메뉴 건너뛰기




Volumn 194, Issue 12, 2015, Pages 5872-5884

Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation

Author keywords

[No Author keywords available]

Indexed keywords

AUTOPHAGY PROTEIN 5; GAMMA INTERFERON; ATG5 PROTEIN, MOUSE; ATG7 PROTEIN, MOUSE; CYTOKINE; MICROTUBULE ASSOCIATED PROTEIN; SUPEROXIDE; TARGET OF RAPAMYCIN KINASE;

EID: 84931442269     PISSN: 00221767     EISSN: 15506606     Source Type: Journal    
DOI: 10.4049/jimmunol.1402154     Document Type: Article
Times cited : (68)

References (77)
  • 2
    • 79959415069 scopus 로고    scopus 로고
    • Biogenesis and cargo selectivity of autophagosomes
    • Weidberg, H., E. Shvets, and Z. Elazar. 2011. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80: 125-156.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 125-156
    • Weidberg, H.1    Shvets, E.2    Elazar, Z.3
  • 3
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima, N., and M. Komatsu. 2011. Autophagy: renovation of cells and tissues. Cell 147: 728-741.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 4
    • 65249108735 scopus 로고    scopus 로고
    • Autophagy genes in immunity
    • Virgin, H. W., and B. Levine. 2009. Autophagy genes in immunity. Nat. Immunol. 10: 461-470.
    • (2009) Nat. Immunol. , vol.10 , pp. 461-470
    • Virgin, H.W.1    Levine, B.2
  • 5
    • 78751672975 scopus 로고    scopus 로고
    • Autophagy in immunity and inflammation
    • Levine, B., N. Mizushima, and H. W. Virgin. 2011. Autophagy in immunity and inflammation. Nature 469: 323-335.
    • (2011) Nature , vol.469 , pp. 323-335
    • Levine, B.1    Mizushima, N.2    Virgin, H.W.3
  • 6
    • 74949090299 scopus 로고    scopus 로고
    • An overview of the molecular mechanism of autophagy
    • Yang, Z., and D. J. Klionsky. 2009. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335: 1-32.
    • (2009) Curr. Top. Microbiol. Immunol. , vol.335 , pp. 1-32
    • Yang, Z.1    Klionsky, D.J.2
  • 7
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: Lessons from yeast
    • Nakatogawa, H., K. Suzuki, Y. Kamada, and Y. Ohsumi. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10: 458-467.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 458-467
    • Nakatogawa, H.1    Suzuki, K.2    Kamada, Y.3    Ohsumi, Y.4
  • 8
    • 34848886914 scopus 로고    scopus 로고
    • Autophagosome formation: Core machinery and adaptations
    • Xie, Z., and D. J. Klionsky. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9: 1102-1109.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1102-1109
    • Xie, Z.1    Klionsky, D.J.2
  • 9
    • 79952696967 scopus 로고    scopus 로고
    • Apoptosis and autophagy in the regulation of T lymphocyte function
    • Dunkle, A., and Y. W. He. 2011. Apoptosis and autophagy in the regulation of T lymphocyte function. Immunol. Res. 49: 70-86.
    • (2011) Immunol. Res. , vol.49 , pp. 70-86
    • Dunkle, A.1    He, Y.W.2
  • 10
    • 84865296205 scopus 로고    scopus 로고
    • Programmed necrosis and autophagy in immune function
    • Lu, J. V., and C. M. Walsh. 2012. Programmed necrosis and autophagy in immune function. Immunol. Rev. 249: 205-217.
    • (2012) Immunol. Rev. , vol.249 , pp. 205-217
    • Lu, J.V.1    Walsh, C.M.2
  • 11
    • 77956416339 scopus 로고    scopus 로고
    • Autophagy in mammalian development and differentiation
    • Mizushima, N., and B. Levine. 2010. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12: 823-830.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 823-830
    • Mizushima, N.1    Levine, B.2
  • 12
    • 77953783023 scopus 로고    scopus 로고
    • The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis
    • Walsh, C. M., and A. L. Edinger. 2010. The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol. Rev. 236: 95-109.
    • (2010) Immunol. Rev. , vol.236 , pp. 95-109
    • Walsh, C.M.1    Edinger, A.L.2
  • 13
    • 84861889657 scopus 로고    scopus 로고
    • Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis
    • Willinger, T., and R. A. Flavell. 2012. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc. Natl. Acad. Sci. USA 109: 8670-8675.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 8670-8675
    • Willinger, T.1    Flavell, R.A.2
  • 14
    • 79955540204 scopus 로고    scopus 로고
    • Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy
    • Jia, W., and Y. W. He. 2011. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J. Immunol. 186: 5313-5322.
    • (2011) J. Immunol. , vol.186 , pp. 5313-5322
    • Jia, W.1    He, Y.W.2
  • 16
    • 33846461678 scopus 로고    scopus 로고
    • A critical role for the autophagy gene Atg5 in T cell survival and proliferation
    • Pua, H. H., I. Dzhagalov, M. Chuck, N. Mizushima, and Y. W. He. 2007. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204: 25-31.
    • (2007) J. Exp. Med. , vol.204 , pp. 25-31
    • Pua, H.H.1    Dzhagalov, I.2    Chuck, M.3    Mizushima, N.4    He, Y.W.5
  • 17
    • 78650643194 scopus 로고    scopus 로고
    • Macroautophagy regulates energy metabolism during effector T cell activation
    • Hubbard, V. M., R. Valdor, B. Patel, R. Singh, A. M. Cuervo, and F. Macian. 2010. Macroautophagy regulates energy metabolism during effector T cell activation. J. Immunol. 185: 7349-7357.
    • (2010) J. Immunol. , vol.185 , pp. 7349-7357
    • Hubbard, V.M.1    Valdor, R.2    Patel, B.3    Singh, R.4    Cuervo, A.M.5    Macian, F.6
  • 20
    • 64249123646 scopus 로고    scopus 로고
    • Autophagy is essential for mitochondrial clearance in mature T lymphocytes
    • Pua, H. H., J. Guo, M. Komatsu, and Y. W. He. 2009. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182: 4046-4055.
    • (2009) J. Immunol. , vol.182 , pp. 4046-4055
    • Pua, H.H.1    Guo, J.2    Komatsu, M.3    He, Y.W.4
  • 22
    • 17144374753 scopus 로고    scopus 로고
    • Toward an understanding of NKT cell biology: Progress and paradoxes
    • Kronenberg, M. 2005. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23: 877-900.
    • (2005) Annu. Rev. Immunol. , vol.23 , pp. 877-900
    • Kronenberg, M.1
  • 23
    • 84871181695 scopus 로고    scopus 로고
    • Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells
    • Cohen, N. R., P. J. Brennan, T. Shay, G. F. Watts, M. Brigl, J. Kang, and M. B. Brenner, ImmGen Project Consortium. 2013. Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nat. Immunol. 14: 90-99.
    • (2013) Nat. Immunol. , vol.14 , pp. 90-99
    • Cohen, N.R.1    Brennan, P.J.2    Shay, T.3    Watts, G.F.4    Brigl, M.5    Kang, J.6    Brenner, M.B.7
  • 24
    • 14844303459 scopus 로고    scopus 로고
    • Developmental program of mouse Vα14i NKT cells
    • Matsuda, J. L., and L. Gapin. 2005. Developmental program of mouse Vα14i NKT cells. Curr. Opin. Immunol. 17: 122-130.
    • (2005) Curr. Opin. Immunol. , vol.17 , pp. 122-130
    • Matsuda, J.L.1    Gapin, L.2
  • 26
    • 66149179356 scopus 로고    scopus 로고
    • Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity
    • Cohen, N. R., S. Garg, and M. B. Brenner. 2009. Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv. Immunol. 102: 1-94.
    • (2009) Adv. Immunol. , vol.102 , pp. 1-94
    • Cohen, N.R.1    Garg, S.2    Brenner, M.B.3
  • 27
    • 2542448243 scopus 로고    scopus 로고
    • CD1: Antigen presentation and T cell function
    • Brigl, M., and M. B. Brenner. 2004. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22: 817-890.
    • (2004) Annu. Rev. Immunol. , vol.22 , pp. 817-890
    • Brigl, M.1    Brenner, M.B.2
  • 31
    • 84877018173 scopus 로고    scopus 로고
    • Transcriptional regulation of the NKT cell lineage
    • Constantinides, M. G., and A. Bendelac. 2013. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25: 161-167.
    • (2013) Curr. Opin. Immunol. , vol.25 , pp. 161-167
    • Constantinides, M.G.1    Bendelac, A.2
  • 34
    • 84886673181 scopus 로고    scopus 로고
    • Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells
    • Lee, Y. J., K. L. Holzapfel, J. Zhu, S. C. Jameson, and K. A. Hogquist. 2013. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14: 1146-1154.
    • (2013) Nat. Immunol. , vol.14 , pp. 1146-1154
    • Lee, Y.J.1    Holzapfel, K.L.2    Zhu, J.3    Jameson, S.C.4    Hogquist, K.A.5
  • 35
    • 34250849637 scopus 로고    scopus 로고
    • Control points in NKT-cell development
    • Godfrey, D. I., and S. P. Berzins. 2007. Control points in NKT-cell development. Nat. Rev. Immunol. 7: 505-518.
    • (2007) Nat. Rev. Immunol. , vol.7 , pp. 505-518
    • Godfrey, D.I.1    Berzins, S.P.2
  • 37
    • 0034774980 scopus 로고    scopus 로고
    • NKT cells derive from double-positive thymocytes that are positively selected by CD1d
    • Gapin, L., J. L. Matsuda, C. D. Surh, and M. Kronenberg. 2001. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2: 971-978.
    • (2001) Nat. Immunol. , vol.2 , pp. 971-978
    • Gapin, L.1    Matsuda, J.L.2    Surh, C.D.3    Kronenberg, M.4
  • 38
    • 22944442645 scopus 로고    scopus 로고
    • Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes
    • Wei, D. G., H. Lee, S. H. Park, L. Beaudoin, L. Teyton, A. Lehuen, and A. Bendelac. 2005. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202: 239-248.
    • (2005) J. Exp. Med. , vol.202 , pp. 239-248
    • Wei, D.G.1    Lee, H.2    Park, S.H.3    Beaudoin, L.4    Teyton, L.5    Lehuen, A.6    Bendelac, A.7
  • 39
    • 84859158571 scopus 로고    scopus 로고
    • Making memory at birth: Understanding the differentiation of natural killer T cells
    • Engel, I., and M. Kronenberg. 2012. Making memory at birth: understanding the differentiation of natural killer T cells. Curr. Opin. Immunol. 24: 184-190.
    • (2012) Curr. Opin. Immunol. , vol.24 , pp. 184-190
    • Engel, I.1    Kronenberg, M.2
  • 45
    • 23944464542 scopus 로고    scopus 로고
    • Characterization of the early stages of thymic NKT cell development
    • Benlagha, K., D. G. Wei, J. Veiga, L. Teyton, and A. Bendelac. 2005. Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 202: 485-492.
    • (2005) J. Exp. Med. , vol.202 , pp. 485-492
    • Benlagha, K.1    Wei, D.G.2    Veiga, J.3    Teyton, L.4    Bendelac, A.5
  • 52
    • 0025988705 scopus 로고
    • Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates
    • Norbury, C., J. Blow, and P. Nurse. 1991. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J. 10: 3321-3329.
    • (1991) EMBO J. , vol.10 , pp. 3321-3329
    • Norbury, C.1    Blow, J.2    Nurse, P.3
  • 54
    • 0038445761 scopus 로고    scopus 로고
    • MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection
    • Presley, A. D., K. M. Fuller, and E. A. Arriaga. 2003. MitoTracker Green labeling of mitochondrial proteins and their subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 793: 141-150.
    • (2003) J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. , vol.793 , pp. 141-150
    • Presley, A.D.1    Fuller, K.M.2    Arriaga, E.A.3
  • 55
    • 75649112322 scopus 로고    scopus 로고
    • Autophagy and lymphocyte homeostasis
    • Pua, H. H., and Y. W. He. 2009. Autophagy and lymphocyte homeostasis. Curr. Top. Microbiol. Immunol. 335: 85-105.
    • (2009) Curr. Top. Microbiol. Immunol. , vol.335 , pp. 85-105
    • Pua, H.H.1    He, Y.W.2
  • 57
    • 50049084627 scopus 로고    scopus 로고
    • The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions
    • Kovalovsky, D., O. U. Uche, S. Eladad, R. M. Hobbs, W. Yi, E. Alonzo, K. Chua, M. Eidson, H. J. Kim, J. S. Im, et al. 2008. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9: 1055-1064.
    • (2008) Nat. Immunol. , vol.9 , pp. 1055-1064
    • Kovalovsky, D.1    Uche, O.U.2    Eladad, S.3    Hobbs, R.M.4    Yi, W.5    Alonzo, E.6    Chua, K.7    Eidson, M.8    Kim, H.J.9    Im, J.S.10
  • 58
    • 78650510609 scopus 로고    scopus 로고
    • mTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu, R., A. Efeyan, and D. M. Sabatini. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12: 21-35.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2    Sabatini, D.M.3
  • 60
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma, X. M., and J. Blenis. 2009. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10: 307-318.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 61
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov, D. D., D. A. Guertin, S. M. Ali, and D. M. Sabatini. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098-1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3    Sabatini, D.M.4
  • 65
    • 0036070308 scopus 로고    scopus 로고
    • Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes
    • Wolfer, A., A. Wilson, M. Nemir, H. R. MacDonald, and F. Radtke. 2002. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16: 869-879.
    • (2002) Immunity , vol.16 , pp. 869-879
    • Wolfer, A.1    Wilson, A.2    Nemir, M.3    MacDonald, H.R.4    Radtke, F.5
  • 66
  • 68
    • 84879195658 scopus 로고    scopus 로고
    • mTOR and lymphocyte metabolism
    • Zeng, H., and H. Chi. 2013. mTOR and lymphocyte metabolism. Curr. Opin. Immunol. 25: 347-355.
    • (2013) Curr. Opin. Immunol. , vol.25 , pp. 347-355
    • Zeng, H.1    Chi, H.2
  • 69
    • 84905976831 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function
    • Zhang, L., B. O. Tschumi, S. Corgnac, M. A. Ruegg, M. N. Hall, J. P. Mach, P. Romero, and A. Donda. 2014. Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. J. Immunol. 193: 1759-1765.
    • (2014) J. Immunol. , vol.193 , pp. 1759-1765
    • Zhang, L.1    Tschumi, B.O.2    Corgnac, S.3    Ruegg, M.A.4    Hall, M.N.5    Mach, J.P.6    Romero, P.7    Donda, A.8
  • 71
    • 81455154986 scopus 로고    scopus 로고
    • The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Rα surface expression
    • McLeod, I. X., X. Zhou, Q. J. Li, F. Wang, and Y. W. He. 2011. The class III kinase Vps34 promotes T lymphocyte survival through regulating IL-7Rα surface expression. J. Immunol. 187: 5051-5061.
    • (2011) J. Immunol. , vol.187 , pp. 5051-5061
    • McLeod, I.X.1    Zhou, X.2    Li, Q.J.3    Wang, F.4    He, Y.W.5
  • 72
    • 80051997049 scopus 로고    scopus 로고
    • The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function
    • Yang, K., G. Neale, D. R. Green, W. He, and H. Chi. 2011. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat. Immunol. 12: 888-897.
    • (2011) Nat. Immunol. , vol.12 , pp. 888-897
    • Yang, K.1    Neale, G.2    Green, D.R.3    He, W.4    Chi, H.5
  • 74
    • 84900521157 scopus 로고    scopus 로고
    • Metabolic regulator Fnip1 is crucial for iNKT lymphocyte development
    • Park, H., M. Tsang, B. M. Iritani, and M. J. Bevan. 2014. Metabolic regulator Fnip1 is crucial for iNKT lymphocyte development. Proc. Natl. Acad. Sci. USA 111: 7066-7071.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 7066-7071
    • Park, H.1    Tsang, M.2    Iritani, B.M.3    Bevan, M.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.