-
1
-
-
8444221583
-
Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells
-
Ang, A.L., T. Taguchi, S. Francis, H. Fölsch, L.J. Murrells, M. Pypaert, G. Warren, and I. Mellman, 2004. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol. 167:531-543. http://dx.doi.org/ 10.1083/jcb.200408165
-
(2004)
J. Cell Biol.
, vol.167
, pp. 531-543
-
-
Ang, A.L.1
Taguchi, T.2
Francis, S.3
Fölsch, H.4
Murrells, L.J.5
Pypaert, M.6
Warren, G.7
Mellman, I.8
-
2
-
-
77955051827
-
Rab GEFs and GAPs
-
Barr, F., and D.G. Lambright, 2010. Rab GEFs and GAPs. Curr. Opin. Cell Biol. 22:461-470. http://dx.doi.org/10.1016/j.ceb.2010.04.007
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 461-470
-
-
Barr, F.1
Lambright, D.G.2
-
3
-
-
69449087583
-
Evolution of Atg1 function and regulation
-
Chan, E.Y.W., and S.A. Tooze, 2009. Evolution of Atg1 function and regulation. Autophagy. 5:758-765.
-
(2009)
Autophagy
, vol.5
, pp. 758-765
-
-
Chan, E.Y.W.1
Tooze, S.A.2
-
4
-
-
34548482499
-
siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
-
Chan, E.Y., S. Kir, and S.A. Tooze, 2007. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J. Biol. Chem. 282:25464-25474. http://dx.doi.org/10.1074/jbc.M703663200
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 25464-25474
-
-
Chan, E.Y.1
Kir, S.2
Tooze, S.A.3
-
5
-
-
58149473473
-
Kinaseinactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism
-
Chan, E.Y., A. Longatti, N.C. McKnight, and S.A. Tooze, 2009. Kinaseinactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol. 29: 157-171. http://dx.doi.org/10.1128/MCB.01082-08
-
(2009)
Mol. Cell. Biol
, vol.29
, pp. 157-171
-
-
Chan, E.Y.1
Longatti, A.2
McKnight, N.C.3
Tooze, S.A.4
-
6
-
-
0033492232
-
Differential distribution of mannose-6-phosphate receptors and furin in immature secretory granules
-
Dittié, A.S., J. Klumperman, and S.A. Tooze, 1999. Differential distribution of mannose-6-phosphate receptors and furin in immature secretory granules. J. Cell Sci. 112:3955-3966.
-
(1999)
J. Cell Sci.
, vol.112
, pp. 3955-3966
-
-
Dittié, A.S.1
Klumperman, J.2
Tooze, S.A.3
-
7
-
-
38149044992
-
Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells
-
Fader, C.M., D. Sánchez, M. Furlán, and M.I. Colombo, 2008. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic. 9:230-250. http://dx.doi.org/10.1111/j.1600-0854.2007.00677.x
-
(2008)
Traffic
, vol.9
, pp. 230-250
-
-
Fader, C.M.1
Sánchez, D.2
Furlán, M.3
Colombo, M.I.4
-
8
-
-
32344451444
-
Assay and properties of rab6 interaction with dynein-dynactin complexes
-
Fuchs, E., B. Short, and F.A. Barr, 2005. Assay and properties of rab6 interaction with dynein-dynactin complexes. Methods Enzymol. 403:607-618. http://dx.doi.org/10.1016/S0076-6879(05)03053-3.
-
(2005)
Methods Enzymol
, vol.403
, pp. 607-618
-
-
Fuchs, E.1
Short, B.2
Barr, F.A.3
-
9
-
-
34250784595
-
Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways
-
Fuchs, E., A.K. Haas, R.A. Spooner, S. Yoshimura, J.M. Lord, and F.A. Barr, 2007. Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. J. Cell Biol. 177:1133-1143. http://dx.doi.org/10.1083/jcb.200612068
-
(2007)
J. Cell Biol.
, vol.177
, pp. 1133-1143
-
-
Fuchs, E.1
Haas, A.K.2
Spooner, R.A.3
Yoshimura, S.4
Lord, J.M.5
Barr, F.A.6
-
10
-
-
77954184503
-
Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae
-
Geng, J., U. Nair, K. Yasumura-Yorimitsu, and D.J. Klionsky, 2010. Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell. 21:2257-2269. http://dx.doi.org/10.1091/mbc .E09-11-0969.
-
(2010)
Mol. Biol. Cell.
, vol.21
, pp. 2257-2269
-
-
Geng, J.1
Nair, U.2
Yasumura-Yorimitsu, K.3
Klionsky, D.J.4
-
11
-
-
3242877218
-
Rab7 is required for the normal progression of the autophagic pathway in mammalian cells
-
Gutierrez, M.G., D.B. Munafó, W. Berón, and M.I. Colombo, 2004. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J. Cell Sci. 117:2687-2697. http://dx.doi.org/10.1242/jcs.01114.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 2687-2697
-
-
Gutierrez, M.G.1
Munafó, D.B.2
Berón, W.3
Colombo, M.I.4
-
12
-
-
26944460079
-
A GTPase-activating protein controls Rab5 function in endocytic trafficking
-
Haas, A.K., E. Fuchs, R. Kopajtich, and F.A. Barr, 2005. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat. Cell Biol. 7:887-893. http://dx.doi.org/10.1038/ncb1290.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 887-893
-
-
Haas, A.K.1
Fuchs, E.2
Kopajtich, R.3
Barr, F.A.4
-
13
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino, M., N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, 2009. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11:1433-1437. http://dx.doi.org/10.1038/ncb1991.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
14
-
-
48249101885
-
Rab8 regulates basolateral secretory, but not recycling, traffic at the recycling endosome
-
Henry, L., and D.R. Sheff, 2008. Rab8 regulates basolateral secretory, but not recycling, traffic at the recycling endosome. Mol. Biol. Cell. 19:2059-2068. http://dx.doi.org/10.1091/mbc.E07-09-0902.
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 2059-2068
-
-
Henry, L.1
Sheff, D.R.2
-
15
-
-
68949214328
-
A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions
-
Hirota, Y., and Y. Tanaka, 2009. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell. Mol. Life Sci. 66:2913-2932. http://dx.doi.org/10.1007/s00018-009-0080-9.
-
(2009)
Cell. Mol. Life Sci.
, vol.66
, pp. 2913-2932
-
-
Hirota, Y.1
Tanaka, Y.2
-
16
-
-
0021033757
-
Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells
-
Hopkins, C.R, 1983. Intracellular routing of transferrin and transferrin receptors in epidermoid carcinoma A431 cells. Cell. 35:321-330. http://dx.doi .org/10.1016/0092-8674(83)90235-0.
-
(1983)
Cell
, vol.35
, pp. 321-330
-
-
Hopkins, C.R.1
-
17
-
-
70350142565
-
The dynamic Rab11-FIPs
-
Horgan, C.P., and M.W. McCaffrey, 2009. The dynamic Rab11-FIPs. Biochem. Soc. Trans. 37:1032-1036. http://dx.doi.org/10.1042/BST0371032.
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 1032-1036
-
-
Horgan, C.P.1
McCaffrey, M.W.2
-
18
-
-
78650812302
-
Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase
-
Huang, J., C.L. Birmingham, S. Shahnazari, J. Shiu, Y.T. Zheng, A.C. Smith, K.G. Campellone, W.D. Heo, S. Gruenheid, T. Meyer, et al, 2011. Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase. Autophagy. 7:17-26. http://dx.doi.org/10.4161/auto.7.1.13840.
-
(2011)
Autophagy
, vol.7
, pp. 17-26
-
-
Huang, J.1
Birmingham, C.L.2
Shahnazari, S.3
Shiu, J.4
Zheng, Y.T.5
Smith, A.C.6
Campellone, K.G.7
Heo, W.D.8
Gruenheid, S.9
Meyer, T.10
-
19
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura, E., and N. Mizushima, 2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 6:764-776. http://dx.doi.org/10.4161/auto.6.6.12709.
-
(2010)
Autophagy
, vol.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
20
-
-
78651282673
-
p62. targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding
-
Itakura, E., and N. Mizushima, 2011. p62. targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J. Cell Biol. 192:17-27. http://dx.doi.org/10.1083/jcb.201009067.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 17-27
-
-
Itakura, E.1
Mizushima, N.2
-
21
-
-
33747467878
-
Screening for target Rabs of TBC (Tre-2/Bub2/Cdc16) domain-containing proteins based on their Rab-binding activity
-
Itoh, T., M. Satoh, E. Kanno, and M. Fukuda, 2006. Screening for target Rabs of TBC (Tre-2/Bub2/Cdc16) domain-containing proteins based on their Rab-binding activity. Genes Cells. 11:1023-1037. http://dx.doi.org/10 .1111/j.1365-2443.2006.00997.x
-
(2006)
Genes Cells
, vol.11
, pp. 1023-1037
-
-
Itoh, T.1
Satoh, M.2
Kanno, E.3
Fukuda, M.4
-
22
-
-
50249098491
-
Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation
-
Itoh, T., N. Fujita, E. Kanno, A. Yamamoto, T. Yoshimori, and M. Fukuda, 2008. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol. Biol. Cell. 19:2916-2925. http://dx.doi.org/10.1091/mbc.E07-12-1231.
-
(2008)
Mol. Biol. Cell.
, vol.19
, pp. 2916-2925
-
-
Itoh, T.1
Fujita, N.2
Kanno, E.3
Yamamoto, A.4
Yoshimori, T.5
Fukuda, M.6
-
23
-
-
79952422876
-
OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation
-
Itoh, T., E. Kanno, T. Uemura, S. Waguri, and M. Fukuda, 2011. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J. Cell Biol. 192:839-853. http://dx.doi.org/10.1083/ jcb.201008107.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 839-853
-
-
Itoh, T.1
Kanno, E.2
Uemura, T.3
Waguri, S.4
Fukuda, M.5
-
24
-
-
7244255989
-
Role for Rab7 in maturation of late autophagic vacuoles
-
Jäger, S., C. Bucci, I. Tanida, T. Ueno, E. Kominami, P. Saftig, and E.-L. Eskelinen, 2004. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci. 117:4837-4848. http://dx.doi.org/10.1242/jcs.01370.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 4837-4848
-
-
Jäger, S.1
Bucci, C.2
Tanida, I.3
Ueno, T.4
Kominami, E.5
Saftig, P.6
Eskelinen, E.-L.7
-
25
-
-
77950501014
-
mTOR regulation of autophagy
-
Jung, C.H., S.-H. Ro, J. Cao, N.M. Otto, and D.-H. Kim, 2010. mTOR regulation of autophagy. FEBS Lett. 584:1287-1295. http://dx.doi.org/ 10.1016/j.febslet.2010.01.017.
-
(2010)
FEBS Lett
, vol.584
, pp. 1287-1295
-
-
Jung, C.H.1
Ro, S.-H.2
Cao, J.3
Otto, N.M.4
Kim, D.-H.5
-
26
-
-
4043181982
-
Molecular characterization of Rab11 interactions with members of the family of Rab11-interacting proteins
-
Junutula, J.R., E. Schonteich, G.M. Wilson, A.A. Peden, R.H. Scheller, and R. Prekeris, 2004. Molecular characterization of Rab11 interactions with members of the family of Rab11-interacting proteins. J. Biol. Chem. 279:33430-33437. http://dx.doi.org/10.1074/jbc.M404633200.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 33430-33437
-
-
Junutula, J.R.1
Schonteich, E.2
Wilson, G.M.3
Peden, A.A.4
Scheller, R.H.5
Prekeris, R.6
-
27
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura, S., T. Noda, and T. Yoshimori, 2007. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 3:452-460.
-
(2007)
Autophagy
, vol.3
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
28
-
-
0031031041
-
The autophagic and endocytic pathways converge at the nascent autophagic vacuoles
-
Liou, W., H.J. Geuze, M.J.H. Geelen, and J.W. Slot, 1997. The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J. Cell Biol. 136:61-70. http://dx.doi.org/10.1083/jcb.136.1.61.
-
(1997)
J. Cell Biol.
, vol.136
, pp. 61-70
-
-
Liou, W.1
Geuze, H.J.2
Geelen, M.J.H.3
Slot, J.W.4
-
29
-
-
67549139908
-
Vesicular trafficking and autophagosome formation
-
Longatti, A., and S.A. Tooze, 2009. Vesicular trafficking and autophagosome formation. Cell Death Differ. 16:956-965. http://dx.doi.org/10.1038/ cdd.2009.39.
-
(2009)
Cell Death Differ
, vol.16
, pp. 956-965
-
-
Longatti, A.1
Tooze, S.A.2
-
30
-
-
77952329475
-
Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy
-
Lynch-Day, M.A., D. Bhandari, S. Menon, J. Huang, H. Cai, C.R. Bartholomew, J.H. Brumell, S. Ferro-Novick, and D.J. Klionsky, 2010. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc. Natl. Acad. Sci. USA. 107:7811-7816. http://dx.doi.org/10.1073/pnas.1000063107.
-
(2010)
Proc. Natl. Acad. Sci. USA.
, vol.107
, pp. 7811-7816
-
-
Lynch-Day, M.A.1
Bhandari, D.2
Menon, S.3
Huang, J.4
Cai, H.5
Bartholomew, C.R.6
Brumell, J.H.7
Ferro-Novick, S.8
Klionsky, D.J.9
-
31
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima, N., B. Levine, A.M. Cuervo, and D.J. Klionsky, 2008. Autophagy fights disease through cellular self-digestion. Nature. 451:1069-1075. http://dx.doi.org/10.1038/nature06639.
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
32
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima, N., T. Yoshimori, and Y. Ohsumi, 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27:107-132. http:// dx.doi.org/10.1146/annurev-cellbio-092910-154005.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
33
-
-
80053000783
-
RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins
-
Nottingham, R.M., I.G. Ganley, F.A. Barr, D.G. Lambright, and S.R. Pfeffer, 2011. RUTBC1 protein, a Rab9A effector that activates GTP hydrolysis by Rab32 and Rab33B proteins. J. Biol. Chem. 286:33213-33222. http:// dx.doi.org/10.1074/jbc.M111.261115.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 33213-33222
-
-
Nottingham, R.M.1
Ganley, I.G.2
Barr, F.A.3
Lambright, D.G.4
Pfeffer, S.R.5
-
34
-
-
78649682788
-
Membrane delivery to the yeast autophagosome from the Golgi-endosomal system
-
Ohashi, Y., and S. Munro, 2010. Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol. Biol. Cell. 21:3998-4008. http://dx.doi.org/10.1091/mbc.E10-05-0457.
-
(2010)
Mol. Biol. Cell.
, vol.21
, pp. 3998-4008
-
-
Ohashi, Y.1
Munro, S.2
-
35
-
-
84861158462
-
Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, is required for autophagy
-
Orsi, A., M. Razi, H.C. Dooley, D. Robinson, A.E. Weston, L.M. Collinson, and S.A. Tooze, 2012. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, is required for autophagy. Mol. Biol. Cell. http://dx.doi.org/10.1091/mbc.E11-09-0746.
-
(2012)
Mol. Biol. Cell.
-
-
Orsi, A.1
Razi, M.2
Dooley, H.C.3
Robinson, D.4
Weston, A.E.5
Collinson, L.M.6
Tooze, S.A.7
-
36
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv, S., T.H. Clausen, T. Lamark, A. Brech, J.A. Bruun, H. Outzen, A. Øvervatn, G. Bjørkøy, and T. Johansen, 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-24145. http://dx.doi .org/10.1074/jbc.M702824200.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Øvervatn, A.7
Bjørkøy, G.8
Johansen, T.9
-
37
-
-
84861396483
-
Rab GTPase-Activating Proteins in Autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers
-
Popovic, D., M. Akutsu, I. Novak, J.W. Harper, C. Behrends, and I. Dikic, 2012. Rab GTPase-Activating Proteins in Autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell. Biol. 32:1733-1744. http://dx.doi.org/10.1128/MCB.06717-11.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 1733-1744
-
-
Popovic, D.1
Akutsu, M.2
Novak, I.3
Harper, J.W.4
Behrends, C.5
Dikic, I.6
-
38
-
-
70149084564
-
A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway
-
Rivera-Molina, F.E., and P.J. Novick, 2009. A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc. Natl. Acad. Sci. USA. 106:14408-14413. http://dx.doi.org/10.1073/pnas .0906536106.
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 14408-14413
-
-
Rivera-Molina, F.E.1
Novick, P.J.2
-
39
-
-
68049105101
-
Rab GTPases as coordinators of vesicle traffic
-
Stenmark, H, 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10:513-525. http://dx.doi.org/10.1038/nrm2728.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 513-525
-
-
Stenmark, H.1
-
40
-
-
40549084355
-
First crystallographic models of human TBC domains in the context of a family-wide structural analysis
-
Tempel, W., Y. Tong, S. Dimov, A. Bochkarev, and H. Park, 2008. First crystallographic models of human TBC domains in the context of a family-wide structural analysis. Proteins. 71:497-502. http://dx.doi.org/10 .1002/prot.21885.
-
(2008)
Proteins
, vol.71
, pp. 497-502
-
-
Tempel, W.1
Tong, Y.2
Dimov, S.3
Bochkarev, A.4
Park, H.5
-
41
-
-
1642417689
-
Role of Unc511 and its binding partners in CNS axon outgrowth
-
Tomoda, T., J.H. Kim, C. Zhan, and M.E. Hatten, 2004. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 18:541-558. http://dx.doi.org/10.1101/gad.1151204.
-
(2004)
Genes Dev
, vol.18
, pp. 541-558
-
-
Tomoda, T.1
Kim, J.H.2
Zhan, C.3
Hatten, M.E.4
-
42
-
-
0025362656
-
In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome
-
Tooze, J., M. Hollinshead, T. Ludwig, K. Howell, B. Hoflack, and H. Kern, 1990. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J. Cell Biol. 111:329-345. http://dx.doi.org/10.1083/jcb.111.2.329.
-
(1990)
J. Cell Biol.
, vol.111
, pp. 329-345
-
-
Tooze, J.1
Hollinshead, M.2
Ludwig, T.3
Howell, K.4
Hoflack, B.5
Kern, H.6
-
43
-
-
77954197767
-
Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae
-
van der Vaart, A., J. Griffith, and F. Reggiori, 2010. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 21:2270-2284. http://dx.doi .org/10.1091/mbc.E09-04-0345.
-
(2010)
Mol. Biol. Cell.
, vol.21
, pp. 2270-2284
-
-
van der Vaart, A.1
Griffith, J.2
Reggiori, F.3
-
44
-
-
75649085703
-
Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP
-
Webber, J.L., and S.A. Tooze, 2010. Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J. 29:27-40. http:// dx.doi.org/10.1038/emboj.2009.321.
-
(2010)
EMBO J
, vol.29
, pp. 27-40
-
-
Webber, J.L.1
Tooze, S.A.2
-
45
-
-
19944433788
-
The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis
-
Wilson, G.M., A.B. Fielding, G.C. Simon, X. Yu, P.D. Andrews, R.S. Hames, A.M. Frey, A.A. Peden, G.W. Gould, and R. Prekeris, 2005. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell. 16:849-860. http://dx.doi.org/10.1091/mbc.E04-10-0927.
-
(2005)
Mol. Biol. Cell.
, vol.16
, pp. 849-860
-
-
Wilson, G.M.1
Fielding, A.B.2
Simon, G.C.3
Yu, X.4
Andrews, P.D.5
Hames, R.S.6
Frey, A.M.7
Peden, A.A.8
Gould, G.W.9
Prekeris, R.10
-
46
-
-
77957189194
-
Synuclein impairs macroautophagy: implications for Parkinson's disease
-
Winslow, A.R., C.-W. Chen, S. Corrochano, A. Acevedo-Arozena, D.E. Gordon, A.A. Peden, M. Lichtenberg, F.M. Menzies, B. Ravikumar, S. Imarisio, et al, 2010. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190:1023-1037. http://dx.doi .org/10.1083/jcb.201003122.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 1023-1037
-
-
Winslow, A.R.1
Chen, C.-W.2
Corrochano, S.3
Acevedo-Arozena, A.4
Gordon, D.E.5
Peden, A.A.6
Lichtenberg, M.7
Menzies, F.M.8
Ravikumar, B.9
Imarisio, S.10
-
47
-
-
34447098454
-
Identification of three novel proteins (SGSM1 2 3) which modulate small G protein (RAP and RAB)-mediated signaling pathway
-
Yang, H., T. Sasaki, S. Minoshima, and N. Shimizu, 2007. Identification of three novel proteins (SGSM1, 2, 3) which modulate small G protein (RAP and RAB)-mediated signaling pathway. Genomics. 90:249-260. http://dx.doi.org/10.1016/j.ygeno.2007.03.013.
-
(2007)
Genomics
, vol.90
, pp. 249-260
-
-
Yang, H.1
Sasaki, T.2
Minoshima, S.3
Shimizu, N.4
-
48
-
-
71649112895
-
3D tomography reveals connections between the phagophore and endoplasmic reticulum
-
Ylä-Anttila, P., H. Vihinen, E. Jokitalo, and E.L. Eskelinen, 2009. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 5:1180-1185. http://dx.doi.org/10.4161/auto.5.8.10274.
-
(2009)
Autophagy
, vol.5
, pp. 1180-1185
-
-
Ylä-Anttila, P.1
Vihinen, H.2
Jokitalo, E.3
Eskelinen, E.L.4
-
49
-
-
33750366092
-
Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
-
Young, A.R.J., E.Y.W. Chan, X.W. Hu, R. Köchl, S.G. Crawshaw, S. High, D.W. Hailey, J. Lippincott-Schwartz, and S.A. Tooze, 2006. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119:3888-3900. http://dx.doi.org/10.1242/ jcs.03172.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3888-3900
-
-
Young, A.R.J.1
Chan, E.Y.W.2
Hu, X.W.3
Köchl, R.4
Crawshaw, S.G.5
High, S.6
Hailey, D.W.7
Lippincott-Schwartz, J.8
Tooze, S.A.9
-
50
-
-
34347236186
-
Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons
-
Zhou, X., J.R. Babu, S. da Silva, Q. Shu, I.A. Graef, T. Oliver, T. Tomoda, T. Tani, M.W. Wooten, and F. Wang, 2007. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc. Natl. Acad. Sci. USA. 104:5842-5847. http://dx.doi .org/10.1073/pnas.0701402104
-
(2007)
Proc. Natl. Acad. Sci. USA.
, vol.104
, pp. 5842-5847
-
-
Zhou, X.1
Babu, J.R.2
da Silva, S.3
Shu, Q.4
Graef, I.A.5
Oliver, T.6
Tomoda, T.7
Tani, T.8
Wooten, M.W.9
Wang, F.10
|