.; Iyengar, R.; Jung, C.H.; Suen, D.F.; et al. Hsp90-Cdc37 chaperone complex regulates ULK1- and ATG13-mediated mitophagy. Mol. Cell 2011, 43, 572-585
-
(2011)
Mol. Cell
, vol.43
, pp. 572-585
-
-
Joo, J.H.1
Dorsey, F.C.2
Joshi, A.3
Hennessy-Walters, K.M.4
Rose, K.L.5
McCastlain, K.6
Zhang, J.7
Iyengar, R.8
Jung, C.H.9
Suen, D.F.10
-
99
-
-
84957900248
-
ATG13 is essential for autophagy and cardiac development in mice
-
Kaizuka, T.; Mizushima, N. ATG13 is essential for autophagy and cardiac development in mice. Mol. Cell Biol. 2015, 36, 585-595
-
(2015)
Mol. Cell Biol
, vol.36
, pp. 585-595
-
-
Kaizuka, T.1
Mizushima, N.2
-
100
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates MTOR signaling and is essential for autophagy
-
Ganley, I.G.; Lam du, H.; Wang, J.; Ding, X.; Chen, S.; Jiang, X. ULK1.ATG13.FIP200 complex mediates MTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284, 12297-12305
-
(2009)
J. Biol. Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam Du, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
101
-
-
43149090064
-
FIP200, aULK-interacting protein, is required for autophagosome formation in mammalian cells
-
Hara, T.; Takamura, A.; Kishi, C.; Iemura, S.; Natsume, T.; Guan, J.L.; Mizushima, N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 2008, 181, 497-510
-
(2008)
J. Cell Biol
, vol.181
, pp. 497-510
-
-
Hara, T.1
Takamura, A.2
Kishi, C.3
Iemura, S.4
Natsume, T.5
Guan, J.L.6
Mizushima, N.7
-
102
-
-
65249119430
-
Nutrient-dependent MTORC1 association with the ULK1-ATG13-FIP200 complex required for autophagy
-
Hosokawa, N.; Hara, T.; Kaizuka, T.; Kishi, C.; Takamura, A.; Miura, Y.; Iemura, S.; Natsume, T.; Takehana, K.; Yamada, N.; et al. Nutrient-dependent MTORC1 association with the ULK1-ATG13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20, 1981-1991
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
-
103
-
-
58149473473
-
Proteins inhibit autophagy via their conserved C-terminal domains using an ATG13-independent mechanism
-
Chan, E.Y.; Longatti, A.; McKnight, N.C.; Tooze, S.A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an ATG13-independent mechanism. Mol. Cell Biol. 2009, 29, 157-171
-
(2009)
Mol. Cell Biol
, vol.29
, pp. 157-171
-
-
Chan, E.Y.1
Longatti, A.2
McKnight, N.C.3
Tooze, S.A.4
Kinase-Inactivated, U.5
-
104
-
-
34548482499
-
Sirna screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
-
Chan, E.Y.; Kir, S.; Tooze, S.A. Sirna screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 2007, 282, 25464-25474
-
(2007)
J. Biol. Chem
, vol.282
, pp. 25464-25474
-
-
Chan, E.Y.1
Kir, S.2
Tooze, S.A.3
-
105
-
-
84888121146
-
Dynamic association of the ULK1 complex with omegasomes during autophagy induction
-
Karanasios, E.; Stapleton, E.; Manifava, M.; Kaizuka, T.; Mizushima, N.; Walker, S.A.; Ktistakis, N.T. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J. Cell Sci. 2013, 126, 5224-5238
-
(2013)
J. Cell Sci.
, vol.126
, pp. 5224-5238
-
-
Karanasios, E.1
Stapleton, E.2
Manifava, M.3
Kaizuka, T.4
Mizushima, N.5
Walker, S.A.6
Ktistakis, N.T.7
-
106
-
-
84936846861
-
Structure of the ATG101-ATG13 complex reveals essential roles of ATG101 in autophagy initiation
-
Suzuki, H.; Kaizuka, T.; Mizushima, N.; Noda, N.N. Structure of the ATG101-ATG13 complex reveals essential roles of ATG101 in autophagy initiation. Nat. Struct. Mol. Biol. 2015, 22, 572-580
-
(2015)
Nat. Struct. Mol. Biol
, vol.22
, pp. 572-580
-
-
Suzuki, H.1
Kaizuka, T.2
Mizushima, N.3
Noda, N.N.4
-
107
-
-
84873569898
-
Interaction between FIP200 and ATG16l1 distinguishes ULK1 complex-dependent and -independent autophagy
-
Gammoh, N.; Florey, O.; Overholtzer, M.; Jiang, X. Interaction between FIP200 and ATG16l1 distinguishes ULK1 complex-dependent and -independent autophagy. Nat. Struct. Mol. Biol. 2013, 20, 144-149
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 144-149
-
-
Gammoh, N.1
Florey, O.2
Overholtzer, M.3
Jiang, X.4
-
108
-
-
84874646724
-
FIP200 regulates targeting of ATG16l1 to the isolation membrane
-
Nishimura, T.; Kaizuka, T.; Cadwell, K.; Sahani, M.H.; Saitoh, T.; Akira, S.; Virgin, H.W.; Mizushima, N. FIP200 regulates targeting of ATG16l1 to the isolation membrane. EMBO Rep. 2013, 14, 284-291
-
(2013)
EMBO Rep
, vol.14
, pp. 284-291
-
-
Nishimura, T.1
Kaizuka, T.2
Cadwell, K.3
Sahani, M.H.4
Saitoh, T.5
Akira, S.6
Virgin, H.W.7
Mizushima, N.8
-
109
-
-
75749090429
-
Tor directly controls the ATG1 kinase complex to regulate autophagy
-
Kamada, Y.; Yoshino, K.; Kondo, C.; Kawamata, T.; Oshiro, N.; Yonezawa, K.; Ohsumi, Y. Tor directly controls the ATG1 kinase complex to regulate autophagy. Mol. Cell. Biol. 2010, 30, 1049-1058
-
(2010)
Mol. Cell. Biol
, vol.30
, pp. 1049-1058
-
-
Kamada, Y.1
Yoshino, K.2
Kondo, C.3
Kawamata, T.4
Oshiro, N.5
Yonezawa, K.6
Ohsumi, Y.7
-
110
-
-
65249176304
-
ULK-ATG13-FIP200complexes mediate MTOR signaling to the autophagy machinery
-
Jung, C.H.; Jun, C.B.; Ro, S.H.; Kim, Y.M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.H. ULK-ATG13-FIP200 complexes mediate MTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20, 1992-2003
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
111
-
-
84928806944
-
Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (MTOR)-dependentautophagy
-
Petherick, K.J.; Conway, O.J.; Mpamhanga, C.; Osborne, S.A.; Kamal, A.; Saxty, B.; Ganley, I.G. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (MTOR)-dependent autophagy. J. Biol. Chem. 2015, 290, 11376-11383
-
(2015)
J. Biol. Chem
, vol.290
, pp. 11376-11383
-
-
Petherick, K.J.1
Conway, O.J.2
Mpamhanga, C.3
Osborne, S.A.4
Kamal, A.5
Saxty, B.6
Ganley, I.G.7
-
112
-
-
84923789937
-
Huntingtin functions as a scaffold for selective macroautophagy
-
Rui, Y.-N.; Xu, Z.; Patel, B.; Chen, Z.; Chen, D.; Tito, A.; David, G.; Sun, Y.; Stimming, E.F.; Bellen, H.J.; et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 2015, 17, 262-275
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 262-275
-
-
Rui, Y.-N.1
Xu, Z.2
Patel, B.3
Chen, Z.4
Chen, D.5
Tito, A.6
David, G.7
Sun, Y.8
Stimming, E.F.9
Bellen, H.J.10
-
113
-
-
84871581862
-
Architecture of the ATG17 complex as a scaffold for autophagosome biogenesis
-
Ragusa, M.J.; Stanley, R.E.; Hurley, J.H. Architecture of the ATG17 complex as a scaffold for autophagosome biogenesis. Cell 2012, 151, 1501-1512
-
(2012)
Cell
, vol.151
, pp. 1501-1512
-
-
Ragusa, M.J.1
Stanley, R.E.2
Hurley, J.H.3
-
114
-
-
0034683568
-
Tor-mediated induction of autophagy via an apg1 protein kinase complex
-
Kamada, Y.; Funakoshi, T.; Shintani, T.; Nagano, K.; Ohsumi, M.; Ohsumi, Y. Tor-mediated induction of autophagy via an apg1 protein kinase complex. J. Cell Biol. 2000, 150, 1507-1513
-
(2000)
J. Cell Biol
, vol.150
, pp. 1507-1513
-
-
Kamada, Y.1
Funakoshi, T.2
Shintani, T.3
Nagano, K.4
Ohsumi, M.5
Ohsumi, Y.6
-
115
-
-
84901986623
-
Structural basis of starvation-induced assembly of the autophagy initiation complex
-
Fujioka, Y.; Suzuki, S.W.; Yamamoto, H.; Kondo-Kakuta, C.; Kimura, Y.; Hirano, H.; Akada, R.; Inagaki, F.; Ohsumi, Y.; Noda, N.N. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 2014, 21, 513-521
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, pp. 513-521
-
-
Fujioka, Y.1
Suzuki, S.W.2
Yamamoto, H.3
Kondo-Kakuta, C.4
Kimura, Y.5
Hirano, H.6
Akada, R.7
Inagaki, F.8
Ohsumi, Y.9
Noda, N.N.10
-
116
-
-
84930188743
-
Solution structure of the ATG1 complex: Implications for the architecture of the phagophore assembly site
-
Kofinger, J.; Ragusa, M.J.; Lee, I.H.; Hummer, G.; Hurley, J.H. Solution structure of the ATG1 complex: Implications for the architecture of the phagophore assembly site. Structure 2015, 23, 809-818
-
(2015)
Structure
, vol.23
, pp. 809-818
-
-
Kofinger, J.1
Ragusa, M.J.2
Lee, I.H.3
Hummer, G.4
Hurley, J.H.5
-
117
-
-
84943777762
-
Molecular interactions of the saccharomyces cerevisiae ATG1 complex provide insights into assembly and regulatory mechanisms
-
Chew, L.H.; Lu, S.; Liu, X.; Li, F.K.; Yu, A.Y.; Klionsky, D.J.; Dong, M.Q.; Yip, C.K. Molecular interactions of the saccharomyces cerevisiae ATG1 complex provide insights into assembly and regulatory mechanisms. Autophagy 2015, 11, 891-905
-
(2015)
Autophagy
, vol.11
, pp. 891-905
-
-
Chew, L.H.1
Lu, S.2
Liu, X.3
Li, F.K.4
Yu, A.Y.5
Klionsky, D.J.6
Dong, M.Q.7
Yip, C.K.8
-
118
-
-
84943659880
-
Structure of the human ATG13-ATG101 horma heterodimer
-
Qi, S.; Kim, D.J.; Stjepanovic, G.; Hurley, J.H. Structure of the human ATG13-ATG101 horma heterodimer: An interaction hub within the ULK1 complex. Structure 2015, 23, 1848-1857
-
(2015)
An Interaction Hub within the ULK1 Complex. Structure
, vol.23
, pp. 1848-1857
-
-
Qi, S.1
Kim, D.J.2
Stjepanovic, G.3
Hurley, J.H.4
-
119
-
-
84925307913
-
ATG13 horma domain recruits ATG9 vesicles during autophagosome formation
-
Suzuki, S.W.; Yamamoto, H.; Oikawa, Y.; Kondo-Kakuta, C.; Kimura, Y.; Hirano, H.; Ohsumi, Y. ATG13 horma domain recruits ATG9 vesicles during autophagosome formation. Proc. Natl. Acad. Sci. USA 2015, 112, 3350-3355
-
(2015)
Proc. Natl. Acad. Sci. USA
, vol.112
, pp. 3350-3355
-
-
Suzuki, S.W.1
Yamamoto, H.2
Oikawa, Y.3
Kondo-Kakuta, C.4
Kimura, Y.5
Hirano, H.6
Ohsumi, Y.7
-
120
-
-
84921417671
-
Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors
-
Lazarus, M.B.; Novotny, C.J.; Shokat, K.M. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem. Biol. 2015, 10, 257-261
-
(2015)
ACS Chem. Biol
, vol.10
, pp. 257-261
-
-
Lazarus, M.B.1
Novotny, C.J.2
Shokat, K.M.3
-
121
-
-
84941145210
-
The biogrid interaction database: 2015 update
-
Chatr-Aryamontri, A.; Breitkreutz, B.J.; Oughtred, R.; Boucher, L.; Heinicke, S.; Chen, D.; Stark, C.; Breitkreutz, A.; Kolas, N.; O’Donnell, L.; et al. The biogrid interaction database: 2015 update. Nucleic Acids Res. 2015, 43, D470-D478
-
(2015)
Nucleicacids Res
, vol.43
, pp. D470-D478
-
-
Chatr-Aryamontri, A.1
Breitkreutz, B.J.2
Oughtred, R.3
Boucher, L.4
Heinicke, S.5
Chen, D.6
Stark, C.7
Breitkreutz, A.8
Kolas, N.9
O’Donnell, L.10
-
122
-
-
79960014848
-
ULK1 inhibits MTORC1 signaling, promotes multisite raptor phosphorylation and hinders substrate binding
-
Dunlop, E.A.; Hunt, D.K.; Acosta-Jaquez, H.A.; Fingar, D.C.; Tee, A.R. ULK1 inhibits MTORC1 signaling, promotes multisite raptor phosphorylation and hinders substrate binding. Autophagy 2011, 7, 737-747
-
(2011)
Autophagy
, vol.7
, pp. 737-747
-
-
Dunlop, E.A.1
Hunt, D.K.2
Acosta-Jaquez, H.A.3
Fingar, D.C.4
Tee, A.R.5
-
123
-
-
77957728513
-
The dynamic interaction of ambra1 with the dynein motor complex regulatesmammalian autophagy
-
Di Bartolomeo, S.; Corazzari, M.; Nazio, F.; Oliverio, S.; Lisi, G.; Antonioli, M.; Pagliarini, V.; Matteoni, S.; Fuoco, C.; Giunta, L.; et al. The dynamic interaction of ambra1 with the dynein motor complex regulates mammalian autophagy. J. Cell Biol. 2010, 191, 155-168
-
(2010)
J. Cell Biol
, vol.191
, pp. 155-168
-
-
Di Bartolomeo, S.1
Corazzari, M.2
Nazio, F.3
Oliverio, S.4
Lisi, G.5
Antonioli, M.6
Pagliarini, V.7
Matteoni, S.8
Fuoco, C.9
Giunta, L.10
-
124
-
-
84908371000
-
Sestrin2 promotes unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1
-
Ro, S.H.; Semple, I.A.; Park, H.; Park, H.; Park, H.W.; Kim, M.; Kim, J.S.; Lee, J.H. Sestrin2 promotes unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J. 2014, 281, 3816-3827
-
(2014)
FEBS J
, vol.281
, pp. 3816-3827
-
-
Ro, S.H.1
Semple, I.A.2
Park, H.3
Park, H.4
Park, H.W.5
Kim, M.6
Kim, J.S.7
Lee, J.H.8
-
125
-
-
79959963047
-
ULK1-mediated phosphorylation of AMPK constitutes a negativeregulatory feedback loop
-
Loffler, A.S.; Alers, S.; Dieterle, A.M.; Keppeler, H.; Franz-Wachtel, M.; Kundu, M.; Campbell, D.G.; Wesselborg, S.; Alessi, D.R.; Stork, B. ULK1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy 2011, 7, 696-706
-
(2011)
Autophagy
, vol.7
, pp. 696-706
-
-
Loffler, A.S.1
Alers, S.2
Dieterle, A.M.3
Keppeler, H.4
Franz-Wachtel, M.5
Kundu, M.6
Campbell, D.G.7
Wesselborg, S.8
Alessi, D.R.9
Stork, B.10
-
126
-
-
79951805767
-
ATG1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy
-
Tang, H.W.; Wang, Y.B.; Wang, S.L.; Wu, M.H.; Lin, S.Y.; Chen, G.C. ATG1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J. 2011, 30, 636-651
-
(2011)
EMBO J
, vol.30
, pp. 636-651
-
-
Tang, H.W.1
Wang, Y.B.2
Wang, S.L.3
Wu, M.H.4
Lin, S.Y.5
Chen, G.C.6
-
127
-
-
84907887033
-
Flcn, a novel autophagy component, interacts with gabarap and is regulated byULK1 phosphorylation
-
Dunlop, E.A.; Seifan, S.; Claessens, T.; Behrends, C.; Kamps, M.A.; Rozycka, E.; Kemp, A.J.; Nookala, R.K.; Blenis, J.; Coull, B.J.; et al. Flcn, a novel autophagy component, interacts with gabarap and is regulated by ULK1 phosphorylation. Autophagy 2014, 10, 1749-1760
-
(2014)
Autophagy
, vol.10
, pp. 1749-1760
-
-
Dunlop, E.A.1
Seifan, S.2
Claessens, T.3
Behrends, C.4
Kamps, M.A.5
Rozycka, E.6
Kemp, A.J.7
Nookala, R.K.8
Blenis, J.9
Coull, B.J.10
-
128
-
-
84893742616
-
Early steps in autophagy depend on direct phosphorylationof ATG9 by the ATG1 kinase
-
Papinski, D.; Schuschnig, M.; Reiter, W.; Wilhelm, L.; Barnes, C.A.; Maiolica, A.; Hansmann, I.; Pfaffenwimmer, T.; Kijanska, M.; Stoffel, I.; et al. Early steps in autophagy depend on direct phosphorylation of ATG9 by the ATG1 kinase. Mol. Cell 2014, 53, 471-483
-
(2014)
Mol. Cell
, vol.53
, pp. 471-483
-
-
Papinski, D.1
Schuschnig, M.2
Reiter, W.3
Wilhelm, L.4
Barnes, C.A.5
Maiolica, A.6
Hansmann, I.7
Pfaffenwimmer, T.8
Kijanska, M.9
Stoffel, I.10
-
129
-
-
12344309528
-
The conserved kinase unc-51 acts with VAB-8 and unc-14 to regulate axon outgrowth in C
-
Lai, T.; Garriga, G. The conserved kinase unc-51 acts with VAB-8 and unc-14 to regulate axon outgrowth in C. elegans. Development 2004, 131, 5991-6000
-
(2004)
Elegans. Development
, vol.131
, pp. 5991-6000
-
-
Lai, T.1
Garriga, G.2
-
130
-
-
57749095080
-
Unc-51/ATG1 kinase regulates axonal transport by mediatingmotor-cargo assembly
-
Toda, H.; Mochizuki, H.; Flores, R., 3rd; Josowitz, R.; Krasieva, T.B.; Lamorte, V.J.; Suzuki, E.; Gindhart, J.G.; Furukubo-Tokunaga, K.; Tomoda, T. Unc-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev. 2008, 22, 3292-3307
-
(2008)
Genes Dev
, vol.22
, pp. 3292-3307
-
-
Toda, H.1
Mochizuki, H.2
Flores, R.3
Josowitz, R.4
Krasieva, T.B.5
Lamorte, V.J.6
Suzuki, E.7
Gindhart, J.G.8
Furukubo-Tokunaga, K.9
Tomoda, T.10
-
131
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating beclin-1 and activating VPS34 lipid kinase
-
Russell, R.C.; Tian, Y.; Yuan, H.; Park, H.W.; Chang, Y.Y.; Kim, J.; Kim, H.; Neufeld, T.P.; Dillin, A.; Guan, K.L. ULK1 induces autophagy by phosphorylating beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013, 15, 741-750
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
132
-
-
84962675891
-
The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery viabinding and phosphorylating ATG14
-
Park, J.M.; Jung, C.H.; Seo, M.; Otto, N.M.; Grunwald, D.; Kim, K.H.; Moriarity, B.; Kim, Y.M.; Starker, C.; Nho, R.S.; et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 2016, 12, 547-564
-
(2016)
Autophagy
, vol.12
, pp. 547-564
-
-
Park, J.M.1
Jung, C.H.2
Seo, M.3
Otto, N.M.4
Grunwald, D.5
Kim, K.H.6
Moriarity, B.7
Kim, Y.M.8
Starker, C.9
Nho, R.S.10
-
133
-
-
84875834380
-
Ahorma domain in ATG13 mediates PI 3-kinase recruitment
-
Jao, C.C.; Ragusa, M.J.; Stanley, R.E.; Hurley, J.H. Ahorma domain in ATG13 mediates PI 3-kinase recruitment in autophagy. Proc. Natl. Acad. Sci. USA 2013, 110, 5486-5491
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 5486-5491
-
-
Jao, C.C.1
Ragusa, M.J.2
Stanley, R.E.3
Hurley, J.H.4
-
134
-
-
84890848742
-
Regulation of PIK3C3/VPS34 complexes by MTOR in nutrientstress-induced autophagy
-
Yuan, H.X.; Russell, R.C.; Guan, K.L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 2013, 9, 1983-1995
-
(2013)
Autophagy
, vol.9
, pp. 1983-1995
-
-
Yuan, H.X.1
Russell, R.C.2
Guan, K.L.3
-
135
-
-
84872586081
-
Differential regulation of distinct VPS34 complexes by ampk in nutrient stress and autophagy
-
Kim, J.; Kim, Y.C.; Fang, C.; Russell, R.C.; Kim, J.H.; Fan, W.; Liu, R.; Zhong, Q.; Guan, K.L. Differential regulation of distinct VPS34 complexes by ampk in nutrient stress and autophagy. Cell 2013, 152, 290-303
-
(2013)
Cell
, vol.152
, pp. 290-303
-
-
Kim, J.1
Kim, Y.C.2
Fang, C.3
Russell, R.C.4
Kim, J.H.5
Fan, W.6
Liu, R.7
Zhong, Q.8
Guan, K.L.9
-
136
-
-
84883499836
-
Role of membrane association and ATG14-dependent phosphorylation in beclin-1-mediatedautophagy
-
Fogel, A.I.; Dlouhy, B.J.; Wang, C.; Ryu, S.W.; Neutzner, A.; Hasson, S.A.; Sideris, D.P.; Abeliovich, H.; Youle, R.J. Role of membrane association and ATG14-dependent phosphorylation in beclin-1-mediated autophagy. Mol. Cell Biol. 2013, 33, 3675-3688
-
(2013)
Mol. Cell Biol
, vol.33
, pp. 3675-3688
-
-
Fogel, A.I.1
Dlouhy, B.J.2
Wang, C.3
Ryu, S.W.4
Neutzner, A.5
Hasson, S.A.6
Sideris, D.P.7
Abeliovich, H.8
Youle, R.J.9
-
137
-
-
84880777164
-
Identification of ROCK1 kinase as a critical regulator of beclin1-mediated autophagy during metabolic stress
-
Gurkar, A.U.; Chu, K.; Raj, L.; Bouley, R.; Lee, S.H.; Kim, Y.B.; Dunn, S.E.; Mandinova, A.; Lee, S.W. Identification of ROCK1 kinase as a critical regulator of beclin1-mediated autophagy during metabolic stress. Nat. Commun. 2013, 4, 2189
-
(2013)
Nat. Commun
, vol.4
-
-
Gurkar, A.U.1
Chu, K.2
Raj, L.3
Bouley, R.4
Lee, S.H.5
Kim, Y.B.6
Dunn, S.E.7
Mandinova, A.8
Lee, S.W.9
-
138
-
-
84884262668
-
EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression,and tumor chemoresistance
-
Wei, Y.; Zou, Z.; Becker, N.; Anderson, M.; Sumpter, R.; Xiao, G.; Kinch, L.; Koduru, P.; Christudass, C.S.; Veltri, R.W.; et al. EGFR-mediated beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 2013, 154, 1269-1284
-
(2013)
Cell
, vol.154
, pp. 1269-1284
-
-
Wei, Y.1
Zou, Z.2
Becker, N.3
Anderson, M.4
Sumpter, R.5
Xiao, G.6
Kinch, L.7
Koduru, P.8
Christudass, C.S.9
Veltri, R.W.10
-
139
-
-
84869147050
-
Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation
-
Wang, R.C.; Wei, Y.; An, Z.; Zou, Z.; Xiao, G.; Bhagat, G.; White, M.; Reichelt, J.; Levine, B. Akt-mediated regulation of autophagy and tumorigenesis through beclin 1 phosphorylation. Science 2012, 338, 956-959
-
(2012)
Science
, vol.338
, pp. 956-959
-
-
Wang, R.C.1
Wei, Y.2
An, Z.3
Zou, Z.4
Xiao, G.5
Bhagat, G.6
White, M.7
Reichelt, J.8
Levine, B.9
-
140
-
-
61849102389
-
DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation ofbeclin 1 from Bcl-XL and induction of autophagy
-
Zalckvar, E.; Berissi, H.; Mizrachy, L.; Idelchuk, Y.; Koren, I.; Eisenstein, M.; Sabanay, H.; Pinkas-Kramarski, R.; Kimchi, A. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 2009, 10, 285-292
-
(2009)
EMBO Rep
, vol.10
, pp. 285-292
-
-
Zalckvar, E.1
Berissi, H.2
Mizrachy, L.3
Idelchuk, Y.4
Koren, I.5
Eisenstein, M.6
Sabanay, H.7
Pinkas-Kramarski, R.8
Kimchi, A.9
-
141
-
-
85003048223
-
The stress-responsivekinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through beclin 1 phosphorylation
-
Wei, Y.; An, Z.; Zou, Z.; Sumpter, R.; Su, M.; Zang, X.; Sinha, S.; Gaestel, M.; Levine, B. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through beclin 1 phosphorylation. Elife 2015, 4
-
(2015)
Elife
-
-
Wei, Y.1
An, Z.2
Zou, Z.3
Sumpter, R.4
Su, M.5
Zang, X.6
Sinha, S.7
Gaestel, M.8
Levine, B.9
-
142
-
-
34347236186
-
Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory
-
Zhou, X.; Babu, J.R.; da Silva, S.; Shu, Q.; Graef, I.A.; Oliver, T.; Tomoda, T.; Tani, T.; Wooten, M.W.; Wang, F. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc. Natl. Acad. Sci. USA 2007, 104, 5842-5847
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 5842-5847
-
-
Zhou, X.1
Babu, J.R.2
Da Silva, S.3
Shu, Q.4
Graef, I.A.5
Oliver, T.6
Tomoda, T.7
Tani, T.8
Wooten, M.W.9
Wang, F.10
-
143
-
-
80053430528
-
ULK1 inhibits the kinase activity of MTORC1 and cell proliferation
-
Jung, C.H.; Seo, M.; Otto, N.M.; Kim, D.H. ULK1 inhibits the kinase activity of MTORC1 and cell proliferation. Autophagy 2011, 7, 1212-1221
-
(2011)
Autophagy
, vol.7
, pp. 1212-1221
-
-
Jung, C.H.1
Seo, M.2
Otto, N.M.3
Kim, D.H.4
-
144
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante, M.; Sabatini, D.M. MTOR signaling in growth control and disease. Cell 2012, 149, 274-293
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
145
-
-
0028113443
-
Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptideLeu8-Lys4-Lys2-Lys-beta Ala
-
Miotto, G.; Venerando, R.; Marin, O.; Siliprandi, N.; Mortimore, G.E. Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptide Leu8-Lys4-Lys2-Lys-beta Ala. J. Biol. Chem. 1994, 269, 25348-25353
-
(1994)
J. Biol. Chem
, vol.269
, pp. 25348-25353
-
-
Miotto, G.1
Venerando, R.2
Marin, O.3
Siliprandi, N.4
Mortimore, G.E.5
-
146
-
-
85006216312
-
L-type amino acid transport and cancer: Targeting the MTORC1 pathway to inhibit neoplasia
-
Wang, Q.; Holst, J. L-type amino acid transport and cancer: Targeting the MTORC1 pathway to inhibit neoplasia. Am. J. Cancer Res. 2015, 5, 1281-1294
-
(2015)
Am. J. Cancer Res
, vol.5
, pp. 1281-1294
-
-
Wang, Q.1
Holst, J.2
-
147
-
-
34247245816
-
Structure and function of cationic amino acid transporters (CATs)
-
Closs, E.I.; Boissel, J.P.; Habermeier, A.; Rotmann, A. Structure and function of cationic amino acid transporters (CATs). J. Membr. Biol. 2006, 213, 67-77
-
(2006)
J. Membr. Biol
, vol.213
, pp. 67-77
-
-
Closs, E.I.1
Boissel, J.P.2
Habermeier, A.3
Rotmann, A.4
-
148
-
-
0034254798
-
The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine
-
Broer, A.; Wagner, C.A.; Lang, F.; Broer, S. The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem. J. 2000, 349 Pt 3, 787-795
-
(2000)
Biochem. J
, vol.349
, pp. 787-795
-
-
Broer, A.1
Wagner, C.A.2
Lang, F.3
Broer, S.4
-
149
-
-
84986915942
-
Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health
-
Pochini, L.; Scalise, M.; Galluccio, M.; Indiveri, C. Membrane transporters for the special amino acid glutamine: Structure/function relationships and relevance to human health. Front. Chem. 2014, 2, 61
-
(2014)
Front. Chem.
, vol.2
-
-
Pochini, L.1
Scalise, M.2
Galluccio, M.3
Indiveri, C.4
-
150
-
-
59049087460
-
Bidirectional transport of amino acids regulates MTOR and autophagy
-
Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; et al. Bidirectional transport of amino acids regulates MTOR and autophagy. Cell 2009, 136, 521-534
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
-
151
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu, R.; Bar-Peled, L.; Efeyan, A.; Wang, S.; Sancak, Y.; Sabatini, D.M. MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011, 334, 678-683
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
152
-
-
77953091045
-
Structure of the human MTOR complex i and its implications for rapamycin inhibition
-
Yip, C.K.; Murata, K.; Walz, T.; Sabatini, D.M.; Kang, S.A. Structure of the human MTOR complex i and its implications for rapamycin inhibition. Mol. Cell 2010, 38, 768-774
-
(2010)
Mol. Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
Murata, K.2
Walz, T.3
Sabatini, D.M.4
Kang, S.A.5
-
153
-
-
84952950121
-
Architecture of human MTOR complex 1
-
Aylett, C.H.; Sauer, E.; Imseng, S.; Boehringer, D.; Hall, M.N.; Ban, N.; Maier, T. Architecture of human MTOR complex 1. Science 2016, 351, 48-52
-
(2016)
Science
, vol.351
, pp. 48-52
-
-
Aylett, C.H.1
Sauer, E.2
Imseng, S.3
Boehringer, D.4
Hall, M.N.5
Ban, N.6
Maier, T.7
-
154
-
-
33847397874
-
Insulin signalling to MTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar, E.; Lee, S.I.; Bandhakavi, S.; Griffin, T.J.; Kim, D.H. Insulin signalling to MTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007, 9, 316-323
-
(2007)
Nat. Cell Biol
, vol.9
, pp. 316-323
-
-
Vander Haar, E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
155
-
-
77953800576
-
Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
-
Kaizuka, T.; Hara, T.; Oshiro, N.; Kikkawa, U.; Yonezawa, K.; Takehana, K.; Iemura, S.; Natsume, T.; Mizushima, N. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 2010, 285, 20109-20116
-
(2010)
J. Biol. Chem
, vol.285
, pp. 20109-20116
-
-
Kaizuka, T.1
Hara, T.2
Oshiro, N.3
Kikkawa, U.4
Yonezawa, K.5
Takehana, K.6
Iemura, S.7
Natsume, T.8
Mizushima, N.9
-
156
-
-
45849105156
-
The rag GTPases bind raptor and mediate amino acid signaling to MTORC1
-
Sancak, Y.; Peterson, T.R.; Shaul, Y.D.; Lindquist, R.A.; Thoreen, C.C.; Bar-Peled, L.; Sabatini, D.M. The rag GTPases bind raptor and mediate amino acid signaling to MTORC1. Science 2008, 320, 1496-1501
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
157
-
-
48649085816
-
Regulation of torc1 by rag GTPases in nutrient response
-
Kim, E.; Goraksha-Hicks, P.; Li, L.; Neufeld, T.P.; Guan, K.L. Regulation of torc1 by rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10, 935-945
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
158
-
-
77951768486
-
Ragulator-rag complex targets MTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-rag complex targets MTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141, 290-303
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
159
-
-
84866431363
-
Ragulator is a gef for the rag GTPases that signal amino acid levels to MTORC1
-
Bar-Peled, L.; Schweitzer, L.D.; Zoncu, R.; Sabatini, D.M. Ragulator is a gef for the rag GTPases that signal amino acid levels to MTORC1. Cell 2012, 150, 1196-1208
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
160
-
-
84932638310
-
Amino acid-dependent MTORC1 regulation by the lysosomal membrane protein SLC38A9
-
Jung, J.; Genau, H.M.; Behrends, C. Amino acid-dependent MTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 2015, 35, 2479-2494
-
(2015)
Mol. Cell. Biol
, vol.35
, pp. 2479-2494
-
-
Jung, J.1
Genau, H.M.2
Behrends, C.3
-
161
-
-
84929997950
-
LAPTM4B recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes MTORC1 activation
-
Milkereit, R.; Persaud, A.; Vanoaica, L.; Guetg, A.; Verrey, F.; Rotin, D. LAPTM4B recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes MTORC1 activation. Nat. Commun. 2015, 6, 7250
-
(2015)
Nat. Commun
, vol.6
, pp. 7250
-
-
Milkereit, R.1
Persaud, A.2
Vanoaica, L.3
Guetg, A.4
Verrey, F.5
Rotin, D.6
-
162
-
-
43149104361
-
Molecular physiology and pathophysiology of lysosomal membrane transporters
-
Sagne, C.; Gasnier, B. Molecular physiology and pathophysiology of lysosomal membrane transporters. J. Inherit. Metab. Dis. 2008, 31, 258-266
-
(2008)
J. Inherit. Metab. Dis
, vol.31
, pp. 258-266
-
-
Sagne, C.1
Gasnier, B.2
-
163
-
-
84863997137
-
LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis
-
Liu, B.; Du, H.; Rutkowski, R.; Gartner, A.; Wang, X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 2012, 337, 351-354
-
(2012)
Science
, vol.337
, pp. 351-354
-
-
Liu, B.1
Du, H.2
Rutkowski, R.3
Gartner, A.4
Wang, X.5
-
164
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the MTORC1-signaling pathway
-
Han, J.M.; Jeong, S.J.; Park, M.C.; Kim, G.; Kwon, N.H.; Kim, H.K.; Ha, S.H.; Ryu, S.H.; Kim, S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the MTORC1-signaling pathway. Cell 2012, 149, 410-424
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
Ha, S.H.7
Ryu, S.H.8
Kim, S.9
-
165
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to MTORC1
-
Tsun, Z.Y.; Bar-Peled, L.; Chantranupong, L.; Zoncu, R.; Wang, T.; Kim, C.; Spooner, E.; Sabatini, D.M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to MTORC1. Mol. Cell 2013, 52, 495-505
-
(2013)
Mol. Cell
, vol.52
, pp. 495-505
-
-
Tsun, Z.Y.1
Bar-Peled, L.2
Chantranupong, L.3
Zoncu, R.4
Wang, T.5
Kim, C.6
Spooner, E.7
Sabatini, D.M.8
-
166
-
-
84886871016
-
Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of rag GTPases
-
Petit, C.S.; Roczniak-Ferguson, A.; Ferguson, S.M. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of rag GTPases. J. Cell Biol. 2013, 202, 1107-1122
-
(2013)
J. Cell Biol
, vol.202
, pp. 1107-1122
-
-
Petit, C.S.1
Roczniak-Ferguson, A.2
Ferguson, S.M.3
-
167
-
-
84863009605
-
SH3BP4 is a negative regulator of amino acid-rag GTPase-MTORC1 signaling
-
Kim, Y.-M.; Stone, M.; Hwang, T.H.; Kim, Y.-G.; Dunlevy, J.R.; Griffin, T.J.; Kim, D.-H. SH3BP4 is a negative regulator of amino acid-rag GTPase-MTORC1 signaling. Mol. Cell 2012, 46, 833-846
-
(2012)
Mol. Cell
, vol.46
, pp. 833-846
-
-
Kim, Y.-M.1
Stone, M.2
Hwang, T.H.3
Kim, Y.-G.4
Dunlevy, J.R.5
Griffin, T.J.6
Kim, D.-H.7
-
168
-
-
84912068759
-
Rab1A is an MTORC1 activator and a colorectal oncogene
-
Thomas, J.D.; Zhang, Y.J.; Wei, Y.H.; Cho, J.H.; Morris, L.E.; Wang, H.Y.; Zheng, X.F.S. Rab1A is an MTORC1 activator and a colorectal oncogene. Cancer Cell 2014, 26, 754-769
-
(2014)
Cancer Cell
, vol.26
, pp. 754-769
-
-
Thomas, J.D.1
Zhang, Y.J.2
Wei, Y.H.3
Cho, J.H.4
Morris, L.E.5
Wang, H.Y.6
Zheng, X.F.S.7
-
169
-
-
84880816067
-
Review series: Rab GTPases and membrane identity: Causal or inconsequential
-
Barr, F.A. Review series: Rab GTPases and membrane identity: Causal or inconsequential? J. Cell Biol. 2013, 202, 191-199
-
(2013)
J. Cell Biol
, vol.202
, pp. 191-199
-
-
Barr, F.A.1
-
170
-
-
75149142796
-
Differential requirement of CAAX-mediated posttranslational processing for RHEB localization and signaling
-
Hanker, A.B.; Mitin, N.; Wilder, R.S.; Henske, E.P.; Tamanoi, F.; Cox, A.D.; Der, C.J. Differential requirement of CAAX-mediated posttranslational processing for RHEB localization and signaling. Oncogene 2009, 29, 380-391
-
(2009)
Oncogene
, vol.29
, pp. 380-391
-
-
Hanker, A.B.1
Mitin, N.2
Wilder, R.S.3
Henske, E.P.4
Tamanoi, F.5
Cox, A.D.6
Der, C.J.7
-
171
-
-
84894114029
-
Spatial control of the tsc complex integrates insulin and nutrient regulation of MTORC1 at the lysosome
-
Menon, S.; Dibble, C.C.; Talbott, G.; Hoxhaj, G.; Valvezan, A.J.; Takahashi, H.; Cantley, L.C.; Manning, B.D. Spatial control of the tsc complex integrates insulin and nutrient regulation of MTORC1 at the lysosome. Cell 2014, 156, 771-785
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
Cantley, L.C.7
Manning, B.D.8
-
172
-
-
84878983074
-
YPT1 recruits the ATG1 kinase to the preautophagosomal structure
-
Wang, J.; Menon, S.; Yamasaki, A.; Chou, H.T.; Walz, T.; Jiang, Y.; Ferro-Novick, S. YPT1 recruits the ATG1 kinase to the preautophagosomal structure. Proc. Natl. Acad. Sci. USA 2013, 110, 9800-9805
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 9800-9805
-
-
Wang, J.1
Menon, S.2
Yamasaki, A.3
Chou, H.T.4
Walz, T.5
Jiang, Y.6
Ferro-Novick, S.7
-
173
-
-
84878357685
-
A tumor suppressor complex with GAP activity for the ragGTPases that signal amino acid sufficiency to MTORC1
-
Bar-Peled, L.; Chantranupong, L.; Cherniack, A.D.; Chen, W.W.; Ottina, K.A.; Grabiner, B.C.; Spear, E.D.; Carter, S.L.; Meyerson, M.; Sabatini, D.M. A tumor suppressor complex with GAP activity for the rag GTPases that signal amino acid sufficiency to MTORC1. Science 2013, 340, 1100-1106
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
Chen, W.W.4
Ottina, K.A.5
Grabiner, B.C.6
Spear, E.D.7
Carter, S.L.8
Meyerson, M.9
Sabatini, D.M.10
-
174
-
-
84912128530
-
Sestrins inhibit MTORC1 kinase activation through the Gator complex
-
Parmigiani, A.; Nourbakhsh, A.; Ding, B.X.; Wang, W.; Kim, Y.C.; Akopiants, K.; Guan, K.L.; Karin, M.; Budanov, A.V. Sestrins inhibit MTORC1 kinase activation through the Gator complex. Cell Rep. 2014, 9, 1281-1291
-
(2014)
Cell Rep
, vol.9
, pp. 1281-1291
-
-
Parmigiani, A.1
Nourbakhsh, A.2
Ding, B.X.3
Wang, W.4
Kim, Y.C.5
Akopiants, K.6
Guan, K.L.7
Karin, M.8
Budanov, A.V.9
-
175
-
-
84907991157
-
The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensingpathway upstream of MTORC1
-
Chantranupong, L.; Wolfson, R.L.; Orozco, J.M.; Saxton, R.A.; Scaria, S.M.; Bar-Peled, L.; Spooner, E.; Isasa, M.; Gygi, S.P.; Sabatini, D.M. The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of MTORC1. Cell Rep. 2014, 9, 1-8
-
(2014)
Cell Rep
, vol.9
, pp. 1-8
-
-
Chantranupong, L.1
Wolfson, R.L.2
Orozco, J.M.3
Saxton, R.A.4
Scaria, S.M.5
Bar-Peled, L.6
Spooner, E.7
Isasa, M.8
Gygi, S.P.9
Sabatini, D.M.10
-
176
-
-
84961291783
-
Sestrin2 inhibits MTORC1 through modulation of GATOR complexes
-
Kim, J.S.; Ro, S.H.; Kim, M.; Park, H.W.; Semple, I.A.; Park, H.; Cho, U.S.; Wang, W.; Guan, K.L.; Karin, M.; et al. Sestrin2 inhibits MTORC1 through modulation of GATOR complexes. Sci. Rep. 2015, 5, 9502
-
(2015)
Sci. Rep
, vol.5
, pp. 9502
-
-
Kim, J.S.1
Ro, S.H.2
Kim, M.3
Park, H.W.4
Semple, I.A.5
Park, H.6
Cho, U.S.7
Wang, W.8
Guan, K.L.9
Karin, M.10
-
177
-
-
84952898511
-
Structural basis for leucine sensing by the sestrin2-MTORC1 pathway
-
Saxton, R.A.; Knockenhauer, K.E.; Wolfson, R.L.; Chantranupong, L.; Pacold, M.E.; Wang, T.; Schwartz, T.U.; Sabatini, D.M. Structural basis for leucine sensing by the sestrin2-MTORC1 pathway. Science 2016, 351, 53-58
-
(2016)
Science
, vol.351
, pp. 53-58
-
-
Saxton, R.A.1
Knockenhauer, K.E.2
Wolfson, R.L.3
Chantranupong, L.4
Pacold, M.E.5
Wang, T.6
Schwartz, T.U.7
Sabatini, D.M.8
-
178
-
-
84952915479
-
Sestrin2 is a leucine sensor for the MTORC1 pathway
-
Wolfson, R.L.; Chantranupong, L.; Saxton, R.A.; Shen, K.; Scaria, S.M.; Cantor, J.R.; Sabatini, D.M. Sestrin2 is a leucine sensor for the MTORC1 pathway. Science 2016, 351, 43-48
-
(2016)
Science
, vol.351
, pp. 43-48
-
-
Wolfson, R.L.1
Chantranupong, L.2
Saxton, R.A.3
Shen, K.4
Scaria, S.M.5
Cantor, J.R.6
Sabatini, D.M.7
-
179
-
-
84889681863
-
Sestrins orchestrate cellular metabolism to attenuate aging
-
Lee, J.H.; Budanov, A.V.; Karin, M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab. 2013, 18, 792-801
-
(2013)
Cell Metab
, vol.18
, pp. 792-801
-
-
Lee, J.H.1
Budanov, A.V.2
Karin, M.3
-
180
-
-
2142815107
-
Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD
-
Budanov, A.V.; Sablina, A.A.; Feinstein, E.; Koonin, E.V.; Chumakov, P.M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 2004, 304, 596-600
-
(2004)
Science
, vol.304
, pp. 596-600
-
-
Budanov, A.V.1
Sablina, A.A.2
Feinstein, E.3
Koonin, E.V.4
Chumakov, P.M.5
-
181
-
-
60749125535
-
Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid
-
Woo, H.A.; Bae, S.H.; Park, S.; Rhee, S.G. Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid. Redox signal. 2009, 11, 739-745
-
(2009)
Redox Signal
, vol.11
, pp. 739-745
-
-
Woo, H.A.1
Bae, S.H.2
Park, S.3
Rhee, S.G.4
-
182
-
-
48449101433
-
P53 target genes sestrin1 and sestrin2 connect genotoxic stress and MTOR signaling
-
Budanov, A.V.; Karin, M. P53 target genes sestrin1 and sestrin2 connect genotoxic stress and MTOR signaling. Cell 2008, 134, 451-460
-
(2008)
Cell
, vol.134
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
183
-
-
84907525131
-
Sestrins function as guanine nucleotide dissociation inhibitors for rag GTPases to control MTORC1 signaling
-
Peng, M.; Yin, N.; Li, M.O. Sestrins function as guanine nucleotide dissociation inhibitors for rag GTPases to control MTORC1 signaling. Cell 2014, 159, 122-133
-
(2014)
Cell
, vol.159
, pp. 122-133
-
-
Peng, M.1
Yin, N.2
Li, M.O.3
-
184
-
-
84881619807
-
Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cellsin acute kidney injury
-
Ishihara, M.; Urushido, M.; Hamada, K.; Matsumoto, T.; Shimamura, Y.; Ogata, K.; Inoue, K.; Taniguchi, Y.; Horino, T.; Fujieda, M.; et al. Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury. Am. J. Physiol. Ren. Physiol. 2013, 305, F495-F509
-
(2013)
Am. J. Physiol. Ren. Physiol.
, vol.305
, pp. F495-F509
-
-
Ishihara, M.1
Urushido, M.2
Hamada, K.3
Matsumoto, T.4
Shimamura, Y.5
Ogata, K.6
Inoue, K.7
Taniguchi, Y.8
Horino, T.9
Fujieda, M.10
-
185
-
-
66849111716
-
Stimulation of autophagy by the p53 target gene sestrin2
-
Maiuri, M.C.; Malik, S.A.; Morselli, E.; Kepp, O.; Criollo, A.; Mouchel, P.L.; Carnuccio, R.; Kroemer, G. Stimulation of autophagy by the p53 target gene sestrin2. Cell Cycle 2009, 8, 1571-1576
-
(2009)
Cell Cycle
, vol.8
, pp. 1571-1576
-
-
Maiuri, M.C.1
Malik, S.A.2
Morselli, E.3
Kepp, O.4
Criollo, A.5
Mouchel, P.L.6
Carnuccio, R.7
Kroemer, G.8
-
186
-
-
84872137966
-
Sestrins activateNrf2 by promoting p62-dependent autophagic degradation of keap1 and prevent oxidative liver damage
-
Bae, S.H.; Sung, S.H.; Oh, S.Y.; Lim, J.M.; Lee, S.K.; Park, Y.N.; Lee, H.E.; Kang, D.; Rhee, S.G. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of keap1 and prevent oxidative liver damage. Cell Metab. 2013, 17, 73-84
-
(2013)
Cell Metab
, vol.17
, pp. 73-84
-
-
Bae, S.H.1
Sung, S.H.2
Oh, S.Y.3
Lim, J.M.4
Lee, S.K.5
Park, Y.N.6
Lee, H.E.7
Kang, D.8
Rhee, S.G.9
-
187
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of MTORC1
-
Dibble, C.C.; Elis, W.; Menon, S.; Qin, W.; Klekota, J.; Asara, J.M.; Finan, P.M.; Kwiatkowski, D.J.; Murphy, L.O.; Manning, B.D. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of MTORC1. Mol. Cell 2012, 47, 535-546
-
(2012)
Mol. Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
Qin, W.4
Klekota, J.5
Asara, J.M.6
Finan, P.M.7
Kwiatkowski, D.J.8
Murphy, L.O.9
Manning, B.D.10
-
188
-
-
33646111903
-
Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning
-
Cai, S.-L.; Tee, A.R.; Short, J.D.; Bergeron, J.M.; Kim, J.; Shen, J.; Guo, R.; Johnson, C.L.; Kiguchi, K.; Walker, C.L. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J. Cell Biol. 2006, 173, 279-289
-
(2006)
J. Cell Biol
, vol.173
, pp. 279-289
-
-
Cai, S.-L.1
Tee, A.R.2
Short, J.D.3
Bergeron, J.M.4
Kim, J.5
Shen, J.6
Guo, R.7
Johnson, C.L.8
Kiguchi, K.9
Walker, C.L.10
-
189
-
-
0036713778
-
Tsc2 is phosphorylated and inhibited by AKT and suppresses MTOR signalling
-
Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.L. Tsc2 is phosphorylated and inhibited by AKT and suppresses MTOR signalling. Nat. Cell Biol. 2002, 4, 648-657
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
190
-
-
84894212463
-
Regulation of torc1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
Demetriades, C.; Doumpas, N.; Teleman, A.A. Regulation of torc1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156, 786-799
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
191
-
-
79961059959
-
Tumorigenesis in tuberous sclerosis complex is autophagy andp62/sequestosome 1 (SQSTM1)-dependent
-
Parkhitko, A.; Myachina, F.; Morrison, T.A.; Hindi, K.M.; Auricchio, N.; Karbowniczek, M.; Wu, J.J.; Finkel, T.; Kwiatkowski, D.J.; Yu, J.J.; et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc. Natl. Acad. Sci. USA 2011, 108, 12455-12460
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 12455-12460
-
-
Parkhitko, A.1
Myachina, F.2
Morrison, T.A.3
Hindi, K.M.4
Auricchio, N.5
Karbowniczek, M.6
Wu, J.J.7
Finkel, T.8
Kwiatkowski, D.J.9
Yu, J.J.10
-
192
-
-
80053387765
-
Impaired autophagy due to constitutive MTOR activation sensitizes TSC2-null cells to cell death under stress
-
Ng, S.; Wu, Y.T.; Chen, B.; Zhou, J.; Shen, H.M. Impaired autophagy due to constitutive MTOR activation sensitizes TSC2-null cells to cell death under stress. Autophagy 2011, 7, 1173-1186
-
(2011)
Autophagy
, vol.7
, pp. 1173-1186
-
-
Ng, S.1
Wu, Y.T.2
Chen, B.3
Zhou, J.4
Shen, H.M.5
-
193
-
-
84876408458
-
Activation of lysosomal function in the course of autophagy via MTORC1 suppression and autophagosome-lysosomefusion
-
Zhou, J.; Tan, S.H.; Nicolas, V.; Bauvy, C.; Yang, N.D.; Zhang, J.; Xue, Y.; Codogno, P.; Shen, H.M. Activation of lysosomal function in the course of autophagy via MTORC1 suppression and autophagosome-lysosome fusion. Cell Res. 2013, 23, 508-523
-
(2013)
Cell Res
, vol.23
, pp. 508-523
-
-
Zhou, J.1
Tan, S.H.2
Nicolas, V.3
Bauvy, C.4
Yang, N.D.5
Zhang, J.6
Xue, Y.7
Codogno, P.8
Shen, H.M.9
-
194
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome viaMTOR and TFEB
-
Settembre, C.; Zoncu, R.; Medina, D.L.; Vetrini, F.; Erdin, S.; Erdin, S.; Huynh, T.; Ferron, M.; Karsenty, G.; Vellard, M.C.; et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via MTOR and TFEB. EMBO J. 2012, 31, 1095-1108
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Erdin, S.6
Huynh, T.7
Ferron, M.8
Karsenty, G.9
Vellard, M.C.10
-
195
-
-
84862539692
-
The transcription factor tfeb links MTORC1 signaling to transcriptional control of lysosome homeostasis
-
ra42
-
Roczniak-Ferguson, A.; Petit, C.S.; Froehlich, F.; Qian, S.; Ky, J.; Angarola, B.; Walther, T.C.; Ferguson, S.M. The transcription factor tfeb links MTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5, ra42
-
(2012)
Sci. Signal
, vol.5
-
-
Roczniak-Ferguson, A.1
Petit, C.S.2
Froehlich, F.3
Qian, S.4
Ky, J.5
Angarola, B.6
Walther, T.C.7
Ferguson, S.M.8
-
196
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by MTOR
-
Yu, L.; McPhee, C.K.; Zheng, L.; Mardones, G.A.; Rong, Y.; Peng, J.; Mi, N.; Zhao, Y.; Liu, Z.; Wan, F.; et al. Termination of autophagy and reformation of lysosomes regulated by MTOR. Nature 2010, 465, 942-946
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
McPhee, C.K.2
Zheng, L.3
Mardones, G.A.4
Rong, Y.5
Peng, J.6
Mi, N.7
Zhao, Y.8
Liu, Z.9
Wan, F.10
-
197
-
-
84871458229
-
Glucose induces autophagy under starvation conditions by a p38
-
Moruno-Manchon, J.F.; Perez-Jimenez, E.; Knecht, E. Glucose induces autophagy under starvation conditions by a p38 MAPK-dependent pathway. Biochem. J. 2013, 449, 497-506
-
(2013)
Mapk-Dependent Pathway. Biochem. J
, vol.449
, pp. 497-506
-
-
Moruno-Manchon, J.F.1
Perez-Jimenez, E.2
Knecht, E.3
-
198
-
-
84902491123
-
Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization
-
Lang, M.J.; Martinez-Marquez, J.Y.; Prosser, D.C.; Ganser, L.R.; Buelto, D.; Wendland, B.; Duncan, M.C. Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling. J. Biol. Chem. 2014, 289, 16736-16747
-
(2014)
J. Biol. Chem
, vol.289
, pp. 16736-16747
-
-
Lang, M.J.1
Martinez-Marquez, J.Y.2
Prosser, D.C.3
Ganser, L.R.4
Buelto, D.5
Wendland, B.6
Duncan, M.C.7
-
199
-
-
84886883442
-
Glucose-starved cells do not engage in prosurvival autophagy
-
Ramirez-Peinado, S.; Leon-Annicchiarico, C.L.; Galindo-Moreno, J.; Iurlaro, R.; Caro-Maldonado, A.; Prehn, J.H.; Ryan, K.M.; Munoz-Pinedo, C. Glucose-starved cells do not engage in prosurvival autophagy. J. Biol. Chem. 2013, 288, 30387-30398
-
(2013)
J. Biol. Chem
, vol.288
, pp. 30387-30398
-
-
Ramirez-Peinado, S.1
Leon-Annicchiarico, C.L.2
Galindo-Moreno, J.3
Iurlaro, R.4
Caro-Maldonado, A.5
Prehn, J.H.6
Ryan, K.M.7
Munoz-Pinedo, C.8
-
200
-
-
84907519033
-
The lysosomal V-ATPase-ragulator complex is a common activator for ampk and MTORC1, acting as a switchbetween catabolism and anabolism
-
Zhang, C.S.; Jiang, B.; Li, M.; Zhu, M.; Peng, Y.; Zhang, Y.L.; Wu, Y.Q.; Li, T.Y.; Liang, Y.; Lu, Z.; et al. The lysosomal V-ATPase-ragulator complex is a common activator for ampk and MTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014, 20, 526-540
-
(2014)
Cell Metab
, vol.20
, pp. 526-540
-
-
Zhang, C.S.1
Jiang, B.2
Li, M.3
Zhu, M.4
Peng, Y.5
Zhang, Y.L.6
Wu, Y.Q.7
Li, T.Y.8
Liang, Y.9
Lu, Z.10
|