메뉴 건너뛰기




Volumn 86, Issue , 2017, Pages 193-224

Proteasomal and autophagic degradation systems

Author keywords

Aggrephagy; Autophagy; Chaperone; Mitophagy; Organelle homeostasis; P62 Keap1 Nrf2; Proteasome; Proteostasis; Ubiquitination; UPS; Xenophagy

Indexed keywords

KELCH LIKE ECH ASSOCIATED PROTEIN 1; PROTEASOME; SEQUESTOSOME 1; TRANSCRIPTION FACTOR NRF2; CHAPERONE; KEAP1 PROTEIN, HUMAN; NFE2L2 PROTEIN, HUMAN; SQSTM1 PROTEIN, HUMAN; UBIQUITIN;

EID: 85021656064     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-061516-044908     Document Type: Review
Times cited : (792)

References (225)
  • 1
    • 84930746830 scopus 로고    scopus 로고
    • The biology of proteostasis in aging and disease
    • Labbadia J, Morimoto RI. (2015). The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84: 435-64
    • (2015) Annu. Rev. Biochem , vol.84 , pp. 435-464
    • Labbadia, J.1    Morimoto, R.I.2
  • 2
    • 84864318195 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: A unique way to enter the lysosome world
    • Kaushik S, Cuervo AM. (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22: 407-17
    • (2012) Trends Cell Biol , vol.22 , pp. 407-417
    • Kaushik, S.1    Cuervo, A.M.2
  • 3
  • 4
    • 0034643336 scopus 로고    scopus 로고
    • Rapid degradation of a large fraction of newly synthesized proteins by proteasomes
    • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. (2000). Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404: 770-74
    • (2000) Nature , vol.404 , pp. 770-774
    • Schubert, U.1    Anton, L.C.2    Gibbs, J.3    Norbury, C.C.4    Yewdell, J.W.5    Bennink, J.R.6
  • 5
    • 0034703437 scopus 로고    scopus 로고
    • Detecting and measuring cotranslational protein degradation in vivo
    • Turner GC, Varshavsky A. (2000). Detecting and measuring cotranslational protein degradation in vivo. Science 289: 2117-20
    • (2000) Science , vol.289 , pp. 2117-2120
    • Turner, G.C.1    Varshavsky, A.2
  • 6
    • 70349780560 scopus 로고    scopus 로고
    • The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries
    • Sha Z, Brill LM, Cabrera R, Kleifeld O, Scheliga JS, et al. (2009). The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol. Cell 36: 141-52
    • (2009) Mol. Cell , vol.36 , pp. 141-152
    • Sha, Z.1    Brill, L.M.2    Cabrera, R.3    Kleifeld, O.4    Scheliga, J.S.5
  • 7
    • 23144443884 scopus 로고    scopus 로고
    • Protein quality control: Chaperones culling corrupt conformations
    • McClellan AJ, Tam S, Kaganovich D, Frydman J. (2005). Protein quality control: chaperones culling corrupt conformations. Nat. Cell Biol. 7: 736-41
    • (2005) Nat. Cell Biol , vol.7 , pp. 736-741
    • McClellan, A.J.1    Tam, S.2    Kaganovich, D.3    Frydman, J.4
  • 8
    • 27944504351 scopus 로고    scopus 로고
    • P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
    • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, et al. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171: 603-14
    • (2005) J. Cell Biol , vol.171 , pp. 603-614
    • Bjorkoy, G.1    Lamark, T.2    Brech, A.3    Outzen, H.4    Perander, M.5
  • 9
    • 50649116818 scopus 로고    scopus 로고
    • Misfolded proteins partition between two distinct quality control compartments
    • Kaganovich D, Kopito R, Frydman J. (2008). Misfolded proteins partition between two distinct quality control compartments. Nature 454: 1088-95
    • (2008) Nature , vol.454 , pp. 1088-1095
    • Kaganovich, D.1    Kopito, R.2    Frydman, J.3
  • 10
    • 0027996115 scopus 로고
    • Protein disaggregation mediated by heat-shock protein Hsp104
    • Parsell DA, Kowal AS, Singer MA, Lindquist S. (1994). Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372: 475-78
    • (1994) Nature , vol.372 , pp. 475-478
    • Parsell, D.A.1    Kowal, A.S.2    Singer, M.A.3    Lindquist, S.4
  • 11
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282: 24131-45
    • (2007) J. Biol. Chem , vol.282 , pp. 24131-24145
    • Pankiv, S.1    Clausen, T.H.2    Lamark, T.3    Brech, A.4    Bruun, J.A.5
  • 12
    • 81355149538 scopus 로고    scopus 로고
    • Hsp42 is required for sequestration of protein aggregates into deposition sites in saccharomyces cerevisiae
    • Specht S, Miller SB, Mogk A, Bukau B. (2011). Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J. Cell Biol. 195: 617-29
    • (2011) J. Cell Biol , vol.195 , pp. 617-629
    • Specht, S.1    Miller, S.B.2    Mogk, A.3    Bukau, B.4
  • 13
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78: 477-513
    • (2009) Annu. Rev. Biochem , vol.78 , pp. 477-513
    • Finley, D.1
  • 14
  • 15
  • 16
    • 80051736289 scopus 로고    scopus 로고
    • Proteomics to study the diversity and dynamics of proteasome complexes: From fundamentals to the clinic
    • Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. (2011). Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev. Proteom. 8: 459-81
    • (2011) Expert Rev. Proteom , vol.8 , pp. 459-481
    • Bousquet-Dubouch, M.P.1    Fabre, B.2    Monsarrat, B.3    Burlet-Schiltz, O.4
  • 17
    • 34249007126 scopus 로고    scopus 로고
    • A ubiquitin stress response induces altered proteasome composition
    • Hanna J, Meides A, Zhang DP, Finley D. (2007). A ubiquitin stress response induces altered proteasome composition. Cell 129: 747-59
    • (2007) Cell , vol.129 , pp. 747-759
    • Hanna, J.1    Meides, A.2    Zhang, D.P.3    Finley, D.4
  • 18
    • 0346727127 scopus 로고    scopus 로고
    • Protein degradation and protection against misfolded or damaged proteins
    • Goldberg AL. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895-99
    • (2003) Nature , vol.426 , pp. 895-899
    • Goldberg, A.L.1
  • 19
    • 84862737923 scopus 로고    scopus 로고
    • Changes of the proteasomal system during the aging process
    • Baraibar MA, Friguet B. (2012). Changes of the proteasomal system during the aging process. Prog. Mol. Biol. Transl. Sci. 109: 249-75
    • (2012) Prog. Mol. Biol. Transl. Sci , vol.109 , pp. 249-275
    • Baraibar, M.A.1    Friguet, B.2
  • 20
    • 84890203542 scopus 로고    scopus 로고
    • Regulation of proteasome activity in health and disease
    • Schmidt M, Finley D. (2014). Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843: 13-25
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 13-25
    • Schmidt, M.1    Finley, D.2
  • 21
    • 0033004441 scopus 로고    scopus 로고
    • Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
    • Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. (1999). Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 450: 27-34
    • (1999) FEBS Lett , vol.450 , pp. 27-34
    • Mannhaupt, G.1    Schnall, R.2    Karpov, V.3    Vetter, I.4    Feldmann, H.5
  • 22
    • 0035853037 scopus 로고    scopus 로고
    • RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit
    • Xie Y, Varshavsky A. (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. PNAS 98: 3056-61
    • (2001) PNAS , vol.98 , pp. 3056-3061
    • Xie, Y.1    Varshavsky, A.2
  • 23
    • 77950366349 scopus 로고    scopus 로고
    • Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
    • Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ. (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38: 17-28
    • (2010) Mol. Cell , vol.38 , pp. 17-28
    • Radhakrishnan, S.K.1    Lee, C.S.2    Young, P.3    Beskow, A.4    Chan, J.Y.5    Deshaies, R.J.6
  • 24
    • 18944392199 scopus 로고    scopus 로고
    • Identification and characterization of a Drosophila proteasome regulatory network
    • Lundgren J, Masson P, Mirzaei Z, Young P. (2005). Identification and characterization of a Drosophila proteasome regulatory network. Mol. Cell Biol 25: 4662-75
    • (2005) Mol. Cell Biol , vol.25 , pp. 4662-4675
    • Lundgren, J.1    Masson, P.2    Mirzaei, Z.3    Young, P.4
  • 25
    • 77957341511 scopus 로고    scopus 로고
    • Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
    • Steffen J, Seeger M, Koch A, Kruger E. (2010). Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 40: 147-58
    • (2010) Mol. Cell , vol.40 , pp. 147-158
    • Steffen, J.1    Seeger, M.2    Koch, A.3    Kruger, E.4
  • 26
    • 84898769387 scopus 로고    scopus 로고
    • P97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition
    • Radhakrishnan SK, den Besten W, Deshaies RJ. (2014). p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife 3: e01856
    • (2014) ELife , vol.3 , pp. e01856
    • Radhakrishnan, S.K.1    Den Besten, W.2    Deshaies, R.J.3
  • 27
    • 33750543308 scopus 로고    scopus 로고
    • Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum
    • Zhang Y, Crouch DH, Yamamoto M, Hayes JD. (2006). Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Biochem. J. 399: 373-85
    • (2006) Biochem. J. , vol.399 , pp. 373-385
    • Zhang, Y.1    Crouch, D.H.2    Yamamoto, M.3    Hayes, J.D.4
  • 28
    • 77956661152 scopus 로고    scopus 로고
    • Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane
    • Zhang Y, Hayes JD. (2010). Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochem. J. 430: 497-510
    • (2010) Biochem. J. , vol.430 , pp. 497-510
    • Zhang, Y.1    Hayes, J.D.2
  • 29
    • 84939444434 scopus 로고    scopus 로고
    • The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression
    • Zhang Y, Li S, Xiang Y, Qiu L, Zhao H, Hayes JD. (2015). The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression. Sci. Rep. 5: 12983
    • (2015) Sci. Rep , vol.5 , pp. 12983
    • Zhang, Y.1    Li, S.2    Xiang, Y.3    Qiu, L.4    Zhao, H.5    Hayes, J.D.6
  • 30
    • 84943771460 scopus 로고    scopus 로고
    • MTORC1 signaling activates NRF1 to increase cellular proteasome levels
    • Zhang Y, Manning BD. (2015). mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle 14: 2011-17
    • (2015) Cell Cycle , vol.14 , pp. 2011-2017
    • Zhang, Y.1    Manning, B.D.2
  • 31
    • 0242496212 scopus 로고    scopus 로고
    • Molecular sequelae of proteasome inhibition in human multiple myeloma cells
    • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, et al. (2002). Molecular sequelae of proteasome inhibition in human multiple myeloma cells. PNAS 99: 14374-79
    • (2002) PNAS , vol.99 , pp. 14374-14379
    • Mitsiades, N.1    Mitsiades, C.S.2    Poulaki, V.3    Chauhan, D.4    Fanourakis, G.5
  • 32
    • 84985910639 scopus 로고    scopus 로고
    • The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction
    • Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H, et al. (2016). The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife 5: e18357
    • (2016) ELife , vol.5 , pp. e18357
    • Koizumi, S.1    Irie, T.2    Hirayama, S.3    Sakurai, Y.4    Yashiroda, H.5
  • 33
    • 84983027579 scopus 로고    scopus 로고
    • Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1
    • Lehrbach NJ, Ruvkun G. (2016). Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife 5: e17721
    • (2016) ELife , vol.5 , pp. e17721
    • Lehrbach, N.J.1    Ruvkun, G.2
  • 34
    • 84906898355 scopus 로고    scopus 로고
    • Coordinated regulation of protein synthesis and degradation by mTORC1
    • Zhang Y, Nicholatos J, Dreier JR, Ricoult SJ, Widenmaier SB, et al. (2014). Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513: 440-43
    • (2014) Nature , vol.513 , pp. 440-443
    • Zhang, Y.1    Nicholatos, J.2    Dreier, J.R.3    Ricoult, S.J.4    Widenmaier, S.B.5
  • 35
    • 0242721624 scopus 로고    scopus 로고
    • Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway
    • Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, Kensler TW. (2003). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell Biol. 23: 8786-94
    • (2003) Mol. Cell Biol , vol.23 , pp. 8786-8794
    • Kwak, M.K.1    Wakabayashi, N.2    Greenlaw, J.L.3    Yamamoto, M.4    Kensler, T.W.5
  • 37
    • 84982094835 scopus 로고    scopus 로고
    • An evolutionarily conserved pathway controls proteasome homeostasis
    • Rousseau A, Bertolotti A. (2016). An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536: 184-89
    • (2016) Nature , vol.536 , pp. 184-189
    • Rousseau, A.1    Bertolotti, A.2
  • 38
    • 42649130014 scopus 로고    scopus 로고
    • PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria
    • Lo SC, Hannink M. (2008). PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp. Cell Res. 314: 1789-803
    • (2008) Exp. Cell Res , vol.314 , pp. 1789-1803
    • Lo, S.C.1    Hannink, M.2
  • 39
    • 84883750565 scopus 로고    scopus 로고
    • Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging
    • Tsakiri EN, Sykiotis GP, Papassideri IS, Terpos E, Dimopoulos MA, et al. (2013). Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell 12: 802-13
    • (2013) Aging Cell , vol.12 , pp. 802-813
    • Tsakiri, E.N.1    Sykiotis, G.P.2    Papassideri, I.S.3    Terpos, E.4    Dimopoulos, M.A.5
  • 40
    • 84905227469 scopus 로고    scopus 로고
    • Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition
    • Maharjan S, Oku M, Tsuda M, Hoseki J, Sakai Y. (2014). Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci. Rep. 4: 5896
    • (2014) Sci. Rep , vol.4 , pp. 5896
    • Maharjan, S.1    Oku, M.2    Tsuda, M.3    Hoseki, J.4    Sakai, Y.5
  • 41
    • 84906972203 scopus 로고    scopus 로고
    • Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway
    • Kageyama S, Sou YS, Uemura T, Kametaka S, Saito T, et al. (2014). Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J. Biol. Chem. 289: 24944-55
    • (2014) J. Biol. Chem , vol.289 , pp. 24944-24955
    • Kageyama, S.1    Sou, Y.S.2    Uemura, T.3    Kametaka, S.4    Saito, T.5
  • 42
    • 84976331500 scopus 로고    scopus 로고
    • Proteasome machinery is instrumental in a common gain-of-function program of the p53missensemutants in cancer
    • Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, et al. (2016). Proteasome machinery is instrumental in a common gain-of-function program of the p53missensemutants in cancer. Nat. Cell Biol. 18: 897-909
    • (2016) Nat. Cell Biol , vol.18 , pp. 897-909
    • Walerych, D.1    Lisek, K.2    Sommaggio, R.3    Piazza, S.4    Ciani, Y.5
  • 43
    • 84959863448 scopus 로고    scopus 로고
    • Graded proteasome dysfunction in Caenorhabditis elegans activates an adaptive response involving the conserved SKN-1 and ELT-2 transcription factors and the autophagy-lysosome pathway
    • Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, et al. (2016). Graded proteasome dysfunction in Caenorhabditis elegans activates an adaptive response involving the conserved SKN-1 and ELT-2 transcription factors and the autophagy-lysosome pathway. PLOS Genet. 12: e1005823
    • (2016) Plos Genet , vol.12 , pp. e1005823
    • Keith, S.A.1    Maddux, S.K.2    Zhong, Y.3    Chinchankar, M.N.4    Ferguson, A.A.5
  • 44
    • 77953113655 scopus 로고    scopus 로고
    • Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome
    • Isasa M, Katz EJ, Kim W, Yugo V, Gonzalez S, et al. (2010). Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol. Cell 38: 733-45
    • (2010) Mol. Cell , vol.38 , pp. 733-745
    • Isasa, M.1    Katz, E.J.2    Kim, W.3    Yugo, V.4    Gonzalez, S.5
  • 45
    • 0033033698 scopus 로고    scopus 로고
    • Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones
    • Ullrich O, Reinheckel T, Sitte N, Hass R, Grune T, Davies KJ. (1999). Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. PNAS 96: 6223-28
    • (1999) PNAS , vol.96 , pp. 6223-6228
    • Ullrich, O.1    Reinheckel, T.2    Sitte, N.3    Hass, R.4    Grune, T.5    Davies, K.J.6
  • 46
    • 34547953209 scopus 로고    scopus 로고
    • Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
    • Zhang F, Hu Y, Huang P, Toleman CA, Paterson AJ, Kudlow JE. (2007). Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 282: 22460-71
    • (2007) J. Biol. Chem , vol.282 , pp. 22460-22471
    • Zhang, F.1    Hu, Y.2    Huang, P.3    Toleman, C.A.4    Paterson, A.J.5    Kudlow, J.E.6
  • 47
    • 0346965700 scopus 로고    scopus 로고
    • O-GlcNAc modification is an endogenous inhibitor of the proteasome
    • Zhang F, Su K, Yang X, Bowe DB, Paterson AJ, Kudlow JE. (2003). O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115: 715-25
    • (2003) Cell , vol.115 , pp. 715-725
    • Zhang, F.1    Su, K.2    Yang, X.3    Bowe, D.B.4    Paterson, A.J.5    Kudlow, J.E.6
  • 48
    • 84859529812 scopus 로고    scopus 로고
    • Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons
    • Djakovic SN, Marquez-Lona EM, Jakawich SK, Wright R, Chu C, et al. (2012). Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J. Neurosci. 32: 5126-31
    • (2012) J. Neurosci , vol.32 , pp. 5126-5131
    • Djakovic, S.N.1    Marquez-Lona, E.M.2    Jakawich, S.K.3    Wright, R.4    Chu, C.5
  • 49
    • 70350389831 scopus 로고    scopus 로고
    • Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II
    • Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN. (2009). Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284: 26655-65
    • (2009) J. Biol. Chem , vol.284 , pp. 26655-26665
    • Djakovic, S.N.1    Schwarz, L.A.2    Barylko, B.3    DeMartino, G.N.4    Patrick, G.N.5
  • 50
    • 76749131595 scopus 로고    scopus 로고
    • Autophosphorylated CaMKIIαacts as a scaffold to recruit proteasomes to dendritic spines
    • Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M. (2010). Autophosphorylated CaMKIIαacts as a scaffold to recruit proteasomes to dendritic spines. Cell 140: 567-78
    • (2010) Cell , vol.140 , pp. 567-578
    • Bingol, B.1    Wang, C.F.2    Arnott, D.3    Cheng, D.4    Peng, J.5    Sheng, M.6
  • 51
    • 84864822525 scopus 로고    scopus 로고
    • Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag
    • Overath T, Kuckelkorn U, Henklein P, Strehl B, Bonar D, et al. (2012). Mapping of O-GlcNAc sites of 20 S proteasome subunits and Hsp90 by a novel biotin-cystamine tag. Mol. Cell Proteom. 11: 467-77
    • (2012) Mol. Cell Proteom , vol.11 , pp. 467-477
    • Overath, T.1    Kuckelkorn, U.2    Henklein, P.3    Strehl, B.4    Bonar, D.5
  • 52
    • 78449252451 scopus 로고    scopus 로고
    • ASK1 negatively regulates the 26 S proteasome
    • Um JW, Im E, Park J, Oh Y, Min B, et al. (2010). ASK1 negatively regulates the 26 S proteasome. J. Biol. Chem. 285: 36434-46
    • (2010) J. Biol. Chem , vol.285 , pp. 36434-36446
    • Um, J.W.1    Im, E.2    Park, J.3    Oh, Y.4    Min, B.5
  • 53
    • 84956663117 scopus 로고    scopus 로고
    • Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis
    • Guo X, Wang X, Wang Z, Banerjee S, Yang J, et al. (2016). Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat. Cell Biol. 18: 202-12
    • (2016) Nat. Cell Biol , vol.18 , pp. 202-212
    • Guo, X.1    Wang, X.2    Wang, Z.3    Banerjee, S.4    Yang, J.5
  • 54
    • 77955107424 scopus 로고    scopus 로고
    • Co-and post-translational modifications of the 26S proteasome in yeast
    • Kikuchi J, Iwafune Y, Akiyama T, Okayama A, Nakamura H, et al. (2010). Co-and post-translational modifications of the 26S proteasome in yeast. Proteomics 10: 2769-79
    • (2010) Proteomics , vol.10 , pp. 2769-2779
    • Kikuchi, J.1    Iwafune, Y.2    Akiyama, T.3    Okayama, A.4    Nakamura, H.5
  • 55
    • 84958185888 scopus 로고    scopus 로고
    • Biological significance of co-and post-translationalmodifications of the yeast 26S proteasome
    • Hirano H, Kimura Y, Kimura A. (2016). Biological significance of co-and post-translationalmodifications of the yeast 26S proteasome. J. Proteom. 134: 37-46
    • (2016) J. Proteom , vol.134 , pp. 37-46
    • Hirano, H.1    Kimura, Y.2    Kimura, A.3
  • 56
    • 84876935501 scopus 로고    scopus 로고
    • Proteasome regulation by ADP-ribosylation
    • Cho-Park PF, Steller H. (2013). Proteasome regulation by ADP-ribosylation. Cell 153: 614-27
    • (2013) Cell , vol.153 , pp. 614-627
    • Cho-Park, P.F.1    Steller, H.2
  • 57
    • 84868534561 scopus 로고    scopus 로고
    • N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome
    • Kimura A, Kato Y, Hirano H. (2012). N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome. Biochemistry 51: 8856-66
    • (2012) Biochemistry , vol.51 , pp. 8856-8866
    • Kimura, A.1    Kato, Y.2    Hirano, H.3
  • 58
    • 0029876795 scopus 로고    scopus 로고
    • Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis
    • Castano JG, Mahillo E, Arizti P, Arribas J. (1996). Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry 35: 3782-89
    • (1996) Biochemistry , vol.35 , pp. 3782-3789
    • Castano, J.G.1    Mahillo, E.2    Arizti, P.3    Arribas, J.4
  • 59
    • 1542344946 scopus 로고    scopus 로고
    • Phosphorylation of 20S proteasome α subunit C8 (α 7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by γ-interferon
    • Bose S, Stratford FL, Broadfoot KI, Mason GG, Rivett AJ. (2004). Phosphorylation of 20S proteasome α subunit C8 (α7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by γ-interferon. Biochem. J. 378: 177-84
    • (2004) Biochem. J. , vol.378 , pp. 177-184
    • Bose, S.1    Stratford, F.L.2    Broadfoot, K.I.3    Mason, G.G.4    Rivett, A.J.5
  • 60
    • 84883311821 scopus 로고    scopus 로고
    • CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories
    • Jarome TJ, Kwapis JL, Ruenzel WL, Helmstetter FJ. (2013). CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front. Behav. Neurosci. 7: 115
    • (2013) Front. Behav. Neurosci , vol.7 , pp. 115
    • Jarome, T.J.1    Kwapis, J.L.2    Ruenzel, W.L.3    Helmstetter, F.J.4
  • 61
    • 84952685052 scopus 로고    scopus 로고
    • CAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins
    • Lokireddy S, Kukushkin NV, Goldberg AL. (2015). cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. PNAS 112: E7176-85
    • (2015) PNAS , vol.112 , pp. E7176-E7185
    • Lokireddy, S.1    Kukushkin, N.V.2    Goldberg, A.L.3
  • 62
    • 84954291382 scopus 로고    scopus 로고
    • Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling
    • Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH, et al. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22: 46-53
    • (2016) Nat. Med , vol.22 , pp. 46-53
    • Myeku, N.1    Clelland, C.L.2    Emrani, S.3    Kukushkin, N.V.4    Yu, W.H.5
  • 63
    • 84900862275 scopus 로고    scopus 로고
    • Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
    • Besche HC, Sha Z, Kukushkin NV, Peth A, Hock EM, et al. (2014). Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 33: 1159-76
    • (2014) EMBO J. , vol.33 , pp. 1159-1176
    • Besche, H.C.1    Sha, Z.2    Kukushkin, N.V.3    Peth, A.4    Hock, E.M.5
  • 64
  • 66
    • 84955444799 scopus 로고    scopus 로고
    • Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome
    • Zuin A, Bichmann A, Isasa M, Puig-Sarries P, Diaz LM, Crosas B. (2015). Rpn10 monoubiquitination orchestrates the association of the ubiquilin-type DSK2 receptor with the proteasome. Biochem. J. 472: 353-65
    • (2015) Biochem. J. , vol.472 , pp. 353-365
    • Zuin, A.1    Bichmann, A.2    Isasa, M.3    Puig-Sarries, P.4    Diaz, L.M.5    Crosas, B.6
  • 67
    • 80054702676 scopus 로고    scopus 로고
    • Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
    • Park S, Kim W, Tian G, Gygi SP, Finley D. (2011). Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J. Biol. Chem. 286: 36652-66
    • (2011) J. Biol. Chem , vol.286 , pp. 36652-36666
    • Park, S.1    Kim, W.2    Tian, G.3    Gygi, S.P.4    Finley, D.5
  • 68
    • 80054703106 scopus 로고    scopus 로고
    • Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
    • Lee SY, De La Mota-Peynado A, Roelofs J. (2011). Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J. Biol. Chem. 286: 36641-51
    • (2011) J. Biol. Chem , vol.286 , pp. 36641-36651
    • Lee, S.Y.1    De La Mota-Peynado, A.2    Roelofs, J.3
  • 69
    • 84885586226 scopus 로고    scopus 로고
    • The proteasomeassociated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome
    • De La Mota-Peynado A, Lee SY, Pierce BM, Wani P, Singh CR, Roelofs J. (2013). The proteasomeassociated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J. Biol. Chem. 288: 29467-81
    • (2013) J. Biol. Chem , vol.288 , pp. 29467-29481
    • De La Mota-Peynado, A.1    Lee, S.Y.2    Pierce, B.M.3    Wani, P.4    Singh, C.R.5    Roelofs, J.6
  • 70
    • 84885593791 scopus 로고    scopus 로고
    • A novel crosstalk between twomajor protein degradation systems: Regulation of proteasomal activity by autophagy
    • Wang XJ, Yu J, Wong SH, Cheng AS, Chan FK, et al. (2013). A novel crosstalk between twomajor protein degradation systems: regulation of proteasomal activity by autophagy. Autophagy 9: 1500-8
    • (2013) Autophagy , vol.9 , pp. 1500-1508
    • Wang, X.J.1    Yu, J.2    Wong, S.H.3    Cheng, A.S.4    Chan, F.K.5
  • 71
    • 84979047223 scopus 로고    scopus 로고
    • KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition
    • Haratake K, Sato A, Tsuruta F, Chiba T. (2016). KIAA0368-deficiency affects disassembly of 26S proteasome under oxidative stress condition. J. Biochem. 159: 609-18
    • (2016) J. Biochem , vol.159 , pp. 609-618
    • Haratake, K.1    Sato, A.2    Tsuruta, F.3    Chiba, T.4
  • 72
    • 84975076561 scopus 로고    scopus 로고
    • Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29
    • Wani PS, Suppahia A, Capalla X, Ondracek A, Roelofs J. (2016). Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Sci. Rep. 6: 27873
    • (2016) Sci. Rep , vol.6 , pp. 27873
    • Wani, P.S.1    Suppahia, A.2    Capalla, X.3    Ondracek, A.4    Roelofs, J.5
  • 73
    • 84922606978 scopus 로고    scopus 로고
    • The role of protein clearance mechanisms in organismal ageing and age-related diseases
    • Vilchez D, Saez I, Dillin A. (2014). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5: 5659
    • (2014) Nat. Commun , vol.5 , pp. 5659
    • Vilchez, D.1    Saez, I.2    Dillin, A.3
  • 74
    • 38449099679 scopus 로고    scopus 로고
    • Role of proteasomes in disease
    • Dahlmann B. (2007). Role of proteasomes in disease. BMC Biochem. 8(Suppl 1): S3
    • (2007) BMC Biochem , vol.8 , Issue.SUPPL1 , pp. S3
    • Dahlmann, B.1
  • 76
    • 84994030798 scopus 로고    scopus 로고
    • The proteasome-victim or culprit in autoimmunity
    • Feist E, Burmester GR, Kruger E. (2016). The proteasome-victim or culprit in autoimmunity. Clin. Immunol. 172: 83-89
    • (2016) Clin. Immunol , vol.172 , pp. 83-89
    • Feist, E.1    Burmester, G.R.2    Kruger, E.3
  • 77
    • 84955700933 scopus 로고    scopus 로고
    • Proteolytic enzymes involved inMHCclass i antigen processing: A guerrilla army that partners with the proteasome
    • Lazaro S, Gamarra D, Del Val M. (2015). Proteolytic enzymes involved inMHCclass I antigen processing: a guerrilla army that partners with the proteasome. Mol. Immunol. 68: 72-76
    • (2015) Mol. Immunol , vol.68 , pp. 72-76
    • Lazaro, S.1    Gamarra, D.2    Del Val, M.3
  • 78
    • 84875258216 scopus 로고    scopus 로고
    • The immunoproteasome in antigen processing and other immunological functions
    • Basler M, Kirk CJ, Groettrup M. (2013). The immunoproteasome in antigen processing and other immunological functions. Curr. Opin. Immunol. 25: 74-80
    • (2013) Curr. Opin. Immunol , vol.25 , pp. 74-80
    • Basler, M.1    Kirk, C.J.2    Groettrup, M.3
  • 79
    • 84965094505 scopus 로고    scopus 로고
    • Proteasome subtypes and regulators in the processing of antigenic peptides presented by class i molecules of the major histocompatibility complex
    • Vigneron N, Van den Eynde BJ. (2014). Proteasome subtypes and regulators in the processing of antigenic peptides presented by class I molecules of the major histocompatibility complex. Biomolecules 4: 994-1025
    • (2014) Biomolecules , vol.4 , pp. 994-1025
    • Vigneron, N.1    Van Den Eynde, B.J.2
  • 80
    • 54249158324 scopus 로고    scopus 로고
    • Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction
    • Tai HC, Schuman EM. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9: 826-38
    • (2008) Nat. Rev. Neurosci , vol.9 , pp. 826-838
    • Tai, H.C.1    Schuman, E.M.2
  • 81
    • 84859161154 scopus 로고    scopus 로고
    • Microautophagy: Lesser-known self-eating
    • Li WW, Li J, Bao JK. (2012). Microautophagy: lesser-known self-eating. Cell Mol. Life Sci. 69: 1125-36
    • (2012) Cell Mol. Life Sci , vol.69 , pp. 1125-1136
    • Li, W.W.1    Li, J.2    Bao, J.K.3
  • 83
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13: 132-41
    • (2011) Nat. Cell Biol , vol.13 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 84
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: A nutrient and energy sensor that maintains energy homeostasis
    • Hardie DG, Ross FA, Hawley SA. (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13: 251-62
    • (2012) Nat. Rev. Mol. Cell Biol , vol.13 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 85
    • 43149090064 scopus 로고    scopus 로고
    • FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
    • Hara T, Takamura A, Kishi C, Iemura S, Natsume T, et al. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181: 497-510
    • (2008) J. Cell Biol , vol.181 , pp. 497-510
    • Hara, T.1    Takamura, A.2    Kishi, C.3    Iemura, S.4    Natsume, T.5
  • 86
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20: 1992-2003
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3    Kim, Y.M.4    Otto, N.M.5
  • 87
    • 84876488191 scopus 로고    scopus 로고
    • MTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, et al. (2013). mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15: 406-16
    • (2013) Nat. Cell Biol , vol.15 , pp. 406-416
    • Nazio, F.1    Strappazzon, F.2    Antonioli, M.3    Bielli, P.4    Cianfanelli, V.5
  • 88
    • 84959045499 scopus 로고    scopus 로고
    • Mechanisms of selective autophagy
    • Zaffagnini G, Martens S. (2016). Mechanisms of selective autophagy. J. Mol. Biol. 428: 1714-24
    • (2016) J. Mol. Biol , vol.428 , pp. 1714-1724
    • Zaffagnini, G.1    Martens, S.2
  • 89
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, et al. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524: 309-14
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1    Sliter, D.A.2    Kane, L.A.3    Sarraf, S.A.4    Wang, C.5
  • 90
    • 84938744997 scopus 로고    scopus 로고
    • Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase
    • Kamber RA, Shoemaker CJ, Denic V. (2015). Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59: 372-81
    • (2015) Mol. Cell , vol.59 , pp. 372-381
    • Kamber, R.A.1    Shoemaker, C.J.2    Denic, V.3
  • 92
    • 84928695187 scopus 로고    scopus 로고
    • Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia
    • Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, et al. (2015). Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18: 631-36
    • (2015) Nat. Neurosci , vol.18 , pp. 631-636
    • Freischmidt, A.1    Wieland, T.2    Richter, B.3    Ruf, W.4    Schaeffer, V.5
  • 93
    • 84931007726 scopus 로고    scopus 로고
    • Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease
    • Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, et al. (2015). Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 130: 77-92
    • (2015) Acta Neuropathol , vol.130 , pp. 77-92
    • Pottier, C.1    Bieniek, K.F.2    Finch, N.3    Van De Vorst, M.4    Baker, M.5
  • 94
    • 84966713295 scopus 로고    scopus 로고
    • Defective recognition of LC3B by mutant SQSTM1/p62implicates impairment of autophagy as a pathogenic mechanism inALS-FTLD
    • Goode A, Butler K, Long J, Cavey J, Scott D, et al. (2016). Defective recognition of LC3B by mutant SQSTM1/p62implicates impairment of autophagy as a pathogenic mechanism inALS-FTLD.Autophagy 12: 1094-104
    • (2016) Autophagy , vol.12 , pp. 1094-1104
    • Goode, A.1    Butler, K.2    Long, J.3    Cavey, J.4    Scott, D.5
  • 95
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • Stolz A, Ernst A, Dikic I. (2014). Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16: 495-501
    • (2014) Nat. Cell Biol , vol.16 , pp. 495-501
    • Stolz, A.1    Ernst, A.2    Dikic, I.3
  • 96
    • 84955242756 scopus 로고    scopus 로고
    • Ubiquitin-dependent and independent signals in selective autophagy
    • Khaminets A, Behl C, Dikic I. (2016). Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26: 6-16
    • (2016) Trends Cell Biol , vol.26 , pp. 6-16
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 97
    • 84940783815 scopus 로고    scopus 로고
    • Expanding the ubiquitin code through post-translationalmodification
    • Herhaus L, Dikic I. (2015). Expanding the ubiquitin code through post-translationalmodification. EMBO Rep. 16: 1071-83
    • (2015) EMBO Rep , vol.16 , pp. 1071-1083
    • Herhaus, L.1    Dikic, I.2
  • 98
    • 64749103447 scopus 로고    scopus 로고
    • Inhibition of lysosomal functions reduces proteasomal activity
    • Qiao L, Zhang J. (2009). Inhibition of lysosomal functions reduces proteasomal activity. Neurosci. Lett. 456: 15-19
    • (2009) Neurosci. Lett , vol.456 , pp. 15-19
    • Qiao, L.1    Zhang, J.2
  • 99
    • 60549093730 scopus 로고    scopus 로고
    • Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates
    • Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. (2009). Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33: 517-27
    • (2009) Mol. Cell , vol.33 , pp. 517-527
    • Korolchuk, V.I.1    Mansilla, A.2    Menzies, F.M.3    Rubinsztein, D.C.4
  • 100
    • 78049495046 scopus 로고    scopus 로고
    • Ubiquitin accumulation in autophagydeficient mice is dependent on the Nrf2-mediated stress response pathway: A potential role for protein aggregation in autophagic substrate selection
    • Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T, et al. (2010). Ubiquitin accumulation in autophagydeficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol. 191: 537-52
    • (2010) J. Cell Biol , vol.191 , pp. 537-552
    • Riley, B.E.1    Kaiser, S.E.2    Shaler, T.A.3    Ng, A.C.4    Hara, T.5
  • 101
    • 84939257230 scopus 로고    scopus 로고
    • Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase
    • Jiang S, Park DW, Gao Y, Ravi S, Darley-Usmar V, et al. (2015). Participation of proteasome-ubiquitin protein degradation in autophagy and the activation of AMP-activated protein kinase. Cell Signal. 27: 1186-97
    • (2015) Cell Signal , vol.27 , pp. 1186-1197
    • Jiang, S.1    Park, D.W.2    Gao, Y.3    Ravi, S.4    Darley-Usmar, V.5
  • 102
    • 84903816486 scopus 로고    scopus 로고
    • Bortezomib induces protective autophagy throughAMP-activated protein kinase activation in cultured pancreatic and colorectal cancer cells
    • Min H, Xu M, Chen ZR, Zhou JD, Huang M, et al. (2014). Bortezomib induces protective autophagy throughAMP-activated protein kinase activation in cultured pancreatic and colorectal cancer cells. Cancer Chemother. Pharmacol. 74: 167-76
    • (2014) Cancer Chemother. Pharmacol , vol.74 , pp. 167-176
    • Min, H.1    Xu, M.2    Chen, Z.R.3    Zhou, J.D.4    Huang, M.5
  • 103
    • 84939265297 scopus 로고    scopus 로고
    • Proteasome inhibitors induce AMPK activation via CaMKKβin human breast cancer cells
    • Deshmukh RR, Dou QP. (2015). Proteasome inhibitors induce AMPK activation via CaMKKβin human breast cancer cells. Breast Cancer Res. Treat. 153: 79-88
    • (2015) Breast Cancer Res. Treat , vol.153 , pp. 79-88
    • Deshmukh, R.R.1    Dou, Q.P.2
  • 104
    • 84954507905 scopus 로고    scopus 로고
    • GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells
    • Sun A, Li C, Chen R, Huang Y, Chen Q, et al. (2016). GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate 76: 172-83
    • (2016) Prostate , vol.76 , pp. 172-183
    • Sun, A.1    Li, C.2    Chen, R.3    Huang, Y.4    Chen, Q.5
  • 105
    • 84933179778 scopus 로고    scopus 로고
    • Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress
    • Gavilan E, Pintado C, Gavilan MP, Daza P, Sanchez-Aguayo I, et al. (2015). Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress. Neurobiol. Aging 36: 1953-63
    • (2015) Neurobiol. Aging , vol.36 , pp. 1953-1963
    • Gavilan, E.1    Pintado, C.2    Gavilan, M.P.3    Daza, P.4    Sanchez-Aguayo, I.5
  • 106
    • 84879724974 scopus 로고    scopus 로고
    • GSK-3βsignaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition
    • Gavilan E, Sanchez-Aguayo I, Daza P, Ruano D. (2013). GSK-3βsignaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition. Cell Death Dis. 4: e572
    • (2013) Cell Death Dis , vol.4 , pp. e572
    • Gavilan, E.1    Sanchez-Aguayo, I.2    Daza, P.3    Ruano, D.4
  • 107
    • 77958501463 scopus 로고    scopus 로고
    • Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase
    • Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E. (2010). Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J. Biol. Chem. 285: 33154-64
    • (2010) J. Biol. Chem , vol.285 , pp. 33154-33164
    • Zmijewski, J.W.1    Banerjee, S.2    Bae, H.3    Friggeri, A.4    Lazarowski, E.R.5    Abraham, E.6
  • 108
    • 84923195554 scopus 로고    scopus 로고
    • UPR, autophagy, andmitochondria crosstalk underlies the ER stress response
    • Senft D, Ronai ZA. (2015). UPR, autophagy, andmitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40: 141-48
    • (2015) Trends Biochem. Sci , vol.40 , pp. 141-148
    • Senft, D.1    Ronai, Z.A.2
  • 109
    • 84887999522 scopus 로고    scopus 로고
    • Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation
    • Bruning A, Rahmeh M, Friese K. (2013). Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation. Mol. Oncol. 7: 1012-18
    • (2013) Mol. Oncol , vol.7 , pp. 1012-1018
    • Bruning, A.1    Rahmeh, M.2    Friese, K.3
  • 110
    • 33846189759 scopus 로고    scopus 로고
    • Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2
    • Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, et al. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol. Cell 25: 193-205
    • (2007) Mol. Cell , vol.25 , pp. 193-205
    • Hoyer-Hansen, M.1    Bastholm, L.2    Szyniarowski, P.3    Campanella, M.4    Szabadkai, G.5
  • 111
    • 84889889353 scopus 로고    scopus 로고
    • Nrf2 and Nrf1 signaling and ER stress crosstalk: Implication for proteasomal degradation and autophagy
    • Digaleh H, Kiaei M, Khodagholi F. (2013). Nrf2 and Nrf1 signaling and ER stress crosstalk: implication for proteasomal degradation and autophagy. Cell Mol. Life Sci. 70: 4681-94
    • (2013) Cell Mol. Life Sci , vol.70 , pp. 4681-4694
    • Digaleh, H.1    Kiaei, M.2    Khodagholi, F.3
  • 112
    • 84919497292 scopus 로고    scopus 로고
    • AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics
    • Antonioli M, Albiero F, Nazio F, Vescovo T, Perdomo AB, et al. (2014). AMBRA1 interplay with cullin E3 ubiquitin ligases regulates autophagy dynamics. Dev. Cell 31: 734-46
    • (2014) Dev. Cell , vol.31 , pp. 734-746
    • Antonioli, M.1    Albiero, F.2    Nazio, F.3    Vescovo, T.4    Perdomo, A.B.5
  • 113
    • 84953637768 scopus 로고    scopus 로고
    • Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination
    • Liu CC, Lin YC, Chen YH, Chen CM, Pang LY, et al. (2016). Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol. Cell 61: 84-97
    • (2016) Mol. Cell , vol.61 , pp. 84-97
    • Liu, C.C.1    Lin, Y.C.2    Chen, Y.H.3    Chen, C.M.4    Pang, L.Y.5
  • 115
    • 84883187967 scopus 로고    scopus 로고
    • Emerging roles of E3 ubiquitin ligases in autophagy
    • Kuang E, Qi J, Ronai Z. (2013). Emerging roles of E3 ubiquitin ligases in autophagy. Trends Biochem. Sci. 38: 453-60
    • (2013) Trends Biochem. Sci , vol.38 , pp. 453-460
    • Kuang, E.1    Qi, J.2    Ronai, Z.3
  • 116
    • 0344629427 scopus 로고    scopus 로고
    • Ubiquitin depletion as a key mediator of toxicity by translational inhibitors
    • Hanna J, Leggett DS, Finley D. (2003). Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell Biol. 23: 9251-61
    • (2003) Mol. Cell Biol , vol.23 , pp. 9251-9261
    • Hanna, J.1    Leggett, D.S.2    Finley, D.3
  • 117
    • 0023666139 scopus 로고
    • The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
    • Finley D, Ozkaynak E, Varshavsky A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48: 1035-46
    • (1987) Cell , vol.48 , pp. 1035-1046
    • Finley, D.1    Ozkaynak, E.2    Varshavsky, A.3
  • 118
    • 84907430840 scopus 로고    scopus 로고
    • Cellular ubiquitin pool dynamics and homeostasis
    • Park CW, Ryu KY. (2014). Cellular ubiquitin pool dynamics and homeostasis. BMB Rep. 47: 475-82
    • (2014) BMB Rep , vol.47 , pp. 475-482
    • Park, C.W.1    Ryu, K.Y.2
  • 119
    • 84922575029 scopus 로고    scopus 로고
    • Disruption of polyubiquitin geneUbb causes dysregulation of neural stem cell differentiation with premature gliogenesis
    • Ryu HW, Park CW, Ryu KY. (2014). Disruption of polyubiquitin geneUbb causes dysregulation of neural stem cell differentiation with premature gliogenesis. Sci. Rep. 4: 7026
    • (2014) Sci. Rep , vol.4 , pp. 7026
    • Ryu, H.W.1    Park, C.W.2    Ryu, K.Y.3
  • 120
    • 82555200901 scopus 로고    scopus 로고
    • Ubiquitin homeostasis is critical for synaptic development and function
    • Chen PC, Bhattacharyya BJ, Hanna J, Minkel H, Wilson JA, et al. (2011). Ubiquitin homeostasis is critical for synaptic development and function. J. Neurosci. 31: 17505-13
    • (2011) J. Neurosci , vol.31 , pp. 17505-17513
    • Chen, P.C.1    Bhattacharyya, B.J.2    Hanna, J.3    Minkel, H.4    Wilson, J.A.5
  • 121
    • 69749110327 scopus 로고    scopus 로고
    • The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions
    • Chen PC, Qin LN, Li XM, Walters BJ, Wilson JA, et al. (2009). The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J. Neurosci. 29: 10909-19
    • (2009) J. Neurosci , vol.29 , pp. 10909-10919
    • Chen, P.C.1    Qin, L.N.2    Li, X.M.3    Walters, B.J.4    Wilson, J.A.5
  • 122
    • 84865602944 scopus 로고    scopus 로고
    • Growing sphere of influence: Cdc48/p97 orchestrates ubiquitindependent extraction from chromatin
    • Dantuma NP, Hoppe T. (2012). Growing sphere of influence: Cdc48/p97 orchestrates ubiquitindependent extraction from chromatin. Trends Cell Biol. 22: 483-91
    • (2012) Trends Cell Biol , vol.22 , pp. 483-491
    • Dantuma, N.P.1    Hoppe, T.2
  • 124
    • 84856474838 scopus 로고    scopus 로고
    • Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system
    • Meyer H, Bug M, Bremer S. (2012). Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14: 117-23
    • (2012) Nat. Cell Biol , vol.14 , pp. 117-123
    • Meyer, H.1    Bug, M.2    Bremer, S.3
  • 125
    • 84911001724 scopus 로고    scopus 로고
    • Overexpression of human E46K mutant α-synuclein impairs macroautophagy via inactivation of JNK1-Bcl-2 pathway
    • Yan JQ, Yuan YH, Gao YN, Huang JY, Ma KL, et al. (2014). Overexpression of human E46K mutant α-synuclein impairs macroautophagy via inactivation of JNK1-Bcl-2 pathway. Mol. Neurobiol. 50: 685-701
    • (2014) Mol. Neurobiol , vol.50 , pp. 685-701
    • Yan, J.Q.1    Yuan, Y.H.2    Gao, Y.N.3    Huang, J.Y.4    Ma, K.L.5
  • 128
    • 84894350781 scopus 로고    scopus 로고
    • HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: A process modulated by the natural autophagy inducer corynoxine B
    • Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, et al. (2014). HMGB1 is involved in autophagy inhibition caused by SNCA/α-synuclein overexpression: a process modulated by the natural autophagy inducer corynoxine B. Autophagy 10: 144-54
    • (2014) Autophagy , vol.10 , pp. 144-154
    • Song, J.X.1    Lu, J.H.2    Liu, L.F.3    Chen, L.L.4    Durairajan, S.S.5
  • 129
    • 84956919475 scopus 로고    scopus 로고
    • Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells
    • Wang K, Huang J, Xie W, Huang L, Zhong C, Chen Z. (2016). Beclin1 and HMGB1 ameliorate the α-synuclein-mediated autophagy inhibition in PC12 cells. Diagn. Pathol. 11: 15
    • (2016) Diagn. Pathol , vol.11 , pp. 15
    • Wang, K.1    Huang, J.2    Xie, W.3    Huang, L.4    Zhong, C.5    Chen, Z.6
  • 131
    • 0035947372 scopus 로고    scopus 로고
    • Impairment of the ubiquitin-proteasome system by protein aggregation
    • Bence NF, Sampat RM, Kopito RR. (2001). Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292: 1552-55
    • (2001) Science , vol.292 , pp. 1552-1555
    • Bence, N.F.1    Sampat, R.M.2    Kopito, R.R.3
  • 132
    • 84868148725 scopus 로고    scopus 로고
    • Failure of amino acid homeostasis causes cell death following proteasome inhibition
    • Suraweera A, Munch C, Hanssum A, Bertolotti A. (2012). Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48: 242-53
    • (2012) Mol. Cell , vol.48 , pp. 242-253
    • Suraweera, A.1    Munch, C.2    Hanssum, A.3    Bertolotti, A.4
  • 133
    • 84922727084 scopus 로고    scopus 로고
    • Differential regulation of mTORC1 by leucine and glutamine
    • Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, et al. (2015). Differential regulation of mTORC1 by leucine and glutamine. Science 347: 194-98
    • (2015) Science , vol.347 , pp. 194-198
    • Jewell, J.L.1    Kim, Y.C.2    Russell, R.C.3    Yu, F.X.4    Park, H.W.5
  • 134
    • 84922743269 scopus 로고    scopus 로고
    • Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
    • Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, et al. (2015). Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347: 188-94
    • (2015) Science , vol.347 , pp. 188-194
    • Wang, S.1    Tsun, Z.Y.2    Wolfson, R.L.3    Shen, K.4    Wyant, G.A.5
  • 136
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496-501
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1    Peterson, T.R.2    Shaul, Y.D.3    Lindquist, R.A.4    Thoreen, C.C.5
  • 138
    • 79955757695 scopus 로고    scopus 로고
    • Oxidative stress-mediated regulation of proteasome complexes
    • 006924
    • Aiken CT, Kaake RM, Wang X, Huang L. (2011). Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell Proteom. 10: R110 006924
    • (2011) Mol. Cell Proteom , vol.10 , pp. R110
    • Aiken, C.T.1    Kaake, R.M.2    Wang, X.3    Huang, L.4
  • 139
    • 34250183177 scopus 로고    scopus 로고
    • HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
    • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447: 859-63
    • (2007) Nature , vol.447 , pp. 859-863
    • Pandey, U.B.1    Nie, Z.2    Batlevi, Y.3    McCray, B.A.4    Ritson, G.P.5
  • 141
    • 4444220680 scopus 로고    scopus 로고
    • Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
    • Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW. (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell Biol. 24: 8055-68
    • (2004) Mol. Cell Biol , vol.24 , pp. 8055-8068
    • Seibenhener, M.L.1    Babu, J.R.2    Geetha, T.3    Wong, H.C.4    Krishna, N.R.5    Wooten, M.W.6
  • 142
    • 21344463770 scopus 로고    scopus 로고
    • Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation
    • Babu JR, Geetha T, Wooten MW. (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem. 94: 192-203
    • (2005) J. Neurochem , vol.94 , pp. 192-203
    • Babu, J.R.1    Geetha, T.2    Wooten, M.W.3
  • 143
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149-63
    • (2007) Cell , vol.131 , pp. 1149-1163
    • Komatsu, M.1    Waguri, S.2    Koike, M.3    Sou, Y.S.4    Ueno, T.5
  • 144
    • 38349114036 scopus 로고    scopus 로고
    • Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases
    • Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, et al. (2008). Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17: 431-39
    • (2008) Hum. Mol. Genet , vol.17 , pp. 431-439
    • Tan, J.M.1    Wong, E.S.2    Kirkpatrick, D.S.3    Pletnikova, O.4    Ko, H.S.5
  • 145
    • 76449094465 scopus 로고    scopus 로고
    • Parkin-mediated ubiquitin signalling in aggresome formation and autophagy
    • Chin LS, Olzmann JA, Li L. (2010). Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem. Soc. Trans. 38: 144-49
    • (2010) Biochem. Soc. Trans , vol.38 , pp. 144-149
    • Chin, L.S.1    Olzmann, J.A.2    Li, L.3
  • 146
    • 84859736977 scopus 로고    scopus 로고
    • Aggrephagy: Selective disposal of protein aggregates by macroautophagy
    • Lamark T, Johansen T. (2012). Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012: 736905
    • (2012) Int. J. Cell Biol , vol.2012 , pp. 736905
    • Lamark, T.1    Johansen, T.2
  • 147
    • 84924415434 scopus 로고    scopus 로고
    • Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates
    • Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, et al. (2015). Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLOS Genet. 11: e1004987
    • (2015) Plos Genet , vol.11 , pp. e1004987
    • Lim, J.1    Lachenmayer, M.L.2    Wu, S.3    Liu, W.4    Kundu, M.5
  • 148
    • 0035163063 scopus 로고    scopus 로고
    • Identification of components of the murine histone deacetylase 6 complex: Link between acetylation and ubiquitination signaling pathways
    • Seigneurin-Berny D, Verdel A, Curtet S, Lemercier C, Garin J, et al. (2001). Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell Biol. 21: 8035-44
    • (2001) Mol. Cell Biol , vol.21 , pp. 8035-8044
    • Seigneurin-Berny, D.1    Verdel, A.2    Curtet, S.3    Lemercier, C.4    Garin, J.5
  • 150
    • 0346020435 scopus 로고    scopus 로고
    • The deacetylaseHDAC6regulates aggresome formation and cell viability in response to misfolded protein stress
    • Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. (2003). The deacetylaseHDAC6regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115: 727-38
    • (2003) Cell , vol.115 , pp. 727-738
    • Kawaguchi, Y.1    Kovacs, J.J.2    McLaurin, A.3    Vance, J.M.4    Ito, A.5    Yao, T.P.6
  • 151
    • 84884593127 scopus 로고    scopus 로고
    • Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains
    • Hao R, Nanduri P, Rao Y, Panichelli RS, Ito A, et al. (2013). Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains. Mol. Cell 51: 819-28
    • (2013) Mol. Cell , vol.51 , pp. 819-828
    • Hao, R.1    Nanduri, P.2    Rao, Y.3    Panichelli, R.S.4    Ito, A.5
  • 152
    • 77649337122 scopus 로고    scopus 로고
    • HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
    • Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, et al. (2010). HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29: 969-80
    • (2010) EMBO J. , vol.29 , pp. 969-980
    • Lee, J.Y.1    Koga, H.2    Kawaguchi, Y.3    Tang, W.4    Wong, E.5
  • 153
    • 84927139452 scopus 로고    scopus 로고
    • Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance
    • Nanduri P, Hao R, Fitzpatrick T, Yao TP. (2015). Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance. J. Biol. Chem. 290: 9455-64
    • (2015) J. Biol. Chem , vol.290 , pp. 9455-9464
    • Nanduri, P.1    Hao, R.2    Fitzpatrick, T.3    Yao, T.P.4
  • 154
    • 43049155955 scopus 로고    scopus 로고
    • The BAG proteins: A ubiquitous family of chaperone regulators
    • Kabbage M, Dickman MB. (2008). The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol. Life Sci. 65: 1390-402
    • (2008) Cell Mol. Life Sci , vol.65 , pp. 1390-1402
    • Kabbage, M.1    Dickman, M.B.2
  • 155
    • 0039172708 scopus 로고    scopus 로고
    • The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome
    • Luders J, Demand J, Hohfeld J. (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275: 4613-17
    • (2000) J. Biol. Chem , vol.275 , pp. 4613-4617
    • Luders, J.1    Demand, J.2    Hohfeld, J.3
  • 156
    • 65449117176 scopus 로고    scopus 로고
    • Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
    • Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C. (2009). Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J. 28: 889-901
    • (2009) EMBO J. , vol.28 , pp. 889-901
    • Gamerdinger, M.1    Hajieva, P.2    Kaya, A.M.3    Wolfrum, U.4    Hartl, F.U.5    Behl, C.6
  • 157
    • 79551609332 scopus 로고    scopus 로고
    • BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins
    • Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C. (2011). BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep. 12: 149-56
    • (2011) EMBO Rep , vol.12 , pp. 149-156
    • Gamerdinger, M.1    Kaya, A.M.2    Wolfrum, U.3    Clement, A.M.4    Behl, C.5
  • 158
    • 38949184241 scopus 로고    scopus 로고
    • HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy
    • Carra S, Seguin SJ, Landry J. (2008). HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4: 237-39
    • (2008) Autophagy , vol.4 , pp. 237-239
    • Carra, S.1    Seguin, S.J.2    Landry, J.3
  • 159
    • 84907166419 scopus 로고    scopus 로고
    • BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: Implications for a proteasome-to-autophagy switch
    • Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, et al. (2014). BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta: implications for a proteasome-to-autophagy switch. Autophagy 10: 1603-21
    • (2014) Autophagy , vol.10 , pp. 1603-1621
    • Minoia, M.1    Boncoraglio, A.2    Vinet, J.3    Morelli, F.F.4    Brunsting, J.F.5
  • 161
    • 84897984423 scopus 로고    scopus 로고
    • BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways
    • Rapino F, Jung M, Fulda S. (2014). BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways. Oncogene 33: 1713-24
    • (2014) Oncogene , vol.33 , pp. 1713-1724
    • Rapino, F.1    Jung, M.2    Fulda, S.3
  • 162
    • 69449084241 scopus 로고    scopus 로고
    • Autophagy activation by NFκB is essential for cell survival after heat shock
    • Nivon M, Richet E, Codogno P, Arrigo AP, Kretz-Remy C. (2009). Autophagy activation by NFκB is essential for cell survival after heat shock. Autophagy 5: 766-83
    • (2009) Autophagy , vol.5 , pp. 766-783
    • Nivon, M.1    Richet, E.2    Codogno, P.3    Arrigo, A.P.4    Kretz-Remy, C.5
  • 163
    • 84965085833 scopus 로고    scopus 로고
    • NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways
    • Rapino F, Abhari BA, Jung M, Fulda S. (2015). NIK is required for NF-κB-mediated induction of BAG3 upon inhibition of constitutive protein degradation pathways. Cell Death Dis. 6: e1692
    • (2015) Cell Death Dis , vol.6 , pp. e1692
    • Rapino, F.1    Abhari, B.A.2    Jung, M.3    Fulda, S.4
  • 164
    • 84965077472 scopus 로고    scopus 로고
    • Breaking BAG: The co-chaperone BAG3 in health and disease
    • Behl C. (2016). Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol. Sci. 37: 672-88
    • (2016) Trends Pharmacol. Sci , vol.37 , pp. 672-688
    • Behl, C.1
  • 165
    • 84937969345 scopus 로고    scopus 로고
    • Mitochondrial dynamics: Orchestrating the journey to advanced age
    • Biala AK, Dhingra R, Kirshenbaum LA. (2015). Mitochondrial dynamics: orchestrating the journey to advanced age. J. Mol. Cell Cardiol. 83: 37-43
    • (2015) J. Mol. Cell Cardiol , vol.83 , pp. 37-43
    • Biala, A.K.1    Dhingra, R.2    Kirshenbaum, L.A.3
  • 166
    • 84958850926 scopus 로고    scopus 로고
    • Mitochondrial dynamics and metabolic regulation
    • Wai T, Langer T. (2016). Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27: 105-17
    • (2016) Trends Endocrinol. Metab , vol.27 , pp. 105-117
    • Wai, T.1    Langer, T.2
  • 167
    • 84979503588 scopus 로고    scopus 로고
    • Mitochondria and cancer
    • Vyas S, Zaganjor E, Haigis MC. (2016). Mitochondria and cancer. Cell 166: 555-66
    • (2016) Cell , vol.166 , pp. 555-566
    • Vyas, S.1    Zaganjor, E.2    Haigis, M.C.3
  • 168
    • 84994381512 scopus 로고    scopus 로고
    • Mitochondrial dynamics altered by oxidative stress in cancer
    • Kim B, Song YS. (2016). Mitochondrial dynamics altered by oxidative stress in cancer. Free Radic. Res. 50: 1065-70
    • (2016) Free Radic. Res , vol.50 , pp. 1065-1070
    • Kim, B.1    Song, Y.S.2
  • 169
    • 85002949454 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies
    • Rimessi A, Previati M, Nigro F, Wieckowski MR, Pinton P. (2016). Mitochondrial reactive oxygen species and inflammation: molecular mechanisms, diseases and promising therapies. Int. J. Biochem. Cell Biol. 81: 281-93
    • (2016) Int. J. Biochem. Cell Biol , vol.81 , pp. 281-293
    • Rimessi, A.1    Previati, M.2    Nigro, F.3    Wieckowski, M.R.4    Pinton, P.5
  • 171
    • 84884879594 scopus 로고    scopus 로고
    • Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease
    • Yan MH, Wang X, Zhu X. (2013). Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62: 90-101
    • (2013) Free Radic. Biol. Med , vol.62 , pp. 90-101
    • Yan, M.H.1    Wang, X.2    Zhu, X.3
  • 172
    • 44949231368 scopus 로고    scopus 로고
    • Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling
    • Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, et al. (2008). Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLOS ONE 3: e1487
    • (2008) Plos One , vol.3 , pp. e1487
    • Li, W.1    Bengtson, M.H.2    Ulbrich, A.3    Matsuda, A.4    Reddy, V.A.5
  • 173
    • 33749253910 scopus 로고    scopus 로고
    • March-V is a novel mitofusin 2-and Drp1-binding protein able to change mitochondrial morphology
    • Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. (2006). MARCH-V is a novel mitofusin 2-and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7: 1019-22
    • (2006) EMBO Rep , vol.7 , pp. 1019-1022
    • Nakamura, N.1    Kimura, Y.2    Tokuda, M.3    Honda, S.4    Hirose, S.5
  • 174
    • 33747613595 scopus 로고    scopus 로고
    • A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics
    • Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, et al. (2006). A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 25: 3618-26
    • (2006) EMBO J. , vol.25 , pp. 3618-3626
    • Yonashiro, R.1    Ishido, S.2    Kyo, S.3    Fukuda, T.4    Goto, E.5
  • 175
    • 34347398050 scopus 로고    scopus 로고
    • Themitochondrial E3 ubiquitin ligaseMARCH5 is required for Drp1 dependent mitochondrial division
    • Karbowski M, Neutzner A, Youle RJ. (2007). Themitochondrial E3 ubiquitin ligaseMARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 178: 71-84
    • (2007) J. Cell Biol , vol.178 , pp. 71-84
    • Karbowski, M.1    Neutzner, A.2    Youle, R.J.3
  • 176
    • 58149314211 scopus 로고    scopus 로고
    • Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
    • Narendra D, Tanaka A, Suen DF, Youle RJ. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183: 795-803
    • (2008) J. Cell Biol , vol.183 , pp. 795-803
    • Narendra, D.1    Tanaka, A.2    Suen, D.F.3    Youle, R.J.4
  • 177
    • 81055140895 scopus 로고    scopus 로고
    • PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
    • Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, et al. (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147: 893-906
    • (2011) Cell , vol.147 , pp. 893-906
    • Wang, X.1    Winter, D.2    Ashrafi, G.3    Schlehe, J.4    Wong, Y.L.5
  • 178
    • 33747389446 scopus 로고    scopus 로고
    • Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1
    • Escobar-Henriques M, Westermann B, Langer T. (2006). Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 173: 645-50
    • (2006) J. Cell Biol , vol.173 , pp. 645-650
    • Escobar-Henriques, M.1    Westermann, B.2    Langer, T.3
  • 179
    • 48749116067 scopus 로고    scopus 로고
    • Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion
    • Cohen MM, Leboucher GP, Livnat-Levanon N, Glickman MH, Weissman AM. (2008). Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol. Biol. Cell 19: 2457-64
    • (2008) Mol. Biol. Cell , vol.19 , pp. 2457-2464
    • Cohen, M.M.1    Leboucher, G.P.2    Livnat-Levanon, N.3    Glickman, M.H.4    Weissman, A.M.5
  • 180
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27: 433-46
    • (2008) EMBO J. , vol.27 , pp. 433-446
    • Twig, G.1    Elorza, A.2    Molina, A.J.3    Mohamed, H.4    Wikstrom, J.D.5
  • 181
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • Gomes LC, Di Benedetto G, Scorrano L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13: 589-98
    • (2011) Nat. Cell Biol , vol.13 , pp. 589-598
    • Gomes, L.C.1    Di Benedetto, G.2    Scorrano, L.3
  • 182
    • 79959987510 scopus 로고    scopus 로고
    • Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
    • Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. PNAS 108: 10190-95
    • (2011) PNAS , vol.108 , pp. 10190-10195
    • Rambold, A.S.1    Kostelecky, B.2    Elia, N.3    Lippincott-Schwartz, J.4
  • 183
    • 84954527661 scopus 로고    scopus 로고
    • Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein
    • Xu S, Cherok E, Das S, Li S, Roelofs BA, et al. (2016). Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol. Biol. Cell 27: 349-59
    • (2016) Mol. Biol. Cell , vol.27 , pp. 349-359
    • Xu, S.1    Cherok, E.2    Das, S.3    Li, S.4    Roelofs, B.A.5
  • 184
    • 84957432947 scopus 로고    scopus 로고
    • Mitophagy programs: Mechanisms and physiological implications of mitochondrial targeting by autophagy
    • Hamacher-Brady A, Brady NR. (2016). Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol. Life Sci. 73: 775-95
    • (2016) Cell Mol. Life Sci , vol.73 , pp. 775-795
    • Hamacher-Brady, A.1    Brady, N.R.2
  • 185
    • 84929582993 scopus 로고    scopus 로고
    • The three ?P's of mitophagy: PARKIN, PINK1, and post-translational modifications
    • Durcan TM, Fon EA. (2015). The three ?P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 29: 989-99
    • (2015) Genes Dev , vol.29 , pp. 989-999
    • Durcan, T.M.1    Fon, E.A.2
  • 186
    • 84925940926 scopus 로고    scopus 로고
    • PINK1 and Parkin-mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease
    • Kazlauskaite A, Muqit MM. (2015). PINK1 and Parkin-mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J. 282: 215-23
    • (2015) FEBS J. , vol.282 , pp. 215-223
    • Kazlauskaite, A.1    Muqit, M.M.2
  • 187
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
    • Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. (2015). The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60: 7-20
    • (2015) Mol. Cell , vol.60 , pp. 7-20
    • Heo, J.M.1    Ordureau, A.2    Paulo, J.A.3    Rinehart, J.4    Harper, J.W.5
  • 188
    • 84994565816 scopus 로고    scopus 로고
    • Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes
    • Rose CM, Isasa M, Ordureau A, Prado MA, Beausoleil SA, et al. (2016). Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst. 3: 395-403
    • (2016) Cell Syst , vol.3 , pp. 395-403
    • Rose, C.M.1    Isasa, M.2    Ordureau, A.3    Prado, M.A.4    Beausoleil, S.A.5
  • 189
    • 84929691103 scopus 로고    scopus 로고
    • Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy
    • Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL, et al. (2015). Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. PNAS 112: 6637-42
    • (2015) PNAS , vol.112 , pp. 6637-6642
    • Ordureau, A.1    Heo, J.M.2    Duda, D.M.3    Paulo, J.A.4    Olszewski, J.L.5
  • 190
    • 84899539731 scopus 로고    scopus 로고
    • PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
    • Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, et al. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205: 143-53
    • (2014) J. Cell Biol , vol.205 , pp. 143-153
    • Kane, L.A.1    Lazarou, M.2    Fogel, A.I.3    Li, Y.4    Yamano, K.5
  • 192
    • 84922434418 scopus 로고    scopus 로고
    • Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis
    • Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, et al. (2014). Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56: 360-75
    • (2014) Mol. Cell , vol.56 , pp. 360-375
    • Ordureau, A.1    Sarraf, S.A.2    Duda, D.M.3    Heo, J.M.4    Jedrychowski, M.P.5
  • 193
    • 79957472437 scopus 로고    scopus 로고
    • Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane
    • Yoshii SR, Kishi C, Ishihara N, Mizushima N. (2011). Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem. 286: 19630-40
    • (2011) J. Biol. Chem , vol.286 , pp. 19630-19640
    • Yoshii, S.R.1    Kishi, C.2    Ishihara, N.3    Mizushima, N.4
  • 194
    • 78650729600 scopus 로고    scopus 로고
    • Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
    • Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, et al. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191: 1367-80
    • (2010) J. Cell Biol , vol.191 , pp. 1367-1380
    • Tanaka, A.1    Cleland, M.M.2    Xu, S.3    Narendra, D.P.4    Suen, D.F.5
  • 195
    • 79954520907 scopus 로고    scopus 로고
    • Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy
    • Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, et al. (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20: 1726-37
    • (2011) Hum. Mol. Genet , vol.20 , pp. 1726-1737
    • Chan, N.C.1    Salazar, A.M.2    Pham, A.H.3    Sweredoski, M.J.4    Kolawa, N.J.5
  • 196
  • 197
    • 84925340816 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13
    • Aguileta MA, Korac J, Durcan TM, Trempe JF, Haber M, et al. (2015). The E3 ubiquitin ligase parkin is recruited to the 26 S proteasome via the proteasomal ubiquitin receptor Rpn13. J. Biol. Chem. 290: 7492-505
    • (2015) J. Biol. Chem , vol.290 , pp. 7492-7505
    • Aguileta, M.A.1    Korac, J.2    Durcan, T.M.3    Trempe, J.F.4    Haber, M.5
  • 198
    • 78650716707 scopus 로고    scopus 로고
    • The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila
    • Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, et al. (2010). The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila. PLOS Genet. 6: e1001229
    • (2010) Plos Genet , vol.6 , pp. e1001229
    • Imai, Y.1    Kanao, T.2    Sawada, T.3    Kobayashi, Y.4    Moriwaki, Y.5
  • 199
    • 84911946743 scopus 로고    scopus 로고
    • Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder
    • Lu W, Karuppagounder SS, Springer DA, Allen MD, Zheng L, et al. (2014). Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder. Nat. Commun. 5: 4930
    • (2014) Nat. Commun , vol.5 , pp. 4930
    • Lu, W.1    Karuppagounder, S.S.2    Springer, D.A.3    Allen, M.D.4    Zheng, L.5
  • 200
    • 84899912073 scopus 로고    scopus 로고
    • A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
    • Chen G, Han Z, Feng D, Chen Y, Chen L, et al. (2014). A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54: 362-77
    • (2014) Mol. Cell , vol.54 , pp. 362-377
    • Chen, G.1    Han, Z.2    Feng, D.3    Chen, Y.4    Chen, L.5
  • 201
    • 0035072229 scopus 로고    scopus 로고
    • Degradation of oxidized proteins by the 20S proteasome
    • Davies KJ. (2001). Degradation of oxidized proteins by the 20S proteasome. Biochimie 83: 301-10
    • (2001) Biochimie , vol.83 , pp. 301-310
    • Davies, K.J.1
  • 202
    • 78649980437 scopus 로고    scopus 로고
    • Regulation of the 26S proteasome complex during oxidative stress
    • ra88
    • Wang X, Yen J, Kaiser P, Huang L. (2010). Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal. 3: ra88
    • (2010) Sci. Signal , vol.3
    • Wang, X.1    Yen, J.2    Kaiser, P.3    Huang, L.4
  • 203
    • 0036260697 scopus 로고    scopus 로고
    • Cellular response to oxidative stress: Signaling for suicide and survival
    • Martindale JL, Holbrook NJ. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J. Cell Physiol. 192: 1-15
    • (2002) J. Cell Physiol , vol.192 , pp. 1-15
    • Martindale, J.L.1    Holbrook, N.J.2
  • 204
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26: 1749-60
    • (2007) EMBO J. , vol.26 , pp. 1749-1760
    • Scherz-Shouval, R.1    Shvets, E.2    Fass, E.3    Shorer, H.4    Gil, L.5    Elazar, Z.6
  • 205
    • 33344469643 scopus 로고    scopus 로고
    • Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1
    • Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, et al. (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell Biol. 26: 221-29
    • (2006) Mol. Cell Biol , vol.26 , pp. 221-229
    • Kobayashi, A.1    Kang, M.I.2    Watai, Y.3    Tong, K.I.4    Shibata, T.5
  • 206
    • 7244253081 scopus 로고    scopus 로고
    • Nrf2-Keap1 defines a physiologically important stress response mechanism
    • Motohashi H, Yamamoto M. (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10: 549-57
    • (2004) Trends Mol. Med , vol.10 , pp. 549-557
    • Motohashi, H.1    Yamamoto, M.2
  • 207
    • 77649265091 scopus 로고    scopus 로고
    • The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
    • Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, et al. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12: 213-23
    • (2010) Nat. Cell Biol , vol.12 , pp. 213-223
    • Komatsu, M.1    Kurokawa, H.2    Waguri, S.3    Taguchi, K.4    Kobayashi, A.5
  • 208
    • 77954599053 scopus 로고    scopus 로고
    • P62/SQSTM1 is a target gene for transcription factorNRF2and creates a positive feedback loop by inducing antioxidant response elementdriven gene transcription
    • Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, et al. (2010). p62/SQSTM1 is a target gene for transcription factorNRF2and creates a positive feedback loop by inducing antioxidant response elementdriven gene transcription. J. Biol. Chem. 285: 22576-91
    • (2010) J. Biol. Chem , vol.285 , pp. 22576-22591
    • Jain, A.1    Lamark, T.2    Sjottem, E.3    Larsen, K.B.4    Awuh, J.A.5
  • 209
    • 84883830467 scopus 로고    scopus 로고
    • Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy
    • Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, et al. (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51: 618-31
    • (2013) Mol. Cell , vol.51 , pp. 618-631
    • Ichimura, Y.1    Waguri, S.2    Sou, Y.S.3    Kageyama, S.4    Hasegawa, J.5
  • 210
    • 48449101433 scopus 로고    scopus 로고
    • P53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
    • Budanov AV, Karin M. (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134: 451-60
    • (2008) Cell , vol.134 , pp. 451-460
    • Budanov, A.V.1    Karin, M.2
  • 211
    • 2142815107 scopus 로고    scopus 로고
    • Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial Ahp D
    • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial Ahp D. Science 304: 596-600
    • (2004) Science , vol.304 , pp. 596-600
    • Budanov, A.V.1    Sablina, A.A.2    Feinstein, E.3    Koonin, E.V.4    Chumakov, P.M.5
  • 212
    • 84872137966 scopus 로고    scopus 로고
    • Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage
    • Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, et al. (2013). Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab. 17: 73-84
    • (2013) Cell Metab , vol.17 , pp. 73-84
    • Bae, S.H.1    Sung, S.H.2    Oh, S.Y.3    Lim, J.M.4    Lee, S.K.5
  • 213
    • 0034973982 scopus 로고    scopus 로고
    • Translational control is required for the unfolded protein response and in vivo glucose homeostasis
    • Scheuner D, Song B, McEwen E, Liu C, Laybutt R, et al. (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7: 1165-76
    • (2001) Mol. Cell , vol.7 , pp. 1165-1176
    • Scheuner, D.1    Song, B.2    McEwen, E.3    Liu, C.4    Laybutt, R.5
  • 214
    • 0037353039 scopus 로고    scopus 로고
    • An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
    • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11: 619-33
    • (2003) Mol. Cell , vol.11 , pp. 619-633
    • Harding, H.P.1    Zhang, Y.2    Zeng, H.3    Novoa, I.4    Lu, P.D.5
  • 215
    • 84927619395 scopus 로고    scopus 로고
    • Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit
    • Das I, Krzyzosiak A, Schneider K, Wrabetz L, D'Antonio M, et al. (2015). Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348: 239-42
    • (2015) Science , vol.348 , pp. 239-242
    • Das, I.1    Krzyzosiak, A.2    Schneider, K.3    Wrabetz, L.4    D'Antonio, M.5
  • 216
    • 33845480131 scopus 로고    scopus 로고
    • Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
    • Bernales S, McDonald KL, Walter P. (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLOS Biol. 4: e423
    • (2006) Plos Biol , vol.4 , pp. e423
    • Bernales, S.1    McDonald, K.L.2    Walter, P.3
  • 217
    • 33749579383 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress triggers autophagy
    • Yorimitsu T, Nair U, Yang Z, Klionsky DJ. (2006). Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281: 30299-304
    • (2006) J. Biol. Chem , vol.281 , pp. 30299-30304
    • Yorimitsu, T.1    Nair, U.2    Yang, Z.3    Klionsky, D.J.4
  • 218
    • 38949096081 scopus 로고    scopus 로고
    • Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome
    • Ding WX, Yin XM. (2008). Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4: 141-50
    • (2008) Autophagy , vol.4 , pp. 141-150
    • Ding, W.X.1    Yin, X.M.2
  • 220
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases? Carboxyl termini in the 20S proteasome's αring opens the gate for substrate entry
    • Smith DM, Chang SC, Park S, Finley D, Cheng Y, Goldberg AL. (2007). Docking of the proteasomal ATPases? carboxyl termini in the 20S proteasome's αring opens the gate for substrate entry. Mol. Cell 27: 731-44
    • (2007) Mol. Cell , vol.27 , pp. 731-744
    • Smith, D.M.1    Chang, S.C.2    Park, S.3    Finley, D.4    Cheng, Y.5    Goldberg, A.L.6
  • 222
    • 71149107057 scopus 로고    scopus 로고
    • Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening
    • Peth A, Besche HC, Goldberg AL. (2009). Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36: 794-804
    • (2009) Mol. Cell , vol.36 , pp. 794-804
    • Peth, A.1    Besche, H.C.2    Goldberg, A.L.3
  • 223
    • 84937574462 scopus 로고    scopus 로고
    • Autophagic degradation of the 26S proteasome is mediated by the dualATG8/ubiquitin receptorRPN10 in Arabidopsis
    • Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. (2015). Autophagic degradation of the 26S proteasome is mediated by the dualATG8/ubiquitin receptorRPN10 in Arabidopsis. Mol. Cell 58: 1053-66
    • (2015) Mol. Cell , vol.58 , pp. 1053-1066
    • Marshall, R.S.1    Li, F.2    Gemperline, D.C.3    Book, A.J.4    Vierstra, R.D.5
  • 224
    • 84979780136 scopus 로고    scopus 로고
    • Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone
    • Marshall RS, McLoughlin F, Vierstra RD. (2016). Autophagic turnover of inactive 26S proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Rep. 16: 1717-32
    • (2016) Cell Rep , vol.16 , pp. 1717-1732
    • Marshall, R.S.1    McLoughlin, F.2    Vierstra, R.D.3
  • 225
    • 84964674982 scopus 로고    scopus 로고
    • Starvation induces proteasome autophagy with different pathways for core and regulatory particles
    • Waite KA, De La Mota-Peynado A, Vontz G, Roelofs J. (2016). Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J. Biol. Chem. 291: 3239-53
    • (2016) J. Biol. Chem , vol.291 , pp. 3239-3253
    • Waite, K.A.1    De La Mota-Peynado, A.2    Vontz, G.3    Roelofs, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.