-
1
-
-
0042592913
-
Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8
-
Atlashkin, V., V. Kreykenbohm, E.L. Eskelinen, D. Wenzel, A. Fayyazi, and G. Fischer von Mollard. 2003. Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Mol. Cell. Biol. 23:5198-5207. http://dx.doi.org/10.1128/MCB.23.15.5198-5207.2003
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 5198-5207
-
-
Atlashkin, V.1
Kreykenbohm, V.2
Eskelinen, E.L.3
Wenzel, D.4
Fayyazi, A.5
Fischer von Mollard, G.6
-
2
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe, E.L., S.A. Walker, M. Manifava, P. Chandra, H.L. Roderick, A. Habermann, G. Griffiths, and N.T. Ktistakis. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685-701. http://dx.doi.org/10.1083/jcb.200803137
-
(2008)
J. Cell Biol.
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
Walker, S.A.2
Manifava, M.3
Chandra, P.4
Roderick, H.L.5
Habermann, A.6
Griffiths, G.7
Ktistakis, N.T.8
-
3
-
-
79955854666
-
Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis
-
Barth, J.M., J. Szabad, E. Hafen, and K. Köhler. 2011. Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ. 18:915-924. http://dx.doi.org/10.1038/cdd.2010.157
-
(2011)
Cell Death Differ.
, vol.18
, pp. 915-924
-
-
Barth, J.M.1
Szabad, J.2
Hafen, E.3
Köhler, K.4
-
4
-
-
36849088609
-
Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila
-
Berry, D.L., and E.H. Baehrecke. 2007. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell. 131:1137-1148. http://dx.doi.org/10.1016/j.cell.2007.10.048
-
(2007)
Cell.
, vol.131
, pp. 1137-1148
-
-
Berry, D.L.1
Baehrecke, E.H.2
-
5
-
-
59249105964
-
Monitoring autophagic degradation of p62/SQSTM1
-
BjØrkØy, G., T. Lamark, S. Pankiv, A. Øvervatn, A. Brech, and T. Johansen. 2009. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 452:181-197. http://dx.doi.org/10.1016/S0076-6879(08)03612-4
-
(2009)
Methods Enzymol.
, vol.452
, pp. 181-197
-
-
BjØrkØy, G.1
Lamark, T.2
Pankiv, S.3
Øvervatn, A.4
Brech, A.5
Johansen, T.6
-
6
-
-
0035860783
-
Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6
-
Dilcher, M., B. Köhler, and G.F. von Mollard. 2001. Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions for the R-SNARE YKT6. J. Biol. Chem. 276:34537-34544. http://dx.doi.org/10.1074/jbc .M101551200
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 34537-34544
-
-
Dilcher, M.1
Köhler, B.2
von Mollard, G.F.3
-
7
-
-
72049088519
-
TI-VAMP/ VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways
-
Fader, C.M., D.G. Sánchez, M.B. Mestre, and M.I. Colombo. 2009. TI-VAMP/ VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta. 1793:1901-1916. http://dx.doi.org/10.1016/j.bbamcr.2009.09.011
-
(2009)
Biochim. Biophys. Acta.
, vol.1793
, pp. 1901-1916
-
-
Fader, C.M.1
Sánchez, D.G.2
Mestre, M.B.3
Colombo, M.I.4
-
8
-
-
35948983328
-
Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease
-
Filimonenko, M., S. Stuffers, C. Raiborg, A. Yamamoto, L. MalerØd, E.M. Fisher, A. Isaacs, A. Brech, H. Stenmark, and A. Simonsen. 2007. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179:485-500. http://dx.doi.org/10.1083/jcb.200702115
-
(2007)
J. Cell Biol.
, vol.179
, pp. 485-500
-
-
Filimonenko, M.1
Stuffers, S.2
Raiborg, C.3
Yamamoto, A.4
MalerØd, L.5
Fisher, E.M.6
Isaacs, A.7
Brech, A.8
Stenmark, H.9
Simonsen, A.10
-
9
-
-
77949448601
-
Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes
-
Furuta, N., N. Fujita, T. Noda, T. Yoshimori, and A. Amano. 2010. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol. Biol. Cell. 21:1001-1010. http://dx.doi.org/10.1091/mbc.E09-08-0693
-
(2010)
Mol. Biol. Cell.
, vol.21
, pp. 1001-1010
-
-
Furuta, N.1
Fujita, N.2
Noda, T.3
Yoshimori, T.4
Amano, A.5
-
10
-
-
84875365804
-
Autophagosomes form at ER-mitochondria contact sites
-
Hamasaki, M., N. Furuta, A. Matsuda, A. Nezu, A. Yamamoto, N. Fujita, H. Oomori, T. Noda, T. Haraguchi, Y. Hiraoka, et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature. 495:389-393. http://dx .doi.org/10.1038/nature11910
-
(2013)
Nature.
, vol.495
, pp. 389-393
-
-
Hamasaki, M.1
Furuta, N.2
Matsuda, A.3
Nezu, A.4
Yamamoto, A.5
Fujita, N.6
Oomori, H.7
Noda, T.8
Haraguchi, T.9
Hiraoka, Y.10
-
11
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara, T., K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara, R. Suzuki-Migishima, M. Yokoyama, K. Mishima, I. Saito, H. Okano, and N. Mizushima. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 441:885-889. http://dx.doi.org/10.1038/nature04724
-
(2006)
Nature.
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
Mizushima, N.11
-
12
-
-
20444407298
-
SNAREs and traffic
-
Hong, W. 2005. SNAREs and traffic. Biochim. Biophys. Acta. 1744:120-144. http://dx.doi.org/10.1016/j.bbamcr.2005.03.014
-
(2005)
Biochim. Biophys. Acta.
, vol.1744
, pp. 120-144
-
-
Hong, W.1
-
13
-
-
0035192612
-
Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
-
Ishihara, N., M. Hamasaki, S. Yokota, K. Suzuki, Y. Kamada, A. Kihara, T. Yoshimori, T. Noda, and Y. Ohsumi. 2001. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell. 12:3690-3702.
-
(2001)
Mol. Biol. Cell.
, vol.12
, pp. 3690-3702
-
-
Ishihara, N.1
Hamasaki, M.2
Yokota, S.3
Suzuki, K.4
Kamada, Y.5
Kihara, A.6
Yoshimori, T.7
Noda, T.8
Ohsumi, Y.9
-
14
-
-
84870880174
-
The hairpin-type tailanchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
-
Itakura, E., C. Kishi-Itakura, and N. Mizushima. 2012. The hairpin-type tailanchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 151:1256-1269. http://dx.doi.org/10.1016/ j.cell.2012.11.001
-
(2012)
Cell.
, vol.151
, pp. 1256-1269
-
-
Itakura, E.1
Kishi Itakura, C.2
Mizushima, N.3
-
15
-
-
36849021043
-
Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila
-
Juhász, G., B. Erdi, M. Sass, and T.P. Neufeld. 2007. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 21:3061-3066. http://dx.doi.org/10.1101/gad.1600707
-
(2007)
Genes Dev.
, vol.21
, pp. 3061-3066
-
-
Juhász, G.1
Erdi, B.2
Sass, M.3
Neufeld, T.P.4
-
16
-
-
44149127993
-
The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila
-
Juhász, G., J.H. Hill, Y. Yan, M. Sass, E.H. Baehrecke, J.M. Backer, and T.P. Neufeld. 2008. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181:655-666. http://dx.doi.org/10.1083/jcb.200712051
-
(2008)
J. Cell Biol.
, vol.181
, pp. 655-666
-
-
Juhász, G.1
Hill, J.H.2
Yan, Y.3
Sass, M.4
Baehrecke, E.H.5
Backer, J.M.6
Neufeld, T.P.7
-
17
-
-
34548077575
-
Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
-
Kimura, S., T. Noda, and T. Yoshimori. 2007. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 3:452-460.
-
(2007)
Autophagy.
, vol.3
, pp. 452-460
-
-
Kimura, S.1
Noda, T.2
Yoshimori, T.3
-
18
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu, M., S. Waguri, T. Chiba, S. Murata, J. Iwata, I. Tanida, T. Ueno, M. Koike, Y. Uchiyama, E. Kominami, and K. Tanaka. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 441:880-884. http://dx.doi.org/10.1038/nature04723
-
(2006)
Nature.
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
Tanaka, K.11
-
19
-
-
80051474094
-
The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes
-
Lu, Q., P. Yang, X. Huang, W. Hu, B. Guo, F. Wu, L. Lin, A.L. Kovács, L. Yu, and H. Zhang. 2011. The WD40 repeat PtdIns(3)P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev. Cell. 21:343-357. http://dx.doi.org/10.1016/j.devcel.2011.06.024
-
(2011)
Dev. Cell.
, vol.21
, pp. 343-357
-
-
Lu, Q.1
Yang, P.2
Huang, X.3
Hu, W.4
Guo, B.5
Wu, F.6
Lin, L.7
Kovács, A.L.8
Yu, L.9
Zhang, H.10
-
20
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
Mizushima, N., B. Levine, A.M. Cuervo, and D.J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature. 451:1069-1075. http://dx.doi.org/10.1038/nature06639
-
(2008)
Nature.
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
21
-
-
79960774898
-
Autophagosome precursor maturation requires homotypic fusion
-
Moreau, K., B. Ravikumar, M. Renna, C. Puri, and D.C. Rubinsztein. 2011. Autophagosome precursor maturation requires homotypic fusion. Cell. 146:303-317. http://dx.doi.org/10.1016/j.cell.2011.06.023
-
(2011)
Cell.
, vol.146
, pp. 303-317
-
-
Moreau, K.1
Ravikumar, B.2
Renna, M.3
Puri, C.4
Rubinsztein, D.C.5
-
22
-
-
79960798816
-
SNARE proteins are required for macroautophagy
-
Nair, U., A. Jotwani, J. Geng, N. Gammoh, D. Richerson, W.L. Yen, J. Griffith, S. Nag, K. Wang, T. Moss, et al. 2011. SNARE proteins are required for macroautophagy. Cell. 146:290-302. http://dx.doi.org/10.1016/j.cell.2011.06.022
-
(2011)
Cell.
, vol.146
, pp. 290-302
-
-
Nair, U.1
Jotwani, A.2
Geng, J.3
Gammoh, N.4
Richerson, D.5
Yen, W.L.6
Griffith, J.7
Nag, S.8
Wang, K.9
Moss, T.10
-
23
-
-
78649682788
-
Membrane delivery to the yeast autophagosome from the Golgi-endosomal system
-
Ohashi, Y., and S. Munro. 2010. Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol. Biol. Cell. 21:3998-4008. http://dx.doi.org/10.1091/mbc.E10-05-0457
-
(2010)
Mol. Biol. Cell.
, vol.21
, pp. 3998-4008
-
-
Ohashi, Y.1
Munro, S.2
-
24
-
-
84865623676
-
Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila
-
Pircs, K., P. Nagy, A. Varga, Z. Venkei, B. Erdi, K. Hegedus, and G. Juhasz. 2012. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PLoS ONE. 7:e44214. http://dx.doi.org/10.1371/journal.pone.0044214
-
(2012)
PLoS ONE.
, vol.7
-
-
Pircs, K.1
Nagy, P.2
Varga, A.3
Venkei, Z.4
Erdi, B.5
Hegedus, K.6
Juhasz, G.7
-
25
-
-
79551546749
-
Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex
-
Renna, M., C. Schaffner, A.R. Winslow, F.M. Menzies, A.A. Peden, R.A. Floto, and D.C. Rubinsztein. 2011. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell Sci. 124:469-482. http://dx.doi.org/10.1242/jcs.076489
-
(2011)
J. Cell Sci.
, vol.124
, pp. 469-482
-
-
Renna, M.1
Schaffner, C.2
Winslow, A.R.3
Menzies, F.M.4
Peden, A.A.5
Floto, R.A.6
Rubinsztein, D.C.7
-
26
-
-
35348869859
-
ESCRTs and Fab1 regulate distinct steps of autophagy
-
Rusten, T.E., T. Vaccari, K. Lindmo, L.M. Rodahl, I.P. Nezis, C. Sem-Jacobsen, F. Wendler, J.P. Vincent, A. Brech, D. Bilder, and H. Stenmark. 2007. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr. Biol. 17:1817-1825. http://dx.doi.org/10.1016/j.cub.2007.09.032
-
(2007)
Curr. Biol.
, vol.17
, pp. 1817-1825
-
-
Rusten, T.E.1
Vaccari, T.2
Lindmo, K.3
Rodahl, L.M.4
Nezis, I.P.5
Sem Jacobsen, C.6
Wendler, F.7
Vincent, J.P.8
Brech, A.9
Bilder, D.10
Stenmark, H.11
-
27
-
-
38949099761
-
Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila
-
Simonsen, A., R.C. Cumming, A. Brech, P. Isakson, D.R. Schubert, and K.D. Finley. 2008. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 4:176-184.
-
(2008)
Autophagy.
, vol.4
, pp. 176-184
-
-
Simonsen, A.1
Cumming R.C.Brech, A.2
Isakson, P.3
Schubert, D.R.4
Finley, K.D.5
-
28
-
-
0032545419
-
Three novel proteins of the syntaxin/SNAP-25 family
-
Steegmaier, M., B. Yang, J.S. Yoo, B. Huang, M. Shen, S. Yu, Y. Luo, and R.H. Scheller. 1998. Three novel proteins of the syntaxin/SNAP-25 family. J. Biol. Chem. 273:34171-34179. http://dx.doi.org/10.1074/jbc.273.51.34171
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 34171-34179
-
-
Steegmaier, M.1
Yang, B.2
Yoo, J.S.3
Huang, B.4
Shen, M.5
Yu, S.6
Luo, Y.7
Scheller, R.H.8
-
29
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze, S.A., and T. Yoshimori. 2010. The origin of the autophagosomal membrane. Nat. Cell Biol. 12:831-835. http://dx.doi.org/10.1038/ncb0910-831
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
30
-
-
84857844643
-
Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets
-
Velikkakath, A.K., T. Nishimura, E. Oita, N. Ishihara, and N. Mizushima. 2012. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell. 23:896-909. http://dx.doi.org/10.1091/mbc.E11-09-0785
-
(2012)
Mol. Biol. Cell.
, vol.23
, pp. 896-909
-
-
Velikkakath, A.K.1
Nishimura, T.2
Oita, E.3
Ishihara, N.4
Mizushima, N.5
|