-
1
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell 132:27-42. http://dx.doi.org/10.1016/j.cell.2007.12.018.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
2
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze SA, Yoshimori T. 2010. The origin of the autophagosomal membrane. Nat Cell Biol 12:831-835. http://dx.doi.org/10.1038/ncb0910-831.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
3
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima N, Komatsu M. 2011. Autophagy: renovation of cells and tissues. Cell 147:728-741. http://dx.doi.org/10.1016/j.cell.2011.10.026.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
4
-
-
51449085299
-
The role of autophagy in mammalian development: cell makeover rather than cell death
-
Cecconi F, Levine B. 2008. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15:344-357. http://dx.doi.org/10.1016/j.devcel.2008.08.012.
-
(2008)
Dev Cell
, vol.15
, pp. 344-357
-
-
Cecconi, F.1
Levine, B.2
-
5
-
-
78751672975
-
Autophagy in immunity and inflammation
-
Levine B, Mizushima N, Virgin HW. 2011. Autophagy in immunity and inflammation. Nature 469:323-335. http://dx.doi.org/10.1038/nature09782.
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
6
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: lessons from yeast
-
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458-467. http://dx.doi.org/10.1038/nrm2708.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
7
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima N, Yoshimori T, Ohsumi Y. 2011. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107-132. http://dx.doi.org/10.1146/annurev-cellbio-092910-154005.
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
8
-
-
77951221542
-
The role of the Atg1/ULK1 complex in autophagy regulation
-
Mizushima N. 2010. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132-139. http://dx.doi.org/10.1016/j.ceb.2009.12.004.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 132-139
-
-
Mizushima, N.1
-
9
-
-
84873675067
-
The ULK1 complex: sensing nutrient signals for autophagy activation
-
Wong PM, Puente C, Ganley IG, Jiang X. 2013. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9:124-137. http://dx.doi.org/10.4161/auto.23323.
-
(2013)
Autophagy
, vol.9
, pp. 124-137
-
-
Wong, P.M.1
Puente, C.2
Ganley, I.G.3
Jiang, X.4
-
10
-
-
77950510302
-
The Cvt pathway as a model for selective autophagy
-
Lynch-Day MA, Klionsky DJ. 2010. The Cvt pathway as a model for selective autophagy. FEBS Lett 584:1359-1366. http://dx.doi.org/10.1016/j.febslet.2010.02.013.
-
(2010)
FEBS Lett
, vol.584
, pp. 1359-1366
-
-
Lynch-Day, M.A.1
Klionsky, D.J.2
-
11
-
-
39449108917
-
The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae
-
Cheong H, Nair U, Geng J, Klionsky DJ. 2008. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell 19:668-681.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 668-681
-
-
Cheong, H.1
Nair, U.2
Geng, J.3
Klionsky, D.J.4
-
12
-
-
43149125546
-
Organization of the pre-autophagosomal structure responsible for autophagosome formation
-
Kawamata T, Kamada Y, Kabeya Y, Sekito T, Ohsumi Y. 2008. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol Biol Cell 19:2039-2050. http://dx.doi.org/10.1091/mbc.E07-10-1048.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 2039-2050
-
-
Kawamata, T.1
Kamada, Y.2
Kabeya, Y.3
Sekito, T.4
Ohsumi, Y.5
-
13
-
-
43149090064
-
FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
-
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, Mizushima N. 2008. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 181:497-510. http://dx.doi.org/10.1083/jcb.200712064.
-
(2008)
J Cell Biol
, vol.181
, pp. 497-510
-
-
Hara, T.1
Takamura, A.2
Kishi, C.3
Iemura, S.4
Natsume, T.5
Guan, J.L.6
Mizushima, N.7
-
14
-
-
58149473473
-
Kinaseinactivated ULK proteins inhibit autophagy via their conserved C-terminal domain using an Atg13-independent mechanism
-
Chan EYW, Longatti A, McKnight NC, Tooze SA. 2009. Kinaseinactivated ULK proteins inhibit autophagy via their conserved C-terminal domain using an Atg13-independent mechanism. Mol Cell Biol 29:157-171. http://dx.doi.org/10.1128/MCB.01082-08.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 157-171
-
-
Chan, E.Y.W.1
Longatti, A.2
McKnight, N.C.3
Tooze, S.A.4
-
15
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981-1991. http://dx.doi.org/10.1091/mbc.E08-12-1248.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
Guan, J.L.11
Oshiro, N.12
Mizushima, N.13
-
16
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M, Kim DH. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20:1992-2003. http://dx.doi.org/10.1091/mbc.E08-12-1249.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.H.8
-
17
-
-
66449083078
-
ULK1-ATG13-FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. 2009. ULK1-ATG13-FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297-12305. http://dx.doi.org/10.1074/jbc.M900573200.
-
(2009)
J Biol Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, D.H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
18
-
-
67549110195
-
A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
-
Mercer CA, Kaliappan A, Dennis PB. 2009. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649-662. http://dx.doi.org/10.4161/auto.5.5.8249.
-
(2009)
Autophagy
, vol.5
, pp. 649-662
-
-
Mercer, C.A.1
Kaliappan, A.2
Dennis, P.B.3
-
19
-
-
70349644856
-
Atg101, a novel mammalian autophagy protein interacting with Atg13
-
Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. 2009. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973-979. http://dx.doi.org/10.4161/auto.5.7.9296.
-
(2009)
Autophagy
, vol.5
, pp. 973-979
-
-
Hosokawa, N.1
Sasaki, T.2
Iemura, S.3
Natsume, T.4
Hara, T.5
Mizushima, N.6
-
20
-
-
33749562122
-
Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC-mTOR signaling pathways
-
Gan B, Peng X, Nagy T, Alcaraz A, Gu H, Guan JL. 2006. Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC-mTOR signaling pathways. J Cell Biol 175:121-133. http://dx.doi.org/10.1083/jcb.200604129.
-
(2006)
J Cell Biol
, vol.175
, pp. 121-133
-
-
Gan, B.1
Peng, X.2
Nagy, T.3
Alcaraz, A.4
Gu, H.5
Guan, J.L.6
-
21
-
-
57549094368
-
The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice
-
Sou YS, Waguri S, Iwata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Kominami E, Tanaka K, Komatsu M. 2008. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19:4762-4775. http://dx.doi.org/10.1091/mbc.E08-03-0309.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 4762-4775
-
-
Sou, Y.S.1
Waguri, S.2
Iwata, J.3
Ueno, T.4
Fujimura, T.5
Hara, T.6
Sawada, N.7
Yamada, A.8
Mizushima, N.9
Uchiyama, Y.10
Kominami, E.11
Tanaka, K.12
Komatsu, M.13
-
22
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. 2004. The role of autophagy during the early neonatal starvation period. Nature 432:1032-1036. http://dx.doi.org/10.1038/nature03029.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
Hatano, M.2
Matsui, M.3
Yamamoto, A.4
Nakaya, H.5
Yoshimori, T.6
Ohsumi, Y.7
Tokuhisa, T.8
Mizushima, N.9
-
23
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. 2005. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425-434. http://dx.doi.org/10.1083/jcb.200412022.
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
Kominami, E.11
Tanaka, K.12
Chiba, T.13
-
24
-
-
73949083594
-
Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
-
Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S. 2009. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A 106:20842-20846. http://dx.doi.org/10.1073/pnas.0911267106.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 20842-20846
-
-
Saitoh, T.1
Fujita, N.2
Hayashi, T.3
Takahara, K.4
Satoh, T.5
Lee, H.6
Matsunaga, K.7
Kageyama, S.8
Omori, H.9
Noda, T.10
Yamamoto, N.11
Kawai, T.12
Ishii, K.13
Takeuchi, O.14
Yoshimori, T.15
Akira, S.16
-
25
-
-
84923359391
-
Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity
-
Malhotra R, Warne JP, Salas E, Xu AW, Debnath J. 2015. Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy 11:145-154. http://dx.doi.org/10.1080/15548627.2014.998917.
-
(2015)
Autophagy
, vol.11
, pp. 145-154
-
-
Malhotra, R.1
Warne, J.P.2
Salas, E.3
Xu, A.W.4
Debnath, J.5
-
26
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1ß production
-
Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1ß production. Nature 456:264-268. http://dx.doi.org/10.1038/nature07383.
-
(2008)
Nature
, vol.456
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
Uematsu, S.4
Yang, B.G.5
Satoh, T.6
Omori, H.7
Noda, T.8
Yamamoto, N.9
Komatsu, M.10
Tanaka, K.11
Kawai, T.12
Tsujimura, T.13
Takeuchi, O.14
Yoshimori, T.15
Akira, S.16
-
27
-
-
84941318259
-
Role of the Atg9a gene in intrauterine growth and survival of fetal mice
-
Kojima T, Yamada T, Akaishi R, Furuta I, Saitoh T, Nakabayashi K, Nakayama KI, Nakayama K, Akira S, Minakami H. 2015. Role of the Atg9a gene in intrauterine growth and survival of fetal mice. Reprod Biol 15:131-138. http://dx.doi.org/10.1016/j.repbio.2015.05.001.
-
(2015)
Reprod Biol
, vol.15
, pp. 131-138
-
-
Kojima, T.1
Yamada, T.2
Akaishi, R.3
Furuta, I.4
Saitoh, T.5
Nakabayashi, K.6
Nakayama, K.I.7
Nakayama, K.8
Akira, S.9
Minakami, H.10
-
28
-
-
84893564445
-
Analysis of a lung defect in autophagy-deficient mouse strains
-
Cheong H, Wu J, Gonzales LK, Guttentag SH, Thompson CB, Lindsten T. 2014. Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy 10:45-56. http://dx.doi.org/10.4161/auto.26505.
-
(2014)
Autophagy
, vol.10
, pp. 45-56
-
-
Cheong, H.1
Wu, J.2
Gonzales, L.K.3
Guttentag, S.H.4
Thompson, C.B.5
Lindsten, T.6
-
29
-
-
39749119904
-
FIP200, a key signaling node to coordinately regulate various cellular processes
-
Gan B, Guan JL. 2008. FIP200, a key signaling node to coordinately regulate various cellular processes. Cell Signal 20:787-794. http://dx.doi.org/10.1016/j.cellsig.2007.10.021.
-
(2008)
Cell Signal
, vol.20
, pp. 787-794
-
-
Gan, B.1
Guan, J.L.2
-
30
-
-
84877627390
-
FIP200 inhibits ß-catenin-mediated transcription by promoting APC-independent beta-catenin ubiquitination
-
Choi JD, Ryu M, Ae Park M, Jeong G, Lee JS. 2013. FIP200 inhibits ß-catenin-mediated transcription by promoting APC-independent beta-catenin ubiquitination. Oncogene 32:2421-2432. http://dx.doi.org/10.1038/onc.2012.262.
-
(2013)
Oncogene
, vol.32
, pp. 2421-2432
-
-
Choi, J.D.1
Ryu, M.2
Ae Park, M.3
Jeong, G.4
Lee, J.S.5
-
31
-
-
80052784014
-
RB1CC1 positively regulates transforming growth factor-ß signaling through the modulation of Arkadia E3 ubiquitin ligase activity
-
Koinuma D, Shinozaki M, Nagano Y, Ikushima H, Horiguchi K, Goto K, Chano T, Saitoh M, Imamura T, Miyazono K, Miyazawa K. 2011. RB1CC1 positively regulates transforming growth factor-ß signaling through the modulation of Arkadia E3 ubiquitin ligase activity. J Biol Chem 286:32502-32512. http://dx.doi.org/10.1074/jbc.M111.227561.
-
(2011)
J Biol Chem
, vol.286
, pp. 32502-32512
-
-
Koinuma, D.1
Shinozaki, M.2
Nagano, Y.3
Ikushima, H.4
Horiguchi, K.5
Goto, K.6
Chano, T.7
Saitoh, M.8
Imamura, T.9
Miyazono, K.10
Miyazawa, K.11
-
32
-
-
0028132203
-
Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase
-
Ogura K, Wicky C, Magnenat L, Tobler H, Mori I, Muller F, Ohshima Y. 1994. Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev 8:2389-2400. http://dx.doi.org/10.1101/gad.8.20.2389.
-
(1994)
Genes Dev
, vol.8
, pp. 2389-2400
-
-
Ogura, K.1
Wicky, C.2
Magnenat, L.3
Tobler, H.4
Mori, I.5
Muller, F.6
Ohshima, Y.7
-
33
-
-
0030739354
-
The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-51
-
Ogura K, Shirakawa M, Barnes TM, Hekimi S, Ohshima Y. 1997. The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-51. Genes Dev 11:1801-1811. http://dx.doi.org/10.1101/gad.11.14.1801.
-
(1997)
Genes Dev
, vol.11
, pp. 1801-1811
-
-
Ogura, K.1
Shirakawa, M.2
Barnes, T.M.3
Hekimi, S.4
Ohshima, Y.5
-
34
-
-
12344309528
-
The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans
-
Lai T, Garriga G. 2004. The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans. Development 131:5991-6000. http://dx.doi.org/10.1242/dev.01457.
-
(2004)
Development
, vol.131
, pp. 5991-6000
-
-
Lai, T.1
Garriga, G.2
-
35
-
-
33749373208
-
The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans
-
Ogura K, Goshima Y. 2006. The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans. Development 133:3441-3450. http://dx.doi.org/10.1242/dev.02503.
-
(2006)
Development
, vol.133
, pp. 3441-3450
-
-
Ogura, K.1
Goshima, Y.2
-
36
-
-
77952220270
-
Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans
-
Ogura K, Okada T, Mitani S, Gengyo-Ando K, Baillie DL, Kohara Y, Goshima Y. 2010. Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in Caenorhabditis elegans. Development 137:1657-1667. http://dx.doi.org/10.1242/dev.050708.
-
(2010)
Development
, vol.137
, pp. 1657-1667
-
-
Ogura, K.1
Okada, T.2
Mitani, S.3
Gengyo-Ando, K.4
Baillie, D.L.5
Kohara, Y.6
Goshima, Y.7
-
37
-
-
67650249774
-
epg-1 functions in autophagyregulated processes and may encode a highly divergent Atg13 homolog in C. elegans
-
Tian E, Wang F, Han J, Zhang H. 2009. epg-1 functions in autophagyregulated processes and may encode a highly divergent Atg13 homolog in C. elegans. Autophagy 5:608-615. http://dx.doi.org/10.4161/auto.5.5.8624.
-
(2009)
Autophagy
, vol.5
, pp. 608-615
-
-
Tian, E.1
Wang, F.2
Han, J.3
Zhang, H.4
-
38
-
-
84867251783
-
The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy
-
Liang Q, Yang P, Tian E, Han J, Zhang H. 2012. The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy. Autophagy 8:1426-1433. http://dx.doi.org/10.4161/auto.21163.
-
(2012)
Autophagy
, vol.8
, pp. 1426-1433
-
-
Liang, Q.1
Yang, P.2
Tian, E.3
Han, J.4
Zhang, H.5
-
39
-
-
57749095080
-
UNC-51/ATG1 kinase regulates axonal transport by mediating motorcargo assembly
-
Toda H, Mochizuki H, Flores R, III, Josowitz R, Krasieva TB, Lamorte VJ, Suzuki E, Gindhart JG, Furukubo-Tokunaga K, Tomoda T. 2008. UNC-51/ATG1 kinase regulates axonal transport by mediating motorcargo assembly. Genes Dev 22:3292-3307. http://dx.doi.org/10.1101/gad.1734608.
-
(2008)
Genes Dev
, vol.22
, pp. 3292-3307
-
-
Toda, H.1
Mochizuki, H.2
Flores, R.3
Josowitz, R.4
Krasieva, T.B.5
Lamorte, V.J.6
Suzuki, E.7
Gindhart, J.G.8
Furukubo-Tokunaga, K.9
Tomoda, T.10
-
40
-
-
79955941230
-
Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain
-
Mochizuki H, Toda H, Ando M, Kurusu M, Tomoda T, Furukubo-Tokunaga K. 2011. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain. PLoS One 6:e19632. http://dx.doi.org/10.1371/journal.pone.0019632.
-
(2011)
PLoS One
, vol.6
, pp. e19632
-
-
Mochizuki, H.1
Toda, H.2
Ando, M.3
Kurusu, M.4
Tomoda, T.5
Furukubo-Tokunaga, K.6
-
41
-
-
67651096073
-
Molecular characterization of Pegarn: a Drosophila homolog of UNC-51 kinase
-
Ahantarig A, Chadwell LV, Terrazas IB, Garcia CT, Nazarian JJ, Lee HK, Lundell MJ, Cassill JA. 2009. Molecular characterization of Pegarn: a Drosophila homolog of UNC-51 kinase. Mol Biol Rep 36:1311-1321. http://dx.doi.org/10.1007/s11033-008-9314-4.
-
(2009)
Mol Biol Rep
, vol.36
, pp. 1311-1321
-
-
Ahantarig, A.1
Chadwell, L.V.2
Terrazas, I.B.3
Garcia, C.T.4
Nazarian, J.J.5
Lee, H.K.6
Lundell, M.J.7
Cassill, J.A.8
-
42
-
-
0033377776
-
A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons
-
Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME. 1999. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron 24:833-846. http://dx.doi.org/10.1016/S0896-6273(00)81031-4.
-
(1999)
Neuron
, vol.24
, pp. 833-846
-
-
Tomoda, T.1
Bhatt, R.S.2
Kuroyanagi, H.3
Shirasawa, T.4
Hatten, M.E.5
-
43
-
-
1642417689
-
Role of Unc51.1 and its binding partners in CNS axon outgrowth
-
Tomoda T, Kim JH, Zhan C, Hatten ME. 2004. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 18:541-558. http://dx.doi.org/10.1101/gad.1151204.
-
(2004)
Genes Dev
, vol.18
, pp. 541-558
-
-
Tomoda, T.1
Kim, J.H.2
Zhan, C.3
Hatten, M.E.4
-
44
-
-
34347236186
-
Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons
-
Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T, Tani T, Wooten MW, Wang F. 2007. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci USA 104:5842-5847. http://dx.doi.org/10.1073/pnas.0701402104.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 5842-5847
-
-
Zhou, X.1
Babu, J.R.2
da Silva, S.3
Shu, Q.4
Graef, I.A.5
Oliver, T.6
Tomoda, T.7
Tani, T.8
Wooten, M.W.9
Wang, F.10
-
45
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347-355. http://dx.doi.org/10.1038/nbt.2842.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
46
-
-
84878349760
-
Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays
-
Ota S, Hisano Y, Muraki M, Hoshijima K, Dahlem TJ, Grunwald DJ, Okada Y, Kawahara A. 2013. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18:450-458. http://dx.doi.org/10.1111/gtc.12050.
-
(2013)
Genes Cells
, vol.18
, pp. 450-458
-
-
Ota, S.1
Hisano, Y.2
Muraki, M.3
Hoshijima, K.4
Dahlem, T.J.5
Grunwald, D.J.6
Okada, Y.7
Kawahara, A.8
-
47
-
-
79960585318
-
Ammonia-induced autophagy is independent of ULK1/ULK2 kinases
-
Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. 2011. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci U S A 108:11121-11126. http://dx.doi.org/10.1073/pnas.1107969108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 11121-11126
-
-
Cheong, H.1
Lindsten, T.2
Wu, J.3
Lu, C.4
Thompson, C.B.5
-
48
-
-
84877323647
-
Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2
-
McAlpine F, Williamson LE, Tooze SA, Chan EY. 2013. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy 9:361-373. http://dx.doi.org/10.4161/auto.23066.
-
(2013)
Autophagy
, vol.9
, pp. 361-373
-
-
McAlpine, F.1
Williamson, L.E.2
Tooze, S.A.3
Chan, E.Y.4
-
49
-
-
84874646724
-
FIP200 regulates targeting of Atg16L1 to the isolation membrane
-
Nishimura T, Kaizuka T, Cadwell K, Sahani MH, Saitoh T, Akira S, Virgin HW, Mizushima N. 2013. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep 14:284-291. http://dx.doi.org/10.1038/embor.2013.6.
-
(2013)
EMBO Rep
, vol.14
, pp. 284-291
-
-
Nishimura, T.1
Kaizuka, T.2
Cadwell, K.3
Sahani, M.H.4
Saitoh, T.5
Akira, S.6
Virgin, H.W.7
Mizushima, N.8
-
50
-
-
84872345477
-
Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation
-
Quy PN, Kuma A, Pierre P, Mizushima N. 2013. Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation. J Biol Chem 288:1125-1134. http://dx.doi.org/10.1074/jbc.M112.399949.
-
(2013)
J Biol Chem
, vol.288
, pp. 1125-1134
-
-
Quy, P.N.1
Kuma, A.2
Pierre, P.3
Mizushima, N.4
-
51
-
-
0038325675
-
Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate
-
Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. 2003. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679-1688. http://dx.doi.org/10.1242/jcs.00381.
-
(2003)
J Cell Sci
, vol.116
, pp. 1679-1688
-
-
Mizushima, N.1
Kuma, A.2
Kobayashi, Y.3
Yamamoto, A.4
Matsubae, M.5
Takao, T.6
Natsume, T.7
Ohsumi, Y.8
Yoshimori, T.9
-
52
-
-
84857850213
-
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
-
Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N. 2012. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci 125:1488-1499. http://dx.doi.org/10.1242/jcs.094110.
-
(2012)
J Cell Sci
, vol.125
, pp. 1488-1499
-
-
Itakura, E.1
Kishi-Itakura, C.2
Koyama-Honda, I.3
Mizushima, N.4
-
53
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
Itakura E, Kishi C, Inoue K, Mizushima N. 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360-5372. http://dx.doi.org/10.1091/mbc.E08-01-0080.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
54
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E, Mizushima N. 2010. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6:764-776. http://dx.doi.org/10.4161/auto.6.6.12709.
-
(2010)
Autophagy
, vol.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
55
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
-
Shang L, Chen S, Du F, Li S, Zhao L, Wang X. 2011. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A 108:4788-4793. http://dx.doi.org/10.1073/pnas.1100844108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4788-4793
-
-
Shang, L.1
Chen, S.2
Du, F.3
Li, S.4
Zhao, L.5
Wang, X.6
-
56
-
-
84947590219
-
Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells
-
Hieke N, Loffler AS, Kaizuka T, Berleth N, Bohler P, Driessen S, Stuhldreier F, Friesen O, Assani K, Schmitz K, Peter C, Diedrich B, Dengjel J, Holland P, Simonsen A, Wesselborg S, Mizushima N, Stork B. 2015. Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells. Autophagy 11:1471-1483. http://dx.doi.org/10.1080/15548627.2015.1068488.
-
(2015)
Autophagy
, vol.11
, pp. 1471-1483
-
-
Hieke, N.1
Loffler, A.S.2
Kaizuka, T.3
Berleth, N.4
Bohler, P.5
Driessen, S.6
Stuhldreier, F.7
Friesen, O.8
Assani, K.9
Schmitz, K.10
Peter, C.11
Diedrich, B.12
Dengjel, J.13
Holland, P.14
Simonsen, A.15
Wesselborg, S.16
Mizushima, N.17
Stork, B.18
-
57
-
-
75749122303
-
Methods in mammalian autophagy research
-
Mizushima N, Yoshimori T, Levine B. 2010. Methods in mammalian autophagy research. Cell 140:313-326. http://dx.doi.org/10.1016/j.cell.2010.01.028.
-
(2010)
Cell
, vol.140
, pp. 313-326
-
-
Mizushima, N.1
Yoshimori, T.2
Levine, B.3
-
58
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating beclin-1 and activating VPS34 lipid kinase
-
Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL. 2013. ULK1 induces autophagy by phosphorylating beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741-750. http://dx.doi.org/10.1038/ncb2757.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
59
-
-
78651282673
-
p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding
-
Itakura E, Mizushima N. 2011. p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192:17-27. http://dx.doi.org/10.1083/jcb.201009067.
-
(2011)
J Cell Biol
, vol.192
, pp. 17-27
-
-
Itakura, E.1
Mizushima, N.2
-
60
-
-
84855367097
-
Early embryonic lethality in genetically engineered mice: diagnosis and phenotypic analysis
-
Papaioannou VE, Behringer RR. 2012. Early embryonic lethality in genetically engineered mice: diagnosis and phenotypic analysis. Vet Pathol 49:64-70. http://dx.doi.org/10.1177/0300985810395725.
-
(2012)
Vet Pathol
, vol.49
, pp. 64-70
-
-
Papaioannou, V.E.1
Behringer, R.R.2
-
61
-
-
20444430424
-
Development of structures and transport functions in the mouse placenta
-
Watson ED, Cross JC. 2005. Development of structures and transport functions in the mouse placenta. Physiology 20:180-193. http://dx.doi.org/10.1152/physiol.00001.2005.
-
(2005)
Physiology
, vol.20
, pp. 180-193
-
-
Watson, E.D.1
Cross, J.C.2
-
62
-
-
1342285692
-
Tumor necrosis factor: an apoptosis JuNKie?
-
Varfolomeev EE, Ashkenazi A. 2004. Tumor necrosis factor: an apoptosis JuNKie? Cell 116:491-497. http://dx.doi.org/10.1016/S0092-8674(04)00166-7.
-
(2004)
Cell
, vol.116
, pp. 491-497
-
-
Varfolomeev, E.E.1
Ashkenazi, A.2
-
63
-
-
80054888589
-
It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival
-
Oberst A, Green DR. 2011. It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nat Rev Mol Cell Biol 12:757-763. http://dx.doi.org/10.1038/nrm3214.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 757-763
-
-
Oberst, A.1
Green, D.R.2
-
64
-
-
0034744033
-
NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling
-
Kreuz S, Siegmund D, Scheurich P, Wajant H. 2001. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21:3964-3973. http://dx.doi.org/10.1128/MCB.21.12.3964-3973.2001.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 3964-3973
-
-
Kreuz, S.1
Siegmund, D.2
Scheurich, P.3
Wajant, H.4
-
65
-
-
84898436464
-
Autophagy is essential for cardiac morphogenesis during vertebrate development
-
Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ, Cleaver O, Levine B, Amatruda JF. 2014. Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy 10:572-587. http://dx.doi.org/10.4161/auto.27649.
-
(2014)
Autophagy
, vol.10
, pp. 572-587
-
-
Lee, E.1
Koo, Y.2
Ng, A.3
Wei, Y.4
Luby-Phelps, K.5
Juraszek, A.6
Xavier, R.J.7
Cleaver, O.8
Levine, B.9
Amatruda, J.F.10
-
66
-
-
33750493895
-
Gene targeting of Cdc42 and Cdc42GAP affirms the critical involvement of Cdc42 in filopodia induction, directed migration, and proliferation in primary mouse embryonic fibroblasts
-
Yang L, Wang L, Zheng Y. 2006. Gene targeting of Cdc42 and Cdc42GAP affirms the critical involvement of Cdc42 in filopodia induction, directed migration, and proliferation in primary mouse embryonic fibroblasts. Mol Biol Cell 17:4675-4685. http://dx.doi.org/10.1091/mbc.E06-05-0466.
-
(2006)
Mol Biol Cell
, vol.17
, pp. 4675-4685
-
-
Yang, L.1
Wang, L.2
Zheng, Y.3
-
67
-
-
26444489694
-
Cdc42GAP regulates c-Jun N-terminal kinase (JNK)-mediated apoptosis and cell number during mammalian perinatal growth
-
Wang L, Yang L, Burns K, Kuan CY, Zheng Y. 2005. Cdc42GAP regulates c-Jun N-terminal kinase (JNK)-mediated apoptosis and cell number during mammalian perinatal growth. Proc Natl Acad Sci U S A 102:13484-13489. http://dx.doi.org/10.1073/pnas.0504420102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 13484-13489
-
-
Wang, L.1
Yang, L.2
Burns, K.3
Kuan, C.Y.4
Zheng, Y.5
-
68
-
-
82855170846
-
Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction
-
Alers S, Loffler AS, Paasch F, Dieterle AM, Keppeler H, Lauber K, Campbell DG, Fehrenbacher B, Schaller M, Wesselborg S, Stork B. 2011. Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy 7:1423-1433.
-
(2011)
Autophagy
, vol.7
, pp. 1423-1433
-
-
Alers, S.1
Loffler, A.S.2
Paasch, F.3
Dieterle, A.M.4
Keppeler, H.5
Lauber, K.6
Campbell, D.G.7
Fehrenbacher, B.8
Schaller, M.9
Wesselborg, S.10
Stork, B.11
-
69
-
-
84883027938
-
Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging
-
Kim M, Park HL, Park HW, Ro SH, Nam SG, Reed JM, Guan JL, Lee JH. 2013. Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging. Autophagy 9:1201-1213. http://dx.doi.org/10.4161/auto.24811.
-
(2013)
Autophagy
, vol.9
, pp. 1201-1213
-
-
Kim, M.1
Park, H.L.2
Park, H.W.3
Ro, S.H.4
Nam, S.G.5
Reed, J.M.6
Guan, J.L.7
Lee, J.H.8
-
70
-
-
84884181586
-
ULK1 regulates melanin levels in MNT-1 cells independently of mTORC1
-
Kalie E, Razi M, Tooze SA. 2013. ULK1 regulates melanin levels in MNT-1 cells independently of mTORC1. PLoS One 8:e75313. http://dx.doi.org/10.1371/journal.pone.0075313.
-
(2013)
PLoS One
, vol.8
, pp. e75313
-
-
Kalie, E.1
Razi, M.2
Tooze, S.A.3
-
71
-
-
0033662341
-
Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development
-
Yeh WC, Itie A, Elia AJ, Ng M, Shu HB, Wakeham A, Mirtsos C, Suzuki N, Bonnard M, Goeddel DV, Mak TW. 2000. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12:633-642. http://dx.doi.org/10.1016/S1074-7613(00)80214-9.
-
(2000)
Immunity
, vol.12
, pp. 633-642
-
-
Yeh, W.C.1
Itie, A.2
Elia, A.J.3
Ng, M.4
Shu, H.B.5
Wakeham, A.6
Mirtsos, C.7
Suzuki, N.8
Bonnard, M.9
Goeddel, D.V.10
Mak, T.W.11
-
72
-
-
84861712290
-
Survival function of the FADDCASPASE-8-cFLIP(L) complex
-
Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T, Mak TW, Wallach D, Green DR. 2012. Survival function of the FADDCASPASE-8-cFLIP(L) complex. Cell Rep 1:401-407. http://dx.doi.org/10.1016/j.celrep.2012.03.010.
-
(2012)
Cell Rep
, vol.1
, pp. 401-407
-
-
Dillon, C.P.1
Oberst, A.2
Weinlich, R.3
Janke, L.J.4
Kang, T.B.5
Ben-Moshe, T.6
Mak, T.W.7
Wallach, D.8
Green, D.R.9
-
73
-
-
65549085701
-
Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling
-
Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, Ashkenazi A. 2009. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721-735. http://dx.doi.org/10.1016/j.cell.2009.03.015.
-
(2009)
Cell
, vol.137
, pp. 721-735
-
-
Jin, Z.1
Li, Y.2
Pitti, R.3
Lawrence, D.4
Pham, V.C.5
Lill, J.R.6
Ashkenazi, A.7
|