-
1
-
-
84930746830
-
The biology of proteostasis in aging and disease
-
Labbadia J, Morimoto RI. (2015). The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84: 435-64
-
(2015)
Annu. Rev. Biochem
, vol.84
, pp. 435-464
-
-
Labbadia, J.1
Morimoto, R.I.2
-
2
-
-
84864318195
-
Chaperone-mediated autophagy: A unique way to enter the lysosome world
-
Kaushik S, Cuervo AM. (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22: 407-17
-
(2012)
Trends Cell Biol
, vol.22
, pp. 407-417
-
-
Kaushik, S.1
Cuervo, A.M.2
-
3
-
-
84960348747
-
Walking the tightrope: Proteostasis and neurodegenerative disease
-
Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, et al. (2016). Walking the tightrope: proteostasis and neurodegenerative disease. J. Neurochem. 137: 489-505
-
(2016)
J. Neurochem
, vol.137
, pp. 489-505
-
-
Yerbury, J.J.1
Ooi, L.2
Dillin, A.3
Saunders, D.N.4
Hatters, D.M.5
-
4
-
-
0034643336
-
Rapid degradation of a large fraction of newly synthesized proteins by proteasomes
-
Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. (2000). Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404: 770-74
-
(2000)
Nature
, vol.404
, pp. 770-774
-
-
Schubert, U.1
Anton, L.C.2
Gibbs, J.3
Norbury, C.C.4
Yewdell, J.W.5
Bennink, J.R.6
-
5
-
-
0034703437
-
Detecting and measuring cotranslational protein degradation in vivo
-
Turner GC, Varshavsky A. (2000). Detecting and measuring cotranslational protein degradation in vivo. Science 289: 2117-20
-
(2000)
Science
, vol.289
, pp. 2117-2120
-
-
Turner, G.C.1
Varshavsky, A.2
-
6
-
-
70349780560
-
The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries
-
Sha Z, Brill LM, Cabrera R, Kleifeld O, Scheliga JS, et al. (2009). The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol. Cell 36: 141-52
-
(2009)
Mol. Cell
, vol.36
, pp. 141-152
-
-
Sha, Z.1
Brill, L.M.2
Cabrera, R.3
Kleifeld, O.4
Scheliga, J.S.5
-
8
-
-
27944504351
-
P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
-
Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, et al. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171: 603-14
-
(2005)
J. Cell Biol
, vol.171
, pp. 603-614
-
-
Bjorkoy, G.1
Lamark, T.2
Brech, A.3
Outzen, H.4
Perander, M.5
-
9
-
-
50649116818
-
Misfolded proteins partition between two distinct quality control compartments
-
Kaganovich D, Kopito R, Frydman J. (2008). Misfolded proteins partition between two distinct quality control compartments. Nature 454: 1088-95
-
(2008)
Nature
, vol.454
, pp. 1088-1095
-
-
Kaganovich, D.1
Kopito, R.2
Frydman, J.3
-
10
-
-
0027996115
-
Protein disaggregation mediated by heat-shock protein Hsp104
-
Parsell DA, Kowal AS, Singer MA, Lindquist S. (1994). Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372: 475-78
-
(1994)
Nature
, vol.372
, pp. 475-478
-
-
Parsell, D.A.1
Kowal, A.S.2
Singer, M.A.3
Lindquist, S.4
-
11
-
-
34548259958
-
P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282: 24131-45
-
(2007)
J. Biol. Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
-
12
-
-
81355149538
-
Hsp42 is required for sequestration of protein aggregates into deposition sites in saccharomyces cerevisiae
-
Specht S, Miller SB, Mogk A, Bukau B. (2011). Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol. 195: 617-29
-
(2011)
J. Cell Biol
, vol.195
, pp. 617-629
-
-
Specht, S.1
Miller, S.B.2
Mogk, A.3
Bukau, B.4
-
13
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78: 477-513
-
(2009)
Annu. Rev. Biochem
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
15
-
-
84902330507
-
Reversible 26S proteasome disassembly upon mitochondrial stress
-
Livnat-Levanon N, Kevei E, Kleifeld O, Krutauz D, Segref A, et al. (2014). Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep. 7: 1371-80
-
(2014)
Cell Rep
, vol.7
, pp. 1371-1380
-
-
Livnat-Levanon, N.1
Kevei, E.2
Kleifeld, O.3
Krutauz, D.4
Segref, A.5
-
16
-
-
80051736289
-
Proteomics to study the diversity and dynamics of proteasome complexes: From fundamentals to the clinic
-
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. (2011). Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev. Proteom. 8: 459-81
-
(2011)
Expert Rev. Proteom
, vol.8
, pp. 459-481
-
-
Bousquet-Dubouch, M.P.1
Fabre, B.2
Monsarrat, B.3
Burlet-Schiltz, O.4
-
17
-
-
34249007126
-
A ubiquitin stress response induces altered proteasome composition
-
Hanna J, Meides A, Zhang DP, Finley D. (2007). A ubiquitin stress response induces altered proteasome composition. Cell 129: 747-59
-
(2007)
Cell
, vol.129
, pp. 747-759
-
-
Hanna, J.1
Meides, A.2
Zhang, D.P.3
Finley, D.4
-
18
-
-
0346727127
-
Protein degradation and protection against misfolded or damaged proteins
-
Goldberg AL. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895-99
-
(2003)
Nature
, vol.426
, pp. 895-899
-
-
Goldberg, A.L.1
-
19
-
-
84862737923
-
Changes of the proteasomal system during the aging process
-
Baraibar MA, Friguet B. (2012). Changes of the proteasomal system during the aging process. Prog. Mol. Biol. Transl. Sci. 109: 249-75
-
(2012)
Prog. Mol. Biol. Transl. Sci
, vol.109
, pp. 249-275
-
-
Baraibar, M.A.1
Friguet, B.2
-
20
-
-
84890203542
-
Regulation of proteasome activity in health and disease
-
Schmidt M, Finley D. (2014). Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843: 13-25
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 13-25
-
-
Schmidt, M.1
Finley, D.2
-
21
-
-
0033004441
-
Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
-
Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. (1999). Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 450: 27-34
-
(1999)
FEBS Lett
, vol.450
, pp. 27-34
-
-
Mannhaupt, G.1
Schnall, R.2
Karpov, V.3
Vetter, I.4
Feldmann, H.5
-
22
-
-
0035853037
-
RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit
-
Xie Y, Varshavsky A. (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. PNAS 98: 3056-61
-
(2001)
PNAS
, vol.98
, pp. 3056-3061
-
-
Xie, Y.1
Varshavsky, A.2
-
23
-
-
77950366349
-
Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
-
Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38: 17-28
-
(2010)
Mol. Cell
, vol.38
, pp. 17-28
-
-
Radhakrishnan, S.K.1
Lee, C.S.2
Young, P.3
Beskow, A.4
Chan, J.Y.5
Deshaies, R.J.6
-
24
-
-
18944392199
-
Identification and characterization of a Drosophila proteasome regulatory network
-
Lundgren J, Masson P, Mirzaei Z, Young P. (2005). Identification and characterization of a Drosophila proteasome regulatory network. Mol. Cell Biol 25: 4662-75
-
(2005)
Mol. Cell Biol
, vol.25
, pp. 4662-4675
-
-
Lundgren, J.1
Masson, P.2
Mirzaei, Z.3
Young, P.4
-
25
-
-
77957341511
-
Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
-
Steffen J, Seeger M, Koch A, Kruger E. (2010). Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 40: 147-58
-
(2010)
Mol. Cell
, vol.40
, pp. 147-158
-
-
Steffen, J.1
Seeger, M.2
Koch, A.3
Kruger, E.4
-
26
-
-
84898769387
-
P97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition
-
Radhakrishnan SK, den Besten W, Deshaies RJ. (2014). p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife 3: e01856
-
(2014)
ELife
, vol.3
, pp. e01856
-
-
Radhakrishnan, S.K.1
Den Besten, W.2
Deshaies, R.J.3
-
27
-
-
33750543308
-
Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum
-
Zhang Y, Crouch DH, Yamamoto M, Hayes JD. (2006). Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Biochem. J. 399: 373-85
-
(2006)
Biochem. J.
, vol.399
, pp. 373-385
-
-
Zhang, Y.1
Crouch, D.H.2
Yamamoto, M.3
Hayes, J.D.4
-
28
-
-
77956661152
-
Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane
-
Zhang Y, Hayes JD. (2010). Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochem. J. 430: 497-510
-
(2010)
Biochem. J.
, vol.430
, pp. 497-510
-
-
Zhang, Y.1
Hayes, J.D.2
-
29
-
-
84939444434
-
The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression
-
Zhang Y, Li S, Xiang Y, Qiu L, Zhao H, Hayes JD. (2015). The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression. Sci. Rep. 5: 12983
-
(2015)
Sci. Rep
, vol.5
, pp. 12983
-
-
Zhang, Y.1
Li, S.2
Xiang, Y.3
Qiu, L.4
Zhao, H.5
Hayes, J.D.6
-
30
-
-
84943771460
-
MTORC1 signaling activates NRF1 to increase cellular proteasome levels
-
Zhang Y, Manning BD. (2015). mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle 14: 2011-17
-
(2015)
Cell Cycle
, vol.14
, pp. 2011-2017
-
-
Zhang, Y.1
Manning, B.D.2
-
31
-
-
0242496212
-
Molecular sequelae of proteasome inhibition in human multiple myeloma cells
-
Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, et al. (2002). Molecular sequelae of proteasome inhibition in human multiple myeloma cells. PNAS 99: 14374-79
-
(2002)
PNAS
, vol.99
, pp. 14374-14379
-
-
Mitsiades, N.1
Mitsiades, C.S.2
Poulaki, V.3
Chauhan, D.4
Fanourakis, G.5
-
32
-
-
84985910639
-
The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction
-
Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H, et al. (2016). The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife 5: e18357
-
(2016)
ELife
, vol.5
, pp. e18357
-
-
Koizumi, S.1
Irie, T.2
Hirayama, S.3
Sakurai, Y.4
Yashiroda, H.5
-
33
-
-
84983027579
-
Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1
-
Lehrbach NJ, Ruvkun G. (2016). Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife 5: e17721
-
(2016)
ELife
, vol.5
, pp. e17721
-
-
Lehrbach, N.J.1
Ruvkun, G.2
-
34
-
-
84906898355
-
Coordinated regulation of protein synthesis and degradation by mTORC1
-
Zhang Y, Nicholatos J, Dreier JR, Ricoult SJ, Widenmaier SB, et al. (2014). Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513: 440-43
-
(2014)
Nature
, vol.513
, pp. 440-443
-
-
Zhang, Y.1
Nicholatos, J.2
Dreier, J.R.3
Ricoult, S.J.4
Widenmaier, S.B.5
-
35
-
-
0242721624
-
Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway
-
Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. (2003). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell Biol. 23: 8786-94
-
(2003)
Mol. Cell Biol
, vol.23
, pp. 8786-8794
-
-
Kwak, M.K.1
Wakabayashi, N.2
Greenlaw, J.L.3
Yamamoto, M.4
Kensler, T.W.5
-
36
-
-
84906791334
-
An inducible chaperone adapts proteasome assembly to stress
-
Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A, Bertolotti A. (2014). An inducible chaperone adapts proteasome assembly to stress. Mol. Cell 55: 566-77
-
(2014)
Mol. Cell
, vol.55
, pp. 566-577
-
-
Hanssum, A.1
Zhong, Z.2
Rousseau, A.3
Krzyzosiak, A.4
Sigurdardottir, A.5
Bertolotti, A.6
-
37
-
-
84982094835
-
An evolutionarily conserved pathway controls proteasome homeostasis
-
Rousseau A, Bertolotti A. (2016). An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536: 184-89
-
(2016)
Nature
, vol.536
, pp. 184-189
-
-
Rousseau, A.1
Bertolotti, A.2
-
38
-
-
42649130014
-
PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria
-
Lo SC, Hannink M. (2008). PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp. Cell Res. 314: 1789-803
-
(2008)
Exp. Cell Res
, vol.314
, pp. 1789-1803
-
-
Lo, S.C.1
Hannink, M.2
-
39
-
-
84883750565
-
Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging
-
Tsakiri EN, Sykiotis GP, Papassideri IS, Terpos E, Dimopoulos MA, et al. (2013). Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell 12: 802-13
-
(2013)
Aging Cell
, vol.12
, pp. 802-813
-
-
Tsakiri, E.N.1
Sykiotis, G.P.2
Papassideri, I.S.3
Terpos, E.4
Dimopoulos, M.A.5
-
40
-
-
84905227469
-
Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition
-
Maharjan S, Oku M, Tsuda M, Hoseki J, Sakai Y. (2014). Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci. Rep. 4: 5896
-
(2014)
Sci. Rep
, vol.4
, pp. 5896
-
-
Maharjan, S.1
Oku, M.2
Tsuda, M.3
Hoseki, J.4
Sakai, Y.5
-
41
-
-
84906972203
-
Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway
-
Kageyama S, Sou YS, Uemura T, Kametaka S, Saito T, et al. (2014). Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J. Biol. Chem. 289: 24944-55
-
(2014)
J. Biol. Chem
, vol.289
, pp. 24944-24955
-
-
Kageyama, S.1
Sou, Y.S.2
Uemura, T.3
Kametaka, S.4
Saito, T.5
-
42
-
-
84976331500
-
Proteasome machinery is instrumental in a common gain-of-function program of the p53missensemutants in cancer
-
Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, et al. (2016). Proteasome machinery is instrumental in a common gain-of-function program of the p53missensemutants in cancer. Nat. Cell Biol. 18: 897-909
-
(2016)
Nat. Cell Biol
, vol.18
, pp. 897-909
-
-
Walerych, D.1
Lisek, K.2
Sommaggio, R.3
Piazza, S.4
Ciani, Y.5
-
43
-
-
84959863448
-
Graded proteasome dysfunction in Caenorhabditis elegans activates an adaptive response involving the conserved SKN-1 and ELT-2 transcription factors and the autophagy-lysosome pathway
-
Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, et al. (2016). Graded proteasome dysfunction in Caenorhabditis elegans activates an adaptive response involving the conserved SKN-1 and ELT-2 transcription factors and the autophagy-lysosome pathway. PLOS Genet. 12: e1005823
-
(2016)
Plos Genet
, vol.12
, pp. e1005823
-
-
Keith, S.A.1
Maddux, S.K.2
Zhong, Y.3
Chinchankar, M.N.4
Ferguson, A.A.5
-
44
-
-
77953113655
-
Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome
-
Isasa M, Katz EJ, Kim W, Yugo V, Gonzalez S, et al. (2010). Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol. Cell 38: 733-45
-
(2010)
Mol. Cell
, vol.38
, pp. 733-745
-
-
Isasa, M.1
Katz, E.J.2
Kim, W.3
Yugo, V.4
Gonzalez, S.5
-
45
-
-
0033033698
-
Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones
-
Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ. (1999). Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. PNAS 96: 6223-28
-
(1999)
PNAS
, vol.96
, pp. 6223-6228
-
-
Ullrich, O.1
Reinheckel, T.2
Sitte, N.3
Hass, R.4
Grune, T.5
Davies, K.J.6
-
46
-
-
34547953209
-
Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
-
Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE. (2007). Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 282: 22460-71
-
(2007)
J. Biol. Chem
, vol.282
, pp. 22460-22471
-
-
Zhang, F.1
Hu, Y.2
Huang, P.3
Toleman, C.A.4
Paterson, A.J.5
Kudlow, J.E.6
-
47
-
-
0346965700
-
O-GlcNAc modification is an endogenous inhibitor of the proteasome
-
Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. (2003). O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115: 715-25
-
(2003)
Cell
, vol.115
, pp. 715-725
-
-
Zhang, F.1
Su, K.2
Yang, X.3
Bowe, D.B.4
Paterson, A.J.5
Kudlow, J.E.6
-
48
-
-
84859529812
-
Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons
-
Djakovic SN, Marquez-Lona EM, Jakawich SK, Wright R, Chu C, et al. (2012). Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J. Neurosci. 32: 5126-31
-
(2012)
J. Neurosci
, vol.32
, pp. 5126-5131
-
-
Djakovic, S.N.1
Marquez-Lona, E.M.2
Jakawich, S.K.3
Wright, R.4
Chu, C.5
-
49
-
-
70350389831
-
Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II
-
Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN. (2009). Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284: 26655-65
-
(2009)
J. Biol. Chem
, vol.284
, pp. 26655-26665
-
-
Djakovic, S.N.1
Schwarz, L.A.2
Barylko, B.3
DeMartino, G.N.4
Patrick, G.N.5
-
50
-
-
76749131595
-
Autophosphorylated CaMKIIαacts as a scaffold to recruit proteasomes to dendritic spines
-
Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M. (2010). Autophosphorylated CaMKIIαacts as a scaffold to recruit proteasomes to dendritic spines. Cell 140: 567-78
-
(2010)
Cell
, vol.140
, pp. 567-578
-
-
Bingol, B.1
Wang, C.F.2
Arnott, D.3
Cheng, D.4
Peng, J.5
Sheng, M.6
-
51
-
-
84864822525
-
Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag
-
Overath T, Kuckelkorn U, Henklein P, Strehl B, Bonar D, et al. (2012). Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol. Cell Proteom. 11: 467-77
-
(2012)
Mol. Cell Proteom
, vol.11
, pp. 467-477
-
-
Overath, T.1
Kuckelkorn, U.2
Henklein, P.3
Strehl, B.4
Bonar, D.5
-
52
-
-
78449252451
-
ASK1 negatively regulates the 26 S proteasome
-
Um JW, Im E, Park J, Oh Y, Min B, et al. (2010). ASK1 negatively regulates the 26 S proteasome. J. Biol. Chem. 285: 36434-46
-
(2010)
J. Biol. Chem
, vol.285
, pp. 36434-36446
-
-
Um, J.W.1
Im, E.2
Park, J.3
Oh, Y.4
Min, B.5
-
53
-
-
84956663117
-
Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis
-
Guo X, Wang X, Wang Z, Banerjee S, Yang J, et al. (2016). Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat. Cell Biol. 18: 202-12
-
(2016)
Nat. Cell Biol
, vol.18
, pp. 202-212
-
-
Guo, X.1
Wang, X.2
Wang, Z.3
Banerjee, S.4
Yang, J.5
-
54
-
-
77955107424
-
Co-and post-translational modifications of the 26S proteasome in yeast
-
Kikuchi J, Iwafune Y, Akiyama T, Okayama A, Nakamura H, et al. (2010). Co-and post-translational modifications of the 26S proteasome in yeast. Proteomics 10: 2769-79
-
(2010)
Proteomics
, vol.10
, pp. 2769-2779
-
-
Kikuchi, J.1
Iwafune, Y.2
Akiyama, T.3
Okayama, A.4
Nakamura, H.5
-
55
-
-
84958185888
-
Biological significance of co-and post-translationalmodifications of the yeast 26S proteasome
-
Hirano H, Kimura Y, Kimura A. (2016). Biological significance of co-and post-translationalmodifications of the yeast 26S proteasome. J. Proteom. 134: 37-46
-
(2016)
J. Proteom
, vol.134
, pp. 37-46
-
-
Hirano, H.1
Kimura, Y.2
Kimura, A.3
-
56
-
-
84876935501
-
Proteasome regulation by ADP-ribosylation
-
Cho-Park PF, Steller H. (2013). Proteasome regulation by ADP-ribosylation. Cell 153: 614-27
-
(2013)
Cell
, vol.153
, pp. 614-627
-
-
Cho-Park, P.F.1
Steller, H.2
-
57
-
-
84868534561
-
N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome
-
Kimura A, Kato Y, Hirano H. (2012). N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome. Biochemistry 51: 8856-66
-
(2012)
Biochemistry
, vol.51
, pp. 8856-8866
-
-
Kimura, A.1
Kato, Y.2
Hirano, H.3
-
58
-
-
0029876795
-
Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis
-
Castano JG, Mahillo E, Arizti P, Arribas J. (1996). Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry 35: 3782-89
-
(1996)
Biochemistry
, vol.35
, pp. 3782-3789
-
-
Castano, J.G.1
Mahillo, E.2
Arizti, P.3
Arribas, J.4
-
59
-
-
1542344946
-
Phosphorylation of 20S proteasome α subunit C8 (α 7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by γ-interferon
-
Bose S, Stratford FL, Broadfoot KI, Mason GG, Rivett AJ. (2004). Phosphorylation of 20S proteasome α subunit C8 (α7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by γ-interferon. Biochem. J. 378: 177-84
-
(2004)
Biochem. J.
, vol.378
, pp. 177-184
-
-
Bose, S.1
Stratford, F.L.2
Broadfoot, K.I.3
Mason, G.G.4
Rivett, A.J.5
-
60
-
-
84883311821
-
CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories
-
Jarome TJ, Kwapis JL, Ruenzel WL, Helmstetter FJ. (2013). CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front. Behav. Neurosci. 7: 115
-
(2013)
Front. Behav. Neurosci
, vol.7
, pp. 115
-
-
Jarome, T.J.1
Kwapis, J.L.2
Ruenzel, W.L.3
Helmstetter, F.J.4
-
61
-
-
84952685052
-
CAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins
-
Lokireddy S, Kukushkin NV, Goldberg AL. (2015). cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. PNAS 112: E7176-85
-
(2015)
PNAS
, vol.112
, pp. E7176-E7185
-
-
Lokireddy, S.1
Kukushkin, N.V.2
Goldberg, A.L.3
-
62
-
-
84954291382
-
Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling
-
Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH, et al. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22: 46-53
-
(2016)
Nat. Med
, vol.22
, pp. 46-53
-
-
Myeku, N.1
Clelland, C.L.2
Emrani, S.3
Kukushkin, N.V.4
Yu, W.H.5
-
63
-
-
84900862275
-
Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
-
Besche HC, Sha Z, Kukushkin NV, Peth A, Hock EM, et al. (2014). Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 33: 1159-76
-
(2014)
EMBO J.
, vol.33
, pp. 1159-1176
-
-
Besche, H.C.1
Sha, Z.2
Kukushkin, N.V.3
Peth, A.4
Hock, E.M.5
-
64
-
-
84902668478
-
Autoregulation of the 26S proteasome by in situ ubiquitination
-
Jacobson AD, MacFadden A, Wu Z, Peng J, Liu CW. (2014). Autoregulation of the 26S proteasome by in situ ubiquitination. Mol. Biol. Cell 25: 1824-35
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1824-1835
-
-
Jacobson, A.D.1
MacFadden, A.2
Wu, Z.3
Peng, J.4
Liu, C.W.5
-
65
-
-
33645148675
-
Regulation of ubiquitin-binding proteins by monoubiquitination
-
Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, et al. (2006). Regulation of ubiquitin-binding proteins by monoubiquitination. Nat. Cell Biol. 8: 163-69
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 163-169
-
-
Hoeller, D.1
Crosetto, N.2
Blagoev, B.3
Raiborg, C.4
Tikkanen, R.5
-
66
-
-
84955444799
-
Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome
-
Zuin A, Bichmann A, Isasa M, Puig-Sarries P, Diaz LM, Crosas B. (2015). Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem. J. 472: 353-65
-
(2015)
Biochem. J.
, vol.472
, pp. 353-365
-
-
Zuin, A.1
Bichmann, A.2
Isasa, M.3
Puig-Sarries, P.4
Diaz, L.M.5
Crosas, B.6
-
67
-
-
80054702676
-
Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
-
Park S, Kim W, Tian G, Gygi SP, Finley D. (2011). Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J. Biol. Chem. 286: 36652-66
-
(2011)
J. Biol. Chem
, vol.286
, pp. 36652-36666
-
-
Park, S.1
Kim, W.2
Tian, G.3
Gygi, S.P.4
Finley, D.5
-
68
-
-
80054703106
-
Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
-
Lee SY, De La Mota-Peynado A, Roelofs J. (2011). Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J. Biol. Chem. 286: 36641-51
-
(2011)
J. Biol. Chem
, vol.286
, pp. 36641-36651
-
-
Lee, S.Y.1
De La Mota-Peynado, A.2
Roelofs, J.3
-
69
-
-
84885586226
-
The proteasomeassociated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome
-
De La Mota-Peynado A, Lee SY, Pierce BM, Wani P, Singh CR, Roelofs J. (2013). The proteasomeassociated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J. Biol. Chem. 288: 29467-81
-
(2013)
J. Biol. Chem
, vol.288
, pp. 29467-29481
-
-
De La Mota-Peynado, A.1
Lee, S.Y.2
Pierce, B.M.3
Wani, P.4
Singh, C.R.5
Roelofs, J.6
-
70
-
-
84885593791
-
A novel crosstalk between twomajor protein degradation systems: Regulation of proteasomal activity by autophagy
-
Wang XJ, Yu J, Wong SH, Cheng AS, Chan FK, et al. (2013). A novel crosstalk between twomajor protein degradation systems: regulation of proteasomal activity by autophagy. Autophagy 9: 1500-8
-
(2013)
Autophagy
, vol.9
, pp. 1500-1508
-
-
Wang, X.J.1
Yu, J.2
Wong, S.H.3
Cheng, A.S.4
Chan, F.K.5
-
71
-
-
84979047223
-
KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition
-
Haratake K, Sato A, Tsuruta F, Chiba T. (2016). KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition. J. Biochem. 159: 609-18
-
(2016)
J. Biochem
, vol.159
, pp. 609-618
-
-
Haratake, K.1
Sato, A.2
Tsuruta, F.3
Chiba, T.4
-
72
-
-
84975076561
-
Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29
-
Wani PS, Suppahia A, Capalla X, Ondracek A, Roelofs J. (2016). Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Sci. Rep. 6: 27873
-
(2016)
Sci. Rep
, vol.6
, pp. 27873
-
-
Wani, P.S.1
Suppahia, A.2
Capalla, X.3
Ondracek, A.4
Roelofs, J.5
-
73
-
-
84922606978
-
The role of protein clearance mechanisms in organismal ageing and age-related diseases
-
Vilchez D, Saez I, Dillin A. (2014). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5: 5659
-
(2014)
Nat. Commun
, vol.5
, pp. 5659
-
-
Vilchez, D.1
Saez, I.2
Dillin, A.3
-
74
-
-
38449099679
-
Role of proteasomes in disease
-
Dahlmann B. (2007). Role of proteasomes in disease. BMC Biochem. 8(Suppl 1): S3
-
(2007)
BMC Biochem
, vol.8
, Issue.SUPPL1
, pp. S3
-
-
Dahlmann, B.1
-
76
-
-
84994030798
-
The proteasome-victim or culprit in autoimmunity
-
Feist E, Burmester GR, Kruger E. (2016). The proteasome-victim or culprit in autoimmunity. Clin. Immunol. 172: 83-89
-
(2016)
Clin. Immunol
, vol.172
, pp. 83-89
-
-
Feist, E.1
Burmester, G.R.2
Kruger, E.3
-
77
-
-
84955700933
-
Proteolytic enzymes involved inMHCclass i antigen processing: A guerrilla army that partners with the proteasome
-
Lazaro S, Gamarra D, Del Val M. (2015). Proteolytic enzymes involved inMHCclass I antigen processing: a guerrilla army that partners with the proteasome. Mol. Immunol. 68: 72-76
-
(2015)
Mol. Immunol
, vol.68
, pp. 72-76
-
-
Lazaro, S.1
Gamarra, D.2
Del Val, M.3
-
78
-
-
84875258216
-
The immunoproteasome in antigen processing and other immunological functions
-
Basler M, Kirk CJ, Groettrup M. (2013). The immunoproteasome in antigen processing and other immunological functions. Curr. Opin. Immunol. 25: 74-80
-
(2013)
Curr. Opin. Immunol
, vol.25
, pp. 74-80
-
-
Basler, M.1
Kirk, C.J.2
Groettrup, M.3
-
79
-
-
84965094505
-
Proteasome subtypes and regulators in the processing of antigenic peptides presented by class i molecules of the major histocompatibility complex
-
Vigneron N, Van den Eynde BJ. (2014). Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 4: 994-1025
-
(2014)
Biomolecules
, vol.4
, pp. 994-1025
-
-
Vigneron, N.1
Van Den Eynde, B.J.2
-
80
-
-
54249158324
-
Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction
-
Tai HC, Schuman EM. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9: 826-38
-
(2008)
Nat. Rev. Neurosci
, vol.9
, pp. 826-838
-
-
Tai, H.C.1
Schuman, E.M.2
-
81
-
-
84859161154
-
Microautophagy: Lesser-known self-eating
-
Li WW, Li J, Bao JK. (2012). Microautophagy: lesser-known self-eating. Cell Mol. Life Sci. 69: 1125-36
-
(2012)
Cell Mol. Life Sci
, vol.69
, pp. 1125-1136
-
-
Li, W.W.1
Li, J.2
Bao, J.K.3
-
83
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13: 132-41
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
84
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13: 251-62
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
85
-
-
43149090064
-
FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
-
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, et al. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181: 497-510
-
(2008)
J. Cell Biol
, vol.181
, pp. 497-510
-
-
Hara, T.1
Takamura, A.2
Kishi, C.3
Iemura, S.4
Natsume, T.5
-
86
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20: 1992-2003
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.H.3
Kim, Y.M.4
Otto, N.M.5
-
87
-
-
84876488191
-
MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, et al. (2013). mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15: 406-16
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
Bielli, P.4
Cianfanelli, V.5
-
88
-
-
84959045499
-
Mechanisms of selective autophagy
-
Zaffagnini G, Martens S. (2016). Mechanisms of selective autophagy. J. Mol. Biol. 428: 1714-24
-
(2016)
J. Mol. Biol
, vol.428
, pp. 1714-1724
-
-
Zaffagnini, G.1
Martens, S.2
-
89
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, et al. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524: 309-14
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
Sliter, D.A.2
Kane, L.A.3
Sarraf, S.A.4
Wang, C.5
-
90
-
-
84938744997
-
Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase
-
Kamber RA, Shoemaker CJ, Denic V. (2015). Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59: 372-81
-
(2015)
Mol. Cell
, vol.59
, pp. 372-381
-
-
Kamber, R.A.1
Shoemaker, C.J.2
Denic, V.3
-
92
-
-
84928695187
-
Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
-
Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, et al. (2015). Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18: 631-36
-
(2015)
Nat. Neurosci
, vol.18
, pp. 631-636
-
-
Freischmidt, A.1
Wieland, T.2
Richter, B.3
Ruf, W.4
Schaeffer, V.5
-
93
-
-
84931007726
-
Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease
-
Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, et al. (2015). Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 130: 77-92
-
(2015)
Acta Neuropathol
, vol.130
, pp. 77-92
-
-
Pottier, C.1
Bieniek, K.F.2
Finch, N.3
Van De Vorst, M.4
Baker, M.5
-
94
-
-
84966713295
-
Defective recognition of LC3B by mutant SQSTM1/p62implicates impairment of autophagy as a pathogenic mechanism inALS-FTLD
-
Goode A, Butler K, Long J, Cavey J, Scott D, et al. (2016). Defective recognition of LC3B by mutant SQSTM1/p62implicates impairment of autophagy as a pathogenic mechanism inALS-FTLD.Autophagy 12: 1094-104
-
(2016)
Autophagy
, vol.12
, pp. 1094-1104
-
-
Goode, A.1
Butler, K.2
Long, J.3
Cavey, J.4
Scott, D.5
-
95
-
-
84901815187
-
Cargo recognition and trafficking in selective autophagy
-
Stolz A, Ernst A, Dikic I. (2014). Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16: 495-501
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 495-501
-
-
Stolz, A.1
Ernst, A.2
Dikic, I.3
-
96
-
-
84955242756
-
Ubiquitin-dependent and independent signals in selective autophagy
-
Khaminets A, Behl C, Dikic I. (2016). Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26: 6-16
-
(2016)
Trends Cell Biol
, vol.26
, pp. 6-16
-
-
Khaminets, A.1
Behl, C.2
Dikic, I.3
-
97
-
-
84940783815
-
Expanding the ubiquitin code through post-translationalmodification
-
Herhaus L, Dikic I. (2015). Expanding the ubiquitin code through post-translationalmodification. EMBO Rep. 16: 1071-83
-
(2015)
EMBO Rep
, vol.16
, pp. 1071-1083
-
-
Herhaus, L.1
Dikic, I.2
-
98
-
-
64749103447
-
Inhibition of lysosomal functions reduces proteasomal activity
-
Qiao L, Zhang J. (2009). Inhibition of lysosomal functions reduces proteasomal activity. Neurosci. Lett. 456: 15-19
-
(2009)
Neurosci. Lett
, vol.456
, pp. 15-19
-
-
Qiao, L.1
Zhang, J.2
-
99
-
-
60549093730
-
Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates
-
Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. (2009). Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33: 517-27
-
(2009)
Mol. Cell
, vol.33
, pp. 517-527
-
-
Korolchuk, V.I.1
Mansilla, A.2
Menzies, F.M.3
Rubinsztein, D.C.4
-
100
-
-
78049495046
-
Ubiquitin accumulation in autophagydeficient mice is dependent on the Nrf2-mediated stress response pathway: A potential role for protein aggregation in autophagic substrate selection
-
Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T, et al. (2010). Ubiquitin accumulation in autophagydeficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol. 191: 537-52
-
(2010)
J. Cell Biol
, vol.191
, pp. 537-552
-
-
Riley, B.E.1
Kaiser, S.E.2
Shaler, T.A.3
Ng, A.C.4
Hara, T.5
-
101
-
-
84939257230
-
Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase
-
Jiang S, Park DW, Gao Y, Ravi S, Darley-Usmar V, et al. (2015). Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase. Cell Signal. 27: 1186-97
-
(2015)
Cell Signal
, vol.27
, pp. 1186-1197
-
-
Jiang, S.1
Park, D.W.2
Gao, Y.3
Ravi, S.4
Darley-Usmar, V.5
-
102
-
-
84903816486
-
Bortezomib induces protective autophagy throughAMP-activated protein kinase activation in cultured pancreatic and colorectal cancer cells
-
Min H, Xu M, Chen ZR, Zhou JD, Huang M, et al. (2014). Bortezomib induces protective autophagy throughAMP-activated protein kinase activation in cultured pancreatic and colorectal cancer cells. Cancer Chemother. Pharmacol. 74: 167-76
-
(2014)
Cancer Chemother. Pharmacol
, vol.74
, pp. 167-176
-
-
Min, H.1
Xu, M.2
Chen, Z.R.3
Zhou, J.D.4
Huang, M.5
-
103
-
-
84939265297
-
Proteasome inhibitors induce AMPK activation via CaMKKβin human breast cancer cells
-
Deshmukh RR, Dou QP. (2015). Proteasome inhibitors induce AMPK activation via CaMKKβin human breast cancer cells. Breast Cancer Res. Treat. 153: 79-88
-
(2015)
Breast Cancer Res. Treat
, vol.153
, pp. 79-88
-
-
Deshmukh, R.R.1
Dou, Q.P.2
-
104
-
-
84954507905
-
GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells
-
Sun A, Li C, Chen R, Huang Y, Chen Q, et al. (2016). GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate 76: 172-83
-
(2016)
Prostate
, vol.76
, pp. 172-183
-
-
Sun, A.1
Li, C.2
Chen, R.3
Huang, Y.4
Chen, Q.5
-
105
-
-
84933179778
-
Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress
-
Gavilan E, Pintado C, Gavilan MP, Daza P, Sanchez-Aguayo I, et al. (2015). Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress. Neurobiol. Aging 36: 1953-63
-
(2015)
Neurobiol. Aging
, vol.36
, pp. 1953-1963
-
-
Gavilan, E.1
Pintado, C.2
Gavilan, M.P.3
Daza, P.4
Sanchez-Aguayo, I.5
-
106
-
-
84879724974
-
GSK-3βsignaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition
-
Gavilan E, Sanchez-Aguayo I, Daza P, Ruano D. (2013). GSK-3βsignaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition. Cell Death Dis. 4: e572
-
(2013)
Cell Death Dis
, vol.4
, pp. e572
-
-
Gavilan, E.1
Sanchez-Aguayo, I.2
Daza, P.3
Ruano, D.4
-
107
-
-
77958501463
-
Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase
-
Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E. (2010). Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 285: 33154-64
-
(2010)
J. Biol. Chem
, vol.285
, pp. 33154-33164
-
-
Zmijewski, J.W.1
Banerjee, S.2
Bae, H.3
Friggeri, A.4
Lazarowski, E.R.5
Abraham, E.6
-
108
-
-
84923195554
-
UPR, autophagy, andmitochondria crosstalk underlies the ER stress response
-
Senft D, Ronai ZA. (2015). UPR, autophagy, andmitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40: 141-48
-
(2015)
Trends Biochem. Sci
, vol.40
, pp. 141-148
-
-
Senft, D.1
Ronai, Z.A.2
-
109
-
-
84887999522
-
Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation
-
Bruning A, Rahmeh M, Friese K. (2013). Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation. Mol. Oncol. 7: 1012-18
-
(2013)
Mol. Oncol
, vol.7
, pp. 1012-1018
-
-
Bruning, A.1
Rahmeh, M.2
Friese, K.3
-
110
-
-
33846189759
-
Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2
-
Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, et al. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell 25: 193-205
-
(2007)
Mol. Cell
, vol.25
, pp. 193-205
-
-
Hoyer-Hansen, M.1
Bastholm, L.2
Szyniarowski, P.3
Campanella, M.4
Szabadkai, G.5
-
111
-
-
84889889353
-
Nrf2 and Nrf1 signaling and ER stress crosstalk: Implication for proteasomal degradation and autophagy
-
Digaleh H, Kiaei M, Khodagholi F. (2013). Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell Mol. Life Sci. 70: 4681-94
-
(2013)
Cell Mol. Life Sci
, vol.70
, pp. 4681-4694
-
-
Digaleh, H.1
Kiaei, M.2
Khodagholi, F.3
-
112
-
-
84919497292
-
AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics
-
Antonioli M, Albiero F, Nazio F, Vescovo T, Perdomo AB, et al. (2014). AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev. Cell 31: 734-46
-
(2014)
Dev. Cell
, vol.31
, pp. 734-746
-
-
Antonioli, M.1
Albiero, F.2
Nazio, F.3
Vescovo, T.4
Perdomo, A.B.5
-
113
-
-
84953637768
-
Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination
-
Liu CC, Lin YC, Chen YH, Chen CM, Pang LY, et al. (2016). Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol. Cell 61: 84-97
-
(2016)
Mol. Cell
, vol.61
, pp. 84-97
-
-
Liu, C.C.1
Lin, Y.C.2
Chen, Y.H.3
Chen, C.M.4
Pang, L.Y.5
-
114
-
-
75149153425
-
Processing of autophagic protein LC3 by the 20S proteasome
-
Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P, Jiang X. (2010). Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 6: 126-37
-
(2010)
Autophagy
, vol.6
, pp. 126-137
-
-
Gao, Z.1
Gammoh, N.2
Wong, P.M.3
Erdjument-Bromage, H.4
Tempst, P.5
Jiang, X.6
-
115
-
-
84883187967
-
Emerging roles of E3 ubiquitin ligases in autophagy
-
Kuang E, Qi J, Ronai Z. (2013). Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem. Sci. 38: 453-60
-
(2013)
Trends Biochem. Sci
, vol.38
, pp. 453-460
-
-
Kuang, E.1
Qi, J.2
Ronai, Z.3
-
116
-
-
0344629427
-
Ubiquitin depletion as a key mediator of toxicity by translational inhibitors
-
Hanna J, Leggett DS, Finley D. (2003). Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell Biol. 23: 9251-61
-
(2003)
Mol. Cell Biol
, vol.23
, pp. 9251-9261
-
-
Hanna, J.1
Leggett, D.S.2
Finley, D.3
-
117
-
-
0023666139
-
The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
-
Finley D, Ozkaynak E, Varshavsky A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48: 1035-46
-
(1987)
Cell
, vol.48
, pp. 1035-1046
-
-
Finley, D.1
Ozkaynak, E.2
Varshavsky, A.3
-
118
-
-
84907430840
-
Cellular ubiquitin pool dynamics and homeostasis
-
Park CW, Ryu KY. (2014). Cellular ubiquitin pool dynamics and homeostasis. BMB Rep. 47: 475-82
-
(2014)
BMB Rep
, vol.47
, pp. 475-482
-
-
Park, C.W.1
Ryu, K.Y.2
-
119
-
-
84922575029
-
Disruption of polyubiquitin geneUbb causes dysregulation of neural stem cell differentiation with premature gliogenesis
-
Ryu HW, Park CW, Ryu KY. (2014). Disruption of polyubiquitin geneUbb causes dysregulation of neural stem cell differentiation with premature gliogenesis. Sci. Rep. 4: 7026
-
(2014)
Sci. Rep
, vol.4
, pp. 7026
-
-
Ryu, H.W.1
Park, C.W.2
Ryu, K.Y.3
-
120
-
-
82555200901
-
Ubiquitin homeostasis is critical for synaptic development and function
-
Chen PC, Bhattacharyya BJ, Hanna J, Minkel H, Wilson JA, et al. (2011). Ubiquitin homeostasis is critical for synaptic development and function. J. Neurosci. 31: 17505-13
-
(2011)
J. Neurosci
, vol.31
, pp. 17505-17513
-
-
Chen, P.C.1
Bhattacharyya, B.J.2
Hanna, J.3
Minkel, H.4
Wilson, J.A.5
-
121
-
-
69749110327
-
The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions
-
Chen PC, Qin LN, Li XM, Walters BJ, Wilson JA, et al. (2009). The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29: 10909-19
-
(2009)
J. Neurosci
, vol.29
, pp. 10909-10919
-
-
Chen, P.C.1
Qin, L.N.2
Li, X.M.3
Walters, B.J.4
Wilson, J.A.5
-
122
-
-
84865602944
-
Growing sphere of influence: Cdc48/p97 orchestrates ubiquitindependent extraction from chromatin
-
Dantuma NP, Hoppe T. (2012). Growing sphere of influence: Cdc48/p97 orchestrates ubiquitindependent extraction from chromatin. Trends Cell Biol. 22: 483-91
-
(2012)
Trends Cell Biol
, vol.22
, pp. 483-491
-
-
Dantuma, N.P.1
Hoppe, T.2
-
124
-
-
84856474838
-
Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system
-
Meyer H, Bug M, Bremer S. (2012). Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14: 117-23
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 117-123
-
-
Meyer, H.1
Bug, M.2
Bremer, S.3
-
125
-
-
84911001724
-
Overexpression of human E46K mutant α-synuclein impairs macroautophagy via inactivation of JNK1-Bcl-2 pathway
-
Yan JQ, Yuan YH, Gao YN, Huang JY, Ma KL, et al. (2014). Overexpression of human E46K mutant α-synuclein impairs macroautophagy via inactivation of JNK1-Bcl-2 pathway. Mol. Neurobiol. 50: 685-701
-
(2014)
Mol. Neurobiol
, vol.50
, pp. 685-701
-
-
Yan, J.Q.1
Yuan, Y.H.2
Gao, Y.N.3
Huang, J.Y.4
Ma, K.L.5
-
126
-
-
77957189194
-
Α-Synuclein impairs macroautophagy: Implications for Parkinson's disease
-
Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, et al. (2010). α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190: 1023-37
-
(2010)
J. Cell Biol
, vol.190
, pp. 1023-1037
-
-
Winslow, A.R.1
Chen, C.W.2
Corrochano, S.3
Acevedo-Arozena, A.4
Gordon, D.E.5
-
127
-
-
84878230429
-
Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy
-
Tanik SA, Schultheiss CE, Volpicelli-Daley LA, Brunden KR, Lee VM. (2013). Lewy body-like α-synuclein aggregates resist degradation and impair macroautophagy. J. Biol. Chem. 288: 15194-210
-
(2013)
J. Biol. Chem
, vol.288
, pp. 15194-15210
-
-
Tanik, S.A.1
Schultheiss, C.E.2
Volpicelli-Daley, L.A.3
Brunden, K.R.4
Lee, V.M.5
-
128
-
-
84894350781
-
HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: A process modulated by the natural autophagy inducer corynoxine B
-
Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, et al. (2014). HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 10: 144-54
-
(2014)
Autophagy
, vol.10
, pp. 144-154
-
-
Song, J.X.1
Lu, J.H.2
Liu, L.F.3
Chen, L.L.4
Durairajan, S.S.5
-
129
-
-
84956919475
-
Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells
-
Wang K, Huang J, Xie W, Huang L, Zhong C, Chen Z. (2016). Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells. Diagn. Pathol. 11: 15
-
(2016)
Diagn. Pathol
, vol.11
, pp. 15
-
-
Wang, K.1
Huang, J.2
Xie, W.3
Huang, L.4
Zhong, C.5
Chen, Z.6
-
130
-
-
51449096696
-
Aβinhibits the proteasome and enhances amyloid and tau accumulation
-
Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM. (2008). Aβinhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol. Aging 29: 1607-18
-
(2008)
Neurobiol. Aging
, vol.29
, pp. 1607-1618
-
-
Tseng, B.P.1
Green, K.N.2
Chan, J.L.3
Blurton-Jones, M.4
LaFerla, F.M.5
-
131
-
-
0035947372
-
Impairment of the ubiquitin-proteasome system by protein aggregation
-
Bence NF, Sampat RM, Kopito RR. (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552-55
-
(2001)
Science
, vol.292
, pp. 1552-1555
-
-
Bence, N.F.1
Sampat, R.M.2
Kopito, R.R.3
-
132
-
-
84868148725
-
Failure of amino acid homeostasis causes cell death following proteasome inhibition
-
Suraweera A, Munch C, Hanssum A, Bertolotti A. (2012). Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48: 242-53
-
(2012)
Mol. Cell
, vol.48
, pp. 242-253
-
-
Suraweera, A.1
Munch, C.2
Hanssum, A.3
Bertolotti, A.4
-
133
-
-
84922727084
-
Differential regulation of mTORC1 by leucine and glutamine
-
Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, et al. (2015). Differential regulation of mTORC1 by leucine and glutamine. Science 347: 194-98
-
(2015)
Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
Yu, F.X.4
Park, H.W.5
-
134
-
-
84922743269
-
Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, et al. (2015). Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347: 188-94
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
-
135
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. (2008). Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10: 935-45
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
136
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496-501
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
-
137
-
-
84961262318
-
EIF4A inactivates TORC1 in response to amino acid starvation
-
Tsokanos FF, Albert MA, Demetriades C, Spirohn K, Boutros M, Teleman AA. (2016). eIF4A inactivates TORC1 in response to amino acid starvation. EMBO J. 35: 1058-76
-
(2016)
EMBO J.
, vol.35
, pp. 1058-1076
-
-
Tsokanos, F.F.1
Albert, M.A.2
Demetriades, C.3
Spirohn, K.4
Boutros, M.5
Teleman, A.A.6
-
138
-
-
79955757695
-
Oxidative stress-mediated regulation of proteasome complexes
-
006924
-
Aiken CT, Kaake RM, Wang X, Huang L. (2011). Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell Proteom. 10: R110 006924
-
(2011)
Mol. Cell Proteom
, vol.10
, pp. R110
-
-
Aiken, C.T.1
Kaake, R.M.2
Wang, X.3
Huang, L.4
-
139
-
-
34250183177
-
HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
-
Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447: 859-63
-
(2007)
Nature
, vol.447
, pp. 859-863
-
-
Pandey, U.B.1
Nie, Z.2
Batlevi, Y.3
McCray, B.A.4
Ritson, G.P.5
-
140
-
-
84982256774
-
Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes
-
Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML, et al. (2016). Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12: 1902-16
-
(2016)
Autophagy
, vol.12
, pp. 1902-1916
-
-
Pajares, M.1
Jimenez-Moreno, N.2
Garcia-Yague, A.J.3
Escoll, M.4
De Ceballos, M.L.5
-
141
-
-
4444220680
-
Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
-
Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell Biol. 24: 8055-68
-
(2004)
Mol. Cell Biol
, vol.24
, pp. 8055-8068
-
-
Seibenhener, M.L.1
Babu, J.R.2
Geetha, T.3
Wong, H.C.4
Krishna, N.R.5
Wooten, M.W.6
-
142
-
-
21344463770
-
Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation
-
Babu JR, Geetha T, Wooten MW. (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem. 94: 192-203
-
(2005)
J. Neurochem
, vol.94
, pp. 192-203
-
-
Babu, J.R.1
Geetha, T.2
Wooten, M.W.3
-
143
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149-63
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
-
144
-
-
38349114036
-
Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases
-
Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, et al. (2008). Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17: 431-39
-
(2008)
Hum. Mol. Genet
, vol.17
, pp. 431-439
-
-
Tan, J.M.1
Wong, E.S.2
Kirkpatrick, D.S.3
Pletnikova, O.4
Ko, H.S.5
-
145
-
-
76449094465
-
Parkin-mediated ubiquitin signalling in aggresome formation and autophagy
-
Chin LS, Olzmann JA, Li L. (2010). Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem. Soc. Trans. 38: 144-49
-
(2010)
Biochem. Soc. Trans
, vol.38
, pp. 144-149
-
-
Chin, L.S.1
Olzmann, J.A.2
Li, L.3
-
146
-
-
84859736977
-
Aggrephagy: Selective disposal of protein aggregates by macroautophagy
-
Lamark T, Johansen T. (2012). Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012: 736905
-
(2012)
Int. J. Cell Biol
, vol.2012
, pp. 736905
-
-
Lamark, T.1
Johansen, T.2
-
147
-
-
84924415434
-
Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates
-
Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, et al. (2015). Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLOS Genet. 11: e1004987
-
(2015)
Plos Genet
, vol.11
, pp. e1004987
-
-
Lim, J.1
Lachenmayer, M.L.2
Wu, S.3
Liu, W.4
Kundu, M.5
-
148
-
-
0035163063
-
Identification of components of the murine histone deacetylase 6 complex: Link between acetylation and ubiquitination signaling pathways
-
Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, et al. (2001). Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell Biol. 21: 8035-44
-
(2001)
Mol. Cell Biol
, vol.21
, pp. 8035-8044
-
-
Seigneurin-Berny, D.1
Verdel, A.2
Curtet, S.3
Lemercier, C.4
Garin, J.5
-
149
-
-
0037161744
-
HDAC6 is a microtubule-associated deacetylase
-
Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, et al. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417: 455-58
-
(2002)
Nature
, vol.417
, pp. 455-458
-
-
Hubbert, C.1
Guardiola, A.2
Shao, R.3
Kawaguchi, Y.4
Ito, A.5
-
150
-
-
0346020435
-
The deacetylaseHDAC6regulates aggresome formation and cell viability in response to misfolded protein stress
-
Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. (2003). The deacetylaseHDAC6regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115: 727-38
-
(2003)
Cell
, vol.115
, pp. 727-738
-
-
Kawaguchi, Y.1
Kovacs, J.J.2
McLaurin, A.3
Vance, J.M.4
Ito, A.5
Yao, T.P.6
-
151
-
-
84884593127
-
Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains
-
Hao R, Nanduri P, Rao Y, Panichelli RS, Ito A, et al. (2013). Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Mol. Cell 51: 819-28
-
(2013)
Mol. Cell
, vol.51
, pp. 819-828
-
-
Hao, R.1
Nanduri, P.2
Rao, Y.3
Panichelli, R.S.4
Ito, A.5
-
152
-
-
77649337122
-
HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
-
Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, et al. (2010). HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29: 969-80
-
(2010)
EMBO J.
, vol.29
, pp. 969-980
-
-
Lee, J.Y.1
Koga, H.2
Kawaguchi, Y.3
Tang, W.4
Wong, E.5
-
153
-
-
84927139452
-
Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance
-
Nanduri P, Hao R, Fitzpatrick T, Yao TP. (2015). Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance. J. Biol. Chem. 290: 9455-64
-
(2015)
J. Biol. Chem
, vol.290
, pp. 9455-9464
-
-
Nanduri, P.1
Hao, R.2
Fitzpatrick, T.3
Yao, T.P.4
-
154
-
-
43049155955
-
The BAG proteins: A ubiquitous family of chaperone regulators
-
Kabbage M, Dickman MB. (2008). The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol. Life Sci. 65: 1390-402
-
(2008)
Cell Mol. Life Sci
, vol.65
, pp. 1390-1402
-
-
Kabbage, M.1
Dickman, M.B.2
-
155
-
-
0039172708
-
The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome
-
Luders J, Demand J, Hohfeld J. (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275: 4613-17
-
(2000)
J. Biol. Chem
, vol.275
, pp. 4613-4617
-
-
Luders, J.1
Demand, J.2
Hohfeld, J.3
-
156
-
-
65449117176
-
Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
-
Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C. (2009). Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J. 28: 889-901
-
(2009)
EMBO J.
, vol.28
, pp. 889-901
-
-
Gamerdinger, M.1
Hajieva, P.2
Kaya, A.M.3
Wolfrum, U.4
Hartl, F.U.5
Behl, C.6
-
157
-
-
79551609332
-
BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins
-
Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C. (2011). BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep. 12: 149-56
-
(2011)
EMBO Rep
, vol.12
, pp. 149-156
-
-
Gamerdinger, M.1
Kaya, A.M.2
Wolfrum, U.3
Clement, A.M.4
Behl, C.5
-
158
-
-
38949184241
-
HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy
-
Carra S, Seguin SJ, Landry J. (2008). HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4: 237-39
-
(2008)
Autophagy
, vol.4
, pp. 237-239
-
-
Carra, S.1
Seguin, S.J.2
Landry, J.3
-
159
-
-
84907166419
-
BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: Implications for a proteasome-to-autophagy switch
-
Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, et al. (2014). BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10: 1603-21
-
(2014)
Autophagy
, vol.10
, pp. 1603-1621
-
-
Minoia, M.1
Boncoraglio, A.2
Vinet, J.3
Morelli, F.F.4
Brunsting, J.F.5
-
160
-
-
36249000085
-
Transcriptional upregulation of BAG3 upon proteasome inhibition
-
Wang HQ, Liu HM, Zhang HY, Guan Y, Du ZX. (2008). Transcriptional upregulation of BAG3 upon proteasome inhibition. Biochem. Biophys. Res. Commun. 365: 381-85
-
(2008)
Biochem. Biophys. Res. Commun
, vol.365
, pp. 381-385
-
-
Wang, H.Q.1
Liu, H.M.2
Zhang, H.Y.3
Guan, Y.4
Du, Z.X.5
-
161
-
-
84897984423
-
BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways
-
Rapino F, Jung M, Fulda S. (2014). BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways. Oncogene 33: 1713-24
-
(2014)
Oncogene
, vol.33
, pp. 1713-1724
-
-
Rapino, F.1
Jung, M.2
Fulda, S.3
-
162
-
-
69449084241
-
Autophagy activation by NFκB is essential for cell survival after heat shock
-
Nivon M, Richet E, Codogno P, Arrigo AP, Kretz-Remy C. (2009). Autophagy activation by NFκB is essential for cell survival after heat shock. Autophagy 5: 766-83
-
(2009)
Autophagy
, vol.5
, pp. 766-783
-
-
Nivon, M.1
Richet, E.2
Codogno, P.3
Arrigo, A.P.4
Kretz-Remy, C.5
-
163
-
-
84965085833
-
NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways
-
Rapino F, Abhari BA, Jung M, Fulda S. (2015). NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways. Cell Death Dis. 6: e1692
-
(2015)
Cell Death Dis
, vol.6
, pp. e1692
-
-
Rapino, F.1
Abhari, B.A.2
Jung, M.3
Fulda, S.4
-
164
-
-
84965077472
-
Breaking BAG: The co-chaperone BAG3 in health and disease
-
Behl C. (2016). Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol. Sci. 37: 672-88
-
(2016)
Trends Pharmacol. Sci
, vol.37
, pp. 672-688
-
-
Behl, C.1
-
165
-
-
84937969345
-
Mitochondrial dynamics: Orchestrating the journey to advanced age
-
Biala AK, Dhingra R, Kirshenbaum LA. (2015). Mitochondrial dynamics: orchestrating the journey to advanced age. J. Mol. Cell Cardiol. 83: 37-43
-
(2015)
J. Mol. Cell Cardiol
, vol.83
, pp. 37-43
-
-
Biala, A.K.1
Dhingra, R.2
Kirshenbaum, L.A.3
-
166
-
-
84958850926
-
Mitochondrial dynamics and metabolic regulation
-
Wai T, Langer T. (2016). Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27: 105-17
-
(2016)
Trends Endocrinol. Metab
, vol.27
, pp. 105-117
-
-
Wai, T.1
Langer, T.2
-
168
-
-
84994381512
-
Mitochondrial dynamics altered by oxidative stress in cancer
-
Kim B, Song YS. (2016). Mitochondrial dynamics altered by oxidative stress in cancer. Free Radic. Res. 50: 1065-70
-
(2016)
Free Radic. Res
, vol.50
, pp. 1065-1070
-
-
Kim, B.1
Song, Y.S.2
-
169
-
-
85002949454
-
Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies
-
Rimessi A, Previati M, Nigro F, Wieckowski MR, Pinton P. (2016). Mitochondrial reactive oxygen species and inflammation: molecular mechanisms, diseases and promising therapies. Int. J. Biochem. Cell Biol. 81: 281-93
-
(2016)
Int. J. Biochem. Cell Biol
, vol.81
, pp. 281-293
-
-
Rimessi, A.1
Previati, M.2
Nigro, F.3
Wieckowski, M.R.4
Pinton, P.5
-
170
-
-
84979937405
-
Mitochondrial dysfunction and oxidative stress in aging and cancer
-
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, et al. (2016). Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 7: 44879-905
-
(2016)
Oncotarget
, vol.7
, pp. 44879-44905
-
-
Kudryavtseva, A.V.1
Krasnov, G.S.2
Dmitriev, A.A.3
Alekseev, B.Y.4
Kardymon, O.L.5
-
171
-
-
84884879594
-
Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease
-
Yan MH, Wang X, Zhu X. (2013). Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62: 90-101
-
(2013)
Free Radic. Biol. Med
, vol.62
, pp. 90-101
-
-
Yan, M.H.1
Wang, X.2
Zhu, X.3
-
172
-
-
44949231368
-
Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling
-
Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, et al. (2008). Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLOS ONE 3: e1487
-
(2008)
Plos One
, vol.3
, pp. e1487
-
-
Li, W.1
Bengtson, M.H.2
Ulbrich, A.3
Matsuda, A.4
Reddy, V.A.5
-
173
-
-
33749253910
-
March-V is a novel mitofusin 2-and Drp1-binding protein able to change mitochondrial morphology
-
Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. (2006). MARCH-V is a novel mitofusin 2-and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7: 1019-22
-
(2006)
EMBO Rep
, vol.7
, pp. 1019-1022
-
-
Nakamura, N.1
Kimura, Y.2
Tokuda, M.3
Honda, S.4
Hirose, S.5
-
174
-
-
33747613595
-
A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics
-
Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, et al. (2006). A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 25: 3618-26
-
(2006)
EMBO J.
, vol.25
, pp. 3618-3626
-
-
Yonashiro, R.1
Ishido, S.2
Kyo, S.3
Fukuda, T.4
Goto, E.5
-
175
-
-
34347398050
-
Themitochondrial E3 ubiquitin ligaseMARCH5 is required for Drp1 dependent mitochondrial division
-
Karbowski M, Neutzner A, Youle RJ. (2007). Themitochondrial E3 ubiquitin ligaseMARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 178: 71-84
-
(2007)
J. Cell Biol
, vol.178
, pp. 71-84
-
-
Karbowski, M.1
Neutzner, A.2
Youle, R.J.3
-
176
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D, Tanaka A, Suen DF, Youle RJ. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183: 795-803
-
(2008)
J. Cell Biol
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
177
-
-
81055140895
-
PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
-
Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, et al. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147: 893-906
-
(2011)
Cell
, vol.147
, pp. 893-906
-
-
Wang, X.1
Winter, D.2
Ashrafi, G.3
Schlehe, J.4
Wong, Y.L.5
-
178
-
-
33747389446
-
Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1
-
Escobar-Henriques M, Westermann B, Langer T. (2006). Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 173: 645-50
-
(2006)
J. Cell Biol
, vol.173
, pp. 645-650
-
-
Escobar-Henriques, M.1
Westermann, B.2
Langer, T.3
-
179
-
-
48749116067
-
Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion
-
Cohen MM, Leboucher GP, Livnat-Levanon N, Glickman MH, Weissman AM. (2008). Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol. Biol. Cell 19: 2457-64
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2457-2464
-
-
Cohen, M.M.1
Leboucher, G.P.2
Livnat-Levanon, N.3
Glickman, M.H.4
Weissman, A.M.5
-
180
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27: 433-46
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
-
181
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes LC, Di Benedetto G, Scorrano L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13: 589-98
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
182
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. PNAS 108: 10190-95
-
(2011)
PNAS
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
183
-
-
84954527661
-
Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein
-
Xu S, Cherok E, Das S, Li S, Roelofs BA, et al. (2016). Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 27: 349-59
-
(2016)
Mol. Biol. Cell
, vol.27
, pp. 349-359
-
-
Xu, S.1
Cherok, E.2
Das, S.3
Li, S.4
Roelofs, B.A.5
-
184
-
-
84957432947
-
Mitophagy programs: Mechanisms and physiological implications of mitochondrial targeting by autophagy
-
Hamacher-Brady A, Brady NR. (2016). Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol. Life Sci. 73: 775-95
-
(2016)
Cell Mol. Life Sci
, vol.73
, pp. 775-795
-
-
Hamacher-Brady, A.1
Brady, N.R.2
-
185
-
-
84929582993
-
The three ?P's of mitophagy: PARKIN, PINK1, and post-translational modifications
-
Durcan TM, Fon EA. (2015). The three ?P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29: 989-99
-
(2015)
Genes Dev
, vol.29
, pp. 989-999
-
-
Durcan, T.M.1
Fon, E.A.2
-
186
-
-
84925940926
-
PINK1 and Parkin-mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease
-
Kazlauskaite A, Muqit MM. (2015). PINK1 and Parkin-mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J. 282: 215-23
-
(2015)
FEBS J.
, vol.282
, pp. 215-223
-
-
Kazlauskaite, A.1
Muqit, M.M.2
-
187
-
-
84951930787
-
The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
-
Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. (2015). The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60: 7-20
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
188
-
-
84994565816
-
Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes
-
Rose CM, Isasa M, Ordureau A, Prado MA, Beausoleil SA, et al. (2016). Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst. 3: 395-403
-
(2016)
Cell Syst
, vol.3
, pp. 395-403
-
-
Rose, C.M.1
Isasa, M.2
Ordureau, A.3
Prado, M.A.4
Beausoleil, S.A.5
-
189
-
-
84929691103
-
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
-
Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL, et al. (2015). Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. PNAS 112: 6637-42
-
(2015)
PNAS
, vol.112
, pp. 6637-6642
-
-
Ordureau, A.1
Heo, J.M.2
Duda, D.M.3
Paulo, J.A.4
Olszewski, J.L.5
-
190
-
-
84899539731
-
PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
-
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, et al. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205: 143-53
-
(2014)
J. Cell Biol
, vol.205
, pp. 143-153
-
-
Kane, L.A.1
Lazarou, M.2
Fogel, A.I.3
Li, Y.4
Yamano, K.5
-
191
-
-
84899421556
-
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
-
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, et al. (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460: 127-39
-
(2014)
Biochem. J.
, vol.460
, pp. 127-139
-
-
Kazlauskaite, A.1
Kondapalli, C.2
Gourlay, R.3
Campbell, D.G.4
Ritorto, M.S.5
-
192
-
-
84922434418
-
Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
-
Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, et al. (2014). Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56: 360-75
-
(2014)
Mol. Cell
, vol.56
, pp. 360-375
-
-
Ordureau, A.1
Sarraf, S.A.2
Duda, D.M.3
Heo, J.M.4
Jedrychowski, M.P.5
-
193
-
-
79957472437
-
Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
-
Yoshii SR, Kishi C, Ishihara N, Mizushima N. (2011). Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286: 19630-40
-
(2011)
J. Biol. Chem
, vol.286
, pp. 19630-19640
-
-
Yoshii, S.R.1
Kishi, C.2
Ishihara, N.3
Mizushima, N.4
-
194
-
-
78650729600
-
Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
-
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, et al. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191: 1367-80
-
(2010)
J. Cell Biol
, vol.191
, pp. 1367-1380
-
-
Tanaka, A.1
Cleland, M.M.2
Xu, S.3
Narendra, D.P.4
Suen, D.F.5
-
195
-
-
79954520907
-
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
-
Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, et al. (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20: 1726-37
-
(2011)
Hum. Mol. Genet
, vol.20
, pp. 1726-1737
-
-
Chan, N.C.1
Salazar, A.M.2
Pham, A.H.3
Sweredoski, M.J.4
Kolawa, N.J.5
-
197
-
-
84925340816
-
The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13
-
Aguileta MA, Korac J, Durcan TM, Trempe JF, Haber M, et al. (2015). The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13. J. Biol. Chem. 290: 7492-505
-
(2015)
J. Biol. Chem
, vol.290
, pp. 7492-7505
-
-
Aguileta, M.A.1
Korac, J.2
Durcan, T.M.3
Trempe, J.F.4
Haber, M.5
-
198
-
-
78650716707
-
The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila
-
Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, et al. (2010). The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila. PLOS Genet. 6: e1001229
-
(2010)
Plos Genet
, vol.6
, pp. e1001229
-
-
Imai, Y.1
Kanao, T.2
Sawada, T.3
Kobayashi, Y.4
Moriwaki, Y.5
-
199
-
-
84911946743
-
Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder
-
Lu W, Karuppagounder SS, Springer DA, Allen MD, Zheng L, et al. (2014). Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat. Commun. 5: 4930
-
(2014)
Nat. Commun
, vol.5
, pp. 4930
-
-
Lu, W.1
Karuppagounder, S.S.2
Springer, D.A.3
Allen, M.D.4
Zheng, L.5
-
200
-
-
84899912073
-
A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
-
Chen G, Han Z, Feng D, Chen Y, Chen L, et al. (2014). A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54: 362-77
-
(2014)
Mol. Cell
, vol.54
, pp. 362-377
-
-
Chen, G.1
Han, Z.2
Feng, D.3
Chen, Y.4
Chen, L.5
-
201
-
-
0035072229
-
Degradation of oxidized proteins by the 20S proteasome
-
Davies KJ. (2001). Degradation of oxidized proteins by the 20S proteasome. Biochimie 83: 301-10
-
(2001)
Biochimie
, vol.83
, pp. 301-310
-
-
Davies, K.J.1
-
202
-
-
78649980437
-
Regulation of the 26S proteasome complex during oxidative stress
-
ra88
-
Wang X, Yen J, Kaiser P, Huang L. (2010). Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal. 3: ra88
-
(2010)
Sci. Signal
, vol.3
-
-
Wang, X.1
Yen, J.2
Kaiser, P.3
Huang, L.4
-
203
-
-
0036260697
-
Cellular response to oxidative stress: Signaling for suicide and survival
-
Martindale JL, Holbrook NJ. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192: 1-15
-
(2002)
J. Cell Physiol
, vol.192
, pp. 1-15
-
-
Martindale, J.L.1
Holbrook, N.J.2
-
204
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26: 1749-60
-
(2007)
EMBO J.
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
205
-
-
33344469643
-
Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1
-
Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, et al. (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell Biol. 26: 221-29
-
(2006)
Mol. Cell Biol
, vol.26
, pp. 221-229
-
-
Kobayashi, A.1
Kang, M.I.2
Watai, Y.3
Tong, K.I.4
Shibata, T.5
-
206
-
-
7244253081
-
Nrf2-Keap1 defines a physiologically important stress response mechanism
-
Motohashi H, Yamamoto M. (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10: 549-57
-
(2004)
Trends Mol. Med
, vol.10
, pp. 549-557
-
-
Motohashi, H.1
Yamamoto, M.2
-
207
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12: 213-23
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 213-223
-
-
Komatsu, M.1
Kurokawa, H.2
Waguri, S.3
Taguchi, K.4
Kobayashi, A.5
-
208
-
-
77954599053
-
P62/SQSTM1 is a target gene for transcription factorNRF2and creates a positive feedback loop by inducing antioxidant response elementdriven gene transcription
-
Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, et al. (2010). p62/SQSTM1 is a target gene for transcription factorNRF2and creates a positive feedback loop by inducing antioxidant response elementdriven gene transcription. J. Biol. Chem. 285: 22576-91
-
(2010)
J. Biol. Chem
, vol.285
, pp. 22576-22591
-
-
Jain, A.1
Lamark, T.2
Sjottem, E.3
Larsen, K.B.4
Awuh, J.A.5
-
209
-
-
84883830467
-
Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
-
Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, et al. (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51: 618-31
-
(2013)
Mol. Cell
, vol.51
, pp. 618-631
-
-
Ichimura, Y.1
Waguri, S.2
Sou, Y.S.3
Kageyama, S.4
Hasegawa, J.5
-
210
-
-
48449101433
-
P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
-
Budanov AV, Karin M. (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134: 451-60
-
(2008)
Cell
, vol.134
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
211
-
-
2142815107
-
Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial Ahp D
-
Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial Ahp D. Science 304: 596-600
-
(2004)
Science
, vol.304
, pp. 596-600
-
-
Budanov, A.V.1
Sablina, A.A.2
Feinstein, E.3
Koonin, E.V.4
Chumakov, P.M.5
-
212
-
-
84872137966
-
Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage
-
Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, et al. (2013). Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab. 17: 73-84
-
(2013)
Cell Metab
, vol.17
, pp. 73-84
-
-
Bae, S.H.1
Sung, S.H.2
Oh, S.Y.3
Lim, J.M.4
Lee, S.K.5
-
213
-
-
0034973982
-
Translational control is required for the unfolded protein response and in vivo glucose homeostasis
-
Scheuner D, Song B, McEwen E, Liu C, Laybutt R, et al. (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7: 1165-76
-
(2001)
Mol. Cell
, vol.7
, pp. 1165-1176
-
-
Scheuner, D.1
Song, B.2
McEwen, E.3
Liu, C.4
Laybutt, R.5
-
214
-
-
0037353039
-
An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
-
Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11: 619-33
-
(2003)
Mol. Cell
, vol.11
, pp. 619-633
-
-
Harding, H.P.1
Zhang, Y.2
Zeng, H.3
Novoa, I.4
Lu, P.D.5
-
215
-
-
84927619395
-
Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit
-
Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M, et al. (2015). Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348: 239-42
-
(2015)
Science
, vol.348
, pp. 239-242
-
-
Das, I.1
Krzyzosiak, A.2
Schneider, K.3
Wrabetz, L.4
D'Antonio, M.5
-
216
-
-
33845480131
-
Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
-
Bernales S, McDonald KL, Walter P. (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLOS Biol. 4: e423
-
(2006)
Plos Biol
, vol.4
, pp. e423
-
-
Bernales, S.1
McDonald, K.L.2
Walter, P.3
-
218
-
-
38949096081
-
Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome
-
Ding WX, Yin XM. (2008). Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4: 141-50
-
(2008)
Autophagy
, vol.4
, pp. 141-150
-
-
Ding, W.X.1
Yin, X.M.2
-
219
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. (2012). Complete subunit architecture of the proteasome regulatory particle. Nature 482: 186-91
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
220
-
-
34548274872
-
Docking of the proteasomal ATPases? Carboxyl termini in the 20S proteasome's αring opens the gate for substrate entry
-
Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. (2007). Docking of the proteasomal ATPases? carboxyl termini in the 20S proteasome's αring opens the gate for substrate entry. Mol. Cell 27: 731-44
-
(2007)
Mol. Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
Chang, S.C.2
Park, S.3
Finley, D.4
Cheng, Y.5
Goldberg, A.L.6
-
221
-
-
0036713383
-
Proteasome subunit Rpn1 binds ubiquitin-like protein domains
-
Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, et al. (2002). Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4: 725-30
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 725-730
-
-
Elsasser, S.1
Gali, R.R.2
Schwickart, M.3
Larsen, C.N.4
Leggett, D.S.5
-
222
-
-
71149107057
-
Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening
-
Peth A, Besche HC, Goldberg AL. (2009). Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36: 794-804
-
(2009)
Mol. Cell
, vol.36
, pp. 794-804
-
-
Peth, A.1
Besche, H.C.2
Goldberg, A.L.3
-
223
-
-
84937574462
-
Autophagic degradation of the 26S proteasome is mediated by the dualATG8/ubiquitin receptorRPN10 in Arabidopsis
-
Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. (2015). Autophagic degradation of the 26S proteasome is mediated by the dualATG8/ubiquitin receptorRPN10 in Arabidopsis. Mol. Cell 58: 1053-66
-
(2015)
Mol. Cell
, vol.58
, pp. 1053-1066
-
-
Marshall, R.S.1
Li, F.2
Gemperline, D.C.3
Book, A.J.4
Vierstra, R.D.5
-
224
-
-
84979780136
-
Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone
-
Marshall RS, McLoughlin F, Vierstra RD. (2016). Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep. 16: 1717-32
-
(2016)
Cell Rep
, vol.16
, pp. 1717-1732
-
-
Marshall, R.S.1
McLoughlin, F.2
Vierstra, R.D.3
-
225
-
-
84964674982
-
Starvation induces proteasome autophagy with different pathways for core and regulatory particles
-
Waite KA, De La Mota-Peynado A, Vontz G, Roelofs J. (2016). Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J. Biol. Chem. 291: 3239-53
-
(2016)
J. Biol. Chem
, vol.291
, pp. 3239-3253
-
-
Waite, K.A.1
De La Mota-Peynado, A.2
Vontz, G.3
Roelofs, J.4
|