-
1
-
-
84891747382
-
The machinery of macroautophagy
-
Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24-41.
-
(2014)
Cell Res.
, vol.24
, Issue.1
, pp. 24-41
-
-
Feng, Y.1
He, D.2
Yao, Z.3
Klionsky, D.J.4
-
4
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280-293.
-
(2010)
Mol Cell.
, vol.40
, Issue.2
, pp. 280-293
-
-
Kroemer, G.1
Marino, G.2
Levine, B.3
-
5
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330(6009):1344-1348.
-
(2010)
Science.
, vol.330
, Issue.6009
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
6
-
-
41749114288
-
Autophagy: Basic principles and relevance to disease
-
Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease. Annu Rev Pathol. 2008;3:427-455.
-
(2008)
Annu Rev Pathol.
, vol.3
, pp. 427-455
-
-
Kundu, M.1
Thompson, C.B.2
-
7
-
-
84877628647
-
Autophagy in human health and disease
-
Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651-662.
-
(2013)
N Engl J Med.
, vol.368
, Issue.7
, pp. 651-662
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
8
-
-
78751672975
-
Autoph-agy in immunity and inflammation
-
Levine B, Mizushima N, Virgin HW. Autoph-agy in immunity and inflammation. Nature. 2011;469(7330):323-335.
-
(2011)
Nature.
, vol.469
, Issue.7330
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
9
-
-
0038523786
-
Selective degradation of peroxisomes in yeasts
-
Bellu AR, Kiel JA. Selective degradation of peroxisomes in yeasts. Microsc Res Tech. 2003;61(2):161-170.
-
(2003)
Microsc Res Tech.
, vol.61
, Issue.2
, pp. 161-170
-
-
Bellu, A.R.1
Kiel, J.A.2
-
10
-
-
84859768059
-
Lipophagy: Connecting autophagy and lipid metabolism
-
Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012;2012:282041.
-
(2012)
Int J Cell Biol.
, vol.2012
, pp. 282041
-
-
Singh, R.1
Cuervo, A.M.2
-
11
-
-
84899746695
-
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritin-ophagy
-
Mancias JD, Wang X, Gygi SP, Harper JW, Kim-melman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritin-ophagy. Nature. 2014;509(7498):105-109.
-
(2014)
Nature.
, vol.509
, Issue.7498
, pp. 105-109
-
-
Mancias, J.D.1
Wang, X.2
Gygi, S.P.3
Harper, J.W.4
Kim-Melman, A.C.5
-
12
-
-
67650517556
-
NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets
-
Lamark T, Kirkin V, Dikic I, Johansen T. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle. 2009;8(13):1986-1990.
-
(2009)
Cell Cycle.
, vol.8
, Issue.13
, pp. 1986-1990
-
-
Lamark, T.1
Kirkin, V.2
Dikic, I.3
Johansen, T.4
-
13
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinat-ed protein aggregates by autophagy
-
Pankiv S, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinat-ed protein aggregates by autophagy. J Biol Chem. 2007;282(33):24131-24145.
-
(2007)
J Biol Chem.
, vol.282
, Issue.33
, pp. 24131-24145
-
-
Pankiv, S.1
-
14
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I, et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 2010;11(1):45-51.
-
(2010)
EMBO Rep.
, vol.11
, Issue.1
, pp. 45-51
-
-
Novak, I.1
-
15
-
-
37649017266
-
NIX is required for programmed mitochondrial clearance during reticulocyte maturation
-
Schweers RL, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 2007;104(49):19500-19505.
-
(2007)
Proc Natl Acad Sci U S A.
, vol.104
, Issue.49
, pp. 19500-19505
-
-
Schweers, R.L.1
-
16
-
-
67650243261
-
Parkin-induced mitophagy in the pathogenesis of Parkinson disease
-
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy. 2009;5(5):706-708.
-
(2009)
Autophagy.
, vol.5
, Issue.5
, pp. 706-708
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
17
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032-1036.
-
(2004)
Nature.
, vol.432
, Issue.7020
, pp. 1032-1036
-
-
Kuma, A.1
-
18
-
-
84863393597
-
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeo-stasis
-
He C, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeo-stasis. Nature. 2012;481(7382):511-515.
-
(2012)
Nature.
, vol.481
, Issue.7382
, pp. 511-515
-
-
He, C.1
-
19
-
-
84867249241
-
Exer-cise induces autophagy in peripheral tissues and in the brain
-
He C, Sumpter R, Sumpter R Jr, Levine B. Exer-cise induces autophagy in peripheral tissues and in the brain. Autophagy. 2012;8(10):1548-1551.
-
(2012)
Autophagy.
, vol.8
, Issue.10
, pp. 1548-1551
-
-
He, C.1
Sumpter, R.2
Sumpter, Jr.R.3
Levine, B.4
-
20
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401-410.
-
(2012)
Nat Rev Cancer.
, vol.12
, Issue.6
, pp. 401-410
-
-
White, E.1
-
21
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333(1):169-174.
-
(1993)
FEBS Lett.
, vol.333
, Issue.1
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
22
-
-
0028800171
-
Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
-
Harding TM, Morano KA, Scott SV, Klionsky DJ. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol. 1995;131(3):591-602.
-
(1995)
J Cell Biol.
, vol.131
, Issue.3
, pp. 591-602
-
-
Harding, T.M.1
Morano, K.A.2
Scott, S.V.3
Klionsky, D.J.4
-
23
-
-
0027936092
-
Isolation of autophagocytosis mutants of Saccharomyces cerevisiae
-
Thumm M, et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 1994;349(2):275-280.
-
(1994)
FEBS Lett.
, vol.349
, Issue.2
, pp. 275-280
-
-
Thumm, M.1
-
24
-
-
77956404377
-
Eaten alive: A history of mac-roautophagy
-
Yang Z, Klionsky DJ. Eaten alive: a history of mac-roautophagy. Nat Cell Biol. 2010;12(9):814-822.
-
(2010)
Nat Cell Biol.
, vol.12
, Issue.9
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
25
-
-
1342321743
-
Two ubiquitin-like conjugation systems essential for autophagy
-
Ohsumi Y, Mizushima N. Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol. 2004;15(2):231-236.
-
(2004)
Semin Cell Dev Biol.
, vol.15
, Issue.2
, pp. 231-236
-
-
Ohsumi, Y.1
Mizushima, N.2
-
26
-
-
38049098543
-
The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
Hanada T, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007; 282(52):37298-37302.
-
(2007)
J Biol Chem.
, vol.282
, Issue.52
, pp. 37298-37302
-
-
Hanada, T.1
-
27
-
-
84873405258
-
Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation
-
Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 2013;14(2):206-211.
-
(2013)
EMBO Rep.
, vol.14
, Issue.2
, pp. 206-211
-
-
Noda, N.N.1
Fujioka, Y.2
Hanada, T.3
Ohsumi, Y.4
Inagaki, F.5
-
28
-
-
27944504351
-
P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
-
Bjorkoy G, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603-614.
-
(2005)
J Cell Biol.
, vol.171
, Issue.4
, pp. 603-614
-
-
Bjorkoy, G.1
-
29
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131(6):1149-1163.
-
(2007)
Cell.
, vol.131
, Issue.6
, pp. 1149-1163
-
-
Komatsu, M.1
-
30
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophago-some formation, mediates membrane tethering and hemifusion
-
Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophago-some formation, mediates membrane tethering and hemifusion. Cell. 2007;130(1):165-178.
-
(2007)
Cell.
, vol.130
, Issue.1
, pp. 165-178
-
-
Nakatogawa, H.1
Ichimura, Y.2
Ohsumi, Y.3
-
31
-
-
43149090064
-
FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
-
Hara T, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181(3):497-510.
-
(2008)
J Cell Biol.
, vol.181
, Issue.3
, pp. 497-510
-
-
Hara, T.1
-
32
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297-12305.
-
(2009)
J Biol Chem.
, vol.284
, Issue.18
, pp. 12297-12305
-
-
Ganley, I.G.1
Wang, J.2
Ding, X.3
Chen, S.4
Jiang, X.5
-
33
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992-2003.
-
(2009)
Mol Biol Cell.
, vol.20
, Issue.7
, pp. 1992-2003
-
-
Jung, C.1
-
34
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465(7300):942-946.
-
(2010)
Nature.
, vol.465
, Issue.7300
, pp. 942-946
-
-
Yu, L.1
-
35
-
-
79956346329
-
Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation
-
Rong Y, et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci U S A. 2011;108(19):7826-7831.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, Issue.19
, pp. 7826-7831
-
-
Rong, Y.1
-
36
-
-
84866061320
-
AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
-
Mack HI, Zheng B, Asara JM, Thomas SM. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Au tophagy. 2012;8(8):1197-1214.
-
(2012)
Au Tophagy.
, vol.8
, Issue.8
, pp. 1197-1214
-
-
MacK, H.I.1
Zheng, B.2
Asara, J.M.3
Thomas, S.M.4
-
37
-
-
78149476877
-
The association of AMPK with ULK1 regulates autophagy
-
Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PLoS One. 2010;5(11):e15394.
-
(2010)
PLoS One.
, vol.5
, Issue.11
, pp. e15394
-
-
Lee, J.W.1
Park, S.2
Takahashi, Y.3
Wang, H.G.4
-
38
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-141.
-
(2011)
Nat Cell Biol.
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
39
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
-
Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A. 2011;108(12):4788-4793.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, Issue.12
, pp. 4788-4793
-
-
Shang, L.1
Chen, S.2
Du, F.3
Li, S.4
Zhao, L.5
Wang, X.6
-
40
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456-461.
-
(2011)
Science.
, vol.331
, Issue.6016
, pp. 456-461
-
-
Egan, D.F.1
-
41
-
-
79960014848
-
ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphoryla-tion and hinders substrate binding
-
Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphoryla-tion and hinders substrate binding. Autophagy. 2011;7(7):737-747.
-
(2011)
Autophagy.
, vol.7
, Issue.7
, pp. 737-747
-
-
Dunlop, E.A.1
Hunt, D.K.2
Acosta-Jaquez, H.A.3
Fingar, D.C.4
Tee, A.R.5
-
42
-
-
80053430528
-
ULK1 inhibits the kinase activity of mTORC1 and cell proliferation
-
Jung CH, Seo M, Otto NM, Kim DH. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Au tophagy. 2011;7(10):1212-1221.
-
(2011)
Au Tophagy.
, vol.7
, Issue.10
, pp. 1212-1221
-
-
Jung, C.H.1
Seo, M.2
Otto, N.M.3
Kim, D.H.4
-
43
-
-
79959963047
-
Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop
-
Löffler AS, et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy. 2011;7(7):696-706.
-
(2011)
Autophagy.
, vol.7
, Issue.7
, pp. 696-706
-
-
Löffler, A.S.1
-
44
-
-
84858796367
-
A two-way street: Reciprocal regulation of metabolism and signalling
-
Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. 2012;13(4):270-276.
-
(2012)
Nat Rev Mol Cell Biol.
, vol.13
, Issue.4
, pp. 270-276
-
-
Wellen, K.E.1
Thompson, C.B.2
-
45
-
-
11144221007
-
Apoptotic and autophagic cell death induced by histone deacetylase inhibitors
-
Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2004;101(52):18030-18035.
-
(2004)
Proc Natl Acad Sci U S A.
, vol.101
, Issue.52
, pp. 18030-18035
-
-
Shao, Y.1
Gao, Z.2
Marks, P.A.3
Jiang, X.4
-
46
-
-
84860135029
-
Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death
-
Gammoh N, Lam D, Puente C, Ganley I, Marks PA, Jiang X. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci U S A. 2012;109(17):6561-6565.
-
(2012)
Proc Natl Acad Sci U S A.
, vol.109
, Issue.17
, pp. 6561-6565
-
-
Gammoh, N.1
Lam, D.2
Puente, C.3
Ganley, I.4
Marks, P.A.5
Jiang, X.6
-
47
-
-
84860203624
-
Function and molecular mechanism of acetylation in autophagy regulation
-
Yi C, et al. Function and molecular mechanism of acetylation in autophagy regulation. Science. 2012;336(6080):474-477.
-
(2012)
Science.
, vol.336
, Issue.6080
, pp. 474-477
-
-
Yi, C.1
-
48
-
-
84860172051
-
GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy
-
Lin SY, et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science. 2012;336(6080):477-481.
-
(2012)
Science.
, vol.336
, Issue.6080
, pp. 477-481
-
-
Lin, S.Y.1
-
49
-
-
84896713080
-
Regulation of autophagy by cytosolic acetyl-coenzyme a
-
Marino G, et al. Regulation of autophagy by cytosolic acetyl-coenzyme a. Mol Cell. 2014;53(5):710-725.
-
(2014)
Mol Cell.
, vol.53
, Issue.5
, pp. 710-725
-
-
Marino, G.1
-
50
-
-
77955884684
-
Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
-
Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 2010;6(6):764-776.
-
(2010)
Autophagy.
, vol.6
, Issue.6
, pp. 764-776
-
-
Itakura, E.1
Mizushima, N.2
-
51
-
-
77955895424
-
Autophagy requires endoplas-mic reticulum targeting of the PI3-kinase complex via Atg14L
-
Matsunaga K, et al. Autophagy requires endoplas-mic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol. 2010;190(4):511-521.
-
(2010)
J Cell Biol.
, vol.190
, Issue.4
, pp. 511-521
-
-
Matsunaga, K.1
-
52
-
-
77953726483
-
Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
-
Polson HE, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Au tophagy. 2010;6(4):506-522.
-
(2010)
Au Tophagy.
, vol.6
, Issue.4
, pp. 506-522
-
-
Polson, H.E.1
-
53
-
-
77953543377
-
The Beclin 1-VPS34 complex - At the crossroads of autophagy and beyond
-
Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex - at the crossroads of autophagy and beyond. Trends Cell Biol. 2010;20(6):355-362.
-
(2010)
Trends Cell Biol.
, vol.20
, Issue.6
, pp. 355-362
-
-
Funderburk, S.F.1
Wang, Q.J.2
Yue, Z.3
-
54
-
-
39749141485
-
The regulation and function of Class III PI3Ks: Novel roles for Vps34
-
Backer JM. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J. 2008;410(1):1-17.
-
(2008)
Biochem J.
, vol.410
, Issue.1
, pp. 1-17
-
-
Backer, J.M.1
-
55
-
-
77957728513
-
The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
-
Di Bartolomeo S, et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol. 2010;191(1):155-168.
-
(2010)
J Cell Biol.
, vol.191
, Issue.1
, pp. 155-168
-
-
Di Bartolomeo, S.1
-
56
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell RC, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741-750.
-
(2013)
Nat Cell Biol.
, vol.15
, Issue.7
, pp. 741-750
-
-
Russell, R.C.1
-
57
-
-
84873569898
-
Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy
-
Gammoh N, Florey O, Overholtzer M, Jiang X. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat Struct Mol Biol. 2013;20(2):144-149.
-
(2013)
Nat Struct Mol Biol.
, vol.20
, Issue.2
, pp. 144-149
-
-
Gammoh, N.1
Florey, O.2
Overholtzer, M.3
Jiang, X.4
-
58
-
-
84874646724
-
FIP200 regulates targeting of Atg16L1 to the isolation membrane
-
Nishimura T, et al. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep. 2013;14(3):284-291.
-
(2013)
EMBO Rep.
, vol.14
, Issue.3
, pp. 284-291
-
-
Nishimura, T.1
-
59
-
-
79960585318
-
Ammonia-induced autophagy is independent of ULK1/ULK2 kinases
-
Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci U S A. 2011;108(27):11121-11126.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, Issue.27
, pp. 11121-11126
-
-
Cheong, H.1
Lindsten, T.2
Wu, J.3
Lu, C.4
Thompson, C.B.5
-
60
-
-
77953861522
-
Ammonia derived from glutaminolysis is a diffusible regulator of autophagy
-
Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal. 2010;3(119):ra31.
-
(2010)
Sci Signal.
, vol.3
, Issue.119
, pp. ra31
-
-
Eng, C.H.1
Yu, K.2
Lucas, J.3
White, E.4
Abraham, R.T.5
-
61
-
-
84870861513
-
Noncanonical autophagy is required for type i interferon secretion in response to DNA-immune complexes
-
Henault J, et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity. 2012;37(6):986-997.
-
(2012)
Immunity.
, vol.37
, Issue.6
, pp. 986-997
-
-
Henault, J.1
-
62
-
-
37549043217
-
Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
-
Sanjuan MA, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450(7173):1253-1257.
-
(2007)
Nature.
, vol.450
, Issue.7173
, pp. 1253-1257
-
-
Sanjuan, M.A.1
-
63
-
-
80054825045
-
Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells
-
Martinez J, et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A. 2011;108(42):17396-17401.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, Issue.42
, pp. 17396-17401
-
-
Martinez, J.1
-
64
-
-
80455122654
-
Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes
-
Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol. 2011;13(11):1335-1343.
-
(2011)
Nat Cell Biol.
, vol.13
, Issue.11
, pp. 1335-1343
-
-
Florey, O.1
Kim, S.E.2
Sandoval, C.P.3
Haynes, C.M.4
Overholtzer, M.5
-
65
-
-
65549094988
-
Activation of antibacterial autoph-agy by NADPH oxidases
-
Huang J, et al. Activation of antibacterial autoph-agy by NADPH oxidases. Proc Natl Acad Sci U S A. 2009;106(15):6226-6231.
-
(2009)
Proc Natl Acad Sci U S A.
, vol.106
, Issue.15
, pp. 6226-6231
-
-
Huang, J.1
-
66
-
-
84867268375
-
Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presenta tion of fungal-derived antigens
-
Ma J, Becker C, Lowell CA, Underhill DM. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presenta tion of fungal-derived antigens. J Biol Chem. 2012;287(41):34149-34156.
-
(2012)
J Biol Chem.
, vol.287
, Issue.41
, pp. 34149-34156
-
-
Ma, J.1
Becker, C.2
Lowell, C.A.3
Underhill, D.M.4
-
67
-
-
83455173649
-
Autophagy proteins regulate the secretory component of osteoclastic bone resorption
-
DeSelm CJ, et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell. 2011;21(5):966-974.
-
(2011)
Dev Cell.
, vol.21
, Issue.5
, pp. 966-974
-
-
Deselm, C.J.1
-
68
-
-
84880551919
-
Noncanonical autophagy promotes the visual cycle
-
Kim JY, et al. Noncanonical autophagy promotes the visual cycle. Cell. 2013;154(2):365-376.
-
(2013)
Cell.
, vol.154
, Issue.2
, pp. 365-376
-
-
Kim, J.Y.1
-
69
-
-
84883291965
-
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
-
Maejima I, et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 2013;32(17):2336-2347.
-
(2013)
EMBO J.
, vol.32
, Issue.17
, pp. 2336-2347
-
-
Maejima, I.1
-
70
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
-
Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. 2012;482(7385):414-418.
-
(2012)
Nature.
, vol.482
, Issue.7385
, pp. 414-418
-
-
Thurston, T.L.1
Wandel, M.P.2
Von Muhlinen, N.3
Foeglein, A.4
Randow, F.5
-
71
-
-
77955131007
-
Plasma membrane contributes to the formation of pre-autophagosomal structures
-
Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol. 2010;12(8):747-757.
-
(2010)
Nat Cell Biol.
, vol.12
, Issue.8
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
72
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-1075.
-
(2008)
Nature.
, vol.451
, Issue.7182
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
73
-
-
37649005234
-
Autophagy in the patho-genesis of disease
-
Levine B, Kroemer G. Autophagy in the patho-genesis of disease. Cell. 2008;132(1):27-42.
-
(2008)
Cell.
, vol.132
, Issue.1
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
75
-
-
77951220669
-
Role of autophagy in suppression of inflammation and cancer
-
White E, Karp C, Strohecker AM, Guo Y, Mathew R. Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol. 2010;22(2):212-217.
-
(2010)
Curr Opin Cell Biol.
, vol.22
, Issue.2
, pp. 212-217
-
-
White, E.1
Karp, C.2
Strohecker, A.M.3
Guo, Y.4
Mathew, R.5
-
76
-
-
84890018924
-
Autophagy-mediated tumor promotion
-
Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155(6):1216-1219.
-
(2013)
Cell.
, vol.155
, Issue.6
, pp. 1216-1219
-
-
Guo, J.Y.1
Xia, B.2
White, E.3
-
77
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A. 2003;100(25):15077-15082.
-
(2003)
Proc Natl Acad Sci U S A.
, vol.100
, Issue.25
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
78
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu X, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809-1820.
-
(2003)
J Clin Invest.
, vol.112
, Issue.12
, pp. 1809-1820
-
-
Qu, X.1
-
79
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura A, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011;25(8):795-800.
-
(2011)
Genes Dev.
, vol.25
, Issue.8
, pp. 795-800
-
-
Takamura, A.1
-
80
-
-
66449099090
-
Autophagy suppresses tumorigenesis through elimination of p62
-
Mathew R, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009;137(6):1062-1075.
-
(2009)
Cell.
, vol.137
, Issue.6
, pp. 1062-1075
-
-
Mathew, R.1
-
81
-
-
66449114033
-
P62 at the crossroads of autophagy, apoptosis, and cancer
-
Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 2009;137(6):1001-1004.
-
(2009)
Cell.
, vol.137
, Issue.6
, pp. 1001-1004
-
-
Moscat, J.1
Diaz-Meco, M.T.2
-
82
-
-
84906906535
-
Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis
-
Valencia T, et al. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell. 2014;26(1):121-135.
-
(2014)
Cancer Cell.
, vol.26
, Issue.1
, pp. 121-135
-
-
Valencia, T.1
-
83
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010;12(3):213-223.
-
(2010)
Nat Cell Biol.
, vol.12
, Issue.3
, pp. 213-223
-
-
Komatsu, M.1
-
84
-
-
79955492012
-
Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
-
Inami Y, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011;193(2):275-284.
-
(2011)
J Cell Biol.
, vol.193
, Issue.2
, pp. 275-284
-
-
Inami, Y.1
-
85
-
-
41249084239
-
The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis
-
Duran A, et al. The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis. Cancer Cell. 2008;13(4):343-354.
-
(2008)
Cancer Cell.
, vol.13
, Issue.4
, pp. 343-354
-
-
Duran, A.1
-
86
-
-
7744235672
-
Death by design: Apoptosis, necrosis and autophagy
-
Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16(6):663-669.
-
(2004)
Curr Opin Cell Biol.
, vol.16
, Issue.6
, pp. 663-669
-
-
Edinger, A.L.1
Thompson, C.B.2
-
87
-
-
25144506835
-
Autophagy in cell death: An innocent convict?
-
Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005;115(10):2679-2688.
-
(2005)
J Clin Invest.
, vol.115
, Issue.10
, pp. 2679-2688
-
-
Levine, B.1
Yuan, J.2
-
88
-
-
41449095822
-
Autophagy functions in programmed cell death
-
Berry DL, Baehrecke EH. Autophagy functions in programmed cell death. Autophagy. 2008;4(3):359-360.
-
(2008)
Autophagy.
, vol.4
, Issue.3
, pp. 359-360
-
-
Berry, D.L.1
Baehrecke, E.H.2
-
89
-
-
0034948738
-
The autophagosomal-lysosomal compartment in programmed cell death
-
Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ. 2001;8(6):569-581.
-
(2001)
Cell Death Differ.
, vol.8
, Issue.6
, pp. 569-581
-
-
Bursch, W.1
-
90
-
-
2442482810
-
Autophagy as a cell death and tumor suppressor mechanism
-
Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23(16):2891-2906.
-
(2004)
Oncogene.
, vol.23
, Issue.16
, pp. 2891-2906
-
-
Gozuacik, D.1
Kimchi, A.2
-
91
-
-
2642553881
-
Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8
-
Yu L, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304(5676):1500-1502.
-
(2004)
Science.
, vol.304
, Issue.5676
, pp. 1500-1502
-
-
Yu, L.1
-
92
-
-
10344262564
-
Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes
-
Shimizu S, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004;6(12):1221-1228.
-
(2004)
Nat Cell Biol.
, vol.6
, Issue.12
, pp. 1221-1228
-
-
Shimizu, S.1
-
93
-
-
36849088609
-
Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila
-
Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell. 2007;131(6):1137-1148.
-
(2007)
Cell.
, vol.131
, Issue.6
, pp. 1137-1148
-
-
Berry, D.L.1
Baehrecke, E.H.2
-
94
-
-
58849107096
-
Tumor dormancy due to failure of angiogenesis: Role of the microenvironment
-
Naumov GN, Folkman J, Straume O. Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin Exp Metastasis. 2009;26(1):51-60.
-
(2009)
Clin Exp Metastasis.
, vol.26
, Issue.1
, pp. 51-60
-
-
Naumov, G.N.1
Folkman, J.2
Straume, O.3
-
95
-
-
84876838620
-
The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to gluta-mine deprivation
-
Reid MA, Wang WI, Rosales KR, Welliver MX, Pan M, Kong M. The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to gluta-mine deprivation. Mol Cell. 2013;50(2):200-211.
-
(2013)
Mol Cell.
, vol.50
, Issue.2
, pp. 200-211
-
-
Reid, M.A.1
Wang, W.I.2
Rosales, K.R.3
Welliver, M.X.4
Pan, M.5
Kong, M.6
-
96
-
-
1842302659
-
Free amino acids in normal and neoplastic tissues of mice as studied by paper chromatography
-
Roberts E, Frankel S. Free amino acids in normal and neoplastic tissues of mice as studied by paper chromatography. Cancer Res. 1949;9(11):645-648.
-
(1949)
Cancer Res.
, vol.9
, Issue.11
, pp. 645-648
-
-
Roberts, E.1
Frankel, S.2
-
97
-
-
84861208532
-
Coupling of glucose deprivation with impaired histone H2B monoubiq-uitination in tumors
-
Urasaki Y, Heath L, Xu CW. Coupling of glucose deprivation with impaired histone H2B monoubiq-uitination in tumors. PLoS One. 2012;7(5):e36775.
-
(2012)
PLoS One.
, vol.7
, Issue.5
, pp. e36775
-
-
Urasaki, Y.1
Heath, L.2
Xu, C.W.3
-
98
-
-
84901236251
-
Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice
-
Agrawal V, et al. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice. Oncotarget. 2014;5(9):2761-2777.
-
(2014)
Oncotarget.
, vol.5
, Issue.9
, pp. 2761-2777
-
-
Agrawal, V.1
-
99
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
Degenhardt K, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10(1):51-64.
-
(2006)
Cancer Cell.
, vol.10
, Issue.1
, pp. 51-64
-
-
Degenhardt, K.1
-
100
-
-
84866100870
-
Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer speci mens
-
Ladoire S, et al. Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer speci mens. Autophagy. 2012;8(8):1175-1184.
-
(2012)
Autophagy.
, vol.8
, Issue.8
, pp. 1175-1184
-
-
Ladoire, S.1
-
101
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
Yang S, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25(7):717-729.
-
(2011)
Genes Dev.
, vol.25
, Issue.7
, pp. 717-729
-
-
Yang, S.1
-
102
-
-
79951505692
-
Inhibition of autophagy: A new strategy to enhance sensitivity of chronic myeloid leukemia stem cells to tyrosine kinase inhibitors
-
Calabretta B, Salomoni P. Inhibition of autophagy: a new strategy to enhance sensitivity of chronic myeloid leukemia stem cells to tyrosine kinase inhibitors. Leuk Lymphoma. 2011;52(suppl 1):54-59.
-
(2011)
Leuk Lymphoma.
, vol.52
, pp. 54-59
-
-
Calabretta, B.1
Salomoni, P.2
-
103
-
-
66649116856
-
Chloroquine in glioblastoma - New horizons for an old drug
-
Munshi A. Chloroquine in glioblastoma - new horizons for an old drug. Cancer. 2009;115(11):2380-2383.
-
(2009)
Cancer.
, vol.115
, Issue.11
, pp. 2380-2383
-
-
Munshi, A.1
-
104
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
Amaravadi RK, et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 2011;17(4):654-666.
-
(2011)
Clin Cancer Res.
, vol.17
, Issue.4
, pp. 654-666
-
-
Amaravadi, R.K.1
-
105
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigen-esis
-
Guo JY, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigen-esis. Genes Dev. 2011;25(5):460-470.
-
(2011)
Genes Dev.
, vol.25
, Issue.5
, pp. 460-470
-
-
Guo, J.Y.1
-
106
-
-
1842865745
-
Role of autophagy in temo-zolomide-induced cytotoxicity for malignant gli-oma cells
-
Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temo-zolomide-induced cytotoxicity for malignant gli-oma cells. Cell Death Differ. 2004;11(4):448-457.
-
(2004)
Cell Death Differ.
, vol.11
, Issue.4
, pp. 448-457
-
-
Kanzawa, T.1
Germano, I.M.2
Komata, T.3
Ito, H.4
Kondo, Y.5
Kondo, S.6
-
107
-
-
78149475478
-
Akt and autophagy cooperate to promote survival of drug-resistant glioma
-
Fan QW, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal. 2010;3(147):ra81.
-
(2010)
Sci Signal.
, vol.3
, Issue.147
, pp. ra81
-
-
Fan, Q.W.1
-
108
-
-
84885350394
-
Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors
-
Strohecker AM, et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 2013;3(11):1272-1285.
-
(2013)
Cancer Discov.
, vol.3
, Issue.11
, pp. 1272-1285
-
-
Strohecker, A.M.1
-
109
-
-
84878129623
-
Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer
-
Huo Y, et al. Autophagy opposes p53-mediated tumor barrier to facilitate tumorigenesis in a model of PALB2-associated hereditary breast cancer. Cancer Discov. 2013;3(8):894-907.
-
(2013)
Cancer Discov.
, vol.3
, Issue.8
, pp. 894-907
-
-
Huo, Y.1
-
110
-
-
84883196778
-
The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer
-
Cufi S, et al. The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep. 2013;3:2469.
-
(2013)
Sci Rep.
, vol.3
, pp. 2469
-
-
Cufi, S.1
-
111
-
-
79957963599
-
EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells
-
Han W, et al. EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One. 2011;6(6):e18691.
-
(2011)
PLoS One.
, vol.6
, Issue.6
, pp. e18691
-
-
Han, W.1
-
112
-
-
84892882660
-
A dual role for autophagy in a murine model of lung cancer
-
Rao S, et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun. 2014;5:3056.
-
(2014)
Nat Commun.
, vol.5
, pp. 3056
-
-
Rao, S.1
-
113
-
-
84905497318
-
Autophagy is required for glucose homeostasis and lung tumor maintenance
-
Karsli-Uzunbas G, et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 2014;4(8):914-927
-
(2014)
Cancer Discov.
, vol.4
, Issue.8
, pp. 914-927
-
-
Karsli-Uzunbas, G.1
-
114
-
-
84890432985
-
P53 status determines the role of autophagy in pancreatic tumour development
-
Rosenfeldt MT, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature. 2013;504(7479):296-300.
-
(2013)
Nature.
, vol.504
, Issue.7479
, pp. 296-300
-
-
Rosenfeldt, M.T.1
-
115
-
-
84879777723
-
Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
-
Guo JY, et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013;27(13):1447-1461.
-
(2013)
Genes Dev.
, vol.27
, Issue.13
, pp. 1447-1461
-
-
Guo, J.Y.1
-
116
-
-
84878396462
-
Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
-
Commisso C, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633-637.
-
(2013)
Nature.
, vol.497
, Issue.7451
, pp. 633-637
-
-
Commisso, C.1
-
117
-
-
84878464291
-
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
-
Kamphorst JJ, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci U S A. 2013;110(22):8882-8887
-
(2013)
Proc Natl Acad Sci U S A.
, vol.110
, Issue.22
, pp. 8882-8887
-
-
Kamphorst, J.J.1
-
118
-
-
84862768394
-
Autophagy proteins in macroendocytic engulfment
-
Florey O, Overholtzer M. Autophagy proteins in macroendocytic engulfment. Trends Cell Biol. 2012;22(7):374-380.
-
(2012)
Trends Cell Biol.
, vol.22
, Issue.7
, pp. 374-380
-
-
Florey, O.1
Overholtzer, M.2
-
119
-
-
84890828734
-
Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing
-
Romao S, et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J Cell Biol. 2013;203(5):757-766.
-
(2013)
J Cell Biol.
, vol.203
, Issue.5
, pp. 757-766
-
-
Romao, S.1
-
120
-
-
81155132211
-
Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1
-
Huang S, Yang ZJ, Yu C, Sinicrope FA. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem. 2011;2 86(46):40002-40012.
-
(2011)
J Biol Chem.
, vol.286
, Issue.46
, pp. 40002-40012
-
-
Huang, S.1
Yang, Z.J.2
Yu, C.3
Sinicrope, F.A.4
|