메뉴 건너뛰기




Volumn 35, Issue 11, 2014, Pages 507-517

Modulation of immune development and function by intestinal microbiota

Author keywords

Commensals; Immune regulation; Microbiota; Mucosal immunity

Indexed keywords

IMMUNOGLOBULIN A; SECRETORY IMMUNOGLOBULIN;

EID: 84921367265     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2014.07.010     Document Type: Review
Times cited : (253)

References (143)
  • 1
    • 20544444045 scopus 로고    scopus 로고
    • Diversity of the human intestinal microbial flora
    • Eckburg P.B., et al. Diversity of the human intestinal microbial flora. Science 2005, 308:1635-1638.
    • (2005) Science , vol.308 , pp. 1635-1638
    • Eckburg, P.B.1
  • 2
    • 77952318832 scopus 로고    scopus 로고
    • Intestinal bacteria and the regulation of immune cell homeostasis
    • Hill D.A., Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 2010, 28:623-667.
    • (2010) Annu. Rev. Immunol. , vol.28 , pp. 623-667
    • Hill, D.A.1    Artis, D.2
  • 3
    • 77950251400 scopus 로고    scopus 로고
    • A human gut microbial gene catalogue established by metagenomic sequencing
    • Qin J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
    • (2010) Nature , vol.464 , pp. 59-65
    • Qin, J.1
  • 4
    • 85027927719 scopus 로고    scopus 로고
    • Enterotypes of the human gut microbiome
    • Arumugam M., et al. Enterotypes of the human gut microbiome. Nature 2011, 473:174-180.
    • (2011) Nature , vol.473 , pp. 174-180
    • Arumugam, M.1
  • 5
    • 83655196785 scopus 로고    scopus 로고
    • The effects of commensal microbiota on immune cell subsets and inflammatory responses
    • Chinen T., Rudensky A.Y. The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol. Rev. 2012, 245:45-55.
    • (2012) Immunol. Rev. , vol.245 , pp. 45-55
    • Chinen, T.1    Rudensky, A.Y.2
  • 6
    • 84862637797 scopus 로고    scopus 로고
    • Gut immune maturation depends on colonization with a host-specific microbiota
    • Chung H., et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 2012, 149:1578-1593.
    • (2012) Cell , vol.149 , pp. 1578-1593
    • Chung, H.1
  • 7
    • 84881477044 scopus 로고    scopus 로고
    • Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
    • Atarashi K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500:232-236.
    • (2013) Nature , vol.500 , pp. 232-236
    • Atarashi, K.1
  • 8
    • 84893370250 scopus 로고    scopus 로고
    • Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice
    • Faith J.J., et al. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 2014, 10.1126/scitranslmed.3008051.
    • (2014) Sci. Transl. Med.
    • Faith, J.J.1
  • 9
    • 77649209317 scopus 로고    scopus 로고
    • Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria
    • Stecher B., et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010, 10.1371/journal.ppat.1000711.
    • (2010) PLoS Pathog.
    • Stecher, B.1
  • 10
    • 78649895980 scopus 로고    scopus 로고
    • Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
    • Ubeda C., et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest. 2010, 120:4332-4341.
    • (2010) J. Clin. Invest. , vol.120 , pp. 4332-4341
    • Ubeda, C.1
  • 11
    • 84898809123 scopus 로고    scopus 로고
    • The microbiome in inflammatory bowel disease: current status and the future ahead
    • Kostic A.D., et al. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014, 146:1489-1499.
    • (2014) Gastroenterology , vol.146 , pp. 1489-1499
    • Kostic, A.D.1
  • 12
    • 77953913586 scopus 로고    scopus 로고
    • Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
    • Wu H.J., et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010, 32:815-827.
    • (2010) Immunity , vol.32 , pp. 815-827
    • Wu, H.J.1
  • 13
    • 79952748674 scopus 로고    scopus 로고
    • Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis
    • Lee Y.K., et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4615-4622.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 4615-4622
    • Lee, Y.K.1
  • 14
    • 81855167104 scopus 로고    scopus 로고
    • Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination
    • Berer K., et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011, 479:538-541.
    • (2011) Nature , vol.479 , pp. 538-541
    • Berer, K.1
  • 15
    • 84874357602 scopus 로고    scopus 로고
    • Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity
    • Markle J.G., et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013, 339:1084-1088.
    • (2013) Science , vol.339 , pp. 1084-1088
    • Markle, J.G.1
  • 16
    • 84856957894 scopus 로고    scopus 로고
    • Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity
    • Henao-Mejia J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482:179-185.
    • (2012) Nature , vol.482 , pp. 179-185
    • Henao-Mejia, J.1
  • 17
    • 80054927213 scopus 로고    scopus 로고
    • Microbiota and autoimmune disease: the hosted self
    • Mathis D., Benoist C. Microbiota and autoimmune disease: the hosted self. Cell Host Microbe 2011, 10:297-301.
    • (2011) Cell Host Microbe , vol.10 , pp. 297-301
    • Mathis, D.1    Benoist, C.2
  • 18
    • 83655191565 scopus 로고    scopus 로고
    • Epithelial barrier: an interface for the cross-communication between gut flora and immune system
    • Goto Y., Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol. Rev. 2012, 245:147-163.
    • (2012) Immunol. Rev. , vol.245 , pp. 147-163
    • Goto, Y.1    Kiyono, H.2
  • 19
    • 3242664636 scopus 로고    scopus 로고
    • Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis
    • Rakoff-Nahoum S., et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004, 118:229-241.
    • (2004) Cell , vol.118 , pp. 229-241
    • Rakoff-Nahoum, S.1
  • 20
    • 77949965210 scopus 로고    scopus 로고
    • Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases
    • Dupaul-Chicoine J., et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 2010, 32:367-378.
    • (2010) Immunity , vol.32 , pp. 367-378
    • Dupaul-Chicoine, J.1
  • 21
    • 77950002937 scopus 로고    scopus 로고
    • The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis
    • Zaki M.H., et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 2010, 32:379-391.
    • (2010) Immunity , vol.32 , pp. 379-391
    • Zaki, M.H.1
  • 22
    • 84892476369 scopus 로고    scopus 로고
    • Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis
    • Song X., et al. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity 2014, 40:140-152.
    • (2014) Immunity , vol.40 , pp. 140-152
    • Song, X.1
  • 23
    • 0036737806 scopus 로고    scopus 로고
    • Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region
    • Kalina U., et al. Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region. Eur. J. Immunol. 2002, 32:2635-2643.
    • (2002) Eur. J. Immunol. , vol.32 , pp. 2635-2643
    • Kalina, U.1
  • 24
    • 84892449521 scopus 로고    scopus 로고
    • Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
    • Singh N., et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40:128-139.
    • (2014) Immunity , vol.40 , pp. 128-139
    • Singh, N.1
  • 25
    • 35348857386 scopus 로고    scopus 로고
    • Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases
    • Frank D.N., et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:13780-13785.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 13780-13785
    • Frank, D.N.1
  • 26
    • 78649686679 scopus 로고    scopus 로고
    • A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes
    • Willing B.P., et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 2010, 139:1844-1854.
    • (2010) Gastroenterology , vol.139 , pp. 1844-1854
    • Willing, B.P.1
  • 27
    • 79251584066 scopus 로고    scopus 로고
    • Bifidobacteria can protect from enteropathogenic infection through production of acetate
    • Fukuda S., et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469:543-547.
    • (2011) Nature , vol.469 , pp. 543-547
    • Fukuda, S.1
  • 28
    • 79952748335 scopus 로고    scopus 로고
    • The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions
    • Johansson M.E., et al. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(Suppl. 1):4659-4665.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 4659-4665
    • Johansson, M.E.1
  • 29
    • 0036500996 scopus 로고    scopus 로고
    • Colorectal cancer in mice genetically deficient in the mucin Muc2
    • Velcich A., et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002, 295:1726-1729.
    • (2002) Science , vol.295 , pp. 1726-1729
    • Velcich, A.1
  • 30
    • 33745746660 scopus 로고    scopus 로고
    • Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
    • Van der Sluis M., et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006, 131:117-129.
    • (2006) Gastroenterology , vol.131 , pp. 117-129
    • Van der Sluis, M.1
  • 31
    • 79953307656 scopus 로고    scopus 로고
    • Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice
    • Fu J., et al. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J. Clin. Invest. 2011, 121:1657-1666.
    • (2011) J. Clin. Invest. , vol.121 , pp. 1657-1666
    • Fu, J.1
  • 32
    • 84891736162 scopus 로고    scopus 로고
    • Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis
    • Johansson M.E., et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 2014, 63:281-291.
    • (2014) Gut , vol.63 , pp. 281-291
    • Johansson, M.E.1
  • 33
    • 84886280379 scopus 로고    scopus 로고
    • Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
    • Shan M., et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013, 342:447-453.
    • (2013) Science , vol.342 , pp. 447-453
    • Shan, M.1
  • 34
    • 84863230541 scopus 로고    scopus 로고
    • Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine
    • McDole J.R., et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012, 483:345-349.
    • (2012) Nature , vol.483 , pp. 345-349
    • McDole, J.R.1
  • 35
    • 15544376418 scopus 로고    scopus 로고
    • Glycan foraging in vivo by an intestine-adapted bacterial symbiont
    • Sonnenburg J.L., et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005, 307:1955-1959.
    • (2005) Science , vol.307 , pp. 1955-1959
    • Sonnenburg, J.L.1
  • 36
    • 84859925158 scopus 로고    scopus 로고
    • How glycan metabolism shapes the human gut microbiota
    • Koropatkin N.M., et al. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 2012, 10:323-335.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 323-335
    • Koropatkin, N.M.1
  • 37
    • 77649086402 scopus 로고    scopus 로고
    • Immune adaptations that maintain homeostasis with the intestinal microbiota
    • Hooper L.V., Macpherson A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010, 10:159-169.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 159-169
    • Hooper, L.V.1    Macpherson, A.J.2
  • 38
    • 80054122238 scopus 로고    scopus 로고
    • The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
    • Vaishnava S., et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011, 334:255-258.
    • (2011) Science , vol.334 , pp. 255-258
    • Vaishnava, S.1
  • 39
    • 53649098280 scopus 로고    scopus 로고
    • Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits
    • Brandl K., et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008, 455:804-807.
    • (2008) Nature , vol.455 , pp. 804-807
    • Brandl, K.1
  • 40
    • 84862862332 scopus 로고    scopus 로고
    • Epithelial antimicrobial defence of the skin and intestine
    • Gallo R.L., Hooper L.V. Epithelial antimicrobial defence of the skin and intestine. Nat. Rev. Immunol. 2012, 12:503-516.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 503-516
    • Gallo, R.L.1    Hooper, L.V.2
  • 41
    • 2442709188 scopus 로고    scopus 로고
    • Transgenic overexpression of Reg protein caused gastric cell proliferation and differentiation along parietal cell and chief cell lineages
    • Miyaoka Y., et al. Transgenic overexpression of Reg protein caused gastric cell proliferation and differentiation along parietal cell and chief cell lineages. Oncogene 2004, 23:3572-3579.
    • (2004) Oncogene , vol.23 , pp. 3572-3579
    • Miyaoka, Y.1
  • 42
    • 56749146467 scopus 로고    scopus 로고
    • Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis
    • Bouskra D., et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008, 456:507-510.
    • (2008) Nature , vol.456 , pp. 507-510
    • Bouskra, D.1
  • 43
    • 63449112387 scopus 로고    scopus 로고
    • TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis
    • Taylor B.C., et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 2009, 206:655-667.
    • (2009) J. Exp. Med. , vol.206 , pp. 655-667
    • Taylor, B.C.1
  • 44
    • 85027947787 scopus 로고    scopus 로고
    • Induction of colonic regulatory T cells by indigenous Clostridium species
    • Atarashi K., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331:337-341.
    • (2011) Science , vol.331 , pp. 337-341
    • Atarashi, K.1
  • 45
    • 84890564250 scopus 로고    scopus 로고
    • Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
    • Furusawa Y., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504:446-450.
    • (2013) Nature , vol.504 , pp. 446-450
    • Furusawa, Y.1
  • 46
    • 77952794397 scopus 로고    scopus 로고
    • Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria
    • Varol C., et al. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 2010, 10:415-426.
    • (2010) Nat. Rev. Immunol. , vol.10 , pp. 415-426
    • Varol, C.1
  • 47
    • 84901410158 scopus 로고    scopus 로고
    • Intestinal macrophages and dendritic cells: what's the difference?
    • Cerovic V., et al. Intestinal macrophages and dendritic cells: what's the difference?. Trends Immunol. 2014, 35:270-277.
    • (2014) Trends Immunol. , vol.35 , pp. 270-277
    • Cerovic, V.1
  • 48
    • 84859808080 scopus 로고    scopus 로고
    • Oral tolerance to food protein
    • Pabst O., Mowat A.M. Oral tolerance to food protein. Mucosal Immunol. 2012, 5:232-239.
    • (2012) Mucosal Immunol. , vol.5 , pp. 232-239
    • Pabst, O.1    Mowat, A.M.2
  • 49
    • 84859416933 scopus 로고    scopus 로고
    • Regulatory T cells: mechanisms of differentiation and function
    • Josefowicz S.Z., et al. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 2012, 30:531-564.
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 531-564
    • Josefowicz, S.Z.1
  • 50
    • 34547788180 scopus 로고    scopus 로고
    • A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism
    • Coombes J.L., et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 2007, 204:1757-1764.
    • (2007) J. Exp. Med. , vol.204 , pp. 1757-1764
    • Coombes, J.L.1
  • 51
    • 34547757390 scopus 로고    scopus 로고
    • Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
    • Sun C.M., et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 2007, 204:1775-1785.
    • (2007) J. Exp. Med. , vol.204 , pp. 1775-1785
    • Sun, C.M.1
  • 52
    • 34547769253 scopus 로고    scopus 로고
    • All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation
    • Benson M.J., et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 2007, 204:1765-1774.
    • (2007) J. Exp. Med. , vol.204 , pp. 1765-1774
    • Benson, M.J.1
  • 53
    • 80054866424 scopus 로고    scopus 로고
    • Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8
    • Worthington J.J., et al. Intestinal dendritic cells specialize to activate transforming growth factor-beta and induce Foxp3+ regulatory T cells via integrin alphavbeta8. Gastroenterology 2011, 141:1802-1812.
    • (2011) Gastroenterology , vol.141 , pp. 1802-1812
    • Worthington, J.J.1
  • 54
    • 44349167059 scopus 로고    scopus 로고
    • Dendritic cells in intestinal immune regulation
    • Coombes J.L., Powrie F. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 2008, 8:435-446.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 435-446
    • Coombes, J.L.1    Powrie, F.2
  • 55
    • 12244297799 scopus 로고    scopus 로고
    • CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance
    • Niess J.H., et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005, 307:254-258.
    • (2005) Science , vol.307 , pp. 254-258
    • Niess, J.H.1
  • 56
    • 79951772860 scopus 로고    scopus 로고
    • Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria
    • Hadis U., et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 2011, 34:237-246.
    • (2011) Immunity , vol.34 , pp. 237-246
    • Hadis, U.1
  • 57
    • 70350464351 scopus 로고    scopus 로고
    • Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis
    • Murai M., et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 2009, 10:1178-1184.
    • (2009) Nat. Immunol. , vol.10 , pp. 1178-1184
    • Murai, M.1
  • 58
    • 84894107663 scopus 로고    scopus 로고
    • Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells
    • Mazzini E., et al. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity 2014, 40:248-261.
    • (2014) Immunity , vol.40 , pp. 248-261
    • Mazzini, E.1
  • 59
    • 53649100675 scopus 로고    scopus 로고
    • ATP drives lamina propria T(H)17 cell differentiation
    • Atarashi K., et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008, 455:808-812.
    • (2008) Nature , vol.455 , pp. 808-812
    • Atarashi, K.1
  • 60
    • 33750473352 scopus 로고    scopus 로고
    • Pannexin-1 mediates large pore formation and interleukin-1b release by the ATP-gated P2X7 receptor
    • Pelegrin P., Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1b release by the ATP-gated P2X7 receptor. EMBO J. 2006, 25:5071-5082.
    • (2006) EMBO J. , vol.25 , pp. 5071-5082
    • Pelegrin, P.1    Surprenant, A.2
  • 61
    • 84863151799 scopus 로고    scopus 로고
    • Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine
    • Shaw M.H., et al. Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 2012, 209:251-258.
    • (2012) J. Exp. Med. , vol.209 , pp. 251-258
    • Shaw, M.H.1
  • 62
    • 84859911615 scopus 로고    scopus 로고
    • NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense
    • Franchi L., et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 2012, 13:449-456.
    • (2012) Nat. Immunol. , vol.13 , pp. 449-456
    • Franchi, L.1
  • 63
    • 84866362664 scopus 로고    scopus 로고
    • IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells
    • Coccia M., et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J. Exp. Med. 2012, 209:1595-1609.
    • (2012) J. Exp. Med. , vol.209 , pp. 1595-1609
    • Coccia, M.1
  • 64
    • 79959271087 scopus 로고    scopus 로고
    • Intestinal homeostasis and its breakdown in inflammatory bowel disease
    • Maloy K.J., Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011, 474:298-306.
    • (2011) Nature , vol.474 , pp. 298-306
    • Maloy, K.J.1    Powrie, F.2
  • 65
    • 70349742524 scopus 로고    scopus 로고
    • The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
    • Gaboriau-Routhiau V., et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009, 31:677-689.
    • (2009) Immunity , vol.31 , pp. 677-689
    • Gaboriau-Routhiau, V.1
  • 66
    • 70350343544 scopus 로고    scopus 로고
    • Induction of intestinal Th17 cells by segmented filamentous bacteria
    • Ivanov I.I., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009, 139:485-498.
    • (2009) Cell , vol.139 , pp. 485-498
    • Ivanov, I.I.1
  • 67
    • 84898679249 scopus 로고    scopus 로고
    • Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
    • Goto Y., et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 2014, 40:594-607.
    • (2014) Immunity , vol.40 , pp. 594-607
    • Goto, Y.1
  • 68
    • 84898685253 scopus 로고    scopus 로고
    • Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses
    • Lecuyer E., et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 2014, 40:608-620.
    • (2014) Immunity , vol.40 , pp. 608-620
    • Lecuyer, E.1
  • 69
    • 84901979873 scopus 로고    scopus 로고
    • Focused specificity of intestinal T17 cells towards commensal bacterial antigens
    • Yang Y., et al. Focused specificity of intestinal T17 cells towards commensal bacterial antigens. Nature 2014, 510:152-156.
    • (2014) Nature , vol.510 , pp. 152-156
    • Yang, Y.1
  • 70
    • 80051994193 scopus 로고    scopus 로고
    • The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing
    • Kuwahara T., et al. The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Res. 2011, 18:291-303.
    • (2011) DNA Res. , vol.18 , pp. 291-303
    • Kuwahara, T.1
  • 71
    • 80053025965 scopus 로고    scopus 로고
    • The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment
    • Sczesnak A., et al. The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 2011, 10:260-272.
    • (2011) Cell Host Microbe , vol.10 , pp. 260-272
    • Sczesnak, A.1
  • 72
    • 80053045987 scopus 로고    scopus 로고
    • Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation
    • Prakash T., et al. Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 2011, 10:273-284.
    • (2011) Cell Host Microbe , vol.10 , pp. 273-284
    • Prakash, T.1
  • 73
    • 79956315886 scopus 로고    scopus 로고
    • Intestinal bacterial colonization induces mutualistic regulatory T cell responses
    • Geuking M.B., et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011, 34:794-806.
    • (2011) Immunity , vol.34 , pp. 794-806
    • Geuking, M.B.1
  • 74
    • 84872977452 scopus 로고    scopus 로고
    • Innate lymphoid cells: a proposal for uniform nomenclature
    • Spits H., et al. Innate lymphoid cells: a proposal for uniform nomenclature. Nat. Rev. Immunol. 2013, 13:145-149.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 145-149
    • Spits, H.1
  • 75
    • 84861989207 scopus 로고    scopus 로고
    • Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
    • Sonnenberg G.F., et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012, 336:1321-1325.
    • (2012) Science , vol.336 , pp. 1321-1325
    • Sonnenberg, G.F.1
  • 76
    • 40049083827 scopus 로고    scopus 로고
    • Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
    • Zheng Y., et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 2008, 14:282-289.
    • (2008) Nat. Med. , vol.14 , pp. 282-289
    • Zheng, Y.1
  • 77
    • 67650474246 scopus 로고    scopus 로고
    • STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing
    • Pickert G., et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 2009, 206:1465-1472.
    • (2009) J. Exp. Med. , vol.206 , pp. 1465-1472
    • Pickert, G.1
  • 78
    • 78751706261 scopus 로고    scopus 로고
    • CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut
    • Sonnenberg G.F., et al. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 2011, 34:122-134.
    • (2011) Immunity , vol.34 , pp. 122-134
    • Sonnenberg, G.F.1
  • 79
    • 84878737123 scopus 로고    scopus 로고
    • Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria
    • Hepworth M.R., et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 2013, 498:113-117.
    • (2013) Nature , vol.498 , pp. 113-117
    • Hepworth, M.R.1
  • 80
    • 77951878587 scopus 로고    scopus 로고
    • Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology
    • Buonocore S., et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010, 464:1371-1375.
    • (2010) Nature , vol.464 , pp. 1371-1375
    • Buonocore, S.1
  • 81
    • 84879571464 scopus 로고    scopus 로고
    • Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model
    • Kirchberger S., et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 2013, 210:917-931.
    • (2013) J. Exp. Med. , vol.210 , pp. 917-931
    • Kirchberger, S.1
  • 82
    • 84867807929 scopus 로고    scopus 로고
    • Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease
    • Sonnenberg G.F., Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 2012, 37:601-610.
    • (2012) Immunity , vol.37 , pp. 601-610
    • Sonnenberg, G.F.1    Artis, D.2
  • 83
    • 57449118239 scopus 로고    scopus 로고
    • Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
    • Satoh-Takayama N., et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008, 29:958-970.
    • (2008) Immunity , vol.29 , pp. 958-970
    • Satoh-Takayama, N.1
  • 84
    • 57849117363 scopus 로고    scopus 로고
    • RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
    • Sanos S.L., et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 2009, 10:83-91.
    • (2009) Nat. Immunol. , vol.10 , pp. 83-91
    • Sanos, S.L.1
  • 85
    • 78649360369 scopus 로고    scopus 로고
    • Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes
    • Vonarbourg C., et al. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 2010, 33:736-751.
    • (2010) Immunity , vol.33 , pp. 736-751
    • Vonarbourg, C.1
  • 86
    • 78650183459 scopus 로고    scopus 로고
    • Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2
    • Crellin N.K., et al. Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 2010, 33:752-764.
    • (2010) Immunity , vol.33 , pp. 752-764
    • Crellin, N.K.1
  • 87
    • 75749133608 scopus 로고    scopus 로고
    • Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection
    • Kinnebrew M.A., et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 2010, 201:534-543.
    • (2010) J. Infect. Dis. , vol.201 , pp. 534-543
    • Kinnebrew, M.A.1
  • 88
    • 77955499820 scopus 로고    scopus 로고
    • TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa
    • Van Maele L., et al. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa. J. Immunol. 2010, 185:1177-1185.
    • (2010) J. Immunol. , vol.185 , pp. 1177-1185
    • Van Maele, L.1
  • 89
    • 84857444876 scopus 로고    scopus 로고
    • Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
    • Kinnebrew M.A., et al. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012, 36:276-287.
    • (2012) Immunity , vol.36 , pp. 276-287
    • Kinnebrew, M.A.1
  • 90
    • 79952986650 scopus 로고    scopus 로고
    • RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
    • Sawa S., et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 2011, 12:320-326.
    • (2011) Nat. Immunol. , vol.12 , pp. 320-326
    • Sawa, S.1
  • 91
    • 84897053496 scopus 로고    scopus 로고
    • Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis
    • Mortha A., et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 2014, 10.1126/science.1249288.
    • (2014) Science
    • Mortha, A.1
  • 92
    • 80155164160 scopus 로고    scopus 로고
    • Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation
    • Li Y., et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 2011, 147:629-640.
    • (2011) Cell , vol.147 , pp. 629-640
    • Li, Y.1
  • 93
    • 84855917402 scopus 로고    scopus 로고
    • AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch
    • Lee J.S., et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 2012, 13:144-151.
    • (2012) Nat. Immunol. , vol.13 , pp. 144-151
    • Lee, J.S.1
  • 94
    • 84856237141 scopus 로고    scopus 로고
    • The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells
    • Qiu J., et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 2012, 36:92-104.
    • (2012) Immunity , vol.36 , pp. 92-104
    • Qiu, J.1
  • 95
    • 83855160821 scopus 로고    scopus 로고
    • Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles
    • Kiss E.A., et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 2011, 334:1561-1565.
    • (2011) Science , vol.334 , pp. 1561-1565
    • Kiss, E.A.1
  • 96
    • 84882664672 scopus 로고    scopus 로고
    • Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
    • Zelante T., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39:372-385.
    • (2013) Immunity , vol.39 , pp. 372-385
    • Zelante, T.1
  • 97
    • 84882668842 scopus 로고    scopus 로고
    • Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora
    • Qiu J., et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 2013, 39:386-399.
    • (2013) Immunity , vol.39 , pp. 386-399
    • Qiu, J.1
  • 98
    • 83655203111 scopus 로고    scopus 로고
    • The habitat, double life, citizenship, and forgetfulness of IgA
    • Macpherson A.J., et al. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol. Rev. 2011, 245:132-146.
    • (2011) Immunol. Rev. , vol.245 , pp. 132-146
    • Macpherson, A.J.1
  • 99
    • 73349099737 scopus 로고    scopus 로고
    • A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota
    • Cong Y., et al. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:19256-19261.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 19256-19261
    • Cong, Y.1
  • 100
    • 77954051526 scopus 로고    scopus 로고
    • Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses
    • Hapfelmeier S., et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 2010, 328:1705-1709.
    • (2010) Science , vol.328 , pp. 1705-1709
    • Hapfelmeier, S.1
  • 101
    • 84855796468 scopus 로고    scopus 로고
    • Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut
    • Fritz J.H., et al. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 2012, 481:199-203.
    • (2012) Nature , vol.481 , pp. 199-203
    • Fritz, J.H.1
  • 102
    • 84883741301 scopus 로고    scopus 로고
    • Microbial colonization influences early B-lineage development in the gut lamina propria
    • Wesemann D.R., et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 2013, 501:112-115.
    • (2013) Nature , vol.501 , pp. 112-115
    • Wesemann, D.R.1
  • 103
    • 83655191570 scopus 로고    scopus 로고
    • Innate immune signaling in defense against intestinal microbes
    • Kinnebrew M.A., Pamer E.G. Innate immune signaling in defense against intestinal microbes. Immunol. Rev. 2012, 245:113-131.
    • (2012) Immunol. Rev. , vol.245 , pp. 113-131
    • Kinnebrew, M.A.1    Pamer, E.G.2
  • 104
    • 77954898661 scopus 로고    scopus 로고
    • The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut
    • Suzuki K., et al. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 2010, 33:71-83.
    • (2010) Immunity , vol.33 , pp. 71-83
    • Suzuki, K.1
  • 105
    • 84889247024 scopus 로고    scopus 로고
    • Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis
    • Kruglov A.A., et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science 2013, 342:1243-1246.
    • (2013) Science , vol.342 , pp. 1243-1246
    • Kruglov, A.A.1
  • 106
    • 62449202866 scopus 로고    scopus 로고
    • Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's Patches
    • Tsuji M., et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's Patches. Science 2009, 323:1488-1492.
    • (2009) Science , vol.323 , pp. 1488-1492
    • Tsuji, M.1
  • 107
    • 84875473675 scopus 로고    scopus 로고
    • Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses
    • Hirota K., et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 2013, 14:372-379.
    • (2013) Nat. Immunol. , vol.14 , pp. 372-379
    • Hirota, K.1
  • 108
    • 84867908677 scopus 로고    scopus 로고
    • Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis
    • Cao A.T., et al. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J. Immunol. 2012, 189:4666-4673.
    • (2012) J. Immunol. , vol.189 , pp. 4666-4673
    • Cao, A.T.1
  • 109
    • 79951602552 scopus 로고    scopus 로고
    • Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense
    • Wei M., et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat. Immunol. 2011, 12:264-270.
    • (2011) Nat. Immunol. , vol.12 , pp. 264-270
    • Wei, M.1
  • 110
    • 84860123211 scopus 로고    scopus 로고
    • The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut
    • Kawamoto S., et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 2012, 336:485-489.
    • (2012) Science , vol.336 , pp. 485-489
    • Kawamoto, S.1
  • 111
    • 78651500757 scopus 로고    scopus 로고
    • Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells
    • Lochner M., et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells. J. Exp. Med. 2011, 208:125-134.
    • (2011) J. Exp. Med. , vol.208 , pp. 125-134
    • Lochner, M.1
  • 112
    • 84857444508 scopus 로고    scopus 로고
    • B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage
    • Kirkland D., et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity 2012, 36:228-238.
    • (2012) Immunity , vol.36 , pp. 228-238
    • Kirkland, D.1
  • 113
    • 68149091349 scopus 로고    scopus 로고
    • Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism
    • Slack E., et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 2009, 325:617-620.
    • (2009) Science , vol.325 , pp. 617-620
    • Slack, E.1
  • 114
    • 84856655455 scopus 로고    scopus 로고
    • Innate response activator B cells protect against microbial sepsis
    • Rauch P.J., et al. Innate response activator B cells protect against microbial sepsis. Science 2012, 335:597-601.
    • (2012) Science , vol.335 , pp. 597-601
    • Rauch, P.J.1
  • 115
    • 77952866513 scopus 로고    scopus 로고
    • Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease
    • Reynolds J.M., et al. Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 2010, 32:692-702.
    • (2010) Immunity , vol.32 , pp. 692-702
    • Reynolds, J.M.1
  • 116
    • 68649126866 scopus 로고    scopus 로고
    • Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals
    • Martin B., et al. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 2009, 31:321-330.
    • (2009) Immunity , vol.31 , pp. 321-330
    • Martin, B.1
  • 117
    • 76249125057 scopus 로고    scopus 로고
    • Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells
    • Duan J., et al. Microbial colonization drives expansion of IL-1 receptor 1-expressing and IL-17-producing gamma/delta T cells. Cell Host Microbe 2010, 7:140-150.
    • (2010) Cell Host Microbe , vol.7 , pp. 140-150
    • Duan, J.1
  • 118
    • 79957701773 scopus 로고    scopus 로고
    • Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface
    • Ismail A.S., et al. Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:8743-8748.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 8743-8748
    • Ismail, A.S.1
  • 119
    • 84860216630 scopus 로고    scopus 로고
    • Microbial exposure during early life has persistent effects on natural killer T cell function
    • Olszak T., et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 2012, 336:489-493.
    • (2012) Science , vol.336 , pp. 489-493
    • Olszak, T.1
  • 120
    • 84892774558 scopus 로고    scopus 로고
    • Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells
    • An D., et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 2014, 156:123-133.
    • (2014) Cell , vol.156 , pp. 123-133
    • An, D.1
  • 121
    • 77954738601 scopus 로고    scopus 로고
    • Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota
    • Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12204-12209.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 12204-12209
    • Round, J.L.1    Mazmanian, S.K.2
  • 122
    • 79956311926 scopus 로고    scopus 로고
    • The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
    • Round J.L., et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011, 332:974-977.
    • (2011) Science , vol.332 , pp. 974-977
    • Round, J.L.1
  • 123
    • 84867656021 scopus 로고    scopus 로고
    • Outer membrane vesicles of a human commensal mediate immune regulation and disease protection
    • Shen Y., et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 2012, 12:509-520.
    • (2012) Cell Host Microbe , vol.12 , pp. 509-520
    • Shen, Y.1
  • 124
    • 84898647980 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms
    • Dasgupta S., et al. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 2014, 15:413-423.
    • (2014) Cell Host Microbe , vol.15 , pp. 413-423
    • Dasgupta, S.1
  • 125
    • 84890550163 scopus 로고    scopus 로고
    • Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
    • Arpaia N., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504:451-455.
    • (2013) Nature , vol.504 , pp. 451-455
    • Arpaia, N.1
  • 126
    • 84881068658 scopus 로고    scopus 로고
    • The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
    • Smith P.M., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341:569-573.
    • (2013) Science , vol.341 , pp. 569-573
    • Smith, P.M.1
  • 127
    • 80054020840 scopus 로고    scopus 로고
    • Peripheral education of the immune system by colonic commensal microbiota
    • Lathrop S.K., et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011, 478:250-254.
    • (2011) Nature , vol.478 , pp. 250-254
    • Lathrop, S.K.1
  • 128
    • 84877742439 scopus 로고    scopus 로고
    • Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota
    • Cebula A., et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 2013, 497:258-262.
    • (2013) Nature , vol.497 , pp. 258-262
    • Cebula, A.1
  • 129
    • 84886782819 scopus 로고    scopus 로고
    • Therapeutic potential of fecal microbiota transplantation
    • Smith L.P., et al. Therapeutic potential of fecal microbiota transplantation. Gastroenterology 2013, 145:946-953.
    • (2013) Gastroenterology , vol.145 , pp. 946-953
    • Smith, L.P.1
  • 130
    • 34249284197 scopus 로고    scopus 로고
    • Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota
    • Smith K., et al. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol. 2007, 19:59-69.
    • (2007) Semin. Immunol. , vol.19 , pp. 59-69
    • Smith, K.1
  • 131
    • 79955121049 scopus 로고    scopus 로고
    • Microbiota regulates immune defense against respiratory tract influenza A virus infection
    • Ichinohe T., et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5354-5359.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 5354-5359
    • Ichinohe, T.1
  • 132
    • 84864311450 scopus 로고    scopus 로고
    • Commensal bacteria calibrate the activation threshold of innate antiviral immunity
    • Abt M.C., et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 2012, 37:158-170.
    • (2012) Immunity , vol.37 , pp. 158-170
    • Abt, M.C.1
  • 133
    • 80054115012 scopus 로고    scopus 로고
    • Successful transmission of a retrovirus depends on the commensal microbiota
    • Kane M., et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 2011, 334:245-249.
    • (2011) Science , vol.334 , pp. 245-249
    • Kane, M.1
  • 134
    • 80054091498 scopus 로고    scopus 로고
    • Intestinal microbiota promote enteric virus replication and systemic pathogenesis
    • Kuss S.K., et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 2011, 334:249-252.
    • (2011) Science , vol.334 , pp. 249-252
    • Kuss, S.K.1
  • 135
    • 84892621089 scopus 로고    scopus 로고
    • Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus
    • Robinson C.M., et al. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 2014, 15:36-46.
    • (2014) Cell Host Microbe , vol.15 , pp. 36-46
    • Robinson, C.M.1
  • 136
    • 84870294763 scopus 로고    scopus 로고
    • Resurrection of endogenous retroviruses in antibody-deficient mice
    • Young G.R., et al. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 2012, 491:774-778.
    • (2012) Nature , vol.491 , pp. 774-778
    • Young, G.R.1
  • 137
    • 84861964286 scopus 로고    scopus 로고
    • Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
    • Iliev I.D., et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012, 336:1314-1317.
    • (2012) Science , vol.336 , pp. 1314-1317
    • Iliev, I.D.1
  • 138
    • 84867176113 scopus 로고    scopus 로고
    • Helminth infections and host immune regulation
    • McSorley H.J., Maizels R.M. Helminth infections and host immune regulation. Clin. Microbiol. Rev. 2012, 25:585-608.
    • (2012) Clin. Microbiol. Rev. , vol.25 , pp. 585-608
    • McSorley, H.J.1    Maizels, R.M.2
  • 139
    • 78249263840 scopus 로고    scopus 로고
    • Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus
    • Walk S.T., et al. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis. 2010, 16:1841-1849.
    • (2010) Inflamm. Bowel Dis. , vol.16 , pp. 1841-1849
    • Walk, S.T.1
  • 140
    • 77953605339 scopus 로고    scopus 로고
    • Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris
    • Hayes K.S., et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 2010, 328:1391-1394.
    • (2010) Science , vol.328 , pp. 1391-1394
    • Hayes, K.S.1
  • 141
    • 84920469791 scopus 로고    scopus 로고
    • Host-microbe interactions shaping the gastrointestinal environment
    • Kaiko G.E., Stappenbeck T.S. Host-microbe interactions shaping the gastrointestinal environment. Trends Immunol. 2014, 35:538-548.
    • (2014) Trends Immunol. , vol.35 , pp. 538-548
    • Kaiko, G.E.1    Stappenbeck, T.S.2
  • 142
    • 84861988021 scopus 로고    scopus 로고
    • Microbiota, disease, and back to health: a metastable journey
    • Blumberg R., Powrie F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 2012, 10.1126/scitranslmed.3004184.
    • (2012) Sci. Transl. Med.
    • Blumberg, R.1    Powrie, F.2
  • 143
    • 84866461477 scopus 로고    scopus 로고
    • Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice
    • Ubeda C., et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 2012, 209:1445-1456.
    • (2012) J. Exp. Med. , vol.209 , pp. 1445-1456
    • Ubeda, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.