메뉴 건너뛰기




Volumn 7, Issue JUN, 2016, Pages

The mucosal immune system and its regulation by autophagy

Author keywords

ATG16L1; Autophagy; Colitis; IBD; Inflammasome; Intestinal epithelial cells; Metabolism; Treg cells

Indexed keywords

ANTIBODY PRODUCTION; ANTIGEN PRESENTATION; AUTOPHAGY; CD4+ T LYMPHOCYTE; CELL SURVIVAL; CELLULAR IMMUNITY; CYTOKINE RELEASE; CYTOPLASMIC REGULATION; DEGRADATION; DENDRITIC CELL; HELPER CELL; HOMEOSTASIS; IMMUNE SYSTEM; IMMUNOLOGICAL TOLERANCE; INTESTINE EPITHELIUM CELL; MAJOR HISTOCOMPATIBILITY COMPLEX; MOLECULAR MECHANISM; MONONUCLEAR PHAGOCYTE; MUCOSAL IMMUNE SYSTEM; NUCLEAR REGULATION; PATHOGENESIS; PLASMA CELL; REGULATORY T LYMPHOCYTE; REVIEW; T LYMPHOCYTE; THYMUS;

EID: 84977575286     PISSN: None     EISSN: 16643224     Source Type: Journal    
DOI: 10.3389/fimmu.2016.00240     Document Type: Review
Times cited : (77)

References (340)
  • 1
    • 23344454388 scopus 로고    scopus 로고
    • Mucosal immunity
    • Mayer L. Mucosal immunity. Immunol Rev (2005) 206:5. doi:10.1111/j.0105-2896.2005.00296.x
    • (2005) Immunol Rev , vol.206 , pp. 5
    • Mayer, L.1
  • 2
    • 0038316325 scopus 로고    scopus 로고
    • Anatomical basis of tolerance and immunity to intestinal antigens
    • Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol (2003) 3:331-41. doi:10.1038/nri1057
    • (2003) Nat Rev Immunol , vol.3 , pp. 331-341
    • Mowat, A.M.1
  • 3
    • 84921367265 scopus 로고    scopus 로고
    • Modulation of immune development and function by intestinal microbiota
    • Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development and function by intestinal microbiota. Trends Immunol (2014) 35:507-17. doi:10.1016/j.it.2014.07.010
    • (2014) Trends Immunol , vol.35 , pp. 507-517
    • Kabat, A.M.1    Srinivasan, N.2    Maloy, K.J.3
  • 4
    • 77952318832 scopus 로고    scopus 로고
    • Intestinal bacteria and the regulation of immune cell homeostasis
    • Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol (2010) 28:623-67. doi:10.1146/annurev-immunol-030409-101330
    • (2010) Annu Rev Immunol , vol.28 , pp. 623-667
    • Hill, D.A.1    Artis, D.2
  • 5
    • 84859808080 scopus 로고    scopus 로고
    • Oral tolerance to food protein
    • Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol (2012) 5:232-9. doi:10.1038/mi.2012.4
    • (2012) Mucosal Immunol , vol.5 , pp. 232-239
    • Pabst, O.1    Mowat, A.M.2
  • 6
    • 79959271087 scopus 로고    scopus 로고
    • Intestinal homeostasis and its breakdown in inflammatory bowel disease
    • Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature (2011) 474:298-306. doi:10.1038/nature10208
    • (2011) Nature , vol.474 , pp. 298-306
    • Maloy, K.J.1    Powrie, F.2
  • 7
    • 77952316009 scopus 로고    scopus 로고
    • Inflammatory bowel disease
    • Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol (2010) 28:573-621. doi:10.1146/annurev-immunol-030409-101225
    • (2010) Annu Rev Immunol , vol.28 , pp. 573-621
    • Kaser, A.1    Zeissig, S.2    Blumberg, R.S.3
  • 8
    • 84902292435 scopus 로고    scopus 로고
    • Genetic studies of Crohn's disease: past, present and future
    • Liu JZ, Anderson CA. Genetic studies of Crohn's disease: past, present and future. Best Pract Res Clin Gastroenterol (2014) 28:373-86. doi:10.1016/j.bpg.2014.04.009
    • (2014) Best Pract Res Clin Gastroenterol , vol.28 , pp. 373-386
    • Liu, J.Z.1    Anderson, C.A.2
  • 10
    • 33846627302 scopus 로고    scopus 로고
    • A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1
    • Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet (2007) 39:207-11. doi:10.1038/ng1954
    • (2007) Nat Genet , vol.39 , pp. 207-211
    • Hampe, J.1    Franke, A.2    Rosenstiel, P.3    Till, A.4    Teuber, M.5    Huse, K.6
  • 11
    • 34247554965 scopus 로고    scopus 로고
    • Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis
    • Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet (2007) 39:596-604. doi:10.1038/ng2032
    • (2007) Nat Genet , vol.39 , pp. 596-604
    • Rioux, J.D.1    Xavier, R.J.2    Taylor, K.D.3    Silverberg, M.S.4    Goyette, P.5    Huett, A.6
  • 12
    • 84896730900 scopus 로고    scopus 로고
    • A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3
    • Murthy A, Li Y, Peng I, Reichelt M, Katakam AK, Noubade R, et al. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature (2014) 506:456-62. doi:10.1038/nature13044
    • (2014) Nature , vol.506 , pp. 456-462
    • Murthy, A.1    Li, Y.2    Peng, I.3    Reichelt, M.4    Katakam, A.K.5    Noubade, R.6
  • 13
    • 84901660514 scopus 로고    scopus 로고
    • Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense
    • Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci U S A (2014) 111:7741-6. doi:10.1073/pnas.1407001111
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 7741-7746
    • Lassen, K.G.1    Kuballa, P.2    Conway, K.L.3    Patel, K.K.4    Becker, C.E.5    Peloquin, J.M.6
  • 14
    • 34250864795 scopus 로고    scopus 로고
    • Protein turnover via autophagy: implications for metabolism
    • Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr (2007) 27:19-40. doi:10.1146/annurev.nutr.27.061406.093749
    • (2007) Annu Rev Nutr , vol.27 , pp. 19-40
    • Mizushima, N.1    Klionsky, D.J.2
  • 15
    • 0036463736 scopus 로고    scopus 로고
    • Autophagy in the eukaryotic cell
    • Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell (2002) 1:11-21. doi:10.1128/EC.01.1.11-21.2002
    • (2002) Eukaryot Cell , vol.1 , pp. 11-21
    • Reggiori, F.1    Klionsky, D.J.2
  • 16
    • 84891747382 scopus 로고    scopus 로고
    • The machinery of macroautophagy
    • Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res (2014) 24:24-41. doi:10.1038/cr.2013.168
    • (2014) Cell Res , vol.24 , pp. 24-41
    • Feng, Y.1    He, D.2    Yao, Z.3    Klionsky, D.J.4
  • 17
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature (2004) 432:1032-6. doi:10.1038/nature03029
    • (2004) Nature , vol.432 , pp. 1032-1036
    • Kuma, A.1    Hatano, M.2    Matsui, M.3    Yamamoto, A.4    Nakaya, H.5    Yoshimori, T.6
  • 18
    • 36249025723 scopus 로고    scopus 로고
    • Autophagy: process and function
    • Mizushima N. Autophagy: process and function. Genes Dev (2007) 21:2861-73. doi:10.1101/gad.1599207
    • (2007) Genes Dev , vol.21 , pp. 2861-2873
    • Mizushima, N.1
  • 19
    • 84898639632 scopus 로고    scopus 로고
    • Atomistic autophagy: the structures of cellular self-digestion
    • Hurley JH, Schulman BA. Atomistic autophagy: the structures of cellular self-digestion. Cell (2014) 157:300-11. doi:10.1016/j.cell.2014.01.070
    • (2014) Cell , vol.157 , pp. 300-311
    • Hurley, J.H.1    Schulman, B.A.2
  • 20
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol (2013) 13:722-37. doi:10.1038/nri3532
    • (2013) Nat Rev Immunol , vol.13 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 21
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature (2011) 469:323-35. doi:10.1038/nature09782
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 22
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy (2011) 7:279-96. doi:10.4161/auto.7.3.14487
    • (2011) Autophagy , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 23
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • Rogov V, Dotsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell (2014) 53:167-78. doi:10.1016/j.molcel.2013.12.014
    • (2014) Mol Cell , vol.53 , pp. 167-178
    • Rogov, V.1    Dotsch, V.2    Johansen, T.3    Kirkin, V.4
  • 24
    • 33745824614 scopus 로고    scopus 로고
    • ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy
    • Szeto J, Kaniuk NA, Canadien V, Nisman R, Mizushima N, Yoshimori T, et al. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy (2006) 2:189-99. doi:10.4161/auto.2731
    • (2006) Autophagy , vol.2 , pp. 189-199
    • Szeto, J.1    Kaniuk, N.A.2    Canadien, V.3    Nisman, R.4    Mizushima, N.5    Yoshimori, T.6
  • 25
    • 0036566266 scopus 로고    scopus 로고
    • Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy
    • Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet (2002) 11:1107-17. doi:10.1093/hmg/11.9.1107
    • (2002) Hum Mol Genet , vol.11 , pp. 1107-1117
    • Ravikumar, B.1    Duden, R.2    Rubinsztein, D.C.3
  • 26
    • 34548259958 scopus 로고    scopus 로고
    • p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem (2007) 282:24131-45. doi:10.1074/jbc. M702824200
    • (2007) J Biol Chem , vol.282 , pp. 24131-24145
    • Pankiv, S.1    Clausen, T.H.2    Lamark, T.3    Brech, A.4    Bruun, J.A.5    Outzen, H.6
  • 27
    • 84857195479 scopus 로고    scopus 로고
    • Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction
    • Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol (2012) 13:255-63. doi:10.1038/ni.2215
    • (2012) Nat Immunol , vol.13 , pp. 255-263
    • Shi, C.S.1    Shenderov, K.2    Huang, N.N.3    Kabat, J.4    Abu-Asab, M.5    Fitzgerald, K.A.6
  • 28
    • 84885077685 scopus 로고    scopus 로고
    • TLR-induced PAI-2 expression suppresses IL-1beta processing via increasing autophagy and NLRP3 degradation
    • Chuang SY, Yang CH, Chou CC, Chiang YP, Chuang TH, Hsu LC. TLR-induced PAI-2 expression suppresses IL-1beta processing via increasing autophagy and NLRP3 degradation. Proc Natl Acad Sci U S A (2013) 110:16079-84. doi:10.1073/pnas.1306556110
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 16079-16084
    • Chuang, S.Y.1    Yang, C.H.2    Chou, C.C.3    Chiang, Y.P.4    Chuang, T.H.5    Hsu, L.C.6
  • 29
    • 84862976890 scopus 로고    scopus 로고
    • Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB
    • Paul S, Kashyap AK, Jia W, He YW, Schaefer BC. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-kappaB. Immunity (2012) 36:947-58. doi:10.1016/j.immuni.2012.04.008
    • (2012) Immunity , vol.36 , pp. 947-958
    • Paul, S.1    Kashyap, A.K.2    Jia, W.3    He, Y.W.4    Schaefer, B.C.5
  • 30
    • 33645221489 scopus 로고    scopus 로고
    • Excess peroxisomes are degraded by autophagic machinery in mammals
    • Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, et al. Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem (2006) 281:4035-41. doi:10.1074/jbc. M512283200
    • (2006) J Biol Chem , vol.281 , pp. 4035-4041
    • Iwata, J.1    Ezaki, J.2    Komatsu, M.3    Yokota, S.4    Ueno, T.5    Tanida, I.6
  • 31
    • 58549084167 scopus 로고    scopus 로고
    • Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
    • Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A (2008) 105:20567-74. doi:10.1073/pnas.0810611105
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 20567-20574
    • Kim, P.K.1    Hailey, D.W.2    Mullen, R.T.3    Lippincott-Schwartz, J.4
  • 33
    • 34249934085 scopus 로고    scopus 로고
    • Selective degradation of mitochondria by mitophagy
    • Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys (2007) 462:245-53. doi:10.1016/j.abb.2007.03.034
    • (2007) Arch Biochem Biophys , vol.462 , pp. 245-253
    • Kim, I.1    Rodriguez-Enriquez, S.2    Lemasters, J.J.3
  • 34
    • 34247172582 scopus 로고    scopus 로고
    • Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival
    • Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem (2007) 282:5617-24. doi:10.1074/jbc. M605940200
    • (2007) J Biol Chem , vol.282 , pp. 5617-5624
    • Tal, R.1    Winter, G.2    Ecker, N.3    Klionsky, D.J.4    Abeliovich, H.5
  • 35
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J (2008) 27:433-46. doi:10.1038/sj.emboj.7601963
    • (2008) EMBO J , vol.27 , pp. 433-446
    • Twig, G.1    Elorza, A.2    Molina, A.J.3    Mohamed, H.4    Wikstrom, J.D.5    Walzer, G.6
  • 36
    • 4644273585 scopus 로고    scopus 로고
    • Uth1p is involved in the autophagic degradation of mitochondria
    • Kissova I, Deffieu M, Manon S, Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem (2004) 279:39068-74. doi:10.1074/jbc. M406960200
    • (2004) J Biol Chem , vol.279 , pp. 39068-39074
    • Kissova, I.1    Deffieu, M.2    Manon, S.3    Camougrand, N.4
  • 37
    • 37649017266 scopus 로고    scopus 로고
    • NIX is required for programmed mitochondrial clearance during reticulocyte maturation
    • Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A (2007) 104:19500-5. doi:10.1073/pnas.0708818104
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 19500-19505
    • Schweers, R.L.1    Zhang, J.2    Randall, M.S.3    Loyd, M.R.4    Li, W.5    Dorsey, F.C.6
  • 38
    • 67650246357 scopus 로고    scopus 로고
    • Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
    • Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell (2009) 17:87-97. doi:10.1016/j.devcel.2009.06.013
    • (2009) Dev Cell , vol.17 , pp. 87-97
    • Okamoto, K.1    Kondo-Okamoto, N.2    Ohsumi, Y.3
  • 39
    • 33845480131 scopus 로고    scopus 로고
    • Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
    • Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol (2006) 4:e423. doi:10.1371/journal.pbio.0040423
    • (2006) PLoS Biol , vol.4
    • Bernales, S.1    McDonald, K.L.2    Walter, P.3
  • 40
    • 84858328465 scopus 로고    scopus 로고
    • Reticulophagy and ribophagy: regulated degradation of protein production factories
    • Cebollero E, Reggiori F, Kraft C. Reticulophagy and ribophagy: regulated degradation of protein production factories. Int J Cell Biol (2012) 2012:182834. doi:10.1155/2012/182834
    • (2012) Int J Cell Biol , vol.2012
    • Cebollero, E.1    Reggiori, F.2    Kraft, C.3
  • 41
    • 43049138051 scopus 로고    scopus 로고
    • Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
    • Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol (2008) 10:602-10. doi:10.1038/ncb1723
    • (2008) Nat Cell Biol , vol.10 , pp. 602-610
    • Kraft, C.1    Deplazes, A.2    Sohrmann, M.3    Peter, M.4
  • 42
    • 33748417446 scopus 로고    scopus 로고
    • Release of iron from ferritin requires lysosomal activity
    • Kidane TZ, Sauble E, Linder MC. Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol (2006) 291:445-55. doi:10.1152/ajpcell.00505.2005
    • (2006) Am J Physiol Cell Physiol , vol.291 , pp. 445-455
    • Kidane, T.Z.1    Sauble, E.2    Linder, M.C.3
  • 43
    • 79956115511 scopus 로고    scopus 로고
    • Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells
    • Asano T, Komatsu M, Yamaguchi-Iwai Y, Ishikawa F, Mizushima N, Iwai K. Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol Cell Biol (2011) 31:2040-52. doi:10.1128/MCB.01437-10
    • (2011) Mol Cell Biol , vol.31 , pp. 2040-2052
    • Asano, T.1    Komatsu, M.2    Yamaguchi-Iwai, Y.3    Ishikawa, F.4    Mizushima, N.5    Iwai, K.6
  • 46
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. Autophagy and metabolism. Science (2010) 330:1344-8. doi:10.1126/science.1193497
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 47
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol (2011) 27:107-32. doi:10.1146/annurev-cellbio-092910-154005
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 107-132
    • Mizushima, N.1    Yoshimori, T.2    Ohsumi, Y.3
  • 48
    • 58149473435 scopus 로고    scopus 로고
    • Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17?
    • Hara T, Mizushima N. Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17? Autophagy (2009) 5:85-7. doi:10.4161/auto.5.1.7180
    • (2009) Autophagy , vol.5 , pp. 85-87
    • Hara, T.1    Mizushima, N.2
  • 49
    • 27644544004 scopus 로고    scopus 로고
    • Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts
    • Reggiori F, Shintani T, Nair U, Klionsky DJ. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy (2005) 1:101-9. doi:10.4161/auto.1.2.1840
    • (2005) Autophagy , vol.1 , pp. 101-109
    • Reggiori, F.1    Shintani, T.2    Nair, U.3    Klionsky, D.J.4
  • 50
    • 67549110195 scopus 로고    scopus 로고
    • A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
    • Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy (2009) 5:649-62. doi:10.4161/auto.5.5.8249
    • (2009) Autophagy , vol.5 , pp. 649-662
    • Mercer, C.A.1    Kaliappan, A.2    Dennis, P.B.3
  • 51
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell (2009) 20:1992-2003. doi:10.1091/mbc. E08-12-1249
    • (2009) Mol Biol Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5    Cao, J.6
  • 52
    • 11244289333 scopus 로고    scopus 로고
    • WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy
    • Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A. WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene (2004) 23:9314-25. doi:10.1038/sj.onc.1208331
    • (2004) Oncogene , vol.23 , pp. 9314-9325
    • Proikas-Cezanne, T.1    Waddell, S.2    Gaugel, A.3    Frickey, T.4    Lupas, A.5    Nordheim, A.6
  • 53
    • 34848886914 scopus 로고    scopus 로고
    • Autophagosome formation: core machinery and adaptations
    • Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol (2007) 9:1102-9. doi:10.1038/ncb1007-1102
    • (2007) Nat Cell Biol , vol.9 , pp. 1102-1109
    • Xie, Z.1    Klionsky, D.J.2
  • 54
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy (2010) 6:506-22. doi:10.4161/auto.6.4.11863
    • (2010) Autophagy , vol.6 , pp. 506-522
    • Polson, H.E.1    de Lartigue, J.2    Rigden, D.J.3    Reedijk, M.4    Urbe, S.5    Clague, M.J.6
  • 55
    • 59449097721 scopus 로고    scopus 로고
    • Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy
    • He C, Baba M, Cao Y, Klionsky DJ. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell (2008) 19:5506-16. doi:10.1091/mbc. E08-05-0544
    • (2008) Mol Biol Cell , vol.19 , pp. 5506-5516
    • He, C.1    Baba, M.2    Cao, Y.3    Klionsky, D.J.4
  • 56
    • 79959415069 scopus 로고    scopus 로고
    • Biogenesis and cargo selectivity of autophagosomes
    • Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem (2011) 80:125-56. doi:10.1146/annurev-biochem-052709-094552
    • (2011) Annu Rev Biochem , vol.80 , pp. 125-156
    • Weidberg, H.1    Shvets, E.2    Elazar, Z.3
  • 57
    • 74949090299 scopus 로고    scopus 로고
    • An overview of the molecular mechanism of autophagy
    • Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol (2009) 335:1-32. doi:10.1007/978-3-642-00302-8_1
    • (2009) Curr Top Microbiol Immunol , vol.335 , pp. 1-32
    • Yang, Z.1    Klionsky, D.J.2
  • 60
    • 0032545292 scopus 로고    scopus 로고
    • A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy
    • Mizushima N, Sugita H, Yoshimori T, Ohsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem (1998) 273:33889-92. doi:10.1074/jbc.273.51.33889
    • (1998) J Biol Chem , vol.273 , pp. 33889-33892
    • Mizushima, N.1    Sugita, H.2    Yoshimori, T.3    Ohsumi, Y.4
  • 61
    • 0038325675 scopus 로고    scopus 로고
    • Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate
    • Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci (2003) 116:1679-88. doi:10.1242/jcs.00381
    • (2003) J Cell Sci , vol.116 , pp. 1679-1688
    • Mizushima, N.1    Kuma, A.2    Kobayashi, Y.3    Yamamoto, A.4    Matsubae, M.5    Takao, T.6
  • 62
    • 3242888703 scopus 로고    scopus 로고
    • LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
    • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci (2004) 117:2805-12. doi:10.1242/jcs.01131
    • (2004) J Cell Sci , vol.117 , pp. 2805-2812
    • Kabeya, Y.1    Mizushima, N.2    Yamamoto, A.3    Oshitani-Okamoto, S.4    Ohsumi, Y.5    Yoshimori, T.6
  • 63
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J (2000) 19:5720-8. doi:10.1093/emboj/19.21.5720
    • (2000) EMBO J , vol.19 , pp. 5720-5728
    • Kabeya, Y.1    Mizushima, N.2    Ueno, T.3    Yamamoto, A.4    Kirisako, T.5    Noda, T.6
  • 64
    • 77953122645 scopus 로고    scopus 로고
    • LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
    • Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J (2010) 29:1792-802. doi:10.1038/emboj.2010.74
    • (2010) EMBO J , vol.29 , pp. 1792-1802
    • Weidberg, H.1    Shvets, E.2    Shpilka, T.3    Shimron, F.4    Shinder, V.5    Elazar, Z.6
  • 65
    • 38049098543 scopus 로고    scopus 로고
    • The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
    • Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem (2007) 282:37298-302. doi:10.1074/jbc. C700195200
    • (2007) J Biol Chem , vol.282 , pp. 37298-37302
    • Hanada, T.1    Noda, N.N.2    Satomi, Y.3    Ichimura, Y.4    Fujioka, Y.5    Takao, T.6
  • 66
    • 51049118332 scopus 로고    scopus 로고
    • The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series
    • Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep (2008) 9:859-64. doi:10.1038/embor.2008.163
    • (2008) EMBO Rep , vol.9 , pp. 859-864
    • Geng, J.1    Klionsky, D.J.2
  • 67
    • 47149103494 scopus 로고    scopus 로고
    • Toward unraveling membrane biogenesis in mammalian autophagy
    • Yoshimori T, Noda T. Toward unraveling membrane biogenesis in mammalian autophagy. Curr Opin Cell Biol (2008) 20:401-7. doi:10.1016/j.ceb.2008.03.010
    • (2008) Curr Opin Cell Biol , vol.20 , pp. 401-407
    • Yoshimori, T.1    Noda, T.2
  • 68
    • 84901381389 scopus 로고    scopus 로고
    • The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
    • Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell (2014) 25:1327-37. doi:10.1091/mbc. E13-08-0447
    • (2014) Mol Biol Cell , vol.25 , pp. 1327-1337
    • Jiang, P.1    Nishimura, T.2    Sakamaki, Y.3    Itakura, E.4    Hatta, T.5    Natsume, T.6
  • 69
    • 84901308155 scopus 로고    scopus 로고
    • Interaction of the HOPS complex with syntaxin 17 mediates autophagosome clearance in Drosophila
    • Takats S, Pircs K, Nagy P, Varga A, Karpati M, Hegedus K, et al. Interaction of the HOPS complex with syntaxin 17 mediates autophagosome clearance in Drosophila. Mol Biol Cell (2014) 25:1338-54. doi:10.1091/mbc. E13-08-0449
    • (2014) Mol Biol Cell , vol.25 , pp. 1338-1354
    • Takats, S.1    Pircs, K.2    Nagy, P.3    Varga, A.4    Karpati, M.5    Hegedus, K.6
  • 70
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell (2012) 151:1256-69. doi:10.1016/j.cell.2012.11.001
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 71
    • 84878615771 scopus 로고    scopus 로고
    • Autophagosomal syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila
    • Takats S, Nagy P, Varga A, Pircs K, Karpati M, Varga K, et al. Autophagosomal syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. J Cell Biol (2013) 201:531-9. doi:10.1083/jcb.201211160
    • (2013) J Cell Biol , vol.201 , pp. 531-539
    • Takats, S.1    Nagy, P.2    Varga, A.3    Pircs, K.4    Karpati, M.5    Varga, K.6
  • 72
    • 77955708390 scopus 로고    scopus 로고
    • Overview of macroautophagy regulation in mammalian cells
    • Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res (2010) 20:748-62. doi:10.1038/cr.2010.82
    • (2010) Cell Res , vol.20 , pp. 748-762
    • Mehrpour, M.1    Esclatine, A.2    Beau, I.3    Codogno, P.4
  • 73
    • 84891014899 scopus 로고    scopus 로고
    • The return of the nucleus: transcriptional and epigenetic control of autophagy
    • Fullgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol (2014) 15:65-74. doi:10.1038/nrm3716
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 65-74
    • Fullgrabe, J.1    Klionsky, D.J.2    Joseph, B.3
  • 74
    • 84923562561 scopus 로고    scopus 로고
    • Metabolic control of autophagy
    • Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell (2014) 159:1263-76. doi:10.1016/j.cell.2014.11.006
    • (2014) Cell , vol.159 , pp. 1263-1276
    • Galluzzi, L.1    Pietrocola, F.2    Levine, B.3    Kroemer, G.4
  • 75
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell (2012) 149:274-93. doi:10.1016/j.cell.2012.03.017
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 76
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of ULK1
    • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of ULK1. Nat Cell Biol (2011) 13:132-41. doi:10.1038/ncb2152
    • (2011) Nat Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 77
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-ATG13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-ATG13-FIP200 complex required for autophagy. Mol Biol Cell (2009) 20:1981-91. doi:10.1091/mbc. E08-12-1248
    • (2009) Mol Biol Cell , vol.20 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3    Kishi, C.4    Takamura, A.5    Miura, Y.6
  • 78
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem (2009) 284:12297-305. doi:10.1074/jbc. M900573200
    • (2009) J Biol Chem , vol.284 , pp. 12297-12305
    • Ganley, I.G.1    Lam du, H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 79
    • 84876488191 scopus 로고    scopus 로고
    • mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol (2013) 15:406-16. doi:10.1038/ncb2708
    • (2013) Nat Cell Biol , vol.15 , pp. 406-416
    • Nazio, F.1    Strappazzon, F.2    Antonioli, M.3    Bielli, P.4    Cianfanelli, V.5    Bordi, M.6
  • 80
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
    • Yuan HX, Russell RC, Guan KL. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy (2013) 9:1983-95. doi:10.4161/auto.26058
    • (2013) Autophagy , vol.9 , pp. 1983-1995
    • Yuan, H.X.1    Russell, R.C.2    Guan, K.L.3
  • 81
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature (2010) 465:942-6. doi:10.1038/nature09076
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1    McPhee, C.K.2    Zheng, L.3    Mardones, G.A.4    Rong, Y.5    Peng, J.6
  • 82
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: a nutrient and energy sensor that maintains energy homeostasis
    • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol (2012) 13:251-62. doi:10.1038/nrm3311
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 83
    • 81155123729 scopus 로고    scopus 로고
    • The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
    • Bach M, Larance M, James DE, Ramm G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem J (2011) 440:283-91. doi:10.1042/BJ20101894
    • (2011) Biochem J , vol.440 , pp. 283-291
    • Bach, M.1    Larance, M.2    James, D.E.3    Ramm, G.4
  • 84
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (2011) 331:456-61. doi:10.1126/science.1196371
    • (2011) Science , vol.331 , pp. 456-461
    • Egan, D.F.1    Shackelford, D.B.2    Mihaylova, M.M.3    Gelino, S.4    Kohnz, R.A.5    Mair, W.6
  • 85
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell (2013) 152:290-303. doi:10.1016/j.cell.2012.12.016
    • (2013) Cell , vol.152 , pp. 290-303
    • Kim, J.1    Kim, Y.C.2    Fang, C.3    Russell, R.C.4    Kim, J.H.5    Fan, W.6
  • 87
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell (2003) 115:577-90. doi:10.1016/S0092-8674(03)00929-2
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 89
    • 84876812269 scopus 로고    scopus 로고
    • Signals from the lysosome: a control centre for cellular clearance and energy metabolism
    • Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol (2013) 14:283-96. doi:10.1038/nrm3565
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 283-296
    • Settembre, C.1    Fraldi, A.2    Medina, D.L.3    Ballabio, A.4
  • 90
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J (2012) 31:1095-108. doi:10.1038/emboj.2012.32
    • (2012) EMBO J , vol.31 , pp. 1095-1108
    • Settembre, C.1    Zoncu, R.2    Medina, D.L.3    Vetrini, F.4    Erdin, S.5    Erdin, S.6
  • 91
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal (2012) 5:ra42. doi:10.1126/scisignal.2002790
    • (2012) Sci Signal , vol.5
    • Roczniak-Ferguson, A.1    Petit, C.S.2    Froehlich, F.3    Qian, S.4    Ky, J.5    Angarola, B.6
  • 92
    • 84864874958 scopus 로고    scopus 로고
    • MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
    • Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy (2012) 8:903-14. doi:10.4161/auto.19653
    • (2012) Autophagy , vol.8 , pp. 903-914
    • Martina, J.A.1    Chen, Y.2    Gucek, M.3    Puertollano, R.4
  • 93
    • 84876090708 scopus 로고    scopus 로고
    • ZKSCAN3 is a master transcriptional repressor of autophagy
    • Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM, et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell (2013) 50:16-28. doi:10.1016/j.molcel.2013.01.024
    • (2013) Mol Cell , vol.50 , pp. 16-28
    • Chauhan, S.1    Goodwin, J.G.2    Chauhan, S.3    Manyam, G.4    Wang, J.5    Kamat, A.M.6
  • 94
    • 84864867876 scopus 로고    scopus 로고
    • Innate immune signalling at the intestinal epithelium in homeostasis and disease
    • Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep (2012) 13:684-98. doi:10.1038/embor.2012.96
    • (2012) EMBO Rep , vol.13 , pp. 684-698
    • Pott, J.1    Hornef, M.2
  • 95
    • 67651159312 scopus 로고    scopus 로고
    • Stem cells, self-renewal, and differentiation in the intestinal epithelium
    • van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol (2009) 71:241-60. doi:10.1146/annurev.physiol.010908.163145
    • (2009) Annu Rev Physiol , vol.71 , pp. 241-260
    • van der Flier, L.G.1    Clevers, H.2
  • 96
    • 79954915318 scopus 로고    scopus 로고
    • Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis
    • Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol (2011) 9:356-68. doi:10.1038/nrmicro2546
    • (2011) Nat Rev Microbiol , vol.9 , pp. 356-368
    • Bevins, C.L.1    Salzman, N.H.2
  • 97
    • 74049122536 scopus 로고    scopus 로고
    • Enteric defensins are essential regulators of intestinal microbial ecology
    • Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol (2010) 11:76-83. doi:10.1038/ni.1825
    • (2010) Nat Immunol , vol.11 , pp. 76-83
    • Salzman, N.H.1    Hung, K.2    Haribhai, D.3    Chu, H.4    Karlsson-Sjoberg, J.5    Amir, E.6
  • 98
    • 84862862332 scopus 로고    scopus 로고
    • Epithelial antimicrobial defence of the skin and intestine
    • Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol (2012) 12:503-16. doi:10.1038/nri3228
    • (2012) Nat Rev Immunol , vol.12 , pp. 503-516
    • Gallo, R.L.1    Hooper, L.V.2
  • 99
    • 78751644734 scopus 로고    scopus 로고
    • Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts
    • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature (2011) 469:415-8. doi:10.1038/nature09637
    • (2011) Nature , vol.469 , pp. 415-418
    • Sato, T.1    van Es, J.H.2    Snippert, H.J.3    Stange, D.E.4    Vries, R.G.5    van den Born, M.6
  • 100
    • 84886280379 scopus 로고    scopus 로고
    • Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
    • Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science (2013) 342:447-53. doi:10.1126/science.1237910
    • (2013) Science , vol.342 , pp. 447-453
    • Shan, M.1    Gentile, M.2    Yeiser, J.R.3    Walland, A.C.4    Bornstein, V.U.5    Chen, K.6
  • 101
    • 84863230541 scopus 로고    scopus 로고
    • Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine
    • McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature (2012) 483:345-9. doi:10.1038/nature10863
    • (2012) Nature , vol.483 , pp. 345-349
    • McDole, J.R.1    Wheeler, L.W.2    McDonald, K.G.3    Wang, B.4    Konjufca, V.5    Knoop, K.A.6
  • 102
    • 41549092745 scopus 로고    scopus 로고
    • Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis
    • Heazlewood C, Cook M, Eri R, Price G, Tauro S, Taupin D, et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med (2008) 5:e54. doi:10.1371/journal.pmed.0050054
    • (2008) PLoS Med , vol.5
    • Heazlewood, C.1    Cook, M.2    Eri, R.3    Price, G.4    Tauro, S.5    Taupin, D.6
  • 104
    • 83655191565 scopus 로고    scopus 로고
    • Epithelial barrier: an interface for the cross-communication between gut flora and immune system
    • Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev (2012) 245:147-63. doi:10.1111/j.1600-065X.2011.01078.x
    • (2012) Immunol Rev , vol.245 , pp. 147-163
    • Goto, Y.1    Kiyono, H.2
  • 105
    • 79957576718 scopus 로고    scopus 로고
    • NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
    • Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell (2011) 145:745-57. doi:10.1016/j.cell.2011.04.022
    • (2011) Cell , vol.145 , pp. 745-757
    • Elinav, E.1    Strowig, T.2    Kau, A.L.3    Henao-Mejia, J.4    Thaiss, C.A.5    Booth, C.J.6
  • 106
    • 84902588358 scopus 로고    scopus 로고
    • NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen
    • Nordlander S, Pott J, Maloy KJ. NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol (2014) 7:775-85. doi:10.1038/mi.2013.95
    • (2014) Mucosal Immunol , vol.7 , pp. 775-785
    • Nordlander, S.1    Pott, J.2    Maloy, K.J.3
  • 107
    • 84902588650 scopus 로고    scopus 로고
    • Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen
    • Song-Zhao GX, Srinivasan N, Pott J, Baban D, Frankel G, Maloy KJ. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal Immunol (2014) 7:763-74. doi:10.1038/mi.2013.94
    • (2014) Mucosal Immunol , vol.7 , pp. 763-774
    • Song-Zhao, G.X.1    Srinivasan, N.2    Pott, J.3    Baban, D.4    Frankel, G.5    Maloy, K.J.6
  • 108
    • 79251584066 scopus 로고    scopus 로고
    • Bifidobacteria can protect from enteropathogenic infection through production of acetate
    • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature (2011) 469:543-7. doi:10.1038/nature09646
    • (2011) Nature , vol.469 , pp. 543-547
    • Fukuda, S.1    Toh, H.2    Hase, K.3    Oshima, K.4    Nakanishi, Y.5    Yoshimura, K.6
  • 109
    • 84939570120 scopus 로고    scopus 로고
    • Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3 Treg cell function in the intestine
    • Harrison OJ, Srinivasan N, Pott J, Schiering C, Krausgruber T, Ilott NE, et al. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3 Treg cell function in the intestine. Mucosal Immunol (2015) 8(6):1226-36. doi:10.1038/mi.2015.13
    • (2015) Mucosal Immunol , vol.8 , Issue.6 , pp. 1226-1236
    • Harrison, O.J.1    Srinivasan, N.2    Pott, J.3    Schiering, C.4    Krausgruber, T.5    Ilott, N.E.6
  • 110
    • 84879107779 scopus 로고    scopus 로고
    • Intestinal epithelial autophagy is essential for host defense against invasive bacteria
    • Benjamin JL, Sumpter R Jr, Levine B, Hooper LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe (2013) 13:723-34. doi:10.1016/j.chom.2013.05.004
    • (2013) Cell Host Microbe , vol.13 , pp. 723-734
    • Benjamin, J.L.1    Sumpter, R.2    Levine, B.3    Hooper, L.V.4
  • 111
    • 84888223618 scopus 로고    scopus 로고
    • Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection
    • Conway KL, Kuballa P, Song JH, Patel KK, Castoreno AB, Yilmaz OH, et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology (2013) 145:1347-57. doi:10.1053/j.gastro.2013.08.035
    • (2013) Gastroenterology , vol.145 , pp. 1347-1357
    • Conway, K.L.1    Kuballa, P.2    Song, J.H.3    Patel, K.K.4    Castoreno, A.B.5    Yilmaz, O.H.6
  • 112
    • 73849121209 scopus 로고    scopus 로고
    • Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry
    • Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol (2010) 11:55-62. doi:10.1038/ni.1823
    • (2010) Nat Immunol , vol.11 , pp. 55-62
    • Travassos, L.H.1    Carneiro, L.A.2    Ramjeet, M.3    Hussey, S.4    Kim, Y.G.5    Magalhaes, J.G.6
  • 113
    • 84924873141 scopus 로고    scopus 로고
    • Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation
    • Nighot PK, Hu CA, Ma TY. Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation. J Biol Chem (2015) 290:7234-46. doi:10.1074/jbc. M114.597492
    • (2015) J Biol Chem , vol.290 , pp. 7234-7246
    • Nighot, P.K.1    Hu, C.A.2    Ma, T.Y.3
  • 114
    • 56249135538 scopus 로고    scopus 로고
    • A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
    • Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature (2008) 456:259-63. doi:10.1038/nature07416
    • (2008) Nature , vol.456 , pp. 259-263
    • Cadwell, K.1    Liu, J.Y.2    Brown, S.L.3    Miyoshi, H.4    Loh, J.5    Lennerz, J.K.6
  • 115
    • 77953904042 scopus 로고    scopus 로고
    • Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine
    • Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell (2010) 141:1135-45. doi:10.1016/j.cell.2010.05.009
    • (2010) Cell , vol.141 , pp. 1135-1145
    • Cadwell, K.1    Patel, K.K.2    Maloney, N.S.3    Liu, T.C.4    Ng, A.C.5    Storer, C.E.6
  • 117
    • 84902211251 scopus 로고    scopus 로고
    • Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn's disease
    • Deuring JJ, Fuhler GM, Konstantinov SR, Peppelenbosch MP, Kuipers EJ, de Haar C, et al. Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn's disease. Gut (2014) 63:1081-91. doi:10.1136/gutjnl-2012-303527
    • (2014) Gut , vol.63 , pp. 1081-1091
    • Deuring, J.J.1    Fuhler, G.M.2    Konstantinov, S.R.3    Peppelenbosch, M.P.4    Kuipers, E.J.5    de Haar, C.6
  • 118
    • 84890555657 scopus 로고    scopus 로고
    • Autophagy proteins control goblet cell function by potentiating reactive oxygen species production
    • Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, Cadwell K, et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J (2013) 32:3130-44. doi:10.1038/emboj.2013.233
    • (2013) EMBO J , vol.32 , pp. 3130-3144
    • Patel, K.K.1    Miyoshi, H.2    Beatty, W.L.3    Head, R.D.4    Malvin, N.P.5    Cadwell, K.6
  • 119
    • 44349167059 scopus 로고    scopus 로고
    • Dendritic cells in intestinal immune regulation
    • Coombes JL, Powrie F. Dendritic cells in intestinal immune regulation. Nat Rev Immunol (2008) 8:435-46. doi:10.1038/nri2335
    • (2008) Nat Rev Immunol , vol.8 , pp. 435-446
    • Coombes, J.L.1    Powrie, F.2
  • 120
    • 77952794397 scopus 로고    scopus 로고
    • Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria
    • Varol C, Zigmond E, Jung S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat Rev Immunol (2010) 10:415-26. doi:10.1038/nri2778
    • (2010) Nat Rev Immunol , vol.10 , pp. 415-426
    • Varol, C.1    Zigmond, E.2    Jung, S.3
  • 121
  • 122
    • 26844538936 scopus 로고    scopus 로고
    • Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing
    • Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Forster R, et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med (2005) 202:1063-73. doi:10.1084/jem.20051100
    • (2005) J Exp Med , vol.202 , pp. 1063-1073
    • Johansson-Lindbom, B.1    Svensson, M.2    Pabst, O.3    Palmqvist, C.4    Marquez, G.5    Forster, R.6
  • 123
    • 51049092467 scopus 로고    scopus 로고
    • Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans
    • Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med (2008) 205:2139-49. doi:10.1084/jem.20080414
    • (2008) J Exp Med , vol.205 , pp. 2139-2149
    • Jaensson, E.1    Uronen-Hansson, H.2    Pabst, O.3    Eksteen, B.4    Tian, J.5    Coombes, J.L.6
  • 124
    • 80054866424 scopus 로고    scopus 로고
    • Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8
    • Worthington JJ, Czajkowska BI, Melton AC, Travis MA. Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8. Gastroenterology (2011) 141:1802-12. doi:10.1053/j.gastro.2011.06.057
    • (2011) Gastroenterology , vol.141 , pp. 1802-1812
    • Worthington, J.J.1    Czajkowska, B.I.2    Melton, A.C.3    Travis, M.A.4
  • 125
    • 80054863891 scopus 로고    scopus 로고
    • Preferential expression of integrin alphavbeta8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells
    • Paidassi H, Acharya M, Zhang A, Mukhopadhyay S, Kwon M, Chow C, et al. Preferential expression of integrin alphavbeta8 promotes generation of regulatory T cells by mouse CD103+ dendritic cells. Gastroenterology (2011) 141:1813-20. doi:10.1053/j.gastro.2011.06.076
    • (2011) Gastroenterology , vol.141 , pp. 1813-1820
    • Paidassi, H.1    Acharya, M.2    Zhang, A.3    Mukhopadhyay, S.4    Kwon, M.5    Chow, C.6
  • 126
    • 45549099429 scopus 로고    scopus 로고
    • Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing toll-like receptor 5
    • Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing toll-like receptor 5. Nat Immunol (2008) 9:769-76. doi:10.1038/ni.1622
    • (2008) Nat Immunol , vol.9 , pp. 769-776
    • Uematsu, S.1    Fujimoto, K.2    Jang, M.H.3    Yang, B.G.4    Jung, Y.J.5    Nishiyama, M.6
  • 127
    • 84894107663 scopus 로고    scopus 로고
    • Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells
    • Mazzini E, Massimiliano L, Penna G, Rescigno M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity (2014) 40:248-61. doi:10.1016/j.immuni.2013.12.012
    • (2014) Immunity , vol.40 , pp. 248-261
    • Mazzini, E.1    Massimiliano, L.2    Penna, G.3    Rescigno, M.4
  • 128
    • 73949107838 scopus 로고    scopus 로고
    • Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions
    • Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med (2009) 206:3101-14. doi:10.1084/jem.20091925
    • (2009) J Exp Med , vol.206 , pp. 3101-3114
    • Schulz, O.1    Jaensson, E.2    Persson, E.K.3    Liu, X.4    Worbs, T.5    Agace, W.W.6
  • 129
    • 0035321325 scopus 로고    scopus 로고
    • Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
    • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol (2001) 2:361-7. doi:10.1038/86373
    • (2001) Nat Immunol , vol.2 , pp. 361-367
    • Rescigno, M.1    Urbano, M.2    Valzasina, B.3    Francolini, M.4    Rotta, G.5    Bonasio, R.6
  • 130
    • 12244297799 scopus 로고    scopus 로고
    • CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
    • Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science (2005) 307:254-8. doi:10.1126/science.1102901
    • (2005) Science , vol.307 , pp. 254-258
    • Niess, J.H.1    Brand, S.2    Gu, X.3    Landsman, L.4    Jung, S.5    McCormick, B.A.6
  • 131
    • 79951772860 scopus 로고    scopus 로고
    • Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria
    • Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity (2011) 34:237-46. doi:10.1016/j.immuni.2011.01.016
    • (2011) Immunity , vol.34 , pp. 237-246
    • Hadis, U.1    Wahl, B.2    Schulz, O.3    Hardtke-Wolenski, M.4    Schippers, A.5    Wagner, N.6
  • 132
    • 84870900504 scopus 로고    scopus 로고
    • Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells
    • Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, Friedlander G, et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity (2012) 37:1076-90. doi:10.1016/j.immuni.2012.08.026
    • (2012) Immunity , vol.37 , pp. 1076-1090
    • Zigmond, E.1    Varol, C.2    Farache, J.3    Elmaliah, E.4    Satpathy, A.T.5    Friedlander, G.6
  • 133
    • 77954131234 scopus 로고    scopus 로고
    • Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells
    • Laffont S, Siddiqui KR, Powrie F. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur J Immunol (2010) 40:1877-83. doi:10.1002/eji.200939957
    • (2010) Eur J Immunol , vol.40 , pp. 1877-1883
    • Laffont, S.1    Siddiqui, K.R.2    Powrie, F.3
  • 134
    • 84901410158 scopus 로고    scopus 로고
    • Intestinal macrophages and dendritic cells: what's the difference?
    • Cerovic V, Bain CC, Mowat AM, Milling SW. Intestinal macrophages and dendritic cells: what's the difference? Trends Immunol (2014) 35:270-7. doi:10.1016/j.it.2014.04.003
    • (2014) Trends Immunol , vol.35 , pp. 270-277
    • Cerovic, V.1    Bain, C.C.2    Mowat, A.M.3    Milling, S.W.4
  • 136
    • 84863151799 scopus 로고    scopus 로고
    • Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine
    • Shaw MH, Kamada N, Kim YG, Nunez G. Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med (2012) 209:251-8. doi:10.1084/jem.20111703
    • (2012) J Exp Med , vol.209 , pp. 251-258
    • Shaw, M.H.1    Kamada, N.2    Kim, Y.G.3    Nunez, G.4
  • 137
    • 76949091325 scopus 로고    scopus 로고
    • In vivo requirement for Atg5 in antigen presentation by dendritic cells
    • Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity (2010) 32:227-39. doi:10.1016/j.immuni.2009.12.006
    • (2010) Immunity , vol.32 , pp. 227-239
    • Lee, H.K.1    Mattei, L.M.2    Steinberg, B.E.3    Alberts, P.4    Lee, Y.H.5    Chervonsky, A.6
  • 138
    • 20344361954 scopus 로고    scopus 로고
    • Autophagy promotes MHC class II presentation of peptides from intracellular source proteins
    • Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, et al. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A (2005) 102:7922-7. doi:10.1073/pnas.0501190102
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 7922-7927
    • Dengjel, J.1    Schoor, O.2    Fischer, R.3    Reich, M.4    Kraus, M.5    Muller, M.6
  • 139
    • 33846224369 scopus 로고    scopus 로고
    • Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes
    • Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity (2007) 26:79-92. doi:10.1016/j.immuni.2006.10.018
    • (2007) Immunity , vol.26 , pp. 79-92
    • Schmid, D.1    Pypaert, M.2    Munz, C.3
  • 140
    • 12844275079 scopus 로고    scopus 로고
    • Endogenous MHC class II processing of a viral nuclear antigen after autophagy
    • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science (2005) 307:593-6. doi:10.1126/science.1104904
    • (2005) Science , vol.307 , pp. 593-596
    • Paludan, C.1    Schmid, D.2    Landthaler, M.3    Vockerodt, M.4    Kube, D.5    Tuschl, T.6
  • 141
    • 67349269904 scopus 로고    scopus 로고
    • Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection
    • English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol (2009) 10:480-7. doi:10.1038/ni.1720
    • (2009) Nat Immunol , vol.10 , pp. 480-487
    • English, L.1    Chemali, M.2    Duron, J.3    Rondeau, C.4    Laplante, A.5    Gingras, D.6
  • 142
    • 84864535321 scopus 로고    scopus 로고
    • Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway
    • Tey SK, Khanna R. Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway. Blood (2012) 120:994-1004. doi:10.1182/blood-2012-01-402404
    • (2012) Blood , vol.120 , pp. 994-1004
    • Tey, S.K.1    Khanna, R.2
  • 143
    • 77953858790 scopus 로고    scopus 로고
    • TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy
    • Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci Signal (2010) 3:ra42. doi:10.1126/scisignal.2000751
    • (2010) Sci Signal , vol.3
    • Shi, C.S.1    Kehrl, J.H.2
  • 144
    • 37549043217 scopus 로고    scopus 로고
    • Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
    • Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature (2007) 450:1253-7. doi:10.1038/nature06421
    • (2007) Nature , vol.450 , pp. 1253-1257
    • Sanjuan, M.A.1    Dillon, C.P.2    Tait, S.W.3    Moshiach, S.4    Dorsey, F.5    Connell, S.6
  • 146
    • 34447643958 scopus 로고    scopus 로고
    • Toll-like receptor 4 is a sensor for autophagy associated with innate immunity
    • Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity (2007) 27:135-44. doi:10.1016/j.immuni.2007.05.022
    • (2007) Immunity , vol.27 , pp. 135-144
    • Xu, Y.1    Jagannath, C.2    Liu, X.D.3    Sharafkhaneh, A.4    Kolodziejska, K.E.5    Eissa, N.T.6
  • 147
    • 33947134377 scopus 로고    scopus 로고
    • Autophagy-dependent viral recognition by plasmacytoid dendritic cells
    • Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science (2007) 315:1398-401. doi:10.1126/science.1136880
    • (2007) Science , vol.315 , pp. 1398-1401
    • Lee, H.K.1    Lund, J.M.2    Ramanathan, B.3    Mizushima, N.4    Iwasaki, A.5
  • 148
    • 73849151394 scopus 로고    scopus 로고
    • NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation
    • Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med (2010) 16:90-7. doi:10.1038/nm.2069
    • (2010) Nat Med , vol.16 , pp. 90-97
    • Cooney, R.1    Baker, J.2    Brain, O.3    Danis, B.4    Pichulik, T.5    Allan, P.6
  • 149
    • 84901025110 scopus 로고    scopus 로고
    • The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling
    • Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ, et al. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe (2014) 15:623-35. doi:10.1016/j.chom.2014.04.001
    • (2014) Cell Host Microbe , vol.15 , pp. 623-635
    • Irving, A.T.1    Mimuro, H.2    Kufer, T.A.3    Lo, C.4    Wheeler, R.5    Turner, L.J.6
  • 150
    • 84857071710 scopus 로고    scopus 로고
    • Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature (2012) 482:414-8. doi:10.1038/nature10744
    • (2012) Nature , vol.482 , pp. 414-418
    • Thurston, T.L.1    Wandel, M.P.2    von Muhlinen, N.3    Foeglein, A.4    Randow, F.5
  • 151
    • 84892678766 scopus 로고    scopus 로고
    • Bacteria-autophagy interplay: a battle for survival
    • Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol (2014) 12:101-14. doi:10.1038/nrmicro3160
    • (2014) Nat Rev Microbiol , vol.12 , pp. 101-114
    • Huang, J.1    Brumell, J.H.2
  • 152
    • 84856010816 scopus 로고    scopus 로고
    • Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle
    • Starr T, Child R, Wehrly TD, Hansen B, Hwang S, Lopez-Otin C, et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe (2012) 11:33-45. doi:10.1016/j.chom.2011.12.002
    • (2012) Cell Host Microbe , vol.11 , pp. 33-45
    • Starr, T.1    Child, R.2    Wehrly, T.D.3    Hansen, B.4    Hwang, S.5    Lopez-Otin, C.6
  • 153
    • 84873695476 scopus 로고    scopus 로고
    • Autophagy and intestinal homeostasis
    • Patel KK, Stappenbeck TS. Autophagy and intestinal homeostasis. Annu Rev Physiol (2013) 75:241-62. doi:10.1146/annurev-physiol-030212-183658
    • (2013) Annu Rev Physiol , vol.75 , pp. 241-262
    • Patel, K.K.1    Stappenbeck, T.S.2
  • 154
    • 84939787854 scopus 로고    scopus 로고
    • Role of autophagy in the maintenance of intestinal homeostasis
    • Baxt LA, Xavier RJ. Role of autophagy in the maintenance of intestinal homeostasis. Gastroenterology (2015) 149:553-62. doi:10.1053/j.gastro.2015.06.046
    • (2015) Gastroenterology , vol.149 , pp. 553-562
    • Baxt, L.A.1    Xavier, R.J.2
  • 155
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature (2008) 456:264-8. doi:10.1038/nature07383
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3    Uematsu, S.4    Yang, B.G.5    Satoh, T.6
  • 156
    • 80051550866 scopus 로고    scopus 로고
    • Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2
    • Plantinga TS, Crisan TO, Oosting M, van de Veerdonk FL, de Jong DJ, Philpott DJ, et al. Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut (2011) 60:1229-35. doi:10.1136/gut.2010.228908
    • (2011) Gut , vol.60 , pp. 1229-1235
    • Plantinga, T.S.1    Crisan, T.O.2    Oosting, M.3    van de Veerdonk, F.L.4    de Jong, D.J.5    Philpott, D.J.6
  • 157
    • 84867284676 scopus 로고    scopus 로고
    • Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion
    • Peral de Castro C, Jones SA, Ni Cheallaigh C, Hearnden CA, Williams L, Winter J, et al. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion. J Immunol (2012) 189:4144-53. doi:10.4049/jimmunol.1201946
    • (2012) J Immunol , vol.189 , pp. 4144-4153
    • Peral de Castro, C.1    Jones, S.A.2    Ni Cheallaigh, C.3    Hearnden, C.A.4    Williams, L.5    Winter, J.6
  • 158
    • 79951642032 scopus 로고    scopus 로고
    • Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
    • Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol (2011) 12:222-30. doi:10.1038/ni.1980
    • (2011) Nat Immunol , vol.12 , pp. 222-230
    • Nakahira, K.1    Haspel, J.A.2    Rathinam, V.A.3    Lee, S.J.4    Dolinay, T.5    Lam, H.C.6
  • 159
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature (2011) 469:221-5. doi:10.1038/nature09663
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1    Yazdi, A.S.2    Menu, P.3    Tschopp, J.4
  • 160
    • 84876685141 scopus 로고    scopus 로고
    • Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection
    • Lupfer C, Thomas PG, Anand PK, Vogel P, Milasta S, Martinez J, et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat Immunol (2013) 14:480-8. doi:10.1038/ni.2563
    • (2013) Nat Immunol , vol.14 , pp. 480-488
    • Lupfer, C.1    Thomas, P.G.2    Anand, P.K.3    Vogel, P.4    Milasta, S.5    Martinez, J.6
  • 161
    • 79953176280 scopus 로고    scopus 로고
    • Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation
    • Harris J, Hartman M, Roche C, Zeng SG, O'Shea A, Sharp FA, et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem (2011) 286:9587-97. doi:10.1074/jbc. M110.202911
    • (2011) J Biol Chem , vol.286 , pp. 9587-9597
    • Harris, J.1    Hartman, M.2    Roche, C.3    Zeng, S.G.4    O'Shea, A.5    Sharp, F.A.6
  • 162
    • 84959420149 scopus 로고    scopus 로고
    • NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria
    • Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, et al. NF-kappaB restricts inflammasome activation via elimination of damaged mitochondria. Cell (2016) 164:896-910. doi:10.1016/j.cell.2015.12.057
    • (2016) Cell , vol.164 , pp. 896-910
    • Zhong, Z.1    Umemura, A.2    Sanchez-Lopez, E.3    Liang, S.4    Shalapour, S.5    Wong, J.6
  • 163
    • 84892598603 scopus 로고    scopus 로고
    • Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation
    • Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J, Maddur MS, et al. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science (2014) 343:313-7. doi:10.1126/science.1246829
    • (2014) Science , vol.343 , pp. 313-317
    • Ravindran, R.1    Khan, N.2    Nakaya, H.I.3    Li, S.4    Loebbermann, J.5    Maddur, M.S.6
  • 164
    • 84961721972 scopus 로고    scopus 로고
    • The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation
    • Ravindran R, Loebbermann J, Nakaya HI, Khan N, Ma H, Gama L, et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature (2016) 531(7595):523-7. doi:10.1038/nature17186
    • (2016) Nature , vol.531 , Issue.7595 , pp. 523-527
    • Ravindran, R.1    Loebbermann, J.2    Nakaya, H.I.3    Khan, N.4    Ma, H.5    Gama, L.6
  • 165
    • 82455210868 scopus 로고    scopus 로고
    • Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta
    • Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J (2011) 30:4701-11. doi:10.1038/emboj.2011.398
    • (2011) EMBO J , vol.30 , pp. 4701-4711
    • Dupont, N.1    Jiang, S.2    Pilli, M.3    Ornatowski, W.4    Bhattacharya, D.5    Deretic, V.6
  • 166
    • 84908053092 scopus 로고    scopus 로고
    • The microtubule-associated protein EB1 links AIM2 inflammasomes with autophagy-dependent secretion
    • Wang LJ, Huang HY, Huang MP, Liou W, Chang YT, Wu CC, et al. The microtubule-associated protein EB1 links AIM2 inflammasomes with autophagy-dependent secretion. J Biol Chem (2014) 289:29322-33. doi:10.1074/jbc. M114.559153
    • (2014) J Biol Chem , vol.289 , pp. 29322-29333
    • Wang, L.J.1    Huang, H.Y.2    Huang, M.P.3    Liou, W.4    Chang, Y.T.5    Wu, C.C.6
  • 167
    • 84955292894 scopus 로고    scopus 로고
    • Translocation of interleukin-1 beta into a vesicle intermediate in autophagy-mediated secretion
    • Zhang M, Kenny SJ, Ge L, Xu K, Schekman R. Translocation of interleukin-1 beta into a vesicle intermediate in autophagy-mediated secretion. Elife (2015) 4:e11205. doi:10.7554/eLife.11205
    • (2015) Elife , vol.4
    • Zhang, M.1    Kenny, S.J.2    Ge, L.3    Xu, K.4    Schekman, R.5
  • 168
    • 62449110463 scopus 로고    scopus 로고
    • Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling
    • Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A (2009) 106:2770-5. doi:10.1073/pnas.0807694106
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 2770-2775
    • Tal, M.C.1    Sasai, M.2    Lee, H.K.3    Yordy, B.4    Shadel, G.S.5    Iwasaki, A.6
  • 169
    • 84863005844 scopus 로고    scopus 로고
    • The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy
    • Lei Y, Wen HT, Yu YB, Taxman DJ, Zhang L, Widman DG, et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity (2012) 36:933-46. doi:10.1016/j.immuni.2012.03.025
    • (2012) Immunity , vol.36 , pp. 933-946
    • Lei, Y.1    Wen, H.T.2    Yu, Y.B.3    Taxman, D.J.4    Zhang, L.5    Widman, D.G.6
  • 170
    • 84929635702 scopus 로고    scopus 로고
    • Autophagy enhances NFkappaB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity
    • Kanayama M, Inoue M, Danzaki K, Hammer G, He YW, Shinohara ML. Autophagy enhances NFkappaB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun (2015) 6:5779. doi:10.1038/ncomms6779
    • (2015) Nat Commun , vol.6 , pp. 5779
    • Kanayama, M.1    Inoue, M.2    Danzaki, K.3    Hammer, G.4    He, Y.W.5    Shinohara, M.L.6
  • 171
    • 79151474603 scopus 로고    scopus 로고
    • Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation
    • Fujishima Y, Nishiumi S, Masuda A, Inoue J, Nguyen NM, Irino Y, et al. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation. Arch Biochem Biophys (2011) 506:223-35. doi:10.1016/j.abb.2010.12.009
    • (2011) Arch Biochem Biophys , vol.506 , pp. 223-235
    • Fujishima, Y.1    Nishiumi, S.2    Masuda, A.3    Inoue, J.4    Nguyen, N.M.5    Irino, Y.6
  • 172
    • 84966697257 scopus 로고    scopus 로고
    • Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages
    • Lee JP, Foote A, Fan H, de Castro CP, Lang T, Jones SA, et al. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages. Autophagy (2016) 12:907-16. doi:10.1080/15548627.2016.1164358
    • (2016) Autophagy , vol.12 , pp. 907-916
    • Lee, J.P.1    Foote, A.2    Fan, H.3    de Castro, C.P.4    Lang, T.5    Jones, S.A.6
  • 173
    • 84892579972 scopus 로고    scopus 로고
    • Macrophage migration inhibitory factor polymorphism and the risk of ulcerative colitis and Crohn's disease in Asian and European populations: a meta-analysis
    • Hao NB, He YF, Luo G, Yong X, Zhang Y, Yang SM. Macrophage migration inhibitory factor polymorphism and the risk of ulcerative colitis and Crohn's disease in Asian and European populations: a meta-analysis. BMJ Open (2013) 3:e003729. doi:10.1136/bmjopen-2013-003729
    • (2013) BMJ Open , vol.3
    • Hao, N.B.1    He, Y.F.2    Luo, G.3    Yong, X.4    Zhang, Y.5    Yang, S.M.6
  • 174
    • 84938316581 scopus 로고    scopus 로고
    • Meta-analysis of macrophage migration inhibitory factor (MIF) gene-173G/C polymorphism and inflammatory bowel disease (IBD) risk
    • Yang J, Li Y, Zhang X. Meta-analysis of macrophage migration inhibitory factor (MIF) gene-173G/C polymorphism and inflammatory bowel disease (IBD) risk. Int J Clin Exp Med (2015) 8:9570-4.
    • (2015) Int J Clin Exp Med , vol.8 , pp. 9570-9574
    • Yang, J.1    Li, Y.2    Zhang, X.3
  • 175
    • 84883741301 scopus 로고    scopus 로고
    • Microbial colonization influences early B-lineage development in the gut lamina propria
    • Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature (2013) 501:112-5. doi:10.1038/nature12496
    • (2013) Nature , vol.501 , pp. 112-115
    • Wesemann, D.R.1    Portuguese, A.J.2    Meyers, R.M.3    Gallagher, M.P.4    Cluff-Jones, K.5    Magee, J.M.6
  • 176
    • 84855796468 scopus 로고    scopus 로고
    • Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut
    • Fritz JH, Rojas OL, Simard N, McCarthy DD, Hapfelmeier S, Rubino S, et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature (2012) 481:199-203. doi:10.1038/nature10698
    • (2012) Nature , vol.481 , pp. 199-203
    • Fritz, J.H.1    Rojas, O.L.2    Simard, N.3    McCarthy, D.D.4    Hapfelmeier, S.5    Rubino, S.6
  • 177
    • 70450064812 scopus 로고    scopus 로고
    • Mucosal immunity: induction, dissemination, and effector functions
    • Brandtzaeg P. Mucosal immunity: induction, dissemination, and effector functions. Scand J Immunol (2009) 70:505-15. doi:10.1111/j.1365-3083.2009.02319.x
    • (2009) Scand J Immunol , vol.70 , pp. 505-515
    • Brandtzaeg, P.1
  • 178
    • 83655203111 scopus 로고    scopus 로고
    • The habitat, double life, citizenship, and forgetfulness of IgA
    • Macpherson AJ, Geuking MB, Slack E, Hapfelmeier S, McCoy KD. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol Rev (2011) 245:132-46. doi:10.1111/j.1600-065X.2011.01072.x
    • (2011) Immunol Rev , vol.245 , pp. 132-146
    • Macpherson, A.J.1    Geuking, M.B.2    Slack, E.3    Hapfelmeier, S.4    McCoy, K.D.5
  • 179
    • 84870252354 scopus 로고    scopus 로고
    • New concepts in the generation and functions of IgA
    • Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol (2012) 12:821-32. doi:10.1038/nri3322
    • (2012) Nat Rev Immunol , vol.12 , pp. 821-832
    • Pabst, O.1
  • 180
    • 84907300008 scopus 로고    scopus 로고
    • Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease
    • Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell (2014) 158:1000-10. doi:10.1016/j.cell.2014.08.006
    • (2014) Cell , vol.158 , pp. 1000-1010
    • Palm, N.W.1    de Zoete, M.R.2    Cullen, T.W.3    Barry, N.A.4    Stefanowski, J.5    Hao, L.6
  • 181
    • 84941659588 scopus 로고    scopus 로고
    • Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A
    • Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M, McDonald BD, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity (2015) 43:541-53. doi:10.1016/j.immuni.2015.08.007
    • (2015) Immunity , vol.43 , pp. 541-553
    • Bunker, J.J.1    Flynn, T.M.2    Koval, J.C.3    Shaw, D.G.4    Meisel, M.5    McDonald, B.D.6
  • 182
    • 77954051526 scopus 로고    scopus 로고
    • Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses
    • Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science (2010) 328:1705-9. doi:10.1126/science.1188454
    • (2010) Science , vol.328 , pp. 1705-1709
    • Hapfelmeier, S.1    Lawson, M.A.2    Slack, E.3    Kirundi, J.K.4    Stoel, M.5    Heikenwalder, M.6
  • 183
    • 84937814800 scopus 로고    scopus 로고
    • Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota
    • Lindner C, Thomsen I, Wahl B, Ugur M, Sethi MK, Friedrichsen M, et al. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat Immunol (2015) 16:880-8. doi:10.1038/ni.3213
    • (2015) Nat Immunol , vol.16 , pp. 880-888
    • Lindner, C.1    Thomsen, I.2    Wahl, B.3    Ugur, M.4    Sethi, M.K.5    Friedrichsen, M.6
  • 184
    • 2942516894 scopus 로고    scopus 로고
    • Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells
    • Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity (2004) 20:769-83. doi:10.1016/j.immuni.2004.05.007
    • (2004) Immunity , vol.20 , pp. 769-783
    • Yoshida, M.1    Claypool, S.M.2    Wagner, J.S.3    Mizoguchi, E.4    Mizoguchi, A.5    Roopenian, D.C.6
  • 185
    • 84929094012 scopus 로고    scopus 로고
    • FcRn: the architect behind the immune and nonimmune functions of IgG and albumin
    • Pyzik M, Rath T, Lencer WI, Baker K, Blumberg RS. FcRn: the architect behind the immune and nonimmune functions of IgG and albumin. J Immunol (2015) 194:4595-603. doi:10.4049/jimmunol.1403014
    • (2015) J Immunol , vol.194 , pp. 4595-4603
    • Pyzik, M.1    Rath, T.2    Lencer, W.I.3    Baker, K.4    Blumberg, R.S.5
  • 186
    • 20044374046 scopus 로고    scopus 로고
    • Epsilon germ-line and IL-4 transcripts are expressed in human intestinal mucosa and enhanced in patients with food allergy
    • Coeffier M, Lorentz A, Manns MP, BischoffSC. Epsilon germ-line and IL-4 transcripts are expressed in human intestinal mucosa and enhanced in patients with food allergy. Allergy (2005) 60:822-7. doi:10.1111/j.1398-9995.2005.00782.x
    • (2005) Allergy , vol.60 , pp. 822-827
    • Coeffier, M.1    Lorentz, A.2    Manns, M.P.3    Bischoff, S.C.4
  • 187
    • 40049101678 scopus 로고    scopus 로고
    • IgE in allergy and asthma today
    • Gould HJ, Sutton BJ. IgE in allergy and asthma today. Nat Rev Immunol (2008) 8:205-17. doi:10.1038/nri2273
    • (2008) Nat Rev Immunol , vol.8 , pp. 205-217
    • Gould, H.J.1    Sutton, B.J.2
  • 189
    • 84881024518 scopus 로고    scopus 로고
    • Food allergy: an enigmatic epidemic
    • Berin MC, Sampson HA. Food allergy: an enigmatic epidemic. Trends Immunol (2013) 34:390-7. doi:10.1016/j.it.2013.04.003
    • (2013) Trends Immunol , vol.34 , pp. 390-397
    • Berin, M.C.1    Sampson, H.A.2
  • 190
    • 0033802220 scopus 로고    scopus 로고
    • Enhanced intestinal transepithelial antigen transport in allergic rats is mediated by IgE and CD23 (FcepsilonRII)
    • Yang PC, Berin MC, Yu LC, Conrad DH, Perdue MH. Enhanced intestinal transepithelial antigen transport in allergic rats is mediated by IgE and CD23 (FcepsilonRII). J Clin Invest (2000) 106:879-86. doi:10.1172/JCI9258
    • (2000) J Clin Invest , vol.106 , pp. 879-886
    • Yang, P.C.1    Berin, M.C.2    Yu, L.C.3    Conrad, D.H.4    Perdue, M.H.5
  • 192
    • 77953771741 scopus 로고    scopus 로고
    • Beyond IgA: the mucosal immunoglobulin alphabet
    • Baker K, Lencer WI, Blumberg RS. Beyond IgA: the mucosal immunoglobulin alphabet. Mucosal Immunol (2010) 3:324-5. doi:10.1038/mi.2010.15
    • (2010) Mucosal Immunol , vol.3 , pp. 324-325
    • Baker, K.1    Lencer, W.I.2    Blumberg, R.S.3
  • 193
    • 0030292765 scopus 로고    scopus 로고
    • Intestinal transport and catabolism of IgE: a major blood-independent pathway of IgE dissemination during a Trichinella spiralis infection of rats
    • Negrao-Correa D, Adams LS, Bell RG. Intestinal transport and catabolism of IgE: a major blood-independent pathway of IgE dissemination during a Trichinella spiralis infection of rats. J Immunol (1996) 157:4037-44.
    • (1996) J Immunol , vol.157 , pp. 4037-4044
    • Negrao-Correa, D.1    Adams, L.S.2    Bell, R.G.3
  • 194
    • 84904428409 scopus 로고    scopus 로고
    • Immunoglobulin E signal inhibition during allergen ingestion leads to reversal of established food allergy and induction of regulatory T cells
    • Burton OT, Noval Rivas M, Zhou JS, Logsdon SL, Darling AR, Koleoglou KJ, et al. Immunoglobulin E signal inhibition during allergen ingestion leads to reversal of established food allergy and induction of regulatory T cells. Immunity (2014) 41:141-51. doi:10.1016/j.immuni.2014.05.017
    • (2014) Immunity , vol.41 , pp. 141-151
    • Burton, O.T.1    Noval Rivas, M.2    Zhou, J.S.3    Logsdon, S.L.4    Darling, A.R.5    Koleoglou, K.J.6
  • 195
    • 84874097064 scopus 로고    scopus 로고
    • Plasma cells require autophagy for sustainable immunoglobulin production
    • Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F, Raimondi A, et al. Plasma cells require autophagy for sustainable immunoglobulin production. Nat Immunol (2013) 14:298-305. doi:10.1038/ni.2524
    • (2013) Nat Immunol , vol.14 , pp. 298-305
    • Pengo, N.1    Scolari, M.2    Oliva, L.3    Milan, E.4    Mainoldi, F.5    Raimondi, A.6
  • 197
    • 84902954600 scopus 로고    scopus 로고
    • Essential role for autophagy in the maintenance of immunological memory against influenza infection
    • Chen M, Hong MJ, Sun H, Wang L, Shi X, Gilbert BE, et al. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med (2014) 20:503-10. doi:10.1038/nm.3521
    • (2014) Nat Med , vol.20 , pp. 503-510
    • Chen, M.1    Hong, M.J.2    Sun, H.3    Wang, L.4    Shi, X.5    Gilbert, B.E.6
  • 198
    • 84924546608 scopus 로고    scopus 로고
    • Requirement for autophagy in the long-term persistence but not initial formation of memory B cells
    • Chen M, Kodali S, Jang A, Kuai L, Wang J. Requirement for autophagy in the long-term persistence but not initial formation of memory B cells. J Immunol (2015) 194:2607-15. doi:10.4049/jimmunol.1403001
    • (2015) J Immunol , vol.194 , pp. 2607-2615
    • Chen, M.1    Kodali, S.2    Jang, A.3    Kuai, L.4    Wang, J.5
  • 199
    • 84911103917 scopus 로고    scopus 로고
    • Autophagy is essential for effector CD8(+) T cell survival and memory formation
    • Xu X, Araki K, Li S, Han JH, Ye L, Tan WG, et al. Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol (2014) 15:1152-61. doi:10.1038/ni.3025
    • (2014) Nat Immunol , vol.15 , pp. 1152-1161
    • Xu, X.1    Araki, K.2    Li, S.3    Han, J.H.4    Ye, L.5    Tan, W.G.6
  • 200
    • 84928489717 scopus 로고    scopus 로고
    • Autophagy is a critical regulator of memory CD8(+) T cell formation
    • Puleston DJ, Zhang H, Powell TJ, Lipina E, Sims S, Panse I, et al. Autophagy is a critical regulator of memory CD8(+) T cell formation. Elife (2014) 3:e03706. doi:10.7554/eLife.03706
    • (2014) Elife , vol.3
    • Puleston, D.J.1    Zhang, H.2    Powell, T.J.3    Lipina, E.4    Sims, S.5    Panse, I.6
  • 201
    • 80052331485 scopus 로고    scopus 로고
    • Mechanisms of T cell development and transformation
    • Koch U, Radtke F. Mechanisms of T cell development and transformation. Annu Rev Cell Dev Biol (2011) 27:539-62. doi:10.1146/annurev-cellbio-092910-154008
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 539-562
    • Koch, U.1    Radtke, F.2
  • 202
    • 84859388345 scopus 로고    scopus 로고
    • Selection of self-reactive T cells in the thymus
    • Stritesky GL, Jameson SC, Hogquist KA. Selection of self-reactive T cells in the thymus. Annu Rev Immunol (2012) 30:95-114. doi:10.1146/annurev-immunol-020711-075035
    • (2012) Annu Rev Immunol , vol.30 , pp. 95-114
    • Stritesky, G.L.1    Jameson, S.C.2    Hogquist, K.A.3
  • 203
    • 0035171545 scopus 로고    scopus 로고
    • Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self
    • Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol (2001) 2:1032-9. doi:10.1038/ni723
    • (2001) Nat Immunol , vol.2 , pp. 1032-1039
    • Derbinski, J.1    Schulte, A.2    Kyewski, B.3    Klein, L.4
  • 204
    • 52149099867 scopus 로고    scopus 로고
    • Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
    • Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature (2008) 455:396-400. doi:10.1038/nature07208
    • (2008) Nature , vol.455 , pp. 396-400
    • Nedjic, J.1    Aichinger, M.2    Emmerich, J.3    Mizushima, N.4    Klein, L.5
  • 205
    • 84874565064 scopus 로고    scopus 로고
    • Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance
    • Aichinger M, Wu C, Nedjic J, Klein L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med (2013) 210:287-300. doi:10.1084/jem.20122149
    • (2013) J Exp Med , vol.210 , pp. 287-300
    • Aichinger, M.1    Wu, C.2    Nedjic, J.3    Klein, L.4
  • 206
    • 84862490479 scopus 로고    scopus 로고
    • Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model
    • Sukseree S, Mildner M, Rossiter H, Pammer J, Zhang CF, Watanapokasin R, et al. Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLoS One (2012) 7:e38933. doi:10.1371/journal.pone.0038933
    • (2012) PLoS One , vol.7
    • Sukseree, S.1    Mildner, M.2    Rossiter, H.3    Pammer, J.4    Zhang, C.F.5    Watanapokasin, R.6
  • 207
    • 2942687607 scopus 로고    scopus 로고
    • Nondeletional pathways for the development of autoreactive thymocytes
    • Bendelac A. Nondeletional pathways for the development of autoreactive thymocytes. Nat Immunol (2004) 5:557-8. doi:10.1038/ni0604-557
    • (2004) Nat Immunol , vol.5 , pp. 557-558
    • Bendelac, A.1
  • 208
    • 84921786777 scopus 로고    scopus 로고
    • Regional specialization within the intestinal immune system
    • Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol (2014) 14:667-85. doi:10.1038/nri3738
    • (2014) Nat Rev Immunol , vol.14 , pp. 667-685
    • Mowat, A.M.1    Agace, W.W.2
  • 209
    • 79959664629 scopus 로고    scopus 로고
    • The light and dark sides of intestinal intraepithelial lymphocytes
    • Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol (2011) 11:445-56. doi:10.1038/nri3007
    • (2011) Nat Rev Immunol , vol.11 , pp. 445-456
    • Cheroutre, H.1    Lambolez, F.2    Mucida, D.3
  • 210
    • 68649126866 scopus 로고    scopus 로고
    • Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals
    • Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity (2009) 31:321-30. doi:10.1016/j.immuni.2009.06.020
    • (2009) Immunity , vol.31 , pp. 321-330
    • Martin, B.1    Hirota, K.2    Cua, D.J.3    Stockinger, B.4    Veldhoen, M.5
  • 211
    • 84873616370 scopus 로고    scopus 로고
    • CD4(+) T-cell subsets in intestinal inflammation
    • Shale M, Schiering C, Powrie F. CD4(+) T-cell subsets in intestinal inflammation. Immunol Rev (2013) 252:164-82. doi:10.1111/imr.12039
    • (2013) Immunol Rev , vol.252 , pp. 164-182
    • Shale, M.1    Schiering, C.2    Powrie, F.3
  • 212
    • 0025331445 scopus 로고
    • Gamma-delta-T-cells in the human intestine express surface-markers of activation and are preferentially located in the epithelium
    • Ullrich R, Schieferdecker HL, Ziegler K, Riecken EO, Zeitz M. Gamma-delta-T-cells in the human intestine express surface-markers of activation and are preferentially located in the epithelium. Cell Immunol (1990) 128:619-27. doi:10.1016/0008-8749(90)90053-T
    • (1990) Cell Immunol , vol.128 , pp. 619-627
    • Ullrich, R.1    Schieferdecker, H.L.2    Ziegler, K.3    Riecken, E.O.4    Zeitz, M.5
  • 213
    • 84867896903 scopus 로고    scopus 로고
    • Transcriptional control of effector and memory CD8+ T cell differentiation
    • Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol (2012) 12:749-61. doi:10.1038/nri3307
    • (2012) Nat Rev Immunol , vol.12 , pp. 749-761
    • Kaech, S.M.1    Cui, W.2
  • 214
    • 84918836018 scopus 로고    scopus 로고
    • Mucosal-associated invariant T-cells: new players in anti-bacterial immunity
    • Ussher JE, Klenerman P, Willberg CB. Mucosal-associated invariant T-cells: new players in anti-bacterial immunity. Front Immunol (2014) 5:450. doi:10.3389/fimmu.2014.00450
    • (2014) Front Immunol , vol.5 , pp. 450
    • Ussher, J.E.1    Klenerman, P.2    Willberg, C.B.3
  • 215
    • 45449103839 scopus 로고    scopus 로고
    • CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system
    • Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr Opin Immunol (2008) 20:358-68. doi:10.1016/j.coi.2008.03.018
    • (2008) Curr Opin Immunol , vol.20 , pp. 358-368
    • Matsuda, J.L.1    Mallevaey, T.2    Scott-Browne, J.3    Gapin, L.4
  • 216
    • 76249125057 scopus 로고    scopus 로고
    • Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells
    • Duan J, Chung H, Troy E, Kasper DL. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe (2010) 7:140-50. doi:10.1016/j.chom.2010.01.005
    • (2010) Cell Host Microbe , vol.7 , pp. 140-150
    • Duan, J.1    Chung, H.2    Troy, E.3    Kasper, D.L.4
  • 217
    • 79957701773 scopus 로고    scopus 로고
    • Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface
    • Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, Benjamin JL, et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci U S A (2011) 108:8743-8. doi:10.1073/pnas.1019574108
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 8743-8748
    • Ismail, A.S.1    Severson, K.M.2    Vaishnava, S.3    Behrendt, C.L.4    Yu, X.5    Benjamin, J.L.6
  • 218
    • 84860216630 scopus 로고    scopus 로고
    • Microbial exposure during early life has persistent effects on natural killer T cell function
    • Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science (2012) 336:489-93. doi:10.1126/science.1219328
    • (2012) Science , vol.336 , pp. 489-493
    • Olszak, T.1    An, D.2    Zeissig, S.3    Vera, M.P.4    Richter, J.5    Franke, A.6
  • 219
    • 84892774558 scopus 로고    scopus 로고
    • Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells
    • An D, Oh SF, Olszak T, Neves JF, Avci FY, Erturk-Hasdemir D, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell (2014) 156:123-33. doi:10.1016/j.cell.2013.11.042
    • (2014) Cell , vol.156 , pp. 123-133
    • An, D.1    Oh, S.F.2    Olszak, T.3    Neves, J.F.4    Avci, F.Y.5    Erturk-Hasdemir, D.6
  • 220
    • 84875494365 scopus 로고    scopus 로고
    • Metabolic regulation of T lymphocytes
    • MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol (2013) 31:259-83. doi:10.1146/annurev-immunol-032712-095956
    • (2013) Annu Rev Immunol , vol.31 , pp. 259-283
    • MacIver, N.J.1    Michalek, R.D.2    Rathmell, J.C.3
  • 221
    • 84866562625 scopus 로고    scopus 로고
    • Metabolic checkpoints in activated T cells
    • Wang R, Green DR. Metabolic checkpoints in activated T cells. Nat Immunol (2012) 13:907-15. doi:10.1038/ni.2386
    • (2012) Nat Immunol , vol.13 , pp. 907-915
    • Wang, R.1    Green, D.R.2
  • 222
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity (2011) 35:871-82. doi:10.1016/j.immuni.2011.09.021
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.1    Dillon, C.P.2    Shi, L.Z.3    Milasta, S.4    Carter, R.5    Finkelstein, D.6
  • 223
    • 81055126129 scopus 로고    scopus 로고
    • Estrogen-related receptor-alpha is a metabolic regulator of effector T-cell activation and differentiation
    • Michalek RD, Gerriets VA, Nichols AG, Inoue M, Kazmin D, Chang CY, et al. Estrogen-related receptor-alpha is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci U S A (2011) 108:18348-53. doi:10.1073/pnas.1108856108
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 18348-18353
    • Michalek, R.D.1    Gerriets, V.A.2    Nichols, A.G.3    Inoue, M.4    Kazmin, D.5    Chang, C.Y.6
  • 224
    • 84947591002 scopus 로고    scopus 로고
    • T cell metabolism drives immunity
    • Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med (2015) 212(9):1345-60. doi:10.1084/jem.20151159
    • (2015) J Exp Med , vol.212 , Issue.9 , pp. 1345-1360
    • Buck, M.D.1    O'Sullivan, D.2    Pearce, E.L.3
  • 225
    • 84871713120 scopus 로고    scopus 로고
    • Peripheral tissue surveillance and residency by memory T cells
    • Gebhardt T, Mueller SN, Heath WR, Carbone FR. Peripheral tissue surveillance and residency by memory T cells. Trends Immunol (2013) 34:27-32. doi:10.1016/j.it.2012.08.008
    • (2013) Trends Immunol , vol.34 , pp. 27-32
    • Gebhardt, T.1    Mueller, S.N.2    Heath, W.R.3    Carbone, F.R.4
  • 226
    • 84957431152 scopus 로고    scopus 로고
    • Tissue-resident memory T cells: local specialists in immune defence
    • Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol (2016) 16:79-89. doi:10.1038/nri.2015.3
    • (2016) Nat Rev Immunol , vol.16 , pp. 79-89
    • Mueller, S.N.1    Mackay, L.K.2
  • 227
    • 77952313777 scopus 로고    scopus 로고
    • Differentiation of effector CD4 T cell populations (*)
    • Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol (2010) 28:445-89. doi:10.1146/annurev-immunol-030409-101212
    • (2010) Annu Rev Immunol , vol.28 , pp. 445-489
    • Zhu, J.1    Yamane, H.2    Paul, W.E.3
  • 228
    • 84903277871 scopus 로고    scopus 로고
    • Integrating canonical and metabolic signalling programmes in the regulation of T cell responses
    • Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol (2014) 14:435-46. doi:10.1038/nri3701
    • (2014) Nat Rev Immunol , vol.14 , pp. 435-446
    • Pollizzi, K.N.1    Powell, J.D.2
  • 229
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol (2011) 186:3299-303. doi:10.4049/jimmunol.1003613
    • (2011) J Immunol , vol.186 , pp. 3299-3303
    • Michalek, R.D.1    Gerriets, V.A.2    Jacobs, S.R.3    Macintyre, A.N.4    MacIver, N.J.5    Mason, E.F.6
  • 230
    • 84940021176 scopus 로고    scopus 로고
    • Effector T cell differentiation: are master regulators of effector T cells still the masters?
    • Wang C, Collins M, Kuchroo VK. Effector T cell differentiation: are master regulators of effector T cells still the masters? Curr Opin Immunol (2015) 37:6-10. doi:10.1016/j.coi.2015.08.001
    • (2015) Curr Opin Immunol , vol.37 , pp. 6-10
    • Wang, C.1    Collins, M.2    Kuchroo, V.K.3
  • 231
    • 77649220954 scopus 로고    scopus 로고
    • Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells
    • O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science (2010) 327:1098-102. doi:10.1126/science.1178334
    • (2010) Science , vol.327 , pp. 1098-1102
    • O'Shea, J.J.1    Paul, W.E.2
  • 232
    • 0034677646 scopus 로고    scopus 로고
    • A novel transcription factor, T-bet, directs Th1 lineage commitment
    • Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell (2000) 100:655-69. doi:10.1016/S0092-8674(00)80702-3
    • (2000) Cell , vol.100 , pp. 655-669
    • Szabo, S.J.1    Kim, S.T.2    Costa, G.L.3    Zhang, X.4    Fathman, C.G.5    Glimcher, L.H.6
  • 233
    • 0024854755 scopus 로고
    • Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease
    • Scott P, Pearce E, Cheever AW, Coffman RL, Sher A. Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease. Immunol Rev (1989) 112:161-82. doi:10.1111/j.1600-065X.1989.tb00557.x
    • (1989) Immunol Rev , vol.112 , pp. 161-182
    • Scott, P.1    Pearce, E.2    Cheever, A.W.3    Coffman, R.L.4    Sher, A.5
  • 234
    • 0025306614 scopus 로고
    • The effect of anti-IFN-gamma antibody on the protective effect of Lyt-2+ immune T cells against toxoplasmosis in mice
    • Suzuki Y, Remington JS. The effect of anti-IFN-gamma antibody on the protective effect of Lyt-2+ immune T cells against toxoplasmosis in mice. J Immunol (1990) 144:1954-6.
    • (1990) J Immunol , vol.144 , pp. 1954-1956
    • Suzuki, Y.1    Remington, J.S.2
  • 235
    • 0023895411 scopus 로고
    • Interferon-gamma: the major mediator of resistance against Toxoplasma gondii
    • Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science (1988) 240:516-8. doi:10.1126/science.3128869
    • (1988) Science , vol.240 , pp. 516-518
    • Suzuki, Y.1    Orellana, M.A.2    Schreiber, R.D.3    Remington, J.S.4
  • 236
    • 0028926524 scopus 로고
    • Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice
    • Trembleau S, Penna G, Bosi E, Mortara A, Gately MK, Adorini L. Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med (1995) 181:817-21. doi:10.1084/jem.181.2.817
    • (1995) J Exp Med , vol.181 , pp. 817-821
    • Trembleau, S.1    Penna, G.2    Bosi, E.3    Mortara, A.4    Gately, M.K.5    Adorini, L.6
  • 237
    • 3142724732 scopus 로고    scopus 로고
    • Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis
    • Bettelli E, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med (2004) 200:79-87. doi:10.1084/jem.20031819
    • (2004) J Exp Med , vol.200 , pp. 79-87
    • Bettelli, E.1    Sullivan, B.2    Szabo, S.J.3    Sobel, R.A.4    Glimcher, L.H.5    Kuchroo, V.K.6
  • 238
    • 0028519015 scopus 로고
    • Inhibition of Th1 responses prevents inflammatory bowel disease in SCID mice reconstituted with CD45RBhi CD4+ T cells
    • Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in SCID mice reconstituted with CD45RBhi CD4+ T cells. Immunity (1994) 1:553-62. doi:10.1016/1074-7613(94)90045-0
    • (1994) Immunity , vol.1 , pp. 553-562
    • Powrie, F.1    Leach, M.W.2    Mauze, S.3    Menon, S.4    Caddle, L.B.5    Coffman, R.L.6
  • 239
    • 0034653932 scopus 로고    scopus 로고
    • Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4(+) lymphocytes with a Th2 cytokine profile
    • Jankovic D, Kullberg MC, Noben-Trauth N, Caspar P, Paul WE, Sher A. Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4(+) lymphocytes with a Th2 cytokine profile. J Immunol (2000) 164:3047-55. doi:10.4049/jimmunol.164.6.3047
    • (2000) J Immunol , vol.164 , pp. 3047-3055
    • Jankovic, D.1    Kullberg, M.C.2    Noben-Trauth, N.3    Caspar, P.4    Paul, W.E.5    Sher, A.6
  • 240
    • 79959713645 scopus 로고    scopus 로고
    • TSLP enhances the function of helper type 2 cells
    • Kitajima M, Lee HC, Nakayama T, Ziegler SF. TSLP enhances the function of helper type 2 cells. Eur J Immunol (2011) 41:1862-71. doi:10.1002/eji.201041195
    • (2011) Eur J Immunol , vol.41 , pp. 1862-1871
    • Kitajima, M.1    Lee, H.C.2    Nakayama, T.3    Ziegler, S.F.4
  • 241
    • 84928583743 scopus 로고    scopus 로고
    • Type 2 cytokines: mechanisms and therapeutic strategies
    • Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol (2015) 15:271-82. doi:10.1038/nri3831
    • (2015) Nat Rev Immunol , vol.15 , pp. 271-282
    • Wynn, T.A.1
  • 242
    • 0030810155 scopus 로고    scopus 로고
    • The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells
    • Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell (1997) 89:587-96. doi:10.1016/S0092-8674(00)80240-8
    • (1997) Cell , vol.89 , pp. 587-596
    • Zheng, W.1    Flavell, R.A.2
  • 243
    • 0030764961 scopus 로고    scopus 로고
    • Transcription factor GATA-3 is differentially expressed murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene
    • Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem (1997) 272:21597-603.
    • (1997) J Biol Chem , vol.272 , pp. 21597-21603
    • Zhang, D.H.1    Cohn, L.2    Ray, P.3    Bottomly, K.4    Ray, A.5
  • 244
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol (2011) 12:295-303. doi:10.1038/ni.2005
    • (2011) Nat Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1    Pollizzi, K.N.2    Waickman, A.T.3    Heikamp, E.4    Meyers, D.J.5    Horton, M.R.6
  • 245
    • 84926631707 scopus 로고    scopus 로고
    • mTOR links environmental signals to T cell fate decisions
    • Chapman NM, Chi H. mTOR links environmental signals to T cell fate decisions. Front Immunol (2014) 5:686. doi:10.3389/fimmu.2014.00686
    • (2014) Front Immunol , vol.5 , pp. 686
    • Chapman, N.M.1    Chi, H.2
  • 246
    • 84880923555 scopus 로고    scopus 로고
    • Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths
    • Gause WC, Wynn TA, Allen JE. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat Rev Immunol (2013) 13:607-14. doi:10.1038/nri3476
    • (2013) Nat Rev Immunol , vol.13 , pp. 607-614
    • Gause, W.C.1    Wynn, T.A.2    Allen, J.E.3
  • 247
    • 84927607063 scopus 로고    scopus 로고
    • Immunity to helminths: resistance, regulation, and susceptibility to gastrointestinal nematodes
    • Grencis RK. Immunity to helminths: resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu Rev Immunol (2015) 33:201-25. doi:10.1146/annurev-immunol-032713-120218
    • (2015) Annu Rev Immunol , vol.33 , pp. 201-225
    • Grencis, R.K.1
  • 248
    • 84937889749 scopus 로고    scopus 로고
    • Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms
    • Tsai M, Starkl P, Marichal T, Galli SJ. Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms. Curr Opin Immunol (2015) 36:80-7. doi:10.1016/j.coi.2015.07.001
    • (2015) Curr Opin Immunol , vol.36 , pp. 80-87
    • Tsai, M.1    Starkl, P.2    Marichal, T.3    Galli, S.J.4
  • 249
    • 84937428803 scopus 로고    scopus 로고
    • Type 2 responses at the interface between immunity and fat metabolism
    • Odegaard JI, Chawla A. Type 2 responses at the interface between immunity and fat metabolism. Curr Opin Immunol (2015) 36:67-72. doi:10.1016/j.coi.2015.07.003
    • (2015) Curr Opin Immunol , vol.36 , pp. 67-72
    • Odegaard, J.I.1    Chawla, A.2
  • 251
    • 84859720726 scopus 로고    scopus 로고
    • T-follicular helper cell differentiation and the co-option of this pathway by non-helper cells
    • Linterman MA, Liston A, Vinuesa CG. T-follicular helper cell differentiation and the co-option of this pathway by non-helper cells. Immunol Rev (2012) 247:143-59. doi:10.1111/j.1600-065X.2012.01121.x
    • (2012) Immunol Rev , vol.247 , pp. 143-159
    • Linterman, M.A.1    Liston, A.2    Vinuesa, C.G.3
  • 252
    • 84866101273 scopus 로고    scopus 로고
    • The role of the T follicular helper cells in allergic disease
    • Kemeny DM. The role of the T follicular helper cells in allergic disease. Cell Mol Immunol (2012) 9:386-9. doi:10.1038/cmi.2012.31
    • (2012) Cell Mol Immunol , vol.9 , pp. 386-389
    • Kemeny, D.M.1
  • 253
    • 70049101558 scopus 로고    scopus 로고
    • The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment
    • Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity (2009) 31:457-68. doi:10.1016/j.immuni.2009.07.002
    • (2009) Immunity , vol.31 , pp. 457-468
    • Yu, D.1    Rao, S.2    Tsai, L.M.3    Lee, S.K.4    He, Y.5    Sutcliffe, E.L.6
  • 254
    • 69249109601 scopus 로고    scopus 로고
    • Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation
    • Johnston R, Poholek A, DiToro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science (2009) 325:1006-10. doi:10.1126/science.1175870
    • (2009) Science , vol.325 , pp. 1006-1010
    • Johnston, R.1    Poholek, A.2    DiToro, D.3    Yusuf, I.4    Eto, D.5    Barnett, B.6
  • 256
    • 84944681622 scopus 로고    scopus 로고
    • The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells
    • Ray JP, Staron MM, Shyer JA, Ho PC, Marshall HD, Gray SM, et al. The interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity (2015) 43:690-702. doi:10.1016/j.immuni.2015.08.017
    • (2015) Immunity , vol.43 , pp. 690-702
    • Ray, J.P.1    Staron, M.M.2    Shyer, J.A.3    Ho, P.C.4    Marshall, H.D.5    Gray, S.M.6
  • 257
    • 0346962972 scopus 로고    scopus 로고
    • Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation
    • Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, Kastelein RA, et al. Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med (2003) 198:1951-7. doi:10.1084/jem.20030896
    • (2003) J Exp Med , vol.198 , pp. 1951-1957
    • Murphy, C.A.1    Langrish, C.L.2    Chen, Y.3    Blumenschein, W.4    McClanahan, T.5    Kastelein, R.A.6
  • 258
    • 0037449737 scopus 로고    scopus 로고
    • Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17
    • Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem (2003) 278:1910-4. doi:10.1074/jbc. M207577200
    • (2003) J Biol Chem , vol.278 , pp. 1910-1914
    • Aggarwal, S.1    Ghilardi, N.2    Xie, M.H.3    de Sauvage, F.J.4    Gurney, A.L.5
  • 259
    • 33749318470 scopus 로고    scopus 로고
    • Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides
    • Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med (2006) 203:2271-9. doi:10.1084/jem.20061308
    • (2006) J Exp Med , vol.203 , pp. 2271-2279
    • Liang, S.C.1    Tan, X.Y.2    Luxenberg, D.P.3    Karim, R.4    Dunussi-Joannopoulos, K.5    Collins, M.6
  • 260
    • 27544465354 scopus 로고    scopus 로고
    • A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17
    • Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol (2005) 6:1133-41. doi:10.1038/ni1261
    • (2005) Nat Immunol , vol.6 , pp. 1133-1141
    • Park, H.1    Li, Z.2    Yang, X.O.3    Chang, S.H.4    Nurieva, R.5    Wang, Y.H.6
  • 261
    • 27544490377 scopus 로고    scopus 로고
    • Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages
    • Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol (2005) 6:1123-32. doi:10.1038/ni1254
    • (2005) Nat Immunol , vol.6 , pp. 1123-1132
    • Harrington, L.E.1    Hatton, R.D.2    Mangan, P.R.3    Turner, H.4    Murphy, T.L.5    Murphy, K.M.6
  • 262
    • 36549019912 scopus 로고    scopus 로고
    • Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model
    • Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med (2007) 204:2803-12. doi:10.1084/jem.20071397
    • (2007) J Exp Med , vol.204 , pp. 2803-2812
    • Hirota, K.1    Yoshitomi, H.2    Hashimoto, M.3    Maeda, S.4    Teradaira, S.5    Sugimoto, N.6
  • 263
    • 68649090645 scopus 로고    scopus 로고
    • Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells
    • Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, Galileos G, et al. Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol (2009) 182:5904-8. doi:10.4049/jimmunol.0900732
    • (2009) J Immunol , vol.182 , pp. 5904-5908
    • Awasthi, A.1    Riol-Blanco, L.2    Jager, A.3    Korn, T.4    Pot, C.5    Galileos, G.6
  • 264
    • 33748588423 scopus 로고    scopus 로고
    • The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells
    • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell (2006) 126:1121-33. doi:10.1016/j.cell.2006.07.035
    • (2006) Cell , vol.126 , pp. 1121-1133
    • Ivanov, I.I.1    McKenzie, B.S.2    Zhou, L.3    Tadokoro, C.E.4    Lepelley, A.5    Lafaille, J.J.6
  • 265
    • 84928057028 scopus 로고    scopus 로고
    • Sterol metabolism controls T(H)17 differentiation by generating endogenous RORgamma agonists
    • Hu X, Wang Y, Hao LY, Liu X, Lesch CA, Sanchez BM, et al. Sterol metabolism controls T(H)17 differentiation by generating endogenous RORgamma agonists. Nat Chem Biol (2015) 11:141-7. doi:10.1038/nchembio.1714
    • (2015) Nat Chem Biol , vol.11 , pp. 141-147
    • Hu, X.1    Wang, Y.2    Hao, L.Y.3    Liu, X.4    Lesch, C.A.5    Sanchez, B.M.6
  • 266
    • 84922901154 scopus 로고    scopus 로고
    • Identification of natural ROR gamma ligands that regulate the development of lymphoid cells
    • Santori FR, Huang PX, de Pavert SAV, Douglass EF, Leaver DJ, Haubrich BA, et al. Identification of natural ROR gamma ligands that regulate the development of lymphoid cells. Cell Metab (2015) 21:286-97. doi:10.1016/j.cmet.2015.01.004
    • (2015) Cell Metab , vol.21 , pp. 286-297
    • Santori, F.R.1    Huang, P.X.2    de Pavert, S.A.V.3    Douglass, E.F.4    Leaver, D.J.5    Haubrich, B.A.6
  • 268
    • 77955890952 scopus 로고    scopus 로고
    • Interleukin-23 drives intestinal inflammation through direct activity on T cells
    • Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity (2010) 33:279-88. doi:10.1016/j.immuni.2010.08.010
    • (2010) Immunity , vol.33 , pp. 279-288
    • Ahern, P.P.1    Schiering, C.2    Buonocore, S.3    McGeachy, M.J.4    Cua, D.J.5    Maloy, K.J.6
  • 269
    • 13244283212 scopus 로고    scopus 로고
    • IL-23 drives a pathogenic T cell population that induces autoimmune inflammation
    • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med (2005) 201:233-40. doi:10.1084/jem.20041257
    • (2005) J Exp Med , vol.201 , pp. 233-240
    • Langrish, C.L.1    Chen, Y.2    Blumenschein, W.M.3    Mattson, J.4    Basham, B.5    Sedgwick, J.D.6
  • 270
    • 60749107176 scopus 로고    scopus 로고
    • The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo
    • McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol (2009) 10:314-24. doi:10.1038/ni.1698
    • (2009) Nat Immunol , vol.10 , pp. 314-324
    • McGeachy, M.J.1    Chen, Y.2    Tato, C.M.3    Laurence, A.4    Joyce-Shaikh, B.5    Blumenschein, W.M.6
  • 271
    • 80052277906 scopus 로고    scopus 로고
    • Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
    • Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell (2011) 146:772-84. doi:10.1016/j.cell.2011.07.033
    • (2011) Cell , vol.146 , pp. 772-784
    • Dang, E.V.1    Barbi, J.2    Yang, H.Y.3    Jinasena, D.4    Yu, H.5    Zheng, Y.6
  • 272
    • 79960369458 scopus 로고    scopus 로고
    • HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med (2011) 208:1367-76. doi:10.1084/jem.20110278
    • (2011) J Exp Med , vol.208 , pp. 1367-1376
    • Shi, L.Z.1    Wang, R.2    Huang, G.3    Vogel, P.4    Neale, G.5    Green, D.R.6
  • 273
    • 84922080059 scopus 로고    scopus 로고
    • De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
    • Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med (2014) 20:1327-33. doi:10.1038/nm.3704
    • (2014) Nat Med , vol.20 , pp. 1327-1333
    • Berod, L.1    Friedrich, C.2    Nandan, A.3    Freitag, J.4    Hagemann, S.5    Harmrolfs, K.6
  • 274
    • 3242814586 scopus 로고    scopus 로고
    • Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice
    • Huang WT, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis (2004) 190:624-31. doi:10.1086/422329
    • (2004) J Infect Dis , vol.190 , pp. 624-631
    • Huang, W.T.1    Na, L.2    Fidel, P.L.3    Schwarzenberger, P.4
  • 275
    • 58149231532 scopus 로고    scopus 로고
    • Differential roles of interleukin-17A and-17F in host defense against mucoepithelial bacterial infection and allergic responses
    • Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, et al. Differential roles of interleukin-17A and-17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity (2009) 30:108-19. doi:10.1016/j.immuni.2008.11.009
    • (2009) Immunity , vol.30 , pp. 108-119
    • Ishigame, H.1    Kakuta, S.2    Nagai, T.3    Kadoki, M.4    Nambu, A.5    Komiyama, Y.6
  • 276
    • 17944364849 scopus 로고    scopus 로고
    • Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense
    • Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med (2001) 194:519-27. doi:10.1084/jem.194.4.519
    • (2001) J Exp Med , vol.194 , pp. 519-527
    • Ye, P.1    Rodriguez, F.H.2    Kanaly, S.3    Stocking, K.L.4    Schurr, J.5    Schwarzenberger, P.6
  • 277
    • 33750530394 scopus 로고    scopus 로고
    • IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis
    • Kullberg MC, Jankovic D, Feng CG, Hue S, Gorelick PL, McKenzie BS, et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med (2006) 203:2485-94. doi:10.1084/jem.20061082
    • (2006) J Exp Med , vol.203 , pp. 2485-2494
    • Kullberg, M.C.1    Jankovic, D.2    Feng, C.G.3    Hue, S.4    Gorelick, P.L.5    McKenzie, B.S.6
  • 278
    • 84959447961 scopus 로고    scopus 로고
    • The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring
    • Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science (2016) 351:933-9. doi:10.1126/science.aad0314
    • (2016) Science , vol.351 , pp. 933-939
    • Choi, G.B.1    Yim, Y.S.2    Wong, H.3    Kim, S.4    Kim, H.5    Kim, S.V.6
  • 279
    • 70350343544 scopus 로고    scopus 로고
    • Induction of intestinal Th17 cells by segmented filamentous bacteria
    • Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell (2009) 139:485-98. doi:10.1016/j.cell.2009.09.033
    • (2009) Cell , vol.139 , pp. 485-498
    • Ivanov, I.I.1    Atarashi, K.2    Manel, N.3    Brodie, E.L.4    Shima, T.5    Karaoz, U.6
  • 280
    • 70349742524 scopus 로고    scopus 로고
    • The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
    • Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity (2009) 31:677-89. doi:10.1016/j.immuni.2009.08.020
    • (2009) Immunity , vol.31 , pp. 677-689
    • Gaboriau-Routhiau, V.1    Rakotobe, S.2    Lecuyer, E.3    Mulder, I.4    Lan, A.5    Bridonneau, C.6
  • 281
    • 84898679249 scopus 로고    scopus 로고
    • Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
    • Goto Y, Panea C, Nakato G, Cebula A, Lee C, Diez MG, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity (2014) 40:594-607. doi:10.1016/j.immuni.2014.03.005
    • (2014) Immunity , vol.40 , pp. 594-607
    • Goto, Y.1    Panea, C.2    Nakato, G.3    Cebula, A.4    Lee, C.5    Diez, M.G.6
  • 282
    • 84901979873 scopus 로고    scopus 로고
    • Focused specificity of intestinal TH17 cells towards commensal bacterial antigens
    • Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL, et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature (2014) 510:152-6. doi:10.1038/nature13279
    • (2014) Nature , vol.510 , pp. 152-156
    • Yang, Y.1    Torchinsky, M.B.2    Gobert, M.3    Xiong, H.4    Xu, M.5    Linehan, J.L.6
  • 283
    • 77952866513 scopus 로고    scopus 로고
    • Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease
    • Reynolds JM, Pappu BP, Peng J, Martinez GJ, Zhang Y, Chung Y, et al. Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity (2010) 32:692-702. doi:10.1016/j.immuni.2010.04.010
    • (2010) Immunity , vol.32 , pp. 692-702
    • Reynolds, J.M.1    Pappu, B.P.2    Peng, J.3    Martinez, G.J.4    Zhang, Y.5    Chung, Y.6
  • 284
    • 65749103989 scopus 로고    scopus 로고
    • Regulatory lymphocytes and intestinal inflammation
    • Izcue A, Coombes JL, Powrie F. Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol (2009) 27:313-38. doi:10.1146/annurev.immunol.021908.132657
    • (2009) Annu Rev Immunol , vol.27 , pp. 313-338
    • Izcue, A.1    Coombes, J.L.2    Powrie, F.3
  • 285
    • 84879747099 scopus 로고    scopus 로고
    • Regulatory T cells and immune tolerance in the intestine
    • Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol (2013) 5:e018341. doi:10.1101/cshperspect.a018341
    • (2013) Cold Spring Harb Perspect Biol , vol.5
    • Harrison, O.J.1    Powrie, F.M.2
  • 286
    • 84859416933 scopus 로고    scopus 로고
    • Regulatory T cells: mechanisms of differentiation and function
    • Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol (2012) 30:531-64. doi:10.1146/annurev.immunol.25.022106.141623
    • (2012) Annu Rev Immunol , vol.30 , pp. 531-564
    • Josefowicz, S.Z.1    Lu, L.F.2    Rudensky, A.Y.3
  • 287
    • 84978634373 scopus 로고    scopus 로고
    • T cell receptor signalling in the control of regulatory T cell differentiation and function
    • Li MO, Rudensky AY. T cell receptor signalling in the control of regulatory T cell differentiation and function. Nat Rev Immunol (2016) 16:220-33. doi:10.1038/nri.2016.26
    • (2016) Nat Rev Immunol , vol.16 , pp. 220-233
    • Li, M.O.1    Rudensky, A.Y.2
  • 288
    • 84859390119 scopus 로고    scopus 로고
    • Induced CD4+Foxp3+ regulatory T cells in immune tolerance
    • Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol (2012) 30:733-58. doi:10.1146/annurev-immunol-020711-075043
    • (2012) Annu Rev Immunol , vol.30 , pp. 733-758
    • Bilate, A.M.1    Lafaille, J.J.2
  • 290
    • 70949087383 scopus 로고    scopus 로고
    • Inflammatory bowel disease and mutations affecting the interleukin-10 receptor
    • Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med (2009) 361:2033-45. doi:10.1056/NEJMoa0907206
    • (2009) N Engl J Med , vol.361 , pp. 2033-2045
    • Glocker, E.O.1    Kotlarz, D.2    Boztug, K.3    Gertz, E.M.4    Schaffer, A.A.5    Noyan, F.6
  • 291
    • 84896704750 scopus 로고    scopus 로고
    • Homeostatic control of regulatory T cell diversity
    • Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol (2014) 14:154-65. doi:10.1038/nri3605
    • (2014) Nat Rev Immunol , vol.14 , pp. 154-165
    • Liston, A.1    Gray, D.H.2
  • 293
    • 84866991345 scopus 로고    scopus 로고
    • Pregnancy imprints regulatory memory that sustains anergy to fetal antigen
    • Rowe JH, Ertelt JM, Xin LJ, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature (2012) 490:102-19. doi:10.1038/nature11462
    • (2012) Nature , vol.490 , pp. 102-119
    • Rowe, J.H.1    Ertelt, J.M.2    Xin, L.J.3    Way, S.S.4
  • 294
    • 84866173360 scopus 로고    scopus 로고
    • The development and function of memory regulatory T cells after acute viral infections
    • Sanchez AM, Zhu JG, Huang XP, Yang YP. The development and function of memory regulatory T cells after acute viral infections. J Immunol (2012) 189:2805-14. doi:10.4049/jimmunol.1200645
    • (2012) J Immunol , vol.189 , pp. 2805-2814
    • Sanchez, A.M.1    Zhu, J.G.2    Huang, X.P.3    Yang, Y.P.4
  • 296
    • 84886694563 scopus 로고    scopus 로고
    • Regulatory T cells in nonlymphoid tissues
    • Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. Nat Immunol (2013) 14:1007-13. doi:10.1038/ni.2683
    • (2013) Nat Immunol , vol.14 , pp. 1007-1013
    • Burzyn, D.1    Benoist, C.2    Mathis, D.3
  • 297
    • 20444414184 scopus 로고    scopus 로고
    • Cutting edge: CD4(+)CD25(+) for intestinal homing can regulatory T cells impaired prevent colitis
    • Denning TL, Kim G, Kronenberg M. Cutting edge: CD4(+)CD25(+) for intestinal homing can regulatory T cells impaired prevent colitis. J Immunol (2005) 174:7487-91. doi:10.4049/jimmunol.174.12.7487
    • (2005) J Immunol , vol.174 , pp. 7487-7491
    • Denning, T.L.1    Kim, G.2    Kronenberg, M.3
  • 298
    • 84879254845 scopus 로고    scopus 로고
    • GPR15-mediated homing controls immune homeostasis in the large intestine mucosa
    • Kim SV, Xiang WKV, Kwak C, Yang Y, Lin XYW, Ota M, et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science (2013) 340:1456-9. doi:10.1126/science.1237013
    • (2013) Science , vol.340 , pp. 1456-1459
    • Kim, S.V.1    Xiang, W.K.V.2    Kwak, C.3    Yang, Y.4    Lin, X.Y.W.5    Ota, M.6
  • 299
    • 84881068658 scopus 로고    scopus 로고
    • The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
    • Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (2013) 341:569-73. doi:10.1126/science.1241165
    • (2013) Science , vol.341 , pp. 569-573
    • Smith, P.M.1    Howitt, M.R.2    Panikov, N.3    Michaud, M.4    Gallini, C.A.5    Bohlooly, Y.M.6
  • 300
    • 77954738601 scopus 로고    scopus 로고
    • Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota
    • Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A (2010) 107:12204-9. doi:10.1073/pnas.0909122107
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 12204-12209
    • Round, J.L.1    Mazmanian, S.K.2
  • 301
    • 79956311926 scopus 로고    scopus 로고
    • The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
    • Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science (2011) 332:974-7. doi:10.1126/science.1206095
    • (2011) Science , vol.332 , pp. 974-977
    • Round, J.L.1    Lee, S.M.2    Li, J.3    Tran, G.4    Jabri, B.5    Chatila, T.A.6
  • 302
    • 84881477044 scopus 로고    scopus 로고
    • Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
    • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature (2013) 500:232-6. doi:10.1038/nature12331
    • (2013) Nature , vol.500 , pp. 232-236
    • Atarashi, K.1    Tanoue, T.2    Oshima, K.3    Suda, W.4    Nagano, Y.5    Nishikawa, H.6
  • 303
    • 84890550163 scopus 로고    scopus 로고
    • Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    • Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature (2013) 504:451-5. doi:10.1038/nature12726
    • (2013) Nature , vol.504 , pp. 451-455
    • Arpaia, N.1    Campbell, C.2    Fan, X.3    Dikiy, S.4    van der Veeken, J.5    deRoos, P.6
  • 304
    • 84940077758 scopus 로고    scopus 로고
    • Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells
    • Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, et al. Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORgamma(+) regulatory T cells. Science (2015) 349:993-7. doi:10.1126/science.aaa9420
    • (2015) Science , vol.349 , pp. 993-997
    • Sefik, E.1    Geva-Zatorsky, N.2    Oh, S.3    Konnikova, L.4    Zemmour, D.5    McGuire, A.M.6
  • 305
    • 84940547063 scopus 로고    scopus 로고
    • Mucosal immunology. The microbiota regulates type 2 immunity through RORgammat(+) T cells
    • Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, et al. Mucosal immunology. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science (2015) 349:989-93. doi:10.1126/science.aac4263
    • (2015) Science , vol.349 , pp. 989-993
    • Ohnmacht, C.1    Park, J.H.2    Cording, S.3    Wing, J.B.4    Atarashi, K.5    Obata, Y.6
  • 306
    • 33846461678 scopus 로고    scopus 로고
    • A critical role for the autophagy gene Atg5 in T cell survival and proliferation
    • Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med (2007) 204:25-31. doi:10.1084/jem.20061303
    • (2007) J Exp Med , vol.204 , pp. 25-31
    • Pua, H.H.1    Dzhagalov, I.2    Chuck, M.3    Mizushima, N.4    He, Y.W.5
  • 307
    • 84861889657 scopus 로고    scopus 로고
    • Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis
    • Willinger T, Flavell RA. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc Natl Acad Sci U S A (2012) 109:8670-5. doi:10.1073/pnas.1205305109
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 8670-8675
    • Willinger, T.1    Flavell, R.A.2
  • 308
    • 64249123646 scopus 로고    scopus 로고
    • Autophagy is essential for mitochondrial clearance in mature T lymphocytes
    • Pua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol (2009) 182:4046-55. doi:10.4049/jimmunol.0801143
    • (2009) J Immunol , vol.182 , pp. 4046-4055
    • Pua, H.H.1    Guo, J.2    Komatsu, M.3    He, Y.W.4
  • 309
    • 84877832630 scopus 로고    scopus 로고
    • Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34
    • Parekh VV, Wu L, Boyd KL, Williams JA, Gaddy JA, Olivares-Villagomez D, et al. Impaired autophagy, defective T cell homeostasis, and a wasting syndrome in mice with a T cell-specific deletion of Vps34. J Immunol (2013) 190:5086-101. doi:10.4049/jimmunol.1202071
    • (2013) J Immunol , vol.190 , pp. 5086-5101
    • Parekh, V.V.1    Wu, L.2    Boyd, K.L.3    Williams, J.A.4    Gaddy, J.A.5    Olivares-Villagomez, D.6
  • 310
    • 84856734124 scopus 로고    scopus 로고
    • Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery
    • Kovacs JR, Li C, Yang Q, Li G, Garcia IG, Ju S, et al. Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ (2012) 19:144-52. doi:10.1038/cdd.2011.78
    • (2012) Cell Death Differ , vol.19 , pp. 144-152
    • Kovacs, J.R.1    Li, C.2    Yang, Q.3    Li, G.4    Garcia, I.G.5    Ju, S.6
  • 311
    • 79955540204 scopus 로고    scopus 로고
    • Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy
    • Jia W, He YW. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol (2011) 186:5313-22. doi:10.4049/jimmunol.1002404
    • (2011) J Immunol , vol.186 , pp. 5313-5322
    • Jia, W.1    He, Y.W.2
  • 312
    • 84961262270 scopus 로고    scopus 로고
    • The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation
    • Kabat AM, Harrison OJ, Riffelmacher T, Moghaddam AE, Pearson CF, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife (2016) 5:e12444. doi:10.7554/eLife.12444
    • (2016) Elife , vol.5
    • Kabat, A.M.1    Harrison, O.J.2    Riffelmacher, T.3    Moghaddam, A.E.4    Pearson, C.F.5    Laing, A.6
  • 313
    • 67650216238 scopus 로고    scopus 로고
    • Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes
    • Stephenson LM, Miller BC, Ng A, Eisenberg J, Zhao Z, Cadwell K, et al. Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes. Autophagy (2009) 5:625-35. doi:10.4161/auto.5.5.8133
    • (2009) Autophagy , vol.5 , pp. 625-635
    • Stephenson, L.M.1    Miller, B.C.2    Ng, A.3    Eisenberg, J.4    Zhao, Z.5    Cadwell, K.6
  • 315
    • 84931442269 scopus 로고    scopus 로고
    • Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation
    • Pei B, Zhao M, Miller BC, Vela JL, Bruinsma MW, Virgin HW, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol (2015) 194:5872-84. doi:10.4049/jimmunol.1402154
    • (2015) J Immunol , vol.194 , pp. 5872-5884
    • Pei, B.1    Zhao, M.2    Miller, B.C.3    Vela, J.L.4    Bruinsma, M.W.5    Virgin, H.W.6
  • 316
    • 33749531942 scopus 로고    scopus 로고
    • Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal Cell death
    • Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins SC, et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal Cell death. J Immunol (2006) 177:5163-8. doi:10.4049/jimmunol.177.8.5163
    • (2006) J Immunol , vol.177 , pp. 5163-5168
    • Li, C.1    Capan, E.2    Zhao, Y.3    Zhao, J.4    Stolz, D.5    Watkins, S.C.6
  • 317
    • 78650643194 scopus 로고    scopus 로고
    • Macroautophagy regulates energy metabolism during effector T cell activation
    • Hubbard VM, Valdor R, Patel B, Singh R, Cuervo AM, Macian F. Macroautophagy regulates energy metabolism during effector T cell activation. J Immunol (2010) 185:7349-57. doi:10.4049/jimmunol.1000576
    • (2010) J Immunol , vol.185 , pp. 7349-7357
    • Hubbard, V.M.1    Valdor, R.2    Patel, B.3    Singh, R.4    Cuervo, A.M.5    Macian, F.6
  • 318
    • 79251534395 scopus 로고    scopus 로고
    • Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes
    • Jia W, Pua HH, Li QJ, He YW. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol (2011) 186:1564-74. doi:10.4049/jimmunol.1001822
    • (2011) J Immunol , vol.186 , pp. 1564-1574
    • Jia, W.1    Pua, H.H.2    Li, Q.J.3    He, Y.W.4
  • 319
    • 81455154986 scopus 로고    scopus 로고
    • The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Ralpha surface expression
    • McLeod IX, Zhou X, Li QJ, Wang F, He YW. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Ralpha surface expression. J Immunol (2011) 187:5051-61. doi:10.4049/jimmunol.1100710
    • (2011) J Immunol , vol.187 , pp. 5051-5061
    • McLeod, I.X.1    Zhou, X.2    Li, Q.J.3    Wang, F.4    He, Y.W.5
  • 320
    • 0033151622 scopus 로고    scopus 로고
    • Reactive oxygen species regulate activation-induced T cell apoptosis
    • Hildeman DA, Mitchell T, Teague TK, Henson P, Day BJ, Kappler J, et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity (1999) 10:735-44. doi:10.1016/S1074-7613(00)80072-2
    • (1999) Immunity , vol.10 , pp. 735-744
    • Hildeman, D.A.1    Mitchell, T.2    Teague, T.K.3    Henson, P.4    Day, B.J.5    Kappler, J.6
  • 321
    • 84874242919 scopus 로고    scopus 로고
    • Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
    • Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity (2013) 38:225-36. doi:10.1016/j.immuni.2012.10.020
    • (2013) Immunity , vol.38 , pp. 225-236
    • Sena, L.A.1    Li, S.2    Jairaman, A.3    Prakriya, M.4    Ezponda, T.5    Hildeman, D.A.6
  • 322
    • 84930671843 scopus 로고    scopus 로고
    • T cell metabolism. The protein LEM promotes CD8(+) T cell immunity through effects on mitochondrial respiration
    • Okoye I, Wang L, Pallmer K, Richter K, Ichimura T, Haas R, et al. T cell metabolism. The protein LEM promotes CD8(+) T cell immunity through effects on mitochondrial respiration. Science (2015) 348:995-1001. doi:10.1126/science.aaa7516
    • (2015) Science , vol.348 , pp. 995-1001
    • Okoye, I.1    Wang, L.2    Pallmer, K.3    Richter, K.4    Ichimura, T.5    Haas, R.6
  • 323
    • 0023740171 scopus 로고
    • Antioxidants inhibit proliferation and cell surface expression of receptors for interleukin-2 and transferrin in T lymphocytes stimulated with phorbol myristate acetate and ionomycin
    • Chaudhri G, Hunt NH, Clark IA, Ceredig R. Antioxidants inhibit proliferation and cell surface expression of receptors for interleukin-2 and transferrin in T lymphocytes stimulated with phorbol myristate acetate and ionomycin. Cell Immunol (1988) 115:204-13. doi:10.1016/0008-8749(88)90174-8
    • (1988) Cell Immunol , vol.115 , pp. 204-213
    • Chaudhri, G.1    Hunt, N.H.2    Clark, I.A.3    Ceredig, R.4
  • 324
    • 0037033433 scopus 로고    scopus 로고
    • Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression
    • Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J Exp Med (2002) 195:59-70. doi:10.1084/jem.20010659
    • (2002) J Exp Med , vol.195 , pp. 59-70
    • Devadas, S.1    Zaritskaya, L.2    Rhee, S.G.3    Oberley, L.4    Williams, M.S.5
  • 325
  • 326
    • 54549089752 scopus 로고    scopus 로고
    • The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-gamma-induced cell death
    • Feng CG, Zheng L, Jankovic D, Bafica A, Cannons JL, Watford WT, et al. The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-gamma-induced cell death. Nat Immunol (2008) 9:1279-87. doi:10.1038/ni.1653
    • (2008) Nat Immunol , vol.9 , pp. 1279-1287
    • Feng, C.G.1    Zheng, L.2    Jankovic, D.3    Bafica, A.4    Cannons, J.L.5    Watford, W.T.6
  • 327
    • 67650724069 scopus 로고    scopus 로고
    • Regulation and function of NF-kappa B transcription factors in the immune system
    • Vallabhapurapu S, Karin M. Regulation and function of NF-kappa B transcription factors in the immune system. Annu Rev Immunol (2009) 27:693-733. doi:10.1146/annurev.immunol.021908.132641
    • (2009) Annu Rev Immunol , vol.27 , pp. 693-733
    • Vallabhapurapu, S.1    Karin, M.2
  • 328
    • 84928485429 scopus 로고    scopus 로고
    • Survival of effector CD8+ T cells during influenza infection is dependent on autophagy
    • Schlie K, Westerback A, DeVorkin L, Hughson LR, Brandon JM, MacPherson S, et al. Survival of effector CD8+ T cells during influenza infection is dependent on autophagy. J Immunol (2015) 194:4277-86. doi:10.4049/jimmunol.1402571
    • (2015) J Immunol , vol.194 , pp. 4277-4286
    • Schlie, K.1    Westerback, A.2    DeVorkin, L.3    Hughson, L.R.4    Brandon, J.M.5    MacPherson, S.6
  • 329
    • 84907011926 scopus 로고    scopus 로고
    • p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells
    • Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J Clin Invest (2014) 124:4004-16. doi:10.1172/JCI75051
    • (2014) J Clin Invest , vol.124 , pp. 4004-4016
    • Henson, S.M.1    Lanna, A.2    Riddell, N.E.3    Franzese, O.4    Macaulay, R.5    Griffiths, S.J.6
  • 330
    • 84955590563 scopus 로고    scopus 로고
    • Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis
    • Wei J, Long L, Yang K, Guy C, Shrestha S, Chen Z, et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol (2016) 17(3):277-85. doi:10.1038/ni.3365
    • (2016) Nat Immunol , vol.17 , Issue.3 , pp. 277-285
    • Wei, J.1    Long, L.2    Yang, K.3    Guy, C.4    Shrestha, S.5    Chen, Z.6
  • 333
    • 84891738225 scopus 로고    scopus 로고
    • Autophagy and human diseases
    • Jiang P, Mizushima N. Autophagy and human diseases. Cell Res (2014) 24:69-79. doi:10.1038/cr.2013.161
    • (2014) Cell Res , vol.24 , pp. 69-79
    • Jiang, P.1    Mizushima, N.2
  • 334
    • 77954597127 scopus 로고    scopus 로고
    • An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis
    • Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science (2010) 329:229-32. doi:10.1126/science.1190354
    • (2010) Science , vol.329 , pp. 229-232
    • Hidvegi, T.1    Ewing, M.2    Hale, P.3    Dippold, C.4    Beckett, C.5    Kemp, C.6
  • 335
    • 84883608706 scopus 로고    scopus 로고
    • Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis
    • Moron B, Spalinger M, Kasper S, Atrott K, Frey-Wagner I, Fried M, et al. Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis. PLoS One (2013) 8:e73703. doi:10.1371/journal.pone.0073703
    • (2013) PLoS One , vol.8
    • Moron, B.1    Spalinger, M.2    Kasper, S.3    Atrott, K.4    Frey-Wagner, I.5    Fried, M.6
  • 337
    • 84873709314 scopus 로고    scopus 로고
    • Identification of a candidate therapeutic autophagy-inducing peptide
    • Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature (2013) 494:201-6. doi:10.1038/nature11866
    • (2013) Nature , vol.494 , pp. 201-206
    • Shoji-Kawata, S.1    Sumpter, R.2    Leveno, M.3    Campbell, G.R.4    Zou, Z.5    Kinch, L.6
  • 338
    • 84890854990 scopus 로고    scopus 로고
    • Selective modulation of autophagy, innate immunity, and adaptive immunity by small molecules
    • Shaw SY, Tran K, Castoreno AB, Peloquin JM, Lassen KG, Khor B, et al. Selective modulation of autophagy, innate immunity, and adaptive immunity by small molecules. ACS Chem Biol (2013) 8:2724-33. doi:10.1021/cb400352d
    • (2013) ACS Chem Biol , vol.8 , pp. 2724-2733
    • Shaw, S.Y.1    Tran, K.2    Castoreno, A.B.3    Peloquin, J.M.4    Lassen, K.G.5    Khor, B.6
  • 339
    • 77957716030 scopus 로고    scopus 로고
    • Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein
    • Isakson P, Bjoras M, Boe SO, Simonsen A. Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood (2010) 116:2324-31. doi:10.1182/blood-2010-01-261040
    • (2010) Blood , vol.116 , pp. 2324-2331
    • Isakson, P.1    Bjoras, M.2    Boe, S.O.3    Simonsen, A.4
  • 340
    • 69949184887 scopus 로고    scopus 로고
    • Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin
    • Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe (2009) 6:231-43. doi:10.1016/j.chom.2009.08.004
    • (2009) Cell Host Microbe , vol.6 , pp. 231-243
    • Yuk, J.M.1    Shin, D.M.2    Lee, H.M.3    Yang, C.S.4    Jin, H.S.5    Kim, K.K.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.