-
1
-
-
0033007321
-
Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment
-
Lenardo, M., K. M. Chan, F. Hornung, H. McFarland, R. Siegel, J. Wang, and L. Zheng. 1999.Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17: 221-253.
-
(1999)
Annu. Rev. Immunol.
, vol.17
, pp. 221-253
-
-
Lenardo, M.1
Chan, K.M.2
Hornung, F.3
McFarland, H.4
Siegel, R.5
Wang, J.6
Zheng, L.7
-
2
-
-
60149085396
-
The many roles of FAS receptor signaling in the immune system
-
Strasser, A., P. J. Jost, and S. Nagata. 2009. The many roles of FAS receptor signaling in the immune system. Immunity 30: 180-192.
-
(2009)
Immunity
, vol.30
, pp. 180-192
-
-
Strasser, A.1
Jost, P.J.2
Nagata, S.3
-
4
-
-
0036884742
-
Progressive differentiation and selection of the fittest in the immune response
-
Lanzavecchia, A., and F. Sallusto. 2002. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2: 982-987.
-
(2002)
Nat. Rev. Immunol.
, vol.2
, pp. 982-987
-
-
Lanzavecchia, A.1
Sallusto, F.2
-
5
-
-
33646467204
-
Differentiation of memory B and T cells
-
Kalia, V., S. Sarkar, T. S. Gourley, B. T. Rouse, and R. Ahmed. 2006. Differentiation of memory B and T cells. Curr. Opin. Immunol. 18: 255-264.
-
(2006)
Curr. Opin. Immunol.
, vol.18
, pp. 255-264
-
-
Kalia, V.1
Sarkar, S.2
Gourley, T.S.3
Rouse, B.T.4
Ahmed, R.5
-
6
-
-
79956079190
-
Immunological mechanisms of vaccination
-
Pulendran, B., and R. Ahmed. 2011. Immunological mechanisms of vaccination. Nat. Immunol. 12: 509-517.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 509-517
-
-
Pulendran, B.1
Ahmed, R.2
-
7
-
-
84555173651
-
Molecular programming of B cell memory
-
McHeyzer-Williams, M., S. Okitsu, N. Wang, and L. McHeyzer-Williams. 2012. Molecular programming of B cell memory. Nat. Rev. Immunol. 12: 24-34.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 24-34
-
-
McHeyzer-Williams, M.1
Okitsu, S.2
Wang, N.3
McHeyzer-Williams, L.4
-
8
-
-
77955891622
-
Unique properties of memory B cells of different isotypes
-
Kurosaki, T., Y. Aiba, K. Kometani, S. Moriyama, and Y. Takahashi. 2010. Unique properties of memory B cells of different isotypes. Immunol. Rev. 237: 104-116.
-
(2010)
Immunol. Rev.
, vol.237
, pp. 104-116
-
-
Kurosaki, T.1
Aiba, Y.2
Kometani, K.3
Moriyama, S.4
Takahashi, Y.5
-
9
-
-
79952173864
-
Programming the magnitude and persistence of antibody responses with innate immunity
-
Kasturi, S. P., I. Skountzou, R. A. Albrecht, D. Koutsonanos, T. Hua, H. I. Nakaya, R. Ravindran, S. Stewart, M. Alam, M. Kwissa, et al. 2011. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470: 543-547.
-
(2011)
Nature
, vol.470
, pp. 543-547
-
-
Kasturi, S.P.1
Skountzou, I.2
Albrecht, R.A.3
Koutsonanos, D.4
Hua, T.5
Nakaya, H.I.6
Ravindran, R.7
Stewart, S.8
Alam, M.9
Kwissa, M.10
-
10
-
-
79952282195
-
Different B cell populations mediate early and late memory during an endogenous immune response
-
Pape, K. A., J. J. Taylor, R. W. Maul, P. J. Gearhart, and M. K. Jenkins. 2011. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331: 1203-1207.
-
(2011)
Science
, vol.331
, pp. 1203-1207
-
-
Pape, K.A.1
Taylor, J.J.2
Maul, R.W.3
Gearhart, P.J.4
Jenkins, M.K.5
-
11
-
-
84859717525
-
Germinal center selection and the development of memory B and plasma cells
-
Shlomchik, M. J., and F. Weisel. 2012. Germinal center selection and the development of memory B and plasma cells. Immunol. Rev. 247: 52-63.
-
(2012)
Immunol. Rev.
, vol.247
, pp. 52-63
-
-
Shlomchik, M.J.1
Weisel, F.2
-
12
-
-
80052171651
-
Human memory B cells originate from three distinct germinal centerdependent and-independent maturation pathways
-
Berkowska, M. A., G. J. Driessen, V. Bikos, C. Grosserichter-Wagener, K. Stamatopoulos, A. Cerutti, B. He, K. Biermann, J. F. Lange, M. van der Burg, et al. 2011. Human memory B cells originate from three distinct germinal centerdependent and-independent maturation pathways. Blood 118: 2150-2158.
-
(2011)
Blood
, vol.118
, pp. 2150-2158
-
-
Berkowska, M.A.1
Driessen, G.J.2
Bikos, V.3
Grosserichter-Wagener, C.4
Stamatopoulos, K.5
Cerutti, A.6
He, B.7
Biermann, K.8
Lange, J.F.9
Burg Der M.Van10
-
14
-
-
0032525003
-
Kinetics of establishing the memory B cell population as revealed by CD38 expression
-
Ridderstad, A., and D. M. Tarlinton. 1998. Kinetics of establishing the memory B cell population as revealed by CD38 expression. J. Immunol. 160: 4688-4695.
-
(1998)
J. Immunol.
, vol.160
, pp. 4688-4695
-
-
Ridderstad, A.1
Tarlinton, D.M.2
-
15
-
-
78449282121
-
Mcl-1 is essential for germinal center formation and B cell memory
-
Vikstrom, I., S. Carotta, K. Lüthje, V. Peperzak, P. J. Jost, S. Glaser, M. Busslinger, P. Bouillet, A. Strasser, S. L. Nutt, and D. M. Tarlinton. 2010. Mcl-1 is essential for germinal center formation and B cell memory. Science 330: 1095-1099.
-
(2010)
Science
, vol.330
, pp. 1095-1099
-
-
Vikstrom, I.1
Carotta, S.2
Lüthje, K.3
Peperzak, V.4
Jost, P.J.5
Glaser, S.6
Busslinger, M.7
Bouillet, P.8
Strasser, A.9
Nutt, S.L.10
Tarlinton, D.M.11
-
16
-
-
0034609775
-
Memory B-cell persistence is independent of persisting immunizing antigen
-
Maruyama, M., K. P. Lam, and K. Rajewsky. 2000. Memory B-cell persistence is independent of persisting immunizing antigen. Nature 407: 636-642.
-
(2000)
Nature
, vol.407
, pp. 636-642
-
-
Maruyama, M.1
Lam, K.P.2
Rajewsky, K.3
-
17
-
-
1842583789
-
Development by self-digestion: Molecular mechanisms and biological functions of autophagy
-
Levine, B., and D. J. Klionsky. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6: 463-477.
-
(2004)
Dev. Cell
, vol.6
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
18
-
-
27644484061
-
Autophagy: Molecular machinery for self-eating
-
Yorimitsu, T., and D. J. Klionsky. 2005. Autophagy: molecular machinery for self-eating. Cell Death Differ. 12(Suppl. 2): 1542-1552.
-
(2005)
Cell Death Differ.
, vol.12
, pp. 1542-1552
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
19
-
-
12944303650
-
Growth factor regulation of autophagy and cell survival in the absence of apoptosis
-
Lum, J. J., D. E. Bauer, M. Kong, M. H. Harris, C. Li, T. Lindsten, and C. B. Thompson. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237-248.
-
(2005)
Cell
, vol.120
, pp. 237-248
-
-
Lum, J.J.1
Bauer, D.E.2
Kong, M.3
Harris, M.H.4
Li, C.5
Lindsten, T.6
Thompson, C.B.7
-
20
-
-
34249279169
-
GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation
-
Colell, A., J. E. Ricci, S. Tait, S. Milasta, U. Maurer, L. Bouchier-Hayes, P. Fitzgerald, A. Guio-Carrion, N. J. Waterhouse, C. W. Li, et al. 2007. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129: 983-997.
-
(2007)
Cell
, vol.129
, pp. 983-997
-
-
Colell, A.1
Ricci, J.E.2
Tait, S.3
Milasta, S.4
Maurer, U.5
Bouchier-Hayes, L.6
Fitzgerald, P.7
Guio-Carrion, A.8
Waterhouse, N.J.9
Li, C.W.10
-
21
-
-
79959354999
-
Mitochondria and the autophagy-inflammation-cell death axis in organismal aging
-
Green, D. R., L. Galluzzi, and G. Kroemer. 2011. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333: 1109-1112.
-
(2011)
Science
, vol.333
, pp. 1109-1112
-
-
Green, D.R.1
Galluzzi, L.2
Kroemer, G.3
-
22
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu, M., S. Waguri, T. Chiba, S. Murata, J. Iwata, I. Tanida, T. Ueno, M. Koike, Y. Uchiyama, E. Kominami, and K. Tanaka. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880-884.
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
Tanaka, K.11
-
23
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara, T., K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara, R. Suzuki-Migishima, M. Yokoyama, K. Mishima, I. Saito, H. Okano, and N. Mizushima. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: 885-889.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
Mizushima, N.11
-
24
-
-
84902954600
-
Essential role for autophagy in the maintenance of immunological memory against influenza infection
-
Chen, M., M. J. Hong, H. Sun, L. Wang, X. Shi, B. E. Gilbert, D. B. Corry, F. Kheradmand, and J. Wang. 2014. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 20: 503-510.
-
(2014)
Nat. Med.
, vol.20
, pp. 503-510
-
-
Chen, M.1
Hong, M.J.2
Sun, H.3
Wang, L.4
Shi, X.5
Gilbert, B.E.6
Corry, D.B.7
Kheradmand, F.8
Wang, J.9
-
25
-
-
84886920194
-
Epigenetic regulation of autophagy by the methyltransferase G9a
-
Artal-Martinez de Narvajas, A., T. S. Gomez, J. S. Zhang, A. O. Mann, Y. Taoda, J. A. Gorman, M. Herreros-Villanueva, T. M. Gress, V. Ellenrieder, L. Bujanda, et al. 2013. Epigenetic regulation of autophagy by the methyltransferase G9a. Mol. Cell. Biol. 33: 3983-3993.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 3983-3993
-
-
Artal-Martinez De Narvajas, A.1
Gomez, T.S.2
Zhang, J.S.3
Mann, A.O.4
Taoda, Y.5
Gorman, J.A.6
Herreros-Villanueva, M.7
Gress, T.M.8
Ellenrieder, V.9
Bujanda, L.10
-
26
-
-
84905841277
-
Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth
-
Shukla, S., I. R. Patric, V. Patil, S. D. Shwetha, A. S. Hegde, B. A. Chandramouli, A. Arivazhagan, V. Santosh, and K. Somasundaram. 2014. Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth. J. Biol. Chem. 289: 22306-22318.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 22306-22318
-
-
Shukla, S.1
Patric, I.R.2
Patil, V.3
Shwetha, S.D.4
Hegde, A.S.5
Chandramouli, B.A.6
Arivazhagan, A.7
Santosh, V.8
Somasundaram, K.9
-
27
-
-
84876780521
-
Distinct memory CD4+ T cells with commitment to T follicular helper-and T helper 1-cell lineages are generated after acute viral infection
-
Hale, J. S., B. Youngblood, D. R. Latner, A. U. Mohammed, L. Ye, R. S. Akondy, T. Wu, S. S. Iyer, and R. Ahmed. 2013. Distinct memory CD4+ T cells with commitment to T follicular helper-and T helper 1-cell lineages are generated after acute viral infection. Immunity 38: 805-817.
-
(2013)
Immunity
, vol.38
, pp. 805-817
-
-
Hale, J.S.1
Youngblood, B.2
Latner, D.R.3
Mohammed, A.U.4
Ye, L.5
Akondy, R.S.6
Wu, T.7
Iyer, S.S.8
Ahmed, R.9
-
28
-
-
21044455137
-
Impairment of starvationinduced and constitutive autophagy in Atg7-deficient mice
-
Komatsu, M., S. Waguri, T. Ueno, J. Iwata, S. Murata, I. Tanida, J. Ezaki, N. Mizushima, Y. Ohsumi, Y. Uchiyama, et al. 2005. Impairment of starvationinduced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169: 425-434.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
-
29
-
-
0036856355
-
MethPrimer: Designing primers for methylation PCRs
-
Li, L. C., and R. Dahiya. 2002. MethPrimer: designing primers for methylation PCRs. Bioinformatics 18: 1427-1431.
-
(2002)
Bioinformatics
, vol.18
, pp. 1427-1431
-
-
Li, L.C.1
Dahiya, R.2
-
30
-
-
27744483444
-
The translesion DNA polymerase theta plays a dominant role in immunoglobulin gene somatic hypermutation
-
Zan, H., N. Shima, Z. Xu, A. Al-Qahtani, A. J. Evinger Iii, Y. Zhong, J. C. Schimenti, and P. Casali. 2005. The translesion DNA polymerase theta plays a dominant role in immunoglobulin gene somatic hypermutation. EMBO J. 24: 3757-3769.
-
(2005)
EMBO J.
, vol.24
, pp. 3757-3769
-
-
Zan, H.1
Shima, N.2
Xu, Z.3
Al-Qahtani, A.4
Evinger, A.J.5
Zhong, Y.6
Schimenti, J.C.7
Casali, P.8
-
31
-
-
0035005241
-
The translesion DNA polymerase zeta plays a major role in Ig and bcl-6 somatic hypermutation
-
Zan, H., A. Komori, Z. Li, A. Cerutti, A. Schaffer, M. F. Flajnik, M. Diaz, and P. Casali. 2001. The translesion DNA polymerase zeta plays a major role in Ig and bcl-6 somatic hypermutation. Immunity 14: 643-653.
-
(2001)
Immunity
, vol.14
, pp. 643-653
-
-
Zan, H.1
Komori, A.2
Li, Z.3
Cerutti, A.4
Schaffer, A.5
Flajnik, M.F.6
Diaz, M.7
Casali, P.8
-
32
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
Liang, X. H., S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, and B. Levine. 1999. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672-676.
-
(1999)
Nature
, vol.402
, pp. 672-676
-
-
Liang, X.H.1
Jackson, S.2
Seaman, M.3
Brown, K.4
Kempkes, B.5
Hibshoosh, H.6
Levine, B.7
-
33
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
Itakura, E., C. Kishi, K. Inoue, and N. Mizushima. 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19: 5360-5372.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
34
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell, R. C., Y. Tian, H. Yuan, H. W. Park, Y. Y. Chang, J. Kim, H. Kim, T. P. Neufeld, A. Dillin, and K. L. Guan. 2013. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15: 741.750.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
Tian, Y.2
Yuan, H.3
Park, H.W.4
Chang, Y.Y.5
Kim, J.6
Kim, H.7
Neufeld, T.P.8
Dillin, A.9
Guan, K.L.10
-
35
-
-
38449120061
-
Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR
-
Hashimoto, K., S. Kokubun, E. Itoi, and H. I. Roach. 2007. Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR. Epigenetics 2: 86.91.
-
(2007)
Epigenetics
, vol.2
, pp. 86-91
-
-
Hashimoto, K.1
Kokubun, S.2
Itoi, E.3
Roach, H.I.4
-
36
-
-
71449091240
-
Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: Inhibition of FoxO1-dependent expression of key autophagy genes by insulin
-
Liu, H. Y., J. Han, S. Y. Cao, T. Hong, D. Zhuo, J. Shi, Z. Liu, and W. Cao. 2009. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284: 31484.31492.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 31484-31492
-
-
Liu, H.Y.1
Han, J.2
Cao, S.Y.3
Hong, T.4
Zhuo, D.5
Shi, J.6
Liu, Z.7
Cao, W.8
-
37
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1 dependent adaptive metabolic response to hypoxia
-
Zhang, H., M. Bosch-Marce, L. A. Shimoda, Y. S. Tan, J. H. Baek, J. B. Wesley, F. J. Gonzalez, and G. L. Semenza. 2008. Mitochondrial autophagy is an HIF-1.dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283: 10892. 10903.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
Bosch-Marce, M.2
Shimoda, L.A.3
Tan, Y.S.4
Baek, J.H.5
Wesley, J.B.6
Gonzalez, F.J.7
Semenza, G.L.8
-
38
-
-
79951720176
-
JNK regulates FoxO-dependent autophagy in neurons
-
Xu, P., M. Das, J. Reilly, and R. J. Davis. 2011. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 25: 310.322.
-
(2011)
Genes Dev.
, vol.25
, pp. 310-322
-
-
Xu, P.1
Das, M.2
Reilly, J.3
Davis, R.J.4
-
39
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari, C., G. Milan, V. Romanello, E. Masiero, R. Rudolf, P. Del Piccolo, S. J. Burden, R. Di Lisi, C. Sandri, J. Zhao, et al. 2007. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6: 458.471.
-
(2007)
Cell Metab.
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
Milan, G.2
Romanello, V.3
Masiero, E.4
Rudolf, R.5
Del Piccolo, P.6
Burden, S.J.7
Di Lisi, R.8
Sandri, C.9
Zhao, J.10
-
40
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
Zhao, J., J. J. Brault, A. Schild, P. Cao, M. Sandri, S. Schiaffino, S. H. Lecker, and A. L. Goldberg. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6: 472.483.
-
(2007)
Cell Metab.
, vol.6
, pp. 472-483
-
-
Zhao, J.1
Brault, J.J.2
Schild, A.3
Cao, P.4
Sandri, M.5
Schiaffino, S.6
Lecker, S.H.7
Goldberg, A.L.8
-
41
-
-
84869005229
-
The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism
-
Xiong, X., R. Tao, R. A. DePinho, and X. C. Dong. 2012. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J. Biol. Chem. 287: 39107.39114.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 39107-39114
-
-
Xiong, X.1
Tao, R.2
Depinho, R.A.3
Dong, X.C.4
-
42
-
-
84855532023
-
AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1
-
Sanchez, A. M., A. Csibi, A. Raibon, K. Cornille, S. Gay, H. Bernardi, and R. Candau. 2012. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J. Cell. Biochem. 113: 695.710.
-
(2012)
J. Cell. Biochem.
, vol.113
, pp. 695-710
-
-
Sanchez, A.M.1
Csibi, A.2
Raibon, A.3
Cornille, K.4
Gay, S.5
Bernardi, H.6
Candau, R.7
-
43
-
-
80051970950
-
FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model
-
Schips, T. G., A. Wietelmann, K. Hohn, S. Schimanski, P. Walther, T. Braun, T. Wirth, and H. J. Maier. 2011. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc. Res. 91: 587.597.
-
(2011)
Cardiovasc. Res.
, vol.91
, pp. 587-597
-
-
Schips, T.G.1
Wietelmann, A.2
Hon, K.3
Schimanski, S.4
Walther, P.5
Braun, T.6
Wirth, T.7
Maier, H.J.8
-
44
-
-
84891014899
-
The return of the nucleus: Transcriptional and epigenetic control of autophagy
-
F.ullgrabe, J., D. J. Klionsky, and B. Joseph. 2014. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 15: 65.74.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 65-74
-
-
Fullgrabe, J.1
Klionsky, D.J.2
Joseph, B.3
-
45
-
-
84903646784
-
CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype
-
Zuccarino-Catania, G. V., S. Sadanand, F. J. Weisel, M. M. Tomayko, H. Meng, S. H. Kleinstein, K. L. Good-Jacobson, and M. J. Shlomchik. 2014. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15: 631.637.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 631-637
-
-
Zuccarino-Catania, G.V.1
Sadanand, S.2
Weisel, F.J.3
Tomayko, M.M.4
Meng, H.5
Kleinstein, S.H.6
Good-Jacobson, K.L.7
Shlomchik, M.J.8
-
46
-
-
0031041644
-
Germinal center founder cells display propensity for apoptosis before onset of somatic mutation
-
Lebecque, S., O. de Bouteiller, C. Arpin, J. Banchereau, and Y. J. Liu. 1997. Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J. Exp. Med. 185: 563.571.
-
(1997)
J. Exp. Med.
, vol.185
, pp. 563-571
-
-
Lebecque, S.1
De Bouteiller, O.2
Arpin, C.3
Banchereau, J.4
Liu, Y.J.5
-
47
-
-
0035099037
-
Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire
-
Takahashi, Y., H. Ohta, and T. Takemori. 2001. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity 14: 181.192.
-
(2001)
Immunity
, vol.14
, pp. 181-192
-
-
Takahashi, Y.1
Ohta, H.2
Takemori, T.3
-
48
-
-
84862777789
-
Fluorescent in vivo detection reveals that IgE+ B cells are restrained by an intrinsic cell fate predisposition
-
Yang, Z., B. M. Sullivan, and C. D. Allen. 2012. Fluorescent in vivo detection reveals that IgE+ B cells are restrained by an intrinsic cell fate predisposition. Immunity 36: 857.872.
-
(2012)
Immunity
, vol.36
, pp. 857-872
-
-
Yang, Z.1
Sullivan, B.M.2
Allen, C.D.3
-
49
-
-
84874097064
-
Plasma cells require autophagy for sustainable immunoglobulin production
-
Pengo, N., M. Scolari, L. Oliva, E. Milan, F. Mainoldi, A. Raimondi, C. Fagioli, A. Merlini, E. Mariani, E. Pasqualetto, et al. 2013. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14: 298.305.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 298-305
-
-
Pengo, N.1
Scolari, M.2
Oliva, L.3
Milan, E.4
Mainoldi, F.5
Raimondi, A.6
Fagioli, C.7
Merlini, A.8
Mariani, E.9
Pasqualetto, E.10
-
50
-
-
84877337315
-
ATG5 regulates plasma cell differentiation
-
Conway, K. L., P. Kuballa, B. Khor, M. Zhang, H. N. Shi, H. W. Virgin, and R. J. Xavier. 2013. ATG5 regulates plasma cell differentiation. Autophagy 9: 528.537.
-
(2013)
Autophagy
, vol.9
, pp. 528-537
-
-
Conway, K.L.1
Kuballa, P.2
Khor, B.3
Zhang, M.4
Shi, H.N.5
Virgin, H.W.6
Xavier, R.J.7
-
51
-
-
64249123646
-
Autophagy is essential for mitochondrial clearance in mature T lymphocytes
-
Pua, H. H., J. Guo, M. Komatsu, and Y. W. He. 2009. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182: 4046.4055.
-
(2009)
J. Immunol.
, vol.182
, pp. 4046-4055
-
-
Pua, H.H.1
Guo, J.2
Komatsu, M.3
He, Y.W.4
-
52
-
-
79251534395
-
Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes
-
Jia, W., H. H. Pua, Q. J. Li, and Y. W. He. 2011. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J. Immunol. 186: 1564.1574.
-
(2011)
J. Immunol.
, vol.186
, pp. 1564-1574
-
-
Jia, W.1
Pua, H.H.2
Li, Q.J.3
He, Y.W.4
-
53
-
-
84928489717
-
Autophagy is a critical regulator of memory CD8+ T cell formation
-
Puleston, D. J., H. Zhang, T. J. Powell, E. Lipina, S. Sims, I. Panse, A. S.Watson, V. Cerundolo, A. R. Townsend, P. Klenerman, and A. K. Simon. 2014. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3: e03706.
-
(2014)
ELife
, vol.3
, pp. e03706
-
-
Puleston, D.J.1
Zhang, H.2
Powell, T.J.3
Lipina, E.4
Sims, S.5
Panse, I.6
Watson, A.S.7
Cerundolo, V.8
Townsend, A.R.9
Klenerman, P.10
Simon, A.K.11
-
54
-
-
84911103917
-
Autophagy is essential for effector CD8+ T cell survival and memory formation
-
Xu, X., K. Araki, S. Li, J. H. Han, L. Ye, W. G. Tan, B. T. Konieczny, M. W. Bruinsma, J. Martinez, E. L. Pearce, et al. 2014. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat. Immunol. 15: 1152.1161.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 1152-1161
-
-
Xu, X.1
Araki, K.2
Li, S.3
Han, J.H.4
Ye, L.5
Tan, W.G.6
Konieczny, B.T.7
Bruinsma, M.W.8
Martinez, J.9
Pearce, E.L.10
|