메뉴 건너뛰기




Volumn 14, Issue 7, 2014, Pages 435-446

Integrating canonical and metabolic signalling programmes in the regulation of T cell responses

Author keywords

[No Author keywords available]

Indexed keywords

CD4+ T LYMPHOCYTE; CD8+ T LYMPHOCYTE; CELL LINEAGE; CELL METABOLISM; EFFECTOR CELL; HUMAN; IMMUNE RESPONSE; IMMUNOREGULATION; MEMORY T LYMPHOCYTE; METABOLIC REGULATION; NONHUMAN; PRIORITY JOURNAL; REGULATORY T LYMPHOCYTE; REVIEW; SIGNAL TRANSDUCTION; T LYMPHOCYTE;

EID: 84903277871     PISSN: 14741733     EISSN: 14741741     Source Type: Journal    
DOI: 10.1038/nri3701     Document Type: Review
Times cited : (323)

References (125)
  • 2
    • 84880040017 scopus 로고    scopus 로고
    • Orai1-NFAT signalling pathway triggered by T cell receptor stimulation
    • Srikanth, S. & Gwack, Y. Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol. Cells 35, 182-194 (2013).
    • (2013) Mol. Cells , vol.35 , pp. 182-194
    • Srikanth, S.1    Gwack, Y.2
  • 3
    • 0037077135 scopus 로고    scopus 로고
    • Transcriptional mechanisms underlying lymphocyte tolerance
    • Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719-731 (2002).
    • (2002) Cell , vol.109 , pp. 719-731
    • Macian, F.1
  • 4
    • 0030056468 scopus 로고    scopus 로고
    • Models of T cell anergy: Is there a common molecular mechanism?
    • Schwartz, R. H. Models of T cell anergy: is there a common molecular mechanism? J. Exp. Med. 184, 1-8 (1996).
    • (1996) J. Exp. Med. , vol.184 , pp. 1-8
    • Schwartz, R.H.1
  • 5
    • 0029991920 scopus 로고    scopus 로고
    • Blocked Ras activation in anergic CD4+ T cells
    • Fields, P. E., Gajewski, T. F. & Fitch, F. W. Blocked Ras activation in anergic CD4+ T cells. Science 271, 1276-1278 (1996).
    • (1996) Science , vol.271 , pp. 1276-1278
    • Fields, P.E.1    Gajewski, T.F.2    Fitch, F.W.3
  • 6
    • 0035221568 scopus 로고    scopus 로고
    • Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines
    • Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nature Immunol. 2, 37-44 (2001).
    • (2001) Nature Immunol. , vol.2 , pp. 37-44
    • Kane, L.P.1    Andres, P.G.2    Howland, K.C.3    Abbas, A.K.4    Weiss, A.5
  • 7
    • 0030888186 scopus 로고    scopus 로고
    • Differential activation of transcription factors induced by Ca2+ response amplitude and duration
    • Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855-858 (1997).
    • (1997) Nature , vol.386 , pp. 855-858
    • Dolmetsch, R.E.1    Lewis, R.S.2    Goodnow, C.C.3    Healy, J.I.4
  • 8
    • 84875463042 scopus 로고    scopus 로고
    • Molecular mechanisms of T cell co-stimulation and co-inhibition
    • Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Rev. Immunol. 13, 227-242 (2013).
    • (2013) Nature Rev. Immunol. , vol.13 , pp. 227-242
    • Chen, L.1    Flies, D.B.2
  • 9
    • 0033104824 scopus 로고    scopus 로고
    • Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation
    • Powell, J. D., Lerner, C. G. & Schwartz, R. H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J. Immunol. 162, 2775-2784 (1999).
    • (1999) J. Immunol. , vol.162 , pp. 2775-2784
    • Powell, J.D.1    Lerner, C.G.2    Schwartz, R.H.3
  • 11
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882 (2011).
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.1
  • 12
    • 0034698178 scopus 로고    scopus 로고
    • Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc
    • Osthus, R. C. et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797-21800 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 21797-21800
    • Osthus, R.C.1
  • 13
    • 84881056831 scopus 로고    scopus 로고
    • MYC metabolism, cell growth, and tumorigenesis
    • Dang, C. V. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 3, a014217 (2013).
    • (2013) Cold Spring Harb. Perspect. Med. , vol.3
    • Dang, C.V.1
  • 14
    • 64749116346 scopus 로고    scopus 로고
    • C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
    • Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762-765 (2009).
    • (2009) Nature , vol.458 , pp. 762-765
    • Gao, P.1
  • 15
    • 21744442902 scopus 로고    scopus 로고
    • Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis
    • Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225-6234 (2005).
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 6225-6234
    • Li, F.1
  • 16
    • 0029051439 scopus 로고
    • Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension
    • Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510-5514 (1995).
    • (1995) Proc. Natl Acad. Sci. USA , vol.92 , pp. 5510-5514
    • Wang, G.L.1    Jiang, B.H.2    Rue, E.A.3    Semenza, G.L.4
  • 17
    • 84866601479 scopus 로고    scopus 로고
    • Regulation of metabolism by hypoxia-inducible factor 1
    • Semenza, G. L. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb. Symp. Quant. Biol. 76, 347-353 (2011).
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 347-353
    • Semenza, G.L.1
  • 18
    • 15444342958 scopus 로고    scopus 로고
    • Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α
    • Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149-162 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 149-162
    • Iyer, N.V.1
  • 19
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
    • Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell. Metab. 3, 177-185 (2006).
    • (2006) Cell. Metab. , vol.3 , pp. 177-185
    • Kim, J.W.1    Tchernyshyov, I.2    Semenza, G.L.3    Dang, C.V.4
  • 20
    • 33644622570 scopus 로고    scopus 로고
    • HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
    • Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell. Metab. 3, 187-197 (2006).
    • (2006) Cell. Metab. , vol.3 , pp. 187-197
    • Papandreou, I.1    Cairns, R.A.2    Fontana, L.3    Lim, A.L.4    Denko, N.C.5
  • 21
    • 79952749503 scopus 로고    scopus 로고
    • Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth
    • Sun, Q. et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl Acad. Sci. USA 108, 4129-4134 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 4129-4134
    • Sun, Q.1
  • 22
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 23
    • 84877965001 scopus 로고    scopus 로고
    • Regulation of mTORC1 and its impact on gene expression at a glance
    • Laplante, M. & Sabatini, D. M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126, 1713-1719 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 1713-1719
    • Laplante, M.1    Sabatini, D.M.2
  • 24
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303 (2010).
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 25
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501 (2008).
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 27
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by association with the ribosome. Cell 144, 757-768 (2011).
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4
  • 28
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171-183 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 29
    • 84887430714 scopus 로고    scopus 로고
    • MTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
    • Masui, K. et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell. Metab. 18, 726-739 (2013).
    • (2013) Cell. Metab. , vol.18 , pp. 726-739
    • Masui, K.1
  • 30
    • 80053035284 scopus 로고    scopus 로고
    • AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function
    • Hardie, D. G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 25, 1895-1908 (2011).
    • (2011) Genes Dev. , vol.25 , pp. 1895-1908
    • Hardie, D.G.1
  • 31
    • 84873469666 scopus 로고    scopus 로고
    • Nutrient sensing, metabolism, and cell growth control
    • Yuan, H. X., Xiong, Y. & Guan, K. L. Nutrient sensing, metabolism, and cell growth control. Mol. Cell 49, 379-387 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 379-387
    • Yuan, H.X.1    Xiong, Y.2    Guan, K.L.3
  • 32
    • 0036863086 scopus 로고    scopus 로고
    • Regulation of mammalian acetyl-CoA carboxylase
    • Munday, M. R. Regulation of mammalian acetyl-CoA carboxylase. Biochem. Soc. Trans. 30, 1059-1064 (2002).
    • (2002) Biochem. Soc. Trans. , vol.30 , pp. 1059-1064
    • Munday, M.R.1
  • 33
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590 (2003).
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 34
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226 (2008).
    • (2008) Mol. Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 35
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 13, 132-141 (2011).
    • (2011) Nature Cell Biol. , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 36
    • 84894359469 scopus 로고    scopus 로고
    • Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α
    • Faubert, B. et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc. Natl Acad. Sci. USA 111, 2554-2559 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 2554-2559
    • Faubert, B.1
  • 37
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex
    • Cunningham, J. T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450, 736-740 (2007).
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1
  • 38
    • 33846005164 scopus 로고    scopus 로고
    • Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth
    • Deberardinis, R. J., Lum, J. J. & Thompson, C. B. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J. Biol. Chem. 281, 37372-37380 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 37372-37380
    • Deberardinis, R.J.1    Lum, J.J.2    Thompson, C.B.3
  • 39
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323-1328 (2013).
    • (2013) Science , vol.339 , pp. 1323-1328
    • Ben-Sahra, I.1    Howell, J.J.2    Asara, J.M.3    Manning, B.D.4
  • 40
    • 84874961313 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
    • Robitaille, A. M. et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-1323 (2013).
    • (2013) Science , vol.339 , pp. 1320-1323
    • Robitaille, A.M.1
  • 41
    • 0027474296 scopus 로고
    • Metabolic changes in activated T cells: An NMR study of human peripheral blood lymphocytes
    • Bental, M. & Deutsch, C. Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn. Reson. Med. 29, 317-326 (1993).
    • (1993) Magn. Reson. Med. , vol.29 , pp. 317-326
    • Bental, M.1    Deutsch, C.2
  • 42
    • 34548014737 scopus 로고    scopus 로고
    • Revving the engine: Signal transduction fuels T cell activation
    • Jones, R. G. & Thompson, C. B. Revving the engine: signal transduction fuels T cell activation. Immunity 27, 173-178 (2007).
    • (2007) Immunity , vol.27 , pp. 173-178
    • Jones, R.G.1    Thompson, C.B.2
  • 43
    • 0001221508 scopus 로고
    • On respiratory impairment in cancer cells
    • Warburg, O. On respiratory impairment in cancer cells. Science 124, 269-270 (1956).
    • (1956) Science , vol.124 , pp. 269-270
    • Warburg, O.1
  • 44
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 (2009).
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 45
    • 84878831880 scopus 로고    scopus 로고
    • Posttranscriptional control of T cell effector function by aerobic glycolysis
    • Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239-1251 (2013).
    • (2013) Cell , vol.153 , pp. 1239-1251
    • Chang, C.H.1
  • 46
    • 44449165597 scopus 로고    scopus 로고
    • Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
    • Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476-4486 (2008).
    • (2008) J. Immunol. , vol.180 , pp. 4476-4486
    • Jacobs, S.R.1
  • 47
    • 0036069699 scopus 로고    scopus 로고
    • The CD28 signaling pathway regulates glucose metabolism
    • Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769-777 (2002).
    • (2002) Immunity , vol.16 , pp. 769-777
    • Frauwirth, K.A.1
  • 48
    • 77955475969 scopus 로고    scopus 로고
    • Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
    • Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037-1044 (2010).
    • (2010) J. Immunol. , vol.185 , pp. 1037-1044
    • Carr, E.L.1
  • 49
    • 84876684375 scopus 로고    scopus 로고
    • Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity
    • Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nature Immunol. 14, 489-499 (2013).
    • (2013) Nature Immunol. , vol.14 , pp. 489-499
    • Kidani, Y.1
  • 50
    • 46149098344 scopus 로고    scopus 로고
    • LXR signaling couples sterol metabolism to proliferation in the acquired immune response
    • Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97-111 (2008).
    • (2008) Cell , vol.134 , pp. 97-111
    • Bensinger, S.J.1
  • 51
    • 77649220954 scopus 로고    scopus 로고
    • Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells
    • O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098-1102 (2010).
    • (2010) Science , vol.327 , pp. 1098-1102
    • O'shea, J.J.1    Paul, W.E.2
  • 52
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299-3303 (2011).
    • (2011) J. Immunol. , vol.186 , pp. 3299-3303
    • Michalek, R.D.1
  • 53
    • 42249101428 scopus 로고    scopus 로고
    • Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse
    • Huang, C. Y., Bredemeyer, A. L., Walker, L. M., Bassing, C. H. & Sleckman, B. P. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse. Eur. J. Immunol. 38, 342-349 (2008).
    • (2008) Eur. J. Immunol. , vol.38 , pp. 342-349
    • Huang, C.Y.1    Bredemeyer, A.L.2    Walker, L.M.3    Bassing, C.H.4    Sleckman, B.P.5
  • 54
    • 79960369458 scopus 로고    scopus 로고
    • HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and TReg cells
    • Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and TReg cells. J. Exp. Med. 208, 1367-1376 (2011).
    • (2011) J. Exp. Med. , vol.208 , pp. 1367-1376
    • Shi, L.Z.1
  • 55
    • 80052277906 scopus 로고    scopus 로고
    • Control of TH17/TReg balance by hypoxia-inducible factor 1
    • Dang, E. V. et al. Control of TH17/TReg balance by hypoxia-inducible factor 1. Cell 146, 772-784 (2011).
    • (2011) Cell , vol.146 , pp. 772-784
    • Dang, E.V.1
  • 56
    • 84857542440 scopus 로고    scopus 로고
    • Dynamic regulation of TH17 differentiation by oxygen concentrations
    • Ikejiri, A. et al. Dynamic regulation of TH17 differentiation by oxygen concentrations. Int. Immunol. 24, 137-146 (2012).
    • (2012) Int. Immunol. , vol.24 , pp. 137-146
    • Ikejiri, A.1
  • 57
    • 80054033683 scopus 로고    scopus 로고
    • Human TH17 cells are long-lived effector memory cells
    • Kryczek, I. et al. Human TH17 cells are long-lived effector memory cells. Sci. Transl. Med. 3, 104ra100 (2011).
    • (2011) Sci. Transl. Med. , vol.3
    • Kryczek, I.1
  • 58
    • 84255215452 scopus 로고    scopus 로고
    • Th17 cells are long lived and retain a stem cell-like molecular signature
    • Muranski, P. et al. Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 35, 972-985 (2011).
    • (2011) Immunity , vol.35 , pp. 972-985
    • Muranski, P.1
  • 59
    • 77957584397 scopus 로고    scopus 로고
    • O2 regulates stem cells through Wnt/β-catenin signalling
    • Mazumdar, J. et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nature Cell Biol. 12, 1007-1013 (2010).
    • (2010) Nature Cell Biol. , vol.12 , pp. 1007-1013
    • Mazumdar, J.1
  • 60
    • 33749512970 scopus 로고    scopus 로고
    • Cutting edge: Hypoxia-inducible factor 1α and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes
    • Lukashev, D. et al. Cutting edge: hypoxia-inducible factor 1α and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J. Immunol. 177, 4962-4965 (2006).
    • (2006) J. Immunol. , vol.177 , pp. 4962-4965
    • Lukashev, D.1
  • 61
    • 84874952063 scopus 로고    scopus 로고
    • Genetic deletion of the HIF-1α isoform I.1 in T cells enhances antibacterial immunity and improves survival in a murine peritonitis model
    • Georgiev, P. et al. Genetic deletion of the HIF-1α isoform I.1 in T cells enhances antibacterial immunity and improves survival in a murine peritonitis model. Eur. J. Immunol. 43, 655-666 (2013).
    • (2013) Eur. J. Immunol. , vol.43 , pp. 655-666
    • Georgiev, P.1
  • 62
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832-844 (2009).
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1
  • 63
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunol. 12, 295-303 (2011).
    • (2011) Nature Immunol. , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 64
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743-753 (2010).
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1
  • 65
    • 84899094151 scopus 로고    scopus 로고
    • The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex
    • Heikamp, E. B. et al. The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex. Nature Immunol. 15, 457-464 (2014).
    • (2014) Nature Immunol. , vol.15 , pp. 457-464
    • Heikamp, E.B.1
  • 66
    • 84890137621 scopus 로고    scopus 로고
    • T cell exit from quiescence and differentiation into Th2 cells depend on Raptor- mTORC1-mediated metabolic reprogramming
    • Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor- mTORC1-mediated metabolic reprogramming. Immunity 39, 1043-1056 (2013).
    • (2013) Immunity , vol.39 , pp. 1043-1056
    • Yang, K.1
  • 67
    • 84881192927 scopus 로고    scopus 로고
    • MTORC1 couples immune signals and metabolic programming to establish TReg cell function
    • Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish TReg cell function. Nature 499, 485-490 (2013).
    • (2013) Nature , vol.499 , pp. 485-490
    • Zeng, H.1
  • 68
    • 84861134382 scopus 로고    scopus 로고
    • PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ
    • Kurebayashi, Y. et al. PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ. Cell Rep. 1, 360-373 (2012).
    • (2012) Cell Rep. , vol.1 , pp. 360-373
    • Kurebayashi, Y.1
  • 69
    • 80054726323 scopus 로고    scopus 로고
    • The liver kinase B1 is a central regulator of T cell development, activation, and metabolism
    • MacIver, N. J. et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J. Immunol. 187, 4187-4198 (2011).
    • (2011) J. Immunol. , vol.187 , pp. 4187-4198
    • Maciver, N.J.1
  • 70
    • 1842581892 scopus 로고    scopus 로고
    • Regulation of T lymphocyte metabolism
    • Frauwirth, K. A. & Thompson, C. B. Regulation of T lymphocyte metabolism. J. Immunol. 172, 4661-4665 (2004).
    • (2004) J. Immunol. , vol.172 , pp. 4661-4665
    • Frauwirth, K.A.1    Thompson, C.B.2
  • 71
    • 84885055994 scopus 로고    scopus 로고
    • Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function
    • Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479-4488 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 4479-4488
    • Sukumar, M.1
  • 72
    • 17044422629 scopus 로고    scopus 로고
    • Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8+ effector T cells
    • Cham, C. M. & Gajewski, T. F. Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8+ effector T cells. J. Immunol. 174, 4670-4677 (2005).
    • (2005) J. Immunol. , vol.174 , pp. 4670-4677
    • Cham, C.M.1    Gajewski, T.F.2
  • 73
    • 55249114228 scopus 로고    scopus 로고
    • Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells
    • Cham, C. M., Driessens, G., O'Keefe, J. P. & Gajewski, T. F. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur. J. Immunol. 38, 2438-2450 (2008).
    • (2008) Eur. J. Immunol. , vol.38 , pp. 2438-2450
    • Cham, C.M.1    Driessens, G.2    O'keefe, J.P.3    Gajewski, T.F.4
  • 74
    • 33646552426 scopus 로고    scopus 로고
    • C-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis
    • Bianchi, T., Gasser, S., Trumpp, A. & MacDonald, H. R. c-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis. Blood 107, 3992-3999 (2006).
    • (2006) Blood , vol.107 , pp. 3992-3999
    • Bianchi, T.1    Gasser, S.2    Trumpp, A.3    Macdonald, H.R.4
  • 75
    • 84871861969 scopus 로고    scopus 로고
    • PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
    • Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441-2453 (2012).
    • (2012) J. Exp. Med. , vol.209 , pp. 2441-2453
    • Finlay, D.K.1
  • 76
    • 84886672916 scopus 로고    scopus 로고
    • Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen
    • Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nature Immunol. 14, 1173-1182 (2013).
    • (2013) Nature Immunol. , vol.14 , pp. 1173-1182
    • Doedens, A.L.1
  • 77
    • 84876514626 scopus 로고    scopus 로고
    • Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
    • Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nature Immunol. 14, 500-508 (2013).
    • (2013) Nature Immunol. , vol.14 , pp. 500-508
    • Sinclair, L.V.1
  • 78
    • 33745823168 scopus 로고    scopus 로고
    • Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes
    • Tamas, P. et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203, 1665-1670 (2006).
    • (2006) J. Exp. Med. , vol.203 , pp. 1665-1670
    • Tamas, P.1
  • 79
    • 44849141880 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function
    • Mayer, A., Denanglaire, S., Viollet, B., Leo, O. & Andris, F. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur. J. Immunol. 38, 948-956 (2008).
    • (2008) Eur. J. Immunol. , vol.38 , pp. 948-956
    • Mayer, A.1    Denanglaire, S.2    Viollet, B.3    Leo, O.4    Andris, F.5
  • 80
    • 84876454059 scopus 로고    scopus 로고
    • AMPKα1: A glucose sensor that controls CD8 T-cell memory
    • Rolf, J. et al. AMPKα1: A glucose sensor that controls CD8 T-cell memory. Eur. J. Immunol. 43, 889-896 (2013).
    • (2013) Eur. J. Immunol. , vol.43 , pp. 889-896
    • Rolf, J.1
  • 81
    • 84857398190 scopus 로고    scopus 로고
    • TSC1/2 signaling complex is essential for peripheral naive CD8+ T cell survival and homeostasis in mice
    • Zhang, L. et al. TSC1/2 signaling complex is essential for peripheral naive CD8+ T cell survival and homeostasis in mice. PLoS ONE 7, e30592 (2012).
    • (2012) PLoS ONE , vol.7
    • Zhang, L.1
  • 82
    • 80051997049 scopus 로고    scopus 로고
    • The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function
    • Yang, K., Neale, G., Green, D. R., He, W. & Chi, H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nature Immunol. 12, 888-897 (2011).
    • (2011) Nature Immunol. , vol.12 , pp. 888-897
    • Yang, K.1    Neale, G.2    Green, D.R.3    He, W.4    Chi, H.5
  • 83
    • 80054721266 scopus 로고    scopus 로고
    • Regulation of T-cell survival and mitochondrial homeostasis by TSC1
    • O'Brien, T. F. et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur. J. Immunol. 41, 3361-3370 (2011).
    • (2011) Eur. J. Immunol. , vol.41 , pp. 3361-3370
    • O'brien, T.F.1
  • 84
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T-cell memory by modulating fatty acid metabolism
    • Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103-107 (2009).
    • (2009) Nature , vol.460 , pp. 103-107
    • Pearce, E.L.1
  • 85
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
    • van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68-78 (2012).
    • (2012) Immunity , vol.36 , pp. 68-78
    • Van Der Windt, G.J.1
  • 86
    • 84883423963 scopus 로고    scopus 로고
    • CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
    • van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336-14341 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 14336-14341
    • Van Der Windt, G.J.1
  • 87
    • 84886721392 scopus 로고    scopus 로고
    • Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch
    • Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nature Immunol. 14, 1064-1072 (2013).
    • (2013) Nature Immunol. , vol.14 , pp. 1064-1072
    • Gubser, P.M.1
  • 88
    • 67650074206 scopus 로고    scopus 로고
    • MTOR regulates memory CD8 T-cell differentiation
    • Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108-112 (2009).
    • (2009) Nature , vol.460 , pp. 108-112
    • Araki, K.1
  • 89
    • 74649085700 scopus 로고    scopus 로고
    • The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
    • Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 67-78 (2010).
    • (2010) Immunity , vol.32 , pp. 67-78
    • Rao, R.R.1    Li, Q.2    Odunsi, K.3    Shrikant, P.A.4
  • 90
    • 79954623272 scopus 로고    scopus 로고
    • A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity
    • Li, Q. et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 34, 541-553 (2011).
    • (2011) Immunity , vol.34 , pp. 541-553
    • Li, Q.1
  • 91
    • 84892941233 scopus 로고    scopus 로고
    • Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity
    • Berezhnoy, A., Castro, I., Levay, A., Malek, T. R. & Gilboa, E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J. Clin. Invest. 124, 188-197 (2014).
    • (2014) J. Clin. Invest. , vol.124 , pp. 188-197
    • Berezhnoy, A.1    Castro, I.2    Levay, A.3    Malek, T.R.4    Gilboa, E.5
  • 92
    • 79956142389 scopus 로고    scopus 로고
    • Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells
    • He, S. et al. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells. PLoS ONE 6, e20107 (2011).
    • (2011) PLoS ONE , vol.6
    • He, S.1
  • 93
    • 55249095393 scopus 로고    scopus 로고
    • Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1α
    • Ben-Shoshan, J., Maysel-Auslender, S., Mor, A., Keren, G. & George, J. Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1α. Eur. J. Immunol. 38, 2412-2418 (2008).
    • (2008) Eur. J. Immunol. , vol.38 , pp. 2412-2418
    • Ben-Shoshan, J.1    Maysel-Auslender, S.2    Mor, A.3    Keren, G.4    George, J.5
  • 94
    • 84867381718 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1α-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa
    • Clambey, E. T. et al. Hypoxia-inducible factor-1α-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA 109, E2784-2793 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109
    • Clambey, E.T.1
  • 95
    • 20444373376 scopus 로고    scopus 로고
    • Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells
    • Battaglia, M., Stabilini, A. & Roncarolo, M. G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743-4748 (2005).
    • (2005) Blood , vol.105 , pp. 4743-4748
    • Battaglia, M.1    Stabilini, A.2    Roncarolo, M.G.3
  • 96
    • 46949088630 scopus 로고    scopus 로고
    • De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR
    • Kang, J., Huddleston, S. J., Fraser, J. M. & Khoruts, A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J. Leukoc. Biol. 83, 1230-1239 (2008).
    • (2008) J. Leukoc. Biol. , vol.83 , pp. 1230-1239
    • Kang, J.1    Huddleston, S.J.2    Fraser, J.M.3    Khoruts, A.4
  • 97
    • 35748956420 scopus 로고    scopus 로고
    • Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells
    • Kopf, H., de la Rosa, G. M., Howard, O. M. & Chen, X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int. Immunopharmacol. 7, 1819-1824 (2007).
    • (2007) Int. Immunopharmacol. , vol.7 , pp. 1819-1824
    • Kopf, H.1    De La Rosa, G.M.2    Howard, O.M.3    Chen, X.4
  • 98
    • 77958151145 scopus 로고    scopus 로고
    • The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and TReg cells
    • Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and TReg cells. Nature Immunol. 11, 1047-1056 (2010).
    • (2010) Nature Immunol. , vol.11 , pp. 1047-1056
    • Liu, G.1    Yang, K.2    Burns, S.3    Shrestha, S.4    Chi, H.5
  • 99
    • 41149113441 scopus 로고    scopus 로고
    • The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells
    • Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565-574 (2008).
    • (2008) J. Exp. Med. , vol.205 , pp. 565-574
    • Haxhinasto, S.1    Mathis, D.2    Benoist, C.3
  • 100
    • 78650188983 scopus 로고    scopus 로고
    • An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness
    • Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33, 929-941 (2010).
    • (2010) Immunity , vol.33 , pp. 929-941
    • Procaccini, C.1
  • 101
    • 84904903517 scopus 로고    scopus 로고
    • A modified model of T-cell differentiation based on mTOR activity and metabolism
    • http://dx.doi.org/10.1101/sqb.2013.78.020214
    • Powell, J. D., Heikamp, E. B., Pollizzi, K. N. & Waickman, A. T. A modified model of T-cell differentiation based on mTOR activity and metabolism. Cold Spring Harb. Symp. Quant. Biol. http://dx.doi.org/10.1101/sqb.2013.78. 020214 (2013).
    • (2013) Cold Spring Harb. Symp. Quant. Biol.
    • Powell, J.D.1    Heikamp, E.B.2    Pollizzi, K.N.3    Waickman, A.T.4
  • 102
    • 33751029468 scopus 로고    scopus 로고
    • Dissecting the mechanism of T-cell anergy with immunophilin ligands
    • Powell, J. D. & Zheng, Y. Dissecting the mechanism of T-cell anergy with immunophilin ligands. Curr. Opin. Investig. Drugs 7, 1002-1007 (2006).
    • (2006) Curr. Opin. Investig. Drugs , vol.7 , pp. 1002-1007
    • Powell, J.D.1    Zheng, Y.2
  • 103
    • 19944434216 scopus 로고    scopus 로고
    • NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells
    • Bopp, T. et al. NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J. Exp. Med. 201, 181-187 (2005).
    • (2005) J. Exp. Med. , vol.201 , pp. 181-187
    • Bopp, T.1
  • 104
    • 58149374576 scopus 로고    scopus 로고
    • Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth
    • Zhang, H. et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc. Natl Acad. Sci. USA 105, 19579-19586 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 19579-19586
    • Zhang, H.1
  • 105
    • 79955538365 scopus 로고    scopus 로고
    • Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity
    • Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature 472, 486-490 (2011).
    • (2011) Nature , vol.472 , pp. 486-490
    • Huh, J.R.1
  • 106
    • 80052423903 scopus 로고    scopus 로고
    • Structural basis of digoxin that antagonizes RORγt receptor activity and suppresses Th17 cell differentiation and interleukin (IL)-17 production
    • Fujita-Sato, S. et al. Structural basis of digoxin that antagonizes RORγt receptor activity and suppresses Th17 cell differentiation and interleukin (IL)-17 production. J. Biol. Chem. 286, 31409-31417 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 31409-31417
    • Fujita-Sato, S.1
  • 107
    • 84898688169 scopus 로고    scopus 로고
    • Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms
    • Xiao, S. et al. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40, 477-489 (2014).
    • (2014) Immunity , vol.40 , pp. 477-489
    • Xiao, S.1
  • 108
    • 84865966132 scopus 로고    scopus 로고
    • Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors
    • Bandukwala, H. S. et al. Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc. Natl Acad. Sci. USA 109, 14532-14537 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 14532-14537
    • Bandukwala, H.S.1
  • 109
    • 77952359802 scopus 로고    scopus 로고
    • Novel anti-inflammatory action of 5-aminoimidazole-4-carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis
    • Bai, A. et al. Novel anti-inflammatory action of 5-aminoimidazole-4- carboxamide ribonucleoside with protective effect in dextran sulfate sodium-induced acute and chronic colitis. J. Pharmacol. Exp. Ther. 333, 717-725 (2010).
    • (2010) J. Pharmacol. Exp. Ther. , vol.333 , pp. 717-725
    • Bai, A.1
  • 110
    • 21244437079 scopus 로고    scopus 로고
    • 5-aminoimidazole-4-carboxamide ribonucleoside: A novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis
    • Nath, N. et al. 5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J. Immunol. 175, 566-574 (2005).
    • (2005) J. Immunol. , vol.175 , pp. 566-574
    • Nath, N.1
  • 111
    • 67649196932 scopus 로고    scopus 로고
    • Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis
    • Nath, N. et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005-8014 (2009).
    • (2009) J. Immunol. , vol.182 , pp. 8005-8014
    • Nath, N.1
  • 112
    • 84870245978 scopus 로고    scopus 로고
    • Mechanistic target of rapamycin inhibitors in solid organ transplantation: From benchside to clinical use
    • Touzot, M., Soulillou, J. P. & Dantal, J. Mechanistic target of rapamycin inhibitors in solid organ transplantation: from benchside to clinical use. Curr. Opin. Organ. Transplant 17, 626-633 (2012).
    • (2012) Curr. Opin. Organ. Transplant , vol.17 , pp. 626-633
    • Touzot, M.1    Soulillou, J.P.2    Dantal, J.3
  • 113
    • 84865301337 scopus 로고    scopus 로고
    • MTOR, metabolism, and the regulation of T-cell differentiation and function
    • Waickman, A. T. & Powell, J. D. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev. 249, 43-58 (2012).
    • (2012) Immunol. Rev. , vol.249 , pp. 43-58
    • Waickman, A.T.1    Powell, J.D.2
  • 114
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159-168 (2006).
    • (2006) Mol. Cell , vol.22 , pp. 159-168
    • Sarbassov, D.D.1
  • 115
    • 79951986439 scopus 로고    scopus 로고
    • Sirolimus enhances the magnitude and quality of viral-specific CD8+ T-cell responses to vaccinia virus vaccination in rhesus macaques
    • Turner, A. P. et al. Sirolimus enhances the magnitude and quality of viral-specific CD8+ T-cell responses to vaccinia virus vaccination in rhesus macaques. Am. J. Transplant 11, 613-618 (2011).
    • (2011) Am. J. Transplant , vol.11 , pp. 613-618
    • Turner, A.P.1
  • 116
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023-8032 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1
  • 117
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
    • Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).
    • (2009) PLoS Biol. , vol.7
    • Feldman, M.E.1
  • 118
    • 34250156673 scopus 로고    scopus 로고
    • Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells
    • Gao, W. et al. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am. J. Transplant 7, 1722-1732 (2007).
    • (2007) Am. J. Transplant , vol.7 , pp. 1722-1732
    • Gao, W.1
  • 119
    • 84865302248 scopus 로고    scopus 로고
    • Systemic immunoregulatory and proteogenomic effects of tacrolimus to sirolimus conversion in liver transplant recipients
    • Levitsky, J. et al. Systemic immunoregulatory and proteogenomic effects of tacrolimus to sirolimus conversion in liver transplant recipients. Hepatology 57, 239-248 (2013).
    • (2013) Hepatology , vol.57 , pp. 239-248
    • Levitsky, J.1
  • 120
    • 71849118976 scopus 로고    scopus 로고
    • Allogeneic hematopoietic stem-cell transplantation for sickle cell disease
    • Hsieh, M. M. et al. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N. Engl. J. Med. 361, 2309-2317 (2009).
    • (2009) N. Engl. J. Med. , vol.361 , pp. 2309-2317
    • Hsieh, M.M.1
  • 121
    • 84864040884 scopus 로고    scopus 로고
    • Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells
    • Chen, J. Q. & Russo, J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim. Biophys. Acta 1826, 370-384 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1826 , pp. 370-384
    • Chen, J.Q.1    Russo, J.2
  • 122
    • 0027087331 scopus 로고
    • Costimulation of T lymphocytes: The role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy
    • Schwartz, R. H. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71, 1065-1068 (1992).
    • (1992) Cell , vol.71 , pp. 1065-1068
    • Schwartz, R.H.1
  • 123
    • 15844416253 scopus 로고    scopus 로고
    • Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity
    • Loh, C. et al. Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J. Biol. Chem. 271, 10884-10891 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 10884-10891
    • Loh, C.1
  • 124
    • 0033596120 scopus 로고    scopus 로고
    • Regulation of DNA binding by Rel/NF-κB transcription factors: Structural views
    • Chen, F. E. & Ghosh, G. Regulation of DNA binding by Rel/NF-κB transcription factors: structural views. Oncogene 18, 6845-6852 (1999).
    • (1999) Oncogene , vol.18 , pp. 6845-6852
    • Chen, F.E.1    Ghosh, G.2
  • 125
    • 0023143676 scopus 로고
    • Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and
    • Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302-319 (1987).
    • (1987) Vivo. J. Exp. Med. , vol.165 , pp. 302-319
    • Jenkins, M.K.1    Schwartz, R.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.