메뉴 건너뛰기




Volumn 22, Issue 7, 2015, Pages 572-580

Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation

Author keywords

[No Author keywords available]

Indexed keywords

AUTOPHAGY PROTEIN 101; AUTOPHAGY PROTEIN 13; FUNGAL PROTEIN; MEMBRANE PROTEIN; MULTIPROTEIN COMPLEX; PHOSPHOTRANSFERASE; PROTEIN MAD2; UNC 51 LIKE KINASE; UNCLASSIFIED DRUG; ATG101 PROTEIN, S POMBE; ATG13 PROTEIN, S POMBE; SCHIZOSACCHAROMYCES POMBE PROTEIN;

EID: 84936846861     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.3036     Document Type: Article
Times cited : (91)

References (49)
  • 2
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy renovation of cells and tissues
    • Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728-741 (2011).
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 3
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075 (2008).
    • (2008) Nature , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 4
    • 41749114288 scopus 로고    scopus 로고
    • Autophagy basic principles and relevance to disease
    • Kundu, M. & Thompson, C.B. Autophagy: basic principles and relevance to disease. Annu. Rev. Pathol. 3, 427-455 (2008).
    • (2008) Annu. Rev. Pathol , vol.3 , pp. 427-455
    • Kundu, M.1    Thompson, C.B.2
  • 5
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: Lessons from yeast
    • Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458-467 (2009).
    • (2009) Nat. Rev. Mol. Cell Biol , vol.10 , pp. 458-467
    • Nakatogawa, H.1    Suzuki, K.2    Kamada, Y.3    Ohsumi, Y.4
  • 6
    • 84891747382 scopus 로고    scopus 로고
    • The machinery of macroautophagy
    • Feng, Y., He, D., Yao, Z. & Klionsky, D.J. The machinery of macroautophagy. Cell Res. 24, 24-41 (2014).
    • (2014) Cell Res , vol.24 , pp. 24-41
    • Feng, Y.1    He, D.2    Yao, Z.3    Klionsky, D.J.4
  • 7
    • 77951221542 scopus 로고    scopus 로고
    • The role of the atg1/ulk1 complex in autophagy regulation
    • Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22, 132-139 (2010).
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 8
    • 84871581862 scopus 로고    scopus 로고
    • Architecture of the atg17 complex as a scaffold for autophagosome biogenesis
    • Ragusa, M.J., Stanley, R.E. & Hurley, J.H. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151, 1501-1512 (2012).
    • (2012) Cell , vol.151 , pp. 1501-1512
    • Ragusa, M.J.1    Stanley, R.E.2    Hurley, J.H.3
  • 9
    • 70349644856 scopus 로고    scopus 로고
    • Atg101, a novel mammalian autophagy protein interacting with atg13
    • Hosokawa, N. et al. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5, 973-979 (2009).
    • (2009) Autophagy , vol.5 , pp. 973-979
    • Hosokawa, N.1
  • 10
    • 67549110195 scopus 로고    scopus 로고
    • A novel, human atg13 binding protein, atg101, interacts with ulk1 and is essential for macroautophagy
    • Mercer, C.A., Kaliappan, A. & Dennis, P.B. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5, 649-662 (2009).
    • (2009) Autophagy , vol.5 , pp. 649-662
    • Mercer, C.A.1    Kaliappan, A.2    Dennis, P.B.3
  • 11
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian atg proteins
    • Itakura, E. & Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764-776 (2010).
    • (2010) Autophagy , vol.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 12
    • 84857850213 scopus 로고    scopus 로고
    • Structures containing atg9a and the ulk1 complex independently target depolarized mitochondria at initial stages of parkin-mediated mitophagy
    • Itakura, E., Kishi-Itakura, C., Koyama-Honda, I. & Mizushima, N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J. Cell Sci. 125, 1488-1499 (2012).
    • (2012) J. Cell Sci , vol.125 , pp. 1488-1499
    • Itakura, E.1    Kishi-Itakura, C.2    Koyama-Honda, I.3    Mizushima, N.4
  • 13
    • 33846514235 scopus 로고    scopus 로고
    • Hierarchy of atg proteins in pre-Autophagosomal structure organization
    • Suzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. Hierarchy of Atg proteins in pre-Autophagosomal structure organization. Genes Cells 12, 209-218 (2007).
    • (2007) Genes Cells , vol.12 , pp. 209-218
    • Suzuki, K.1    Kubota, Y.2    Sekito, T.3    Ohsumi, Y.4
  • 14
    • 43149125546 scopus 로고    scopus 로고
    • Organization of the pre-Autophagosomal structure responsible for autophagosome formation
    • Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T. & Ohsumi, Y. Organization of the pre-Autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell 19, 2039-2050 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2039-2050
    • Kawamata, T.1    Kamada, Y.2    Kabeya, Y.3    Sekito, T.4    Ohsumi, Y.5
  • 15
    • 39449108917 scopus 로고    scopus 로고
    • The atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in saccharomyces cerevisiae
    • Cheong, H., Nair, U., Geng, J. & Klionsky, D.J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 668-681 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 668-681
    • Cheong, H.1    Nair, U.2    Geng, J.3    Klionsky, D.J.4
  • 16
    • 84925307913 scopus 로고    scopus 로고
    • Atg13 horma domain recruits atg9 vesicles during autophagosome formation
    • Suzuki, S.W. et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl. Acad. Sci. USA 112, 3350-3355 (2015).
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 3350-3355
    • Suzuki, S.W.1
  • 18
    • 84901986623 scopus 로고    scopus 로고
    • Structural basis of starvation-induced assembly of the autophagy initiation complex
    • Fujioka, Y. et al. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21, 513-521 (2014).
    • (2014) Nat. Struct. Mol. Biol , vol.21 , pp. 513-521
    • Fujioka, Y.1
  • 19
    • 84884658187 scopus 로고    scopus 로고
    • Global analysis of fission yeast mating genes reveals new autophagy factors
    • Sun, L.L. et al. Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet. 9, e1003715 (2013).
    • (2013) PLoS Genet , vol.9 , pp. e1003715
    • Sun, L.L.1
  • 20
    • 0032134044 scopus 로고    scopus 로고
    • The horma domain: A common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair
    • Aravind, L. & Koonin, E.V. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem. Sci. 23, 284-286 (1998).
    • (1998) Trends Biochem. Sci , vol.23 , pp. 284-286
    • Aravind, L.1    Koonin, E.V.2
  • 21
    • 84901792768 scopus 로고    scopus 로고
    • The putative horma domain protein atg101 dimerizes and is required for starvation-induced and selective autophagy in drosophila
    • Hegeduş, K., Nagy, P., Gaspari, Z. & Juhasz, G. The putative HORMA domain protein Atg101 dimerizes and is required for starvation-induced and selective autophagy in Drosophila. Biomed Res. Int. 2014, 470482 (2014).
    • (2014) Biomed Res. Int , vol.2014 , pp. 470482
    • Hegeduş, K.1    Nagy, P.2    Gaspari, Z.3    Juhasz, G.4
  • 22
    • 56649103902 scopus 로고    scopus 로고
    • Searching protein structure databases with dalilite v.3
    • Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780-2781 (2008).
    • (2008) Bioinformatics , vol.24 , pp. 2780-2781
    • Holm, L.1    Kaariainen, S.2    Rosenstrom, P.3    Schenkel, A.4
  • 23
    • 36049044125 scopus 로고    scopus 로고
    • The mad2 conformational dimer: Structure and implications for the spindle assembly checkpoint
    • Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131, 730-743 (2007).
    • (2007) Cell , vol.131 , pp. 730-743
    • Mapelli, M.1    Massimiliano, L.2    Santaguida, S.3    Musacchio, A.4
  • 24
    • 55249120526 scopus 로고    scopus 로고
    • Protein metamorphosis: The two-state behavior of mad2
    • Luo, X. & Yu, H. Protein metamorphosis: the two-state behavior of Mad2. Structure 16, 1616-1625 (2008).
    • (2008) Structure , vol.16 , pp. 1616-1625
    • Luo, X.1    Yu, H.2
  • 25
    • 0343986407 scopus 로고    scopus 로고
    • Structure of the mad2 spindle assembly checkpoint protein and its interaction with cdc20
    • Luo, X. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat. Struct. Biol. 7, 224-229 (2000).
    • (2000) Nat. Struct. Biol , vol.7 , pp. 224-229
    • Luo, X.1
  • 26
    • 0036161468 scopus 로고    scopus 로고
    • The mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either mad1 or cdc20
    • Luo, X., Tang, Z., Rizo, J. & Yu, H. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell 9, 59-71 (2002).
    • (2002) Mol. Cell , vol.9 , pp. 59-71
    • Luo, X.1    Tang, Z.2    Rizo, J.3    Yu, H.4
  • 27
    • 0037093326 scopus 로고    scopus 로고
    • Crystal structure of the tetrameric mad1-mad2 core complex: Implications of a şafety belt? Binding mechanism for the spindle checkpoint
    • Sironi, L. et al. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a şafety belt? binding mechanism for the spindle checkpoint. EMBO J. 21, 2496-2506 (2002).
    • (2002) EMBO J , vol.21 , pp. 2496-2506
    • Sironi, L.1
  • 28
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313-326 (2010).
    • (2010) Cell , vol.140 , pp. 313-326
    • Mizushima, N.1    Yoshimori, T.2    Levine, B.3
  • 29
    • 84924407537 scopus 로고    scopus 로고
    • Applications of flow cytometry for measurement of autophagy
    • Demishtein, A., Porat, Z., Elazar, Z. & Shvets, E. Applications of flow cytometry for measurement of autophagy. Methods 75, 87-95 (2015).
    • (2015) Methods , vol.75 , pp. 87-95
    • Demishtein, A.1    Porat, Z.2    Elazar, Z.3    Shvets, E.4
  • 30
    • 43149090064 scopus 로고    scopus 로고
    • Fip200, a ulk-interacting protein, is required for autophagosome formation in mammalian cells
    • Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497-510 (2008).
    • (2008) J. Cell Biol , vol.181 , pp. 497-510
    • Hara, T.1
  • 31
    • 78651282673 scopus 로고    scopus 로고
    • P62 targeting to the autophagosome formation site requires self-oligomerization but not lc3 binding
    • Itakura, E. & Mizushima, N. p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J. Cell Biol. 192, 17-27 (2011).
    • (2011) J. Cell Biol , vol.192 , pp. 17-27
    • Itakura, E.1    Mizushima, N.2
  • 32
    • 0034329418 scopus 로고    scopus 로고
    • Lc3, a mammalian homologue of yeast apg8p, is localized in autophagosome membranes after processing
    • Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720-5728 (2000).
    • (2000) EMBO J , vol.19 , pp. 5720-5728
    • Kabeya, Y.1
  • 33
    • 84921366480 scopus 로고    scopus 로고
    • Wipi proteins: Essential ptdins3p effectors at the nascent autophagosome
    • Proikas-Cezanne, T., Takacs, Z., Donnes, P. & Kohlbacher, O. WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J. Cell Sci. 128, 207-217 (2015).
    • (2015) J. Cell Sci , vol.128 , pp. 207-217
    • Proikas-Cezanne, T.1    Takacs, Z.2    Donnes, P.3    Kohlbacher, O.4
  • 34
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe, E.L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685-701 (2008).
    • (2008) J. Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1
  • 35
    • 53049102656 scopus 로고    scopus 로고
    • The atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function
    • Obara, K., Sekito, T., Niimi, K. & Ohsumi, Y. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283, 23972-23980 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 23972-23980
    • Obara, K.1    Sekito, T.2    Niimi, K.3    Ohsumi, Y.4
  • 37
    • 0014432781 scopus 로고
    • Solvent content of protein crystals
    • Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491-497 (1968).
    • (1968) J. Mol. Biol , vol.33 , pp. 491-497
    • Matthews, B.W.1
  • 38
    • 0031059866 scopus 로고    scopus 로고
    • Processing of x-ray diffraction data collected in oscillation mode
    • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997).
    • (1997) Methods Enzymol , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 39
    • 76449098262 scopus 로고    scopus 로고
    • Phenix: A comprehensive python-based system for macromolecular structure solution
    • Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 40
  • 42
    • 79953737180 scopus 로고    scopus 로고
    • Overview of the ccp4 suite and current developments
    • Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242 (2011).
    • (2011) Acta Crystallogr. D Biol. Crystallogr , vol.67 , pp. 235-242
    • Winn, M.D.1
  • 43
    • 3543012707 scopus 로고    scopus 로고
    • Crystallography & nmr system: A new software suite for macromolecular structure determination
    • Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905-921 (1998).
    • (1998) Acta Crystallogr. D Biol. Crystallogr , vol.54 , pp. 905-921
    • Brünger, A.T.1
  • 44
    • 0037441653 scopus 로고    scopus 로고
    • Structure validation by calpha geometry: Phi, psi and cbeta deviation
    • Lovell, S.C. et al. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50, 437-450 (2003).
    • (2003) Proteins , vol.50 , pp. 437-450
    • Lovell, S.C.1
  • 45
    • 0142227052 scopus 로고    scopus 로고
    • Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics
    • Kitamura, T. et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp. Hematol. 31, 1007-1014 (2003).
    • (2003) Exp. Hematol , vol.31 , pp. 1007-1014
    • Kitamura, T.1
  • 46
    • 84872345477 scopus 로고    scopus 로고
    • Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mtorc1) is essential for autophagy suppression and muscle remodeling following denervation
    • Quy, P.N., Kuma, A., Pierre, P. & Mizushima, N. Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation. J. Biol. Chem. 288, 1125-1134 (2013).
    • (2013) J. Biol. Chem , vol.288 , pp. 1125-1134
    • Quy, P.N.1    Kuma, A.2    Pierre, P.3    Mizushima, N.4
  • 47
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via cas9
    • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013).
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 48
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mtorc1 association with the ulk1-Atg13-fip200 complex required for autophagy
    • Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981-1991 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1
  • 49
    • 18744400102 scopus 로고    scopus 로고
    • Lymphotoxin-beta receptor mediates nemo-independent nf-kappab activation
    • Saitoh, T., Nakano, H., Yamamoto, N. & Yamaoka, S. Lymphotoxin-beta receptor mediates NEMO-independent NF-kappaB activation. FEBS Lett. 532, 45-51 (2002).
    • (2002) FEBS Lett , vol.532 , pp. 45-51
    • Saitoh, T.1    Nakano, H.2    Yamamoto, N.3    Yamaoka, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.