-
1
-
-
20544444045
-
Diversity of the human intestinal microbial flora
-
Eckburg P.B., et al. Diversity of the human intestinal microbial flora. Science 2005, 308:1635-1638.
-
(2005)
Science
, vol.308
, pp. 1635-1638
-
-
Eckburg, P.B.1
-
2
-
-
77952318832
-
Intestinal bacteria and the regulation of immune cell homeostasis
-
Hill D.A., Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 2010, 28:623-667.
-
(2010)
Annu. Rev. Immunol.
, vol.28
, pp. 623-667
-
-
Hill, D.A.1
Artis, D.2
-
3
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
-
4
-
-
85027927719
-
Enterotypes of the human gut microbiome
-
Arumugam M., et al. Enterotypes of the human gut microbiome. Nature 2011, 473:174-180.
-
(2011)
Nature
, vol.473
, pp. 174-180
-
-
Arumugam, M.1
-
5
-
-
83655196785
-
The effects of commensal microbiota on immune cell subsets and inflammatory responses
-
Chinen T., Rudensky A.Y. The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol. Rev. 2012, 245:45-55.
-
(2012)
Immunol. Rev.
, vol.245
, pp. 45-55
-
-
Chinen, T.1
Rudensky, A.Y.2
-
6
-
-
84862637797
-
Gut immune maturation depends on colonization with a host-specific microbiota
-
Chung H., et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012, 149:1578-1593.
-
(2012)
Cell
, vol.149
, pp. 1578-1593
-
-
Chung, H.1
-
7
-
-
84881477044
-
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
Atarashi K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500:232-236.
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
-
8
-
-
84893370250
-
Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice
-
Faith J.J., et al. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 2014, 10.1126/scitranslmed.3008051.
-
(2014)
Sci. Transl. Med.
-
-
Faith, J.J.1
-
9
-
-
77649209317
-
Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria
-
Stecher B., et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010, 10.1371/journal.ppat.1000711.
-
(2010)
PLoS Pathog.
-
-
Stecher, B.1
-
10
-
-
78649895980
-
Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
-
Ubeda C., et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 2010, 120:4332-4341.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 4332-4341
-
-
Ubeda, C.1
-
11
-
-
84898809123
-
The microbiome in inflammatory bowel disease: current status and the future ahead
-
Kostic A.D., et al. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014, 146:1489-1499.
-
(2014)
Gastroenterology
, vol.146
, pp. 1489-1499
-
-
Kostic, A.D.1
-
12
-
-
77953913586
-
Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
-
Wu H.J., et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010, 32:815-827.
-
(2010)
Immunity
, vol.32
, pp. 815-827
-
-
Wu, H.J.1
-
13
-
-
79952748674
-
Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis
-
Lee Y.K., et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4615-4622.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4615-4622
-
-
Lee, Y.K.1
-
14
-
-
81855167104
-
Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination
-
Berer K., et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011, 479:538-541.
-
(2011)
Nature
, vol.479
, pp. 538-541
-
-
Berer, K.1
-
15
-
-
84874357602
-
Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity
-
Markle J.G., et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013, 339:1084-1088.
-
(2013)
Science
, vol.339
, pp. 1084-1088
-
-
Markle, J.G.1
-
16
-
-
84856957894
-
Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
-
Henao-Mejia J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482:179-185.
-
(2012)
Nature
, vol.482
, pp. 179-185
-
-
Henao-Mejia, J.1
-
17
-
-
80054927213
-
Microbiota and autoimmune disease: the hosted self
-
Mathis D., Benoist C. Microbiota and autoimmune disease: the hosted self. Cell Host Microbe 2011, 10:297-301.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 297-301
-
-
Mathis, D.1
Benoist, C.2
-
18
-
-
83655191565
-
Epithelial barrier: an interface for the cross-communication between gut flora and immune system
-
Goto Y., Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol. Rev. 2012, 245:147-163.
-
(2012)
Immunol. Rev.
, vol.245
, pp. 147-163
-
-
Goto, Y.1
Kiyono, H.2
-
19
-
-
3242664636
-
Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
-
Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
-
(2004)
Cell
, vol.118
, pp. 229-241
-
-
Rakoff-Nahoum, S.1
-
20
-
-
77949965210
-
Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases
-
Dupaul-Chicoine J., et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 2010, 32:367-378.
-
(2010)
Immunity
, vol.32
, pp. 367-378
-
-
Dupaul-Chicoine, J.1
-
21
-
-
77950002937
-
The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis
-
Zaki M.H., et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 2010, 32:379-391.
-
(2010)
Immunity
, vol.32
, pp. 379-391
-
-
Zaki, M.H.1
-
22
-
-
84892476369
-
Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis
-
Song X., et al. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity 2014, 40:140-152.
-
(2014)
Immunity
, vol.40
, pp. 140-152
-
-
Song, X.1
-
23
-
-
0036737806
-
Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region
-
Kalina U., et al. Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region. Eur. J. Immunol. 2002, 32:2635-2643.
-
(2002)
Eur. J. Immunol.
, vol.32
, pp. 2635-2643
-
-
Kalina, U.1
-
24
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
Singh N., et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40:128-139.
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
-
25
-
-
35348857386
-
Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases
-
Frank D.N., et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:13780-13785.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 13780-13785
-
-
Frank, D.N.1
-
26
-
-
78649686679
-
A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes
-
Willing B.P., et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 2010, 139:1844-1854.
-
(2010)
Gastroenterology
, vol.139
, pp. 1844-1854
-
-
Willing, B.P.1
-
27
-
-
79251584066
-
Bifidobacteria can protect from enteropathogenic infection through production of acetate
-
Fukuda S., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469:543-547.
-
(2011)
Nature
, vol.469
, pp. 543-547
-
-
Fukuda, S.1
-
28
-
-
79952748335
-
The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions
-
Johansson M.E., et al. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(Suppl. 1):4659-4665.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4659-4665
-
-
Johansson, M.E.1
-
29
-
-
0036500996
-
Colorectal cancer in mice genetically deficient in the mucin Muc2
-
Velcich A., et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002, 295:1726-1729.
-
(2002)
Science
, vol.295
, pp. 1726-1729
-
-
Velcich, A.1
-
30
-
-
33745746660
-
Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
-
Van der Sluis M., et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006, 131:117-129.
-
(2006)
Gastroenterology
, vol.131
, pp. 117-129
-
-
Van der Sluis, M.1
-
31
-
-
79953307656
-
Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice
-
Fu J., et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Invest. 2011, 121:1657-1666.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1657-1666
-
-
Fu, J.1
-
32
-
-
84891736162
-
Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis
-
Johansson M.E., et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 2014, 63:281-291.
-
(2014)
Gut
, vol.63
, pp. 281-291
-
-
Johansson, M.E.1
-
33
-
-
84886280379
-
Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
-
Shan M., et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013, 342:447-453.
-
(2013)
Science
, vol.342
, pp. 447-453
-
-
Shan, M.1
-
34
-
-
84863230541
-
Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine
-
McDole J.R., et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012, 483:345-349.
-
(2012)
Nature
, vol.483
, pp. 345-349
-
-
McDole, J.R.1
-
35
-
-
15544376418
-
Glycan foraging in vivo by an intestine-adapted bacterial symbiont
-
Sonnenburg J.L., et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005, 307:1955-1959.
-
(2005)
Science
, vol.307
, pp. 1955-1959
-
-
Sonnenburg, J.L.1
-
36
-
-
84859925158
-
How glycan metabolism shapes the human gut microbiota
-
Koropatkin N.M., et al. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 2012, 10:323-335.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 323-335
-
-
Koropatkin, N.M.1
-
37
-
-
77649086402
-
Immune adaptations that maintain homeostasis with the intestinal microbiota
-
Hooper L.V., Macpherson A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010, 10:159-169.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 159-169
-
-
Hooper, L.V.1
Macpherson, A.J.2
-
38
-
-
80054122238
-
The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S., et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011, 334:255-258.
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
-
39
-
-
53649098280
-
Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
-
Brandl K., et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008, 455:804-807.
-
(2008)
Nature
, vol.455
, pp. 804-807
-
-
Brandl, K.1
-
40
-
-
84862862332
-
Epithelial antimicrobial defence of the skin and intestine
-
Gallo R.L., Hooper L.V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 2012, 12:503-516.
-
(2012)
Nat. Rev. Immunol.
, vol.12
, pp. 503-516
-
-
Gallo, R.L.1
Hooper, L.V.2
-
41
-
-
2442709188
-
Transgenic overexpression of Reg protein caused gastric cell proliferation and differentiation along parietal cell and chief cell lineages
-
Miyaoka Y., et al. Transgenic overexpression of Reg protein caused gastric cell proliferation and differentiation along parietal cell and chief cell lineages. Oncogene 2004, 23:3572-3579.
-
(2004)
Oncogene
, vol.23
, pp. 3572-3579
-
-
Miyaoka, Y.1
-
42
-
-
56749146467
-
Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis
-
Bouskra D., et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008, 456:507-510.
-
(2008)
Nature
, vol.456
, pp. 507-510
-
-
Bouskra, D.1
-
43
-
-
63449112387
-
TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis
-
Taylor B.C., et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 2009, 206:655-667.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 655-667
-
-
Taylor, B.C.1
-
44
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
-
45
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
-
46
-
-
77952794397
-
Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria
-
Varol C., et al. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 2010, 10:415-426.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, pp. 415-426
-
-
Varol, C.1
-
47
-
-
84901410158
-
Intestinal macrophages and dendritic cells: what's the difference?
-
Cerovic V., et al. Intestinal macrophages and dendritic cells: what's the difference?. Trends Immunol. 2014, 35:270-277.
-
(2014)
Trends Immunol.
, vol.35
, pp. 270-277
-
-
Cerovic, V.1
-
48
-
-
84859808080
-
Oral tolerance to food protein
-
Pabst O., Mowat A.M. Oral tolerance to food protein. Mucosal Immunol. 2012, 5:232-239.
-
(2012)
Mucosal Immunol.
, vol.5
, pp. 232-239
-
-
Pabst, O.1
Mowat, A.M.2
-
49
-
-
84859416933
-
Regulatory T cells: mechanisms of differentiation and function
-
Josefowicz S.Z., et al. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 2012, 30:531-564.
-
(2012)
Annu. Rev. Immunol.
, vol.30
, pp. 531-564
-
-
Josefowicz, S.Z.1
-
50
-
-
34547788180
-
A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism
-
Coombes J.L., et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 2007, 204:1757-1764.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1757-1764
-
-
Coombes, J.L.1
-
51
-
-
34547757390
-
Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
-
Sun C.M., et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 2007, 204:1775-1785.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1775-1785
-
-
Sun, C.M.1
-
52
-
-
34547769253
-
All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation
-
Benson M.J., et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 2007, 204:1765-1774.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1765-1774
-
-
Benson, M.J.1
-
53
-
-
80054866424
-
Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8
-
Worthington J.J., et al. Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8. Gastroenterology 2011, 141:1802-1812.
-
(2011)
Gastroenterology
, vol.141
, pp. 1802-1812
-
-
Worthington, J.J.1
-
54
-
-
44349167059
-
Dendritic cells in intestinal immune regulation
-
Coombes J.L., Powrie F. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 2008, 8:435-446.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 435-446
-
-
Coombes, J.L.1
Powrie, F.2
-
55
-
-
12244297799
-
CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
-
Niess J.H., et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005, 307:254-258.
-
(2005)
Science
, vol.307
, pp. 254-258
-
-
Niess, J.H.1
-
56
-
-
79951772860
-
Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria
-
Hadis U., et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 2011, 34:237-246.
-
(2011)
Immunity
, vol.34
, pp. 237-246
-
-
Hadis, U.1
-
57
-
-
70350464351
-
Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis
-
Murai M., et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 2009, 10:1178-1184.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1178-1184
-
-
Murai, M.1
-
58
-
-
84894107663
-
Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells
-
Mazzini E., et al. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity 2014, 40:248-261.
-
(2014)
Immunity
, vol.40
, pp. 248-261
-
-
Mazzini, E.1
-
59
-
-
53649100675
-
ATP drives lamina propria T(H)17 cell differentiation
-
Atarashi K., et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008, 455:808-812.
-
(2008)
Nature
, vol.455
, pp. 808-812
-
-
Atarashi, K.1
-
60
-
-
33750473352
-
Pannexin-1 mediates large pore formation and interleukin-1b release by the ATP-gated P2X7 receptor
-
Pelegrin P., Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1b release by the ATP-gated P2X7 receptor. EMBO J. 2006, 25:5071-5082.
-
(2006)
EMBO J.
, vol.25
, pp. 5071-5082
-
-
Pelegrin, P.1
Surprenant, A.2
-
61
-
-
84863151799
-
Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine
-
Shaw M.H., et al. Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 2012, 209:251-258.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 251-258
-
-
Shaw, M.H.1
-
62
-
-
84859911615
-
NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense
-
Franchi L., et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 2012, 13:449-456.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 449-456
-
-
Franchi, L.1
-
63
-
-
84866362664
-
IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells
-
Coccia M., et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J. Exp. Med. 2012, 209:1595-1609.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1595-1609
-
-
Coccia, M.1
-
64
-
-
79959271087
-
Intestinal homeostasis and its breakdown in inflammatory bowel disease
-
Maloy K.J., Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011, 474:298-306.
-
(2011)
Nature
, vol.474
, pp. 298-306
-
-
Maloy, K.J.1
Powrie, F.2
-
65
-
-
70349742524
-
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
-
Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
-
(2009)
Immunity
, vol.31
, pp. 677-689
-
-
Gaboriau-Routhiau, V.1
-
66
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
-
67
-
-
84898679249
-
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
-
Goto Y., et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 2014, 40:594-607.
-
(2014)
Immunity
, vol.40
, pp. 594-607
-
-
Goto, Y.1
-
68
-
-
84898685253
-
Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses
-
Lecuyer E., et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 2014, 40:608-620.
-
(2014)
Immunity
, vol.40
, pp. 608-620
-
-
Lecuyer, E.1
-
69
-
-
84901979873
-
Focused specificity of intestinal T17 cells towards commensal bacterial antigens
-
Yang Y., et al. Focused specificity of intestinal T17 cells towards commensal bacterial antigens. Nature 2014, 510:152-156.
-
(2014)
Nature
, vol.510
, pp. 152-156
-
-
Yang, Y.1
-
70
-
-
80051994193
-
The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing
-
Kuwahara T., et al. The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Res. 2011, 18:291-303.
-
(2011)
DNA Res.
, vol.18
, pp. 291-303
-
-
Kuwahara, T.1
-
71
-
-
80053025965
-
The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment
-
Sczesnak A., et al. The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 2011, 10:260-272.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 260-272
-
-
Sczesnak, A.1
-
72
-
-
80053045987
-
Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation
-
Prakash T., et al. Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 2011, 10:273-284.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 273-284
-
-
Prakash, T.1
-
73
-
-
79956315886
-
Intestinal bacterial colonization induces mutualistic regulatory T cell responses
-
Geuking M.B., et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011, 34:794-806.
-
(2011)
Immunity
, vol.34
, pp. 794-806
-
-
Geuking, M.B.1
-
74
-
-
84872977452
-
Innate lymphoid cells: a proposal for uniform nomenclature
-
Spits H., et al. Innate lymphoid cells: a proposal for uniform nomenclature. Nat. Rev. Immunol. 2013, 13:145-149.
-
(2013)
Nat. Rev. Immunol.
, vol.13
, pp. 145-149
-
-
Spits, H.1
-
75
-
-
84861989207
-
Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
-
Sonnenberg G.F., et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012, 336:1321-1325.
-
(2012)
Science
, vol.336
, pp. 1321-1325
-
-
Sonnenberg, G.F.1
-
76
-
-
40049083827
-
Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
-
Zheng Y., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14:282-289.
-
(2008)
Nat. Med.
, vol.14
, pp. 282-289
-
-
Zheng, Y.1
-
77
-
-
67650474246
-
STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing
-
Pickert G., et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 2009, 206:1465-1472.
-
(2009)
J. Exp. Med.
, vol.206
, pp. 1465-1472
-
-
Pickert, G.1
-
78
-
-
78751706261
-
CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut
-
Sonnenberg G.F., et al. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2011, 34:122-134.
-
(2011)
Immunity
, vol.34
, pp. 122-134
-
-
Sonnenberg, G.F.1
-
79
-
-
84878737123
-
Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria
-
Hepworth M.R., et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 2013, 498:113-117.
-
(2013)
Nature
, vol.498
, pp. 113-117
-
-
Hepworth, M.R.1
-
80
-
-
77951878587
-
Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology
-
Buonocore S., et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010, 464:1371-1375.
-
(2010)
Nature
, vol.464
, pp. 1371-1375
-
-
Buonocore, S.1
-
81
-
-
84879571464
-
Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model
-
Kirchberger S., et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 2013, 210:917-931.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 917-931
-
-
Kirchberger, S.1
-
82
-
-
84867807929
-
Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease
-
Sonnenberg G.F., Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 2012, 37:601-610.
-
(2012)
Immunity
, vol.37
, pp. 601-610
-
-
Sonnenberg, G.F.1
Artis, D.2
-
83
-
-
57449118239
-
Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
-
Satoh-Takayama N., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
-
(2008)
Immunity
, vol.29
, pp. 958-970
-
-
Satoh-Takayama, N.1
-
84
-
-
57849117363
-
RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
-
Sanos S.L., et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 2009, 10:83-91.
-
(2009)
Nat. Immunol.
, vol.10
, pp. 83-91
-
-
Sanos, S.L.1
-
85
-
-
78649360369
-
Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes
-
Vonarbourg C., et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 2010, 33:736-751.
-
(2010)
Immunity
, vol.33
, pp. 736-751
-
-
Vonarbourg, C.1
-
86
-
-
78650183459
-
Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2
-
Crellin N.K., et al. Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 2010, 33:752-764.
-
(2010)
Immunity
, vol.33
, pp. 752-764
-
-
Crellin, N.K.1
-
87
-
-
75749133608
-
Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection
-
Kinnebrew M.A., et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 2010, 201:534-543.
-
(2010)
J. Infect. Dis.
, vol.201
, pp. 534-543
-
-
Kinnebrew, M.A.1
-
88
-
-
77955499820
-
TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa
-
Van Maele L., et al. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa. J. Immunol. 2010, 185:1177-1185.
-
(2010)
J. Immunol.
, vol.185
, pp. 1177-1185
-
-
Van Maele, L.1
-
89
-
-
84857444876
-
Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
-
Kinnebrew M.A., et al. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012, 36:276-287.
-
(2012)
Immunity
, vol.36
, pp. 276-287
-
-
Kinnebrew, M.A.1
-
90
-
-
79952986650
-
RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
-
Sawa S., et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 2011, 12:320-326.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 320-326
-
-
Sawa, S.1
-
91
-
-
84897053496
-
Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
-
Mortha A., et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014, 10.1126/science.1249288.
-
(2014)
Science
-
-
Mortha, A.1
-
92
-
-
80155164160
-
Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation
-
Li Y., et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011, 147:629-640.
-
(2011)
Cell
, vol.147
, pp. 629-640
-
-
Li, Y.1
-
93
-
-
84855917402
-
AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch
-
Lee J.S., et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 2012, 13:144-151.
-
(2012)
Nat. Immunol.
, vol.13
, pp. 144-151
-
-
Lee, J.S.1
-
94
-
-
84856237141
-
The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells
-
Qiu J., et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 2012, 36:92-104.
-
(2012)
Immunity
, vol.36
, pp. 92-104
-
-
Qiu, J.1
-
95
-
-
83855160821
-
Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles
-
Kiss E.A., et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011, 334:1561-1565.
-
(2011)
Science
, vol.334
, pp. 1561-1565
-
-
Kiss, E.A.1
-
96
-
-
84882664672
-
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
-
Zelante T., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39:372-385.
-
(2013)
Immunity
, vol.39
, pp. 372-385
-
-
Zelante, T.1
-
97
-
-
84882668842
-
Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora
-
Qiu J., et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 2013, 39:386-399.
-
(2013)
Immunity
, vol.39
, pp. 386-399
-
-
Qiu, J.1
-
98
-
-
83655203111
-
The habitat, double life, citizenship, and forgetfulness of IgA
-
Macpherson A.J., et al. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol. Rev. 2011, 245:132-146.
-
(2011)
Immunol. Rev.
, vol.245
, pp. 132-146
-
-
Macpherson, A.J.1
-
99
-
-
73349099737
-
A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota
-
Cong Y., et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19256-19261.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 19256-19261
-
-
Cong, Y.1
-
100
-
-
77954051526
-
Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses
-
Hapfelmeier S., et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 2010, 328:1705-1709.
-
(2010)
Science
, vol.328
, pp. 1705-1709
-
-
Hapfelmeier, S.1
-
101
-
-
84855796468
-
Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut
-
Fritz J.H., et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 2012, 481:199-203.
-
(2012)
Nature
, vol.481
, pp. 199-203
-
-
Fritz, J.H.1
-
102
-
-
84883741301
-
Microbial colonization influences early B-lineage development in the gut lamina propria
-
Wesemann D.R., et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 2013, 501:112-115.
-
(2013)
Nature
, vol.501
, pp. 112-115
-
-
Wesemann, D.R.1
-
103
-
-
83655191570
-
Innate immune signaling in defense against intestinal microbes
-
Kinnebrew M.A., Pamer E.G. Innate immune signaling in defense against intestinal microbes. Immunol. Rev. 2012, 245:113-131.
-
(2012)
Immunol. Rev.
, vol.245
, pp. 113-131
-
-
Kinnebrew, M.A.1
Pamer, E.G.2
-
104
-
-
77954898661
-
The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut
-
Suzuki K., et al. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 2010, 33:71-83.
-
(2010)
Immunity
, vol.33
, pp. 71-83
-
-
Suzuki, K.1
-
105
-
-
84889247024
-
Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis
-
Kruglov A.A., et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science 2013, 342:1243-1246.
-
(2013)
Science
, vol.342
, pp. 1243-1246
-
-
Kruglov, A.A.1
-
106
-
-
62449202866
-
Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's Patches
-
Tsuji M., et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's Patches. Science 2009, 323:1488-1492.
-
(2009)
Science
, vol.323
, pp. 1488-1492
-
-
Tsuji, M.1
-
107
-
-
84875473675
-
Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses
-
Hirota K., et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 2013, 14:372-379.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 372-379
-
-
Hirota, K.1
-
108
-
-
84867908677
-
Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis
-
Cao A.T., et al. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J. Immunol. 2012, 189:4666-4673.
-
(2012)
J. Immunol.
, vol.189
, pp. 4666-4673
-
-
Cao, A.T.1
-
109
-
-
79951602552
-
Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense
-
Wei M., et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat. Immunol. 2011, 12:264-270.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 264-270
-
-
Wei, M.1
-
110
-
-
84860123211
-
The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut
-
Kawamoto S., et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 2012, 336:485-489.
-
(2012)
Science
, vol.336
, pp. 485-489
-
-
Kawamoto, S.1
-
111
-
-
78651500757
-
Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells
-
Lochner M., et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells. J. Exp. Med. 2011, 208:125-134.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 125-134
-
-
Lochner, M.1
-
112
-
-
84857444508
-
B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage
-
Kirkland D., et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity 2012, 36:228-238.
-
(2012)
Immunity
, vol.36
, pp. 228-238
-
-
Kirkland, D.1
-
113
-
-
68149091349
-
Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism
-
Slack E., et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 2009, 325:617-620.
-
(2009)
Science
, vol.325
, pp. 617-620
-
-
Slack, E.1
-
114
-
-
84856655455
-
Innate response activator B cells protect against microbial sepsis
-
Rauch P.J., et al. Innate response activator B cells protect against microbial sepsis. Science 2012, 335:597-601.
-
(2012)
Science
, vol.335
, pp. 597-601
-
-
Rauch, P.J.1
-
115
-
-
77952866513
-
Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease
-
Reynolds J.M., et al. Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 2010, 32:692-702.
-
(2010)
Immunity
, vol.32
, pp. 692-702
-
-
Reynolds, J.M.1
-
116
-
-
68649126866
-
Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals
-
Martin B., et al. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 2009, 31:321-330.
-
(2009)
Immunity
, vol.31
, pp. 321-330
-
-
Martin, B.1
-
117
-
-
76249125057
-
Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells
-
Duan J., et al. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe 2010, 7:140-150.
-
(2010)
Cell Host Microbe
, vol.7
, pp. 140-150
-
-
Duan, J.1
-
118
-
-
79957701773
-
Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface
-
Ismail A.S., et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:8743-8748.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 8743-8748
-
-
Ismail, A.S.1
-
119
-
-
84860216630
-
Microbial exposure during early life has persistent effects on natural killer T cell function
-
Olszak T., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012, 336:489-493.
-
(2012)
Science
, vol.336
, pp. 489-493
-
-
Olszak, T.1
-
120
-
-
84892774558
-
Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells
-
An D., et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 2014, 156:123-133.
-
(2014)
Cell
, vol.156
, pp. 123-133
-
-
An, D.1
-
121
-
-
77954738601
-
Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota
-
Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12204-12209.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 12204-12209
-
-
Round, J.L.1
Mazmanian, S.K.2
-
122
-
-
79956311926
-
The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
-
Round J.L., et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011, 332:974-977.
-
(2011)
Science
, vol.332
, pp. 974-977
-
-
Round, J.L.1
-
123
-
-
84867656021
-
Outer membrane vesicles of a human commensal mediate immune regulation and disease protection
-
Shen Y., et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 2012, 12:509-520.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 509-520
-
-
Shen, Y.1
-
124
-
-
84898647980
-
Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms
-
Dasgupta S., et al. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 2014, 15:413-423.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 413-423
-
-
Dasgupta, S.1
-
125
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504:451-455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
-
126
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341:569-573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
-
127
-
-
80054020840
-
Peripheral education of the immune system by colonic commensal microbiota
-
Lathrop S.K., et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011, 478:250-254.
-
(2011)
Nature
, vol.478
, pp. 250-254
-
-
Lathrop, S.K.1
-
128
-
-
84877742439
-
Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota
-
Cebula A., et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 2013, 497:258-262.
-
(2013)
Nature
, vol.497
, pp. 258-262
-
-
Cebula, A.1
-
129
-
-
84886782819
-
Therapeutic potential of fecal microbiota transplantation
-
Smith L.P., et al. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013, 145:946-953.
-
(2013)
Gastroenterology
, vol.145
, pp. 946-953
-
-
Smith, L.P.1
-
130
-
-
34249284197
-
Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota
-
Smith K., et al. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 2007, 19:59-69.
-
(2007)
Semin. Immunol.
, vol.19
, pp. 59-69
-
-
Smith, K.1
-
131
-
-
79955121049
-
Microbiota regulates immune defense against respiratory tract influenza A virus infection
-
Ichinohe T., et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5354-5359.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 5354-5359
-
-
Ichinohe, T.1
-
132
-
-
84864311450
-
Commensal bacteria calibrate the activation threshold of innate antiviral immunity
-
Abt M.C., et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012, 37:158-170.
-
(2012)
Immunity
, vol.37
, pp. 158-170
-
-
Abt, M.C.1
-
133
-
-
80054115012
-
Successful transmission of a retrovirus depends on the commensal microbiota
-
Kane M., et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 2011, 334:245-249.
-
(2011)
Science
, vol.334
, pp. 245-249
-
-
Kane, M.1
-
134
-
-
80054091498
-
Intestinal microbiota promote enteric virus replication and systemic pathogenesis
-
Kuss S.K., et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 2011, 334:249-252.
-
(2011)
Science
, vol.334
, pp. 249-252
-
-
Kuss, S.K.1
-
135
-
-
84892621089
-
Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus
-
Robinson C.M., et al. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 2014, 15:36-46.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 36-46
-
-
Robinson, C.M.1
-
136
-
-
84870294763
-
Resurrection of endogenous retroviruses in antibody-deficient mice
-
Young G.R., et al. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 2012, 491:774-778.
-
(2012)
Nature
, vol.491
, pp. 774-778
-
-
Young, G.R.1
-
137
-
-
84861964286
-
Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
-
Iliev I.D., et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012, 336:1314-1317.
-
(2012)
Science
, vol.336
, pp. 1314-1317
-
-
Iliev, I.D.1
-
138
-
-
84867176113
-
Helminth infections and host immune regulation
-
McSorley H.J., Maizels R.M. Helminth infections and host immune regulation. Clin. Microbiol. Rev. 2012, 25:585-608.
-
(2012)
Clin. Microbiol. Rev.
, vol.25
, pp. 585-608
-
-
McSorley, H.J.1
Maizels, R.M.2
-
139
-
-
78249263840
-
Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus
-
Walk S.T., et al. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis. 2010, 16:1841-1849.
-
(2010)
Inflamm. Bowel Dis.
, vol.16
, pp. 1841-1849
-
-
Walk, S.T.1
-
140
-
-
77953605339
-
Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris
-
Hayes K.S., et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 2010, 328:1391-1394.
-
(2010)
Science
, vol.328
, pp. 1391-1394
-
-
Hayes, K.S.1
-
141
-
-
84920469791
-
Host-microbe interactions shaping the gastrointestinal environment
-
Kaiko G.E., Stappenbeck T.S. Host-microbe interactions shaping the gastrointestinal environment. Trends Immunol. 2014, 35:538-548.
-
(2014)
Trends Immunol.
, vol.35
, pp. 538-548
-
-
Kaiko, G.E.1
Stappenbeck, T.S.2
-
142
-
-
84861988021
-
Microbiota, disease, and back to health: a metastable journey
-
Blumberg R., Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 2012, 10.1126/scitranslmed.3004184.
-
(2012)
Sci. Transl. Med.
-
-
Blumberg, R.1
Powrie, F.2
-
143
-
-
84866461477
-
Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice
-
Ubeda C., et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 2012, 209:1445-1456.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1445-1456
-
-
Ubeda, C.1
|