-
1
-
-
0030016595
-
Structure and functions of the 20S and 26S proteasomes
-
Coux O, Tanaka K, Goldberg AL. 1996. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65:810-47
-
(1996)
Annu. Rev. Biochem
, vol.65
, pp. 810-847
-
-
Coux, O.1
Tanaka, K.2
Goldberg, A.L.3
-
2
-
-
1542344435
-
Proteasomes and their kin: Proteases in the machine age
-
Pickart CM, Cohen RE. 2004. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 5:177-87
-
(2004)
Nat. Rev. Mol. Cell Biol
, vol.5
, pp. 177-187
-
-
Pickart, C.M.1
Cohen, R.E.2
-
3
-
-
18044364830
-
Post-translational regulation in plants employing a diverse set of polypeptide tags
-
Downes B,Vierstra RD. 2005. Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem. Soc. Trans. 33:393-99
-
(2005)
Biochem. Soc. Trans
, vol.33
, pp. 393-399
-
-
Downes, B.1
Vierstra, R.D.2
-
4
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 Å resolution
-
Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, et al. 1997. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386:463-71
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Löwe, J.3
Stock, D.4
Bochtler, M.5
-
5
-
-
33947659939
-
20S proteasome and its inhibitors: Crystallographic knowledge for drug development
-
Borisssenko L, Groll M. 2007. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem. Rev. 107:687-717
-
(2007)
Chem. Rev
, vol.107
, pp. 687-717
-
-
Borisssenko, L.1
Groll, M.2
-
6
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, et al. 2000. A gated channel into the proteasome core particle. Nat. Struct. Biol. 7:1062-67
-
(2000)
Nat. Struct. Biol
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Kohler, A.3
Moroder, L.4
Rubin, D.M.5
-
7
-
-
0034964524
-
The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release
-
Kohler A, Cascio P, Leggett DS,Woo KM, Goldberg AL, et al. 2001. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7:1143-52
-
(2001)
Mol. Cell
, vol.7
, pp. 1143-1152
-
-
Kohler, A.1
Cascio, P.2
Leggett, D.S.3
Woo, K.M.4
Goldberg, A.L.5
-
8
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, et al. 2000. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115-20
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
Masters, E.I.2
Kramer, L.3
Knowlton, J.R.4
Yao, Y.5
-
9
-
-
19444387760
-
The 1.9 Å structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Forster A, Masters EI, Whitby FG, Robinson H, Hill CP. 2005. The 1.9 Å structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 18:589-99
-
(2005)
Mol. Cell
, vol.18
, pp. 589-599
-
-
Forster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
10
-
-
28444452611
-
ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins
-
Smith DM, Kafri G, Cheng Y, Ng D, Walz T, et al. 2005. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 20:687-98
-
(2005)
Mol. Cell
, vol.20
, pp. 687-698
-
-
Smith, D.M.1
Kafri, G.2
Cheng, Y.3
Ng, D.4
Walz, T.5
-
11
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith DM, Chang S-C, Park S, Finley D, Cheng Y, et al. 2007. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 27:731-44
-
(2007)
Mol. Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
Chang, S.-C.2
Park, S.3
Finley, D.4
Cheng, Y.5
-
12
-
-
57649140340
-
Differential roles of the COOH termini of AAA subunits of PA700 (19 S Regulator) in asymmetric assembly and activation of the 26 S proteasome
-
Gillette TG, Kumar B, Thompson D, Slaughter CA, Demartino GN. 2008. Differential roles of the COOH termini of AAA subunits of PA700 (19 S Regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 283:31813-22
-
(2008)
J. Biol. Chem
, vol.283
, pp. 31813-31822
-
-
Gillette, T.G.1
Kumar, B.2
Thompson, D.3
Slaughter, C.A.4
Demartino, G.N.5
-
13
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J, Smith DM, Yu Y, Chang S-C, Goldberg AL, et al. 2008. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30:360-68
-
(2008)
Mol. Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
Smith, D.M.2
Yu, Y.3
Chang, S.-C.4
Goldberg, A.L.5
-
14
-
-
0031927996
-
26S proteasome structure revealed by three-dimensional electron microscopy
-
Walz J, Erdmann A, Kania M, Typke D, Koster AJ, et al. 1998. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 121:19-29
-
(1998)
J. Struct. Biol
, vol.121
, pp. 19-29
-
-
Walz, J.1
Erdmann, A.2
Kania, M.3
Typke, D.4
Koster, A.J.5
-
15
-
-
0037144567
-
Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel
-
Lee C, Prakash S, Matouschek A. 2002. Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. J. Biol. Chem. 277:34760-65
-
(2002)
J. Biol. Chem
, vol.277
, pp. 34760-34765
-
-
Lee, C.1
Prakash, S.2
Matouschek, A.3
-
16
-
-
0033517351
-
Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
-
Weber-Ban EU, Reid BG, Miranker AD, Horwich AL. 1999. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401:90-93
-
(1999)
Nature
, vol.401
, pp. 90-93
-
-
Weber-Ban, E.U.1
Reid, B.G.2
Miranker, A.D.3
Horwich, A.L.4
-
17
-
-
0033176770
-
The base of the proteasome regulatory particle exhibits chaperone-like activity
-
Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, et al. 1999. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1:221-26
-
(1999)
Nat. Cell Biol
, vol.1
, pp. 221-226
-
-
Braun, B.C.1
Glickman, M.2
Kraft, R.3
Dahlmann, B.4
Kloetzel, P.M.5
-
18
-
-
0037178895
-
Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome
-
Liu C-W, Millen L, Roman TB, Xiong H, Gilbert HF, et al. 2002. Conformational remodeling of proteasomal substrates by PA700, the 19 S regulatory complex of the 26 S proteasome. J. Biol. Chem. 277:26815-20
-
(2002)
J. Biol. Chem
, vol.277
, pp. 26815-26820
-
-
Liu, C.-W.1
Millen, L.2
Roman, T.B.3
Xiong, H.4
Gilbert, H.F.5
-
19
-
-
0035694696
-
Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome
-
Navon A, Goldberg AL. 2001. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell 8:1339-49
-
(2001)
Mol. Cell
, vol.8
, pp. 1339-1349
-
-
Navon, A.1
Goldberg, A.L.2
-
20
-
-
0037248908
-
ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation
-
Benaroudj N, Zwickl P, Seemüller E, Baumeister W, Goldberg AL. 2003. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11:69-78
-
(2003)
Mol. Cell
, vol.11
, pp. 69-78
-
-
Benaroudj, N.1
Zwickl, P.2
Seemüller, E.3
Baumeister, W.4
Goldberg, A.L.5
-
21
-
-
0035266072
-
ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
-
Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A. 2001. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7:627-37
-
(2001)
Mol. Cell
, vol.7
, pp. 627-637
-
-
Lee, C.1
Schwartz, M.P.2
Prakash, S.3
Iwakura, M.4
Matouschek, A.5
-
22
-
-
34249899379
-
Automated cryoelectron microscopy of "single particles" applied to the 26S proteasome
-
Nickell S, Beck F, Korinek A, Mihalache O, Baumeister W, et al. 2007. Automated cryoelectron microscopy of "single particles" applied to the 26S proteasome. FEBS Lett. 581:2751-56
-
(2007)
FEBS Lett
, vol.581
, pp. 2751-2756
-
-
Nickell, S.1
Beck, F.2
Korinek, A.3
Mihalache, O.4
Baumeister, W.5
-
24
-
-
0029806477
-
The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover
-
van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, et al. 1996. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 16:6020-28
-
(1996)
Mol. Cell. Biol
, vol.16
, pp. 6020-6028
-
-
van Nocker, S.1
Sadis, S.2
Rubin, D.M.3
Glickman, M.4
Fu, H.5
-
25
-
-
0031890210
-
Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1
-
Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, et al. 1998. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J. Biol. Chem. 273:1970-81
-
(1998)
J. Biol. Chem
, vol.273
, pp. 1970-1981
-
-
Fu, H.1
Sadis, S.2
Rubin, D.M.3
Glickman, M.4
van Nocker, S.5
-
26
-
-
0036713383
-
Proteasome subunit Rpn1 binds ubiquitin-like protein domains
-
Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, et al. 2002. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4:725-30
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 725-730
-
-
Elsasser, S.1
Gali, R.R.2
Schwickart, M.3
Larsen, C.N.4
Leggett, D.S.5
-
27
-
-
3142566639
-
Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system
-
Verma R, Oania R, Graumann J, Deshaies RJ. 2004. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118:99-110
-
(2004)
Cell
, vol.118
, pp. 99-110
-
-
Verma, R.1
Oania, R.2
Graumann, J.3
Deshaies, R.J.4
-
28
-
-
3042677641
-
Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome
-
Elsasser S, Chandler-Militello D, Müller B, Hanna J, Finley D. 2004. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 279:26817-22
-
(2004)
J. Biol. Chem
, vol.279
, pp. 26817-26822
-
-
Elsasser, S.1
Chandler-Militello, D.2
Müller, B.3
Hanna, J.4
Finley, D.5
-
29
-
-
36749080327
-
Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway
-
Mayor T, Graumann J, Bryan J, MacCoss MJ, Deshaies RJ. 2007. Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell. Proteomics 6:1885-95
-
(2007)
Mol. Cell. Proteomics
, vol.6
, pp. 1885-1895
-
-
Mayor, T.1
Graumann, J.2
Bryan, J.3
MacCoss, M.J.4
Deshaies, R.J.5
-
30
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, et al. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481-88
-
(2008)
Nature
, vol.453
, pp. 481-488
-
-
Husnjak, K.1
Elsasser, S.2
Zhang, N.3
Chen, X.4
Randles, L.5
-
31
-
-
44349094727
-
Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction
-
Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, et al. 2008. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548-52
-
(2008)
Nature
, vol.453
, pp. 548-552
-
-
Schreiner, P.1
Chen, X.2
Husnjak, K.3
Randles, L.4
Zhang, N.5
-
32
-
-
0032510057
-
Rad23 links DNA repair to the ubiquitin/proteasome pathway
-
Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, et al. 1998. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391:715-18
-
(1998)
Nature
, vol.391
, pp. 715-718
-
-
Schauber, C.1
Chen, L.2
Tongaonkar, P.3
Vega, I.4
Lambertson, D.5
-
33
-
-
0036277299
-
Rad23 promotes the targeting of proteolytic substrates to the proteasome
-
Chen L, Madura K. 2002. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22:4902-13
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 4902-4913
-
-
Chen, L.1
Madura, K.2
-
34
-
-
0034798985
-
Proteins containing the UBA domain are able to bind to multi-ubiquitin chains
-
Wilkinson CR, Seeger M, Hartmann-Petersen R, Stone M,Wallace M, et al. 2001. Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat. Cell Biol. 3:939-43
-
(2001)
Nat. Cell Biol
, vol.3
, pp. 939-943
-
-
Wilkinson, C.R.1
Seeger, M.2
Hartmann-Petersen, R.3
Stone, M.4
Wallace, M.5
-
36
-
-
0036777957
-
The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides
-
Goldberg AL, Cascio P, Saric T, Rock KL. 2002. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 39:147-64
-
(2002)
Mol. Immunol
, vol.39
, pp. 147-164
-
-
Goldberg, A.L.1
Cascio, P.2
Saric, T.3
Rock, K.L.4
-
37
-
-
0033525086
-
The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation
-
Kisselev AF, Akopian TN,Woo KM, Goldberg AL. 1999. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274:3363-71
-
(1999)
J. Biol. Chem
, vol.274
, pp. 3363-3371
-
-
Kisselev, A.F.1
Akopian, T.N.2
Woo, K.M.3
Goldberg, A.L.4
-
39
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131-45
-
(2007)
J. Biol. Chem
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
-
40
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell 132:27-42
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
41
-
-
34848886914
-
Autophagosome formation: Core machinery and adaptations
-
Xie Z, Klionsky DJ. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:1102-9
-
(2007)
Nat. Cell Biol
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
42
-
-
0041706156
-
A proteomics approach to understanding protein ubiquitination
-
Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, et al. 2003. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21:921-26
-
(2003)
Nat. Biotechnol
, vol.21
, pp. 921-926
-
-
Peng, J.1
Schwartz, D.2
Elias, J.E.3
Thoreen, C.C.4
Cheng, D.5
-
43
-
-
55949136614
-
Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry
-
Meierhofer D, Wang X, Huang L, Kaiser P. 2008. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J. Proteome Res. 7:4566-76
-
(2008)
J. Proteome Res
, vol.7
, pp. 4566-4576
-
-
Meierhofer, D.1
Wang, X.2
Huang, L.3
Kaiser, P.4
-
44
-
-
33748377124
-
Quantification of protein half-lives in the budding yeast proteome
-
Belle A, Tanay A, Bitincka L, Shamir R, O'Shea EK. 2006. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103:13004-9
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 13004-13009
-
-
Belle, A.1
Tanay, A.2
Bitincka, L.3
Shamir, R.4
O'Shea, E.K.5
-
46
-
-
23144449583
-
Delivery of ubiquitinated substrates to protein-unfolding machines
-
Elsasser S, Finley D. 2005. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7:742-49
-
(2005)
Nat. Cell Biol
, vol.7
, pp. 742-749
-
-
Elsasser, S.1
Finley, D.2
-
47
-
-
34249085552
-
Proteasomes: Machines for all reasons
-
Demartino GN, Gillette TG. 2007. Proteasomes: machines for all reasons. Cell 129:659-62
-
(2007)
Cell
, vol.129
, pp. 659-662
-
-
Demartino, G.N.1
Gillette, T.G.2
-
48
-
-
39149135202
-
Protein targeting to ATP-dependent proteases
-
Inobe T, Matouschek A. 2008. Protein targeting to ATP-dependent proteases. Curr. Opin. Struct. Biol. 18:43-51
-
(2008)
Curr. Opin. Struct. Biol
, vol.18
, pp. 43-51
-
-
Inobe, T.1
Matouschek, A.2
-
49
-
-
54049107641
-
Some assembly required: Dedicated chaperones in eukaryotic proteasome biogenesis
-
Kusmierczyk AR, Hochstrasser M. 2008. Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol. Chem. 389:1143-51
-
(2008)
Biol. Chem
, vol.389
, pp. 1143-1151
-
-
Kusmierczyk, A.R.1
Hochstrasser, M.2
-
52
-
-
41549133200
-
Proteasome inhibitors in cancer therapy: Lessons from the first decade
-
Orlowski RZ, Kuhn DJ. 2008. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res. 14:1649-57
-
(2008)
Clin. Cancer Res
, vol.14
, pp. 1649-1657
-
-
Orlowski, R.Z.1
Kuhn, D.J.2
-
53
-
-
35548937755
-
Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function
-
Dohmen RJ,Willers I, Marques AJ. 2007. Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. Biochim. Biophys. Acta 1773:1599-604
-
(2007)
Biochim. Biophys. Acta
, vol.1773
, pp. 1599-1604
-
-
Dohmen, R.J.1
Willers, I.2
Marques, A.J.3
-
54
-
-
33744477355
-
Preincubation with the proteasome inhibitorMG-132 enhances proteasome activity via the Nrf2 transcription factor in aging human skin fibroblasts
-
Kraft DC, Deocaris CC,Wadhwa R, Rattan SI. 2006. Preincubation with the proteasome inhibitorMG-132 enhances proteasome activity via the Nrf2 transcription factor in aging human skin fibroblasts. Ann. NY Acad. Sci. 1067:420-24
-
(2006)
Ann. NY Acad. Sci
, vol.1067
, pp. 420-424
-
-
Kraft, D.C.1
Deocaris, C.C.2
Wadhwa, R.3
Rattan, S.I.4
-
55
-
-
0032126426
-
Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle
-
Finley D, Tanaka K, Mann C, Feldmann H, Hochstrasser M, et al. 1998. Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends Biochem. Sci. 23:244-45
-
(1998)
Trends Biochem. Sci
, vol.23
, pp. 244-245
-
-
Finley, D.1
Tanaka, K.2
Mann, C.3
Feldmann, H.4
Hochstrasser, M.5
-
56
-
-
33751228400
-
ATP-dependent proteases of bacteria: Recognition logic and operating principles
-
Baker TA, Sauer RT. 2006. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem. Sci. 31:647-53
-
(2006)
Trends Biochem. Sci
, vol.31
, pp. 647-653
-
-
Baker, T.A.1
Sauer, R.T.2
-
57
-
-
39449115385
-
AAA+ proteins: Diversity in function, similarity in structure
-
Snider J, Houry WA. 2008. AAA+ proteins: diversity in function, similarity in structure. Biochem. Soc. Trans. 36:72-77
-
(2008)
Biochem. Soc. Trans
, vol.36
, pp. 72-77
-
-
Snider, J.1
Houry, W.A.2
-
58
-
-
0034677361
-
The structures of HsIU and the ATP-dependent protease HsIU-HsIV
-
Bochtler M, Hartmann C, Song HK, Bourenkov GP, Bartunik HD, et al. 2000. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403:800-5
-
(2000)
Nature
, vol.403
, pp. 800-805
-
-
Bochtler, M.1
Hartmann, C.2
Song, H.K.3
Bourenkov, G.P.4
Bartunik, H.D.5
-
59
-
-
0033681249
-
Crystal and solution structures of an HslUV protease-chaperone complex
-
Sousa MC, Trame CB, Tsuruta H,Wilbanks SM, Reddy VS, et al. 2000. Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103:633-43
-
(2000)
Cell
, vol.103
, pp. 633-643
-
-
Sousa, M.C.1
Trame, C.B.2
Tsuruta, H.3
Wilbanks, S.M.4
Reddy, V.S.5
-
60
-
-
0035184442
-
Nucleotide-dependent conformational changes in a protease-associated ATPase HslU
-
Wang J, Song JJ, Seong IS, FranklinMC,Kamtekar S, et al. 2001. Nucleotide-dependent conformational changes in a protease-associated ATPase HslU. Structure 9:1107-16
-
(2001)
Structure
, vol.9
, pp. 1107-1116
-
-
Wang, J.1
Song, J.J.2
Seong, I.S.3
FranklinMC4
Kamtekar, S.5
-
61
-
-
34547963061
-
ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in archaea
-
Horwitz AA, Navon A, Groll M, Smith DM, Reis C, et al. 2007. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in archaea. J. Biol. Chem. 282:22921-29
-
(2007)
J. Biol. Chem
, vol.282
, pp. 22921-22929
-
-
Horwitz, A.A.1
Navon, A.2
Groll, M.3
Smith, D.M.4
Reis, C.5
-
62
-
-
0034254908
-
Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP
-
Singh SK, Grimaud R, Hoskins JR, Wickner S, Maurizi MR. 2000. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl. Acad. Sci. USA 97:8898-903
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 8898-8903
-
-
Singh, S.K.1
Grimaud, R.2
Hoskins, J.R.3
Wickner, S.4
Maurizi, M.R.5
-
63
-
-
0344211512
-
Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH
-
Herman C, Prakash S, Lu CZ, Matouschek A, Gross CA. 2003. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell 11:659-69
-
(2003)
Mol. Cell
, vol.11
, pp. 659-669
-
-
Herman, C.1
Prakash, S.2
Lu, C.Z.3
Matouschek, A.4
Gross, C.A.5
-
64
-
-
39449097830
-
Common and specific mechanisms of AAA+ proteins involved in protein quality control
-
Mogk A, Haslberger T, Tessarz P, Bukau B. 2008. Common and specific mechanisms of AAA+ proteins involved in protein quality control. Biochem. Soc. Trans. 36:120-25
-
(2008)
Biochem. Soc. Trans
, vol.36
, pp. 120-125
-
-
Mogk, A.1
Haslberger, T.2
Tessarz, P.3
Bukau, B.4
-
65
-
-
0043192299
-
The pore of activated 20S proteasomes has an ordered sevenfold symmetric conformation
-
Forster A, Whitby FG, Hill CP. 2003. The pore of activated 20S proteasomes has an ordered sevenfold symmetric conformation. EMBO J. 22:4356-64
-
(2003)
EMBO J
, vol.22
, pp. 4356-4364
-
-
Forster, A.1
Whitby, F.G.2
Hill, C.P.3
-
66
-
-
0032483546
-
A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
-
Glickman MH, Rubin DM, Coux O,Wefes I, Pfeifer G, et al. 1998. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615-23
-
(1998)
Cell
, vol.94
, pp. 615-623
-
-
Glickman, M.H.1
Rubin, D.M.2
Coux, O.3
Wefes, I.4
Pfeifer, G.5
-
67
-
-
0032168508
-
Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
-
Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D. 1998. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 17:4909-19
-
(1998)
EMBO J
, vol.17
, pp. 4909-4919
-
-
Rubin, D.M.1
Glickman, M.H.2
Larsen, C.N.3
Dhruvakumar, S.4
Finley, D.5
-
68
-
-
33749069075
-
ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
-
Liu C-W, Li X, Thompson D,Wooding K, Chang T-L, et al. 2006. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell 24:39-50
-
(2006)
Mol. Cell
, vol.24
, pp. 39-50
-
-
Liu, C.-W.1
Li, X.2
Thompson, D.3
Wooding, K.4
Chang, T.-L.5
-
69
-
-
36849059755
-
Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
-
Kleijnen MF, Roelofs J, Park S, Hathaway NA, Glickman M, et al. 2007. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat. Struct. Mol. Biol. 14:1180-88
-
(2007)
Nat. Struct. Mol. Biol
, vol.14
, pp. 1180-1188
-
-
Kleijnen, M.F.1
Roelofs, J.2
Park, S.3
Hathaway, N.A.4
Glickman, M.5
-
70
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R, Aravind L, Oania R, McDonald WH, Yates JR III, et al. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611-15
-
(2002)
Science
, vol.298
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
McDonald, W.H.4
Yates III, J.R.5
-
71
-
-
0037179694
-
Acryptic protease couples deubiquitination and degradation by the proteasome
-
Yao T, Cohen RE. 2002.Acryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403-7
-
(2002)
Nature
, vol.419
, pp. 403-407
-
-
Yao, T.1
Cohen, R.E.2
-
72
-
-
0029918289
-
A role for the proteasome regulator PA28alpha in antigen presentation
-
Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, et al. 1996. A role for the proteasome regulator PA28alpha in antigen presentation. Nature 381:166-68
-
(1996)
Nature
, vol.381
, pp. 166-168
-
-
Groettrup, M.1
Soza, A.2
Eggers, M.3
Kuehn, L.4
Dick, T.P.5
-
73
-
-
26244445001
-
Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing
-
Strehl B, Seifert U, Krüger E, Heink S, Kuckelkorn U, et al. 2005. Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol. Rev. 207:19-30
-
(2005)
Immunol. Rev
, vol.207
, pp. 19-30
-
-
Strehl, B.1
Seifert, U.2
Krüger, E.3
Heink, S.4
Kuckelkorn, U.5
-
74
-
-
0037013955
-
Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes
-
Cascio P, Call M, Petre BM, Walz T, Goldberg AL. 2002. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J. 21:2636-45
-
(2002)
EMBO J
, vol.21
, pp. 2636-2645
-
-
Cascio, P.1
Call, M.2
Petre, B.M.3
Walz, T.4
Goldberg, A.L.5
-
75
-
-
0032539818
-
Identification of an activation region in the proteasome activator REGalpha
-
Zhang Z, Clawson A, Realini C, Jensen CC, Knowlton JR, et al. 1998. Identification of an activation region in the proteasome activator REGalpha. Proc. Natl. Acad. Sci. USA 95:2807-11
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 2807-2811
-
-
Zhang, Z.1
Clawson, A.2
Realini, C.3
Jensen, C.C.4
Knowlton, J.R.5
-
76
-
-
59649104242
-
Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome
-
Bech-Otschir D, Helfrich A, Enenkel C, Consiglieri G, Seeger M, et al. 2009. Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat. Struct. Mol. Biol. 16:219-25
-
(2009)
Nat. Struct. Mol. Biol
, vol.16
, pp. 219-225
-
-
Bech-Otschir, D.1
Helfrich, A.2
Enenkel, C.3
Consiglieri, G.4
Seeger, M.5
-
77
-
-
0034607871
-
Atomic force microscopy reveals two conformations of the 20 S proteasome from fission yeast
-
Osmulski PA, Gaczynska M. 2000. Atomic force microscopy reveals two conformations of the 20 S proteasome from fission yeast. J. Biol. Chem. 275:13171-74
-
(2000)
J. Biol. Chem
, vol.275
, pp. 13171-13174
-
-
Osmulski, P.A.1
Gaczynska, M.2
-
78
-
-
0038686574
-
Proteasome disassembly and downregulation is correlated with viability during stationary phase
-
Bajorek M, Finley D, Glickman MH. 2003. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr. Biol. 13:1140-44
-
(2003)
Curr. Biol
, vol.13
, pp. 1140-1144
-
-
Bajorek, M.1
Finley, D.2
Glickman, M.H.3
-
79
-
-
0037147328
-
What curves α-solenoids? Evidence for an a-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome
-
Kajava AV. 2002. What curves α-solenoids? Evidence for an a-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome. J. Biol. Chem. 277:49791-98
-
(2002)
J. Biol. Chem
, vol.277
, pp. 49791-49798
-
-
Kajava, A.V.1
-
81
-
-
33748188085
-
Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1
-
Yao T, Song L, Xu W, DeMartino GN, Florens L, et al. 2006. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 8:994-1002
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 994-1002
-
-
Yao, T.1
Song, L.2
Xu, W.3
DeMartino, G.N.4
Florens, L.5
-
82
-
-
33749348820
-
A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes
-
Hamazaki J, Iemura S, Natsume T, Yashiroda H, Tanaka K, et al. 2006. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 25:4524-36
-
(2006)
EMBO J
, vol.25
, pp. 4524-4536
-
-
Hamazaki, J.1
Iemura, S.2
Natsume, T.3
Yashiroda, H.4
Tanaka, K.5
-
83
-
-
0033600798
-
Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome
-
Hiyama H, Yokoi M, Masutani C, Sugasawa K, Maekawa T, et al. 1999. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 274:28019-25
-
(1999)
J. Biol. Chem
, vol.274
, pp. 28019-28025
-
-
Hiyama, H.1
Yokoi, M.2
Masutani, C.3
Sugasawa, K.4
Maekawa, T.5
-
84
-
-
0037065732
-
Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a
-
Walters KJ, Kleijnen MF, Goh AM,Wagner G, Howley PM. 2002. Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a. Biochemistry 41:1767-77
-
(2002)
Biochemistry
, vol.41
, pp. 1767-1777
-
-
Walters, K.J.1
Kleijnen, M.F.2
Goh, A.M.3
Wagner, G.4
Howley, P.M.5
-
85
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, et al. 2002. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10:495-507
-
(2002)
Mol. Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.S.1
Hanna, J.2
Borodovsky, A.3
Crosas, B.4
Schmidt, M.5
-
86
-
-
7944230364
-
Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26 S proteasome in fission yeast
-
Stone M, Hartmann-Petersen R, Seeger M, Bech-Otschir D, Wallace M, et al. 2004. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26 S proteasome in fission yeast. J. Mol. Biol. 344:697-706
-
(2004)
J. Mol. Biol
, vol.344
, pp. 697-706
-
-
Stone, M.1
Hartmann-Petersen, R.2
Seeger, M.3
Bech-Otschir, D.4
Wallace, M.5
-
87
-
-
33845600006
-
Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities
-
Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, et al. 2006. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127:1401-13
-
(2006)
Cell
, vol.127
, pp. 1401-1413
-
-
Crosas, B.1
Hanna, J.2
Kirkpatrick, D.S.3
Zhang, D.P.4
Tone, Y.5
-
88
-
-
34248350363
-
MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function
-
Maytal-Kivity V, Reis N, Hofmann K, Glickman MH. 2002. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem. 3:28-39
-
(2002)
BMC Biochem
, vol.3
, pp. 28-39
-
-
Maytal-Kivity, V.1
Reis, N.2
Hofmann, K.3
Glickman, M.H.4
-
89
-
-
33846849171
-
The JAMM motif of human deubiquitinase Poh1 is essential for cell viability
-
Gallery M, Blank JL, Lin Y, Gutierrez JA, Pulido JC, et al. 2007. The JAMM motif of human deubiquitinase Poh1 is essential for cell viability. Mol. Cancer Ther. 6:262-68
-
(2007)
Mol. Cancer Ther
, vol.6
, pp. 262-268
-
-
Gallery, M.1
Blank, J.L.2
Lin, Y.3
Gutierrez, J.A.4
Pulido, J.C.5
-
90
-
-
0034725525
-
Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome
-
Kapelari B, Bech-Otschir D, Hegerl R, Schade R, Dumdey R, et al. 2000. Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome. J. Mol. Biol. 300:1169-78
-
(2000)
J. Mol. Biol
, vol.300
, pp. 1169-1178
-
-
Kapelari, B.1
Bech-Otschir, D.2
Hegerl, R.3
Schade, R.4
Dumdey, R.5
-
91
-
-
33747347236
-
Structural organization of the 19S proteasome lid: Insights from MS of intact complexes
-
Sharon M, Taverner T, Ambroggio XI, Deshaies RJ, Robinson CV. 2006. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4:e267
-
(2006)
PLoS Biol
, vol.4
-
-
Sharon, M.1
Taverner, T.2
Ambroggio, X.I.3
Deshaies, R.J.4
Robinson, C.V.5
-
92
-
-
25444464111
-
Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes
-
Scheel H, Hofmann K. 2005. Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes. BMC Bioinformatics 6:71
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 71
-
-
Scheel, H.1
Hofmann, K.2
-
93
-
-
0037131242
-
Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1
-
Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, et al. 2002. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298:608-11
-
(2002)
Science
, vol.298
, pp. 608-611
-
-
Cope, G.A.1
Suh, G.S.2
Aravind, L.3
Schwarz, S.E.4
Zipursky, S.L.5
-
94
-
-
50449108516
-
Structural insights into NEDD8 activation of cullin-RING ligases: Conformational control of conjugation
-
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, et al. 2008. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995-1006
-
(2008)
Cell
, vol.134
, pp. 995-1006
-
-
Duda, D.M.1
Borg, L.A.2
Scott, D.C.3
Hunt, H.W.4
Hammel, M.5
-
95
-
-
0038686677
-
Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo
-
Peng Z, Shen Y, Feng S, Wang X, Chitteti BN, et al. 2003. Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo. Curr. Biol. 13:R504-5
-
(2003)
Curr. Biol
, vol.13
-
-
Peng, Z.1
Shen, Y.2
Feng, S.3
Wang, X.4
Chitteti, B.N.5
-
96
-
-
23644447173
-
Consequences of COP9 signalosome and 26S proteasome interaction
-
Huang X, Hetfeld BK, Seifert U, Kähne T, Kloetzel PM, et al. 2005. Consequences of COP9 signalosome and 26S proteasome interaction. FEBS J. 272:3909-17
-
(2005)
FEBS J
, vol.272
, pp. 3909-3917
-
-
Huang, X.1
Hetfeld, B.K.2
Seifert, U.3
Kähne, T.4
Kloetzel, P.M.5
-
97
-
-
0037126632
-
Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome
-
Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD. 2001. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20:7096-107
-
(2001)
EMBO J
, vol.20
, pp. 7096-7107
-
-
Fu, H.1
Reis, N.2
Lee, Y.3
Glickman, M.H.4
Vierstra, R.D.5
-
98
-
-
33749049581
-
Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
-
Hanna J, Hathaway NA, Tone Y, Elsasser S, Kirkpatrick DS, et al. 2006. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99-111
-
(2006)
Cell
, vol.127
, pp. 99-111
-
-
Hanna, J.1
Hathaway, N.A.2
Tone, Y.3
Elsasser, S.4
Kirkpatrick, D.S.5
-
99
-
-
0344629427
-
Ubiquitin depletion as a key mediator of toxicity by translational inhibitors
-
Hanna J, Leggett DS, Finley D. 2003. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 23:9251-61
-
(2003)
Mol. Cell. Biol
, vol.23
, pp. 9251-9261
-
-
Hanna, J.1
Leggett, D.S.2
Finley, D.3
-
101
-
-
0037144567
-
Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel
-
Lee C, Prakash S, Matouschek A. 2002. Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. J. Biol. Chem. 277:34760-65
-
(2002)
J. Biol. Chem
, vol.277
, pp. 34760-34765
-
-
Lee, C.1
Prakash, S.2
Matouschek, A.3
-
102
-
-
33746786326
-
Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site
-
Piwko W, Jentsch S. 2006. Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nat. Struct. Mol. Biol. 13:691-97
-
(2006)
Nat. Struct. Mol. Biol
, vol.13
, pp. 691-697
-
-
Piwko, W.1
Jentsch, S.2
-
103
-
-
0031038169
-
Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome
-
Lam YA, XuW, DeMartino GN, Cohen RE. 1997. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385:737-40
-
(1997)
Nature
, vol.385
, pp. 737-740
-
-
Lam, Y.A.1
Xu, W.2
DeMartino, G.N.3
Cohen, R.E.4
-
105
-
-
0347993105
-
Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool
-
Chernova TA, Allen KD, Wesoloski LM, Shanks JR, Chernoff YO, et al. 2003. Pleiotropic effects of Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. J. Biol. Chem. 278:52102-15
-
(2003)
J. Biol. Chem
, vol.278
, pp. 52102-52115
-
-
Chernova, T.A.1
Allen, K.D.2
Wesoloski, L.M.3
Shanks, J.R.4
Chernoff, Y.O.5
-
107
-
-
41649091606
-
Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome
-
Koulich E, Li X, DeMartino GN. 2008. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol. Biol. Cell 19:1072-82
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1072-1082
-
-
Koulich, E.1
Li, X.2
DeMartino, G.N.3
-
108
-
-
34249007126
-
A ubiquitin stress response induces altered proteasome composition
-
Hanna J, Meides A, Zhang DP, Finley D. 2007. A ubiquitin stress response induces altered proteasome composition. Cell 129:747-59
-
(2007)
Cell
, vol.129
, pp. 747-759
-
-
Hanna, J.1
Meides, A.2
Zhang, D.P.3
Finley, D.4
-
109
-
-
0342871691
-
Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: Effects on replication, transcription, translation, and the cellular stress response
-
Mimnaugh EG, Chen HY, Davie JR, Celis JE, Neckers L. 1997. Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response. Biochemistry 36:14418-29
-
(1997)
Biochemistry
, vol.36
, pp. 14418-14429
-
-
Mimnaugh, E.G.1
Chen, H.Y.2
Davie, J.R.3
Celis, J.E.4
Neckers, L.5
-
110
-
-
10744224825
-
Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron
-
Osaka H,Wang YL,Takada K,Takizawa S, Setsuie R, et al. 2003. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum. Mol. Genet. 12:1945-58
-
(2003)
Hum. Mol. Genet
, vol.12
, pp. 1945-1958
-
-
Osaka, H.1
Wang, Y.L.2
Takada, K.3
Takizawa, S.4
Setsuie, R.5
-
111
-
-
27644477433
-
Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice
-
Anderson C, Crimmins S, Wilson JA, Korbel GA, Ploegh HL, et al. 2005. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J. Neurochem. 95:724-31
-
(2005)
J. Neurochem
, vol.95
, pp. 724-731
-
-
Anderson, C.1
Crimmins, S.2
Wilson, J.A.3
Korbel, G.A.4
Ploegh, H.L.5
-
112
-
-
56249086797
-
Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity
-
Walters BJ, Campbell SL, Chen PC,Taylor AP, Schroeder DG, et al. 2008. Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol. Cell. Neurosci. 39:539-48
-
(2008)
Mol. Cell. Neurosci
, vol.39
, pp. 539-548
-
-
Walters, B.J.1
Campbell, S.L.2
Chen, P.C.3
Taylor, A.P.4
Schroeder, D.G.5
-
113
-
-
41649088465
-
Hypothalamic neurodegeneration and adultonset obesity in mice lacking the Ubb polyubiquitin gene
-
Ryu KY, Garza JC, Lu XY, Barsh GS, Kopito RR. 2008. Hypothalamic neurodegeneration and adultonset obesity in mice lacking the Ubb polyubiquitin gene. Proc. Natl. Acad. Sci. USA 105:4016-21
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 4016-4021
-
-
Ryu, K.Y.1
Garza, J.C.2
Lu, X.Y.3
Barsh, G.S.4
Kopito, R.R.5
-
114
-
-
34748859663
-
Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development
-
Hamazaki J, Sasaki K, Kawahara H, Hisanaga S, Tanaka K, et al. 2007. Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol. Cell. Biol. 27:6629-38
-
(2007)
Mol. Cell. Biol
, vol.27
, pp. 6629-6638
-
-
Hamazaki, J.1
Sasaki, K.2
Kawahara, H.3
Hisanaga, S.4
Tanaka, K.5
-
115
-
-
0038339144
-
A novel regulation mechanism ofDNArepair by damage-induced and RAD23-dependent stabilization of Xeroderma pigmentosum group C protein
-
NgJM,Vermeulen W, van der Horst GT, Bergink S, Sugasawa K, et al. 2003. A novel regulation mechanism ofDNArepair by damage-induced and RAD23-dependent stabilization of Xeroderma pigmentosum group C protein. Genes Dev. 17:1630-45
-
(2003)
Genes Dev
, vol.17
, pp. 1630-1645
-
-
NgJM1
Vermeulen, W.2
van der3
Horst, G.T.4
Bergink, S.5
Sugasawa, K.6
-
116
-
-
0037129213
-
A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal
-
Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM. 2002. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416:763-67
-
(2002)
Nature
, vol.416
, pp. 763-767
-
-
Lam, Y.A.1
Lawson, T.G.2
Velayutham, M.3
Zweier, J.L.4
Pickart, C.M.5
-
117
-
-
52049114924
-
Physical and functional interactions of monoubiquitylated transactivators with the proteasome
-
Archer CT, Burdine L, Liu B, Ferdous A, Johnston SA, et al. 2008. Physical and functional interactions of monoubiquitylated transactivators with the proteasome. J. Biol. Chem. 283:21789-98
-
(2008)
J. Biol. Chem
, vol.283
, pp. 21789-21798
-
-
Archer, C.T.1
Burdine, L.2
Liu, B.3
Ferdous, A.4
Johnston, S.A.5
-
118
-
-
34247349494
-
Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin
-
Kang Y, Chen X, Lary JW, Cole JL,Walters KJ. 2007. Defining how ubiquitin receptors hHR23a and S5a bind polyubiquitin. J. Mol. Biol. 369:168-76
-
(2007)
J. Mol. Biol
, vol.369
, pp. 168-176
-
-
Kang, Y.1
Chen, X.2
Lary, J.W.3
Cole, J.L.4
Walters, K.J.5
-
119
-
-
17144417404
-
Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition
-
Wang Q, Young P, Walters KJ. 2005. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 348:727-39
-
(2005)
J. Mol. Biol
, vol.348
, pp. 727-739
-
-
Wang, Q.1
Young, P.2
Walters, K.J.3
-
120
-
-
0034254546
-
Developmentally regulated, alternative splicing of the Rpn10 gene generates multiple forms of 26S proteasomes
-
Kawahara H, Kasahara M, Nishiyama A, Ohsumi K, Goto T, et al. 2000. Developmentally regulated, alternative splicing of the Rpn10 gene generates multiple forms of 26S proteasomes. EMBO J. 19:4144-53
-
(2000)
EMBO J
, vol.19
, pp. 4144-4153
-
-
Kawahara, H.1
Kasahara, M.2
Nishiyama, A.3
Ohsumi, K.4
Goto, T.5
-
121
-
-
0032489524
-
Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a
-
Young P, Deveraux Q, Beal RE, Pickart CM, Rechsteiner M. 1998. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273:5461-67
-
(1998)
J. Biol. Chem
, vol.273
, pp. 5461-5467
-
-
Young, P.1
Deveraux, Q.2
Beal, R.E.3
Pickart, C.M.4
Rechsteiner, M.5
-
122
-
-
33845713194
-
hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37
-
Qiu XB, Ouyang SY, Li CJ, Miao S,Wang L, et al. 2006. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 25:5742-53
-
(2006)
EMBO J
, vol.25
, pp. 5742-5753
-
-
Qiu, X.B.1
Ouyang, S.Y.2
Li, C.J.3
Miao, S.4
Wang, L.5
-
123
-
-
52049112825
-
Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin remodeling complex
-
Yao T, Song L, Jin J, Cai Y, Takahashi H, et al. 2008. Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin remodeling complex. Mol. Cell 31:909-17
-
(2008)
Mol. Cell
, vol.31
, pp. 909-917
-
-
Yao, T.1
Song, L.2
Jin, J.3
Cai, Y.4
Takahashi, H.5
-
125
-
-
3042764201
-
Multiple interactions of Rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis
-
Kim I, Mi K, Rao H. 2004. Multiple interactions of Rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15:3357-65
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 3357-3365
-
-
Kim, I.1
Mi, K.2
Rao, H.3
-
126
-
-
11844263929
-
A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting
-
Richly H, Rape M, Braun S, Rumpf S, Hoege C, et al. 2005. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73-84
-
(2005)
Cell
, vol.120
, pp. 73-84
-
-
Richly, H.1
Rape, M.2
Braun, S.3
Rumpf, S.4
Hoege, C.5
-
127
-
-
20444417275
-
The DNA damage-inducible UbLUbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease
-
Kaplun L, Tzirkin R, Bakhrat A, Shabek N, Ivantsiv Y, et al. 2005. The DNA damage-inducible UbLUbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol. Cell. Biol. 25:5355-62
-
(2005)
Mol. Cell. Biol
, vol.25
, pp. 5355-5362
-
-
Kaplun, L.1
Tzirkin, R.2
Bakhrat, A.3
Shabek, N.4
Ivantsiv, Y.5
-
128
-
-
33644513063
-
Unique role for the UbL-UbA protein Ddi1 in turnover of SCFUfo1 complexes
-
Ivantsiv Y, Kaplun L, Tzirkin-Goldin R, Shabek N, Raveh D. 2006. Unique role for the UbL-UbA protein Ddi1 in turnover of SCFUfo1 complexes. Mol. Cell. Biol. 26:1579-88
-
(2006)
Mol. Cell. Biol
, vol.26
, pp. 1579-1588
-
-
Ivantsiv, Y.1
Kaplun, L.2
Tzirkin-Goldin, R.3
Shabek, N.4
Raveh, D.5
-
129
-
-
27144534830
-
Role of the UBL-UBA protein KPC2 in degradation of p27 at G1 phase of the cell cycle
-
Hara T, Kamura T, Kotoshiba S, Takahashi H, Fujiwara K, et al. 2005. Role of the UBL-UBA protein KPC2 in degradation of p27 at G1 phase of the cell cycle. Mol. Cell. Biol. 25:9292-303
-
(2005)
Mol. Cell. Biol
, vol.25
, pp. 9292-9303
-
-
Hara, T.1
Kamura, T.2
Kotoshiba, S.3
Takahashi, H.4
Fujiwara, K.5
-
130
-
-
0033603339
-
Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination
-
Kumar S, Talis AL, Howley PM. 1999. Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J. Biol. Chem. 274:18785-92
-
(1999)
J. Biol. Chem
, vol.274
, pp. 18785-18792
-
-
Kumar, S.1
Talis, A.L.2
Howley, P.M.3
-
131
-
-
0033636785
-
The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome
-
Kleijnen MF, Shih AH, Zhou P, Kumar S, Soccio RE, et al. 2000. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell 6:409-19
-
(2000)
Mol. Cell
, vol.6
, pp. 409-419
-
-
Kleijnen, M.F.1
Shih, A.H.2
Zhou, P.3
Kumar, S.4
Soccio, R.E.5
-
132
-
-
0034282219
-
The DNA repair protein Rad23 is a negative regulator of multi-ubiquitin chain assembly
-
Ortolan TG, Tongaonkar P, Lambertson D, Chen L, Schauber C, et al. 2000. The DNA repair protein Rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat. Cell Biol. 2:601-8
-
(2000)
Nat. Cell Biol
, vol.2
, pp. 601-608
-
-
Ortolan, T.G.1
Tongaonkar, P.2
Lambertson, D.3
Chen, L.4
Schauber, C.5
-
133
-
-
0034762028
-
Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly
-
2:933-38
-
Chen L, Shinde U, Ortolan TG, Madura K. 2001. Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2:933-38
-
(2001)
EMBO Rep
-
-
Chen, L.1
Shinde, U.2
Ortolan, T.G.3
Madura, K.4
-
134
-
-
0037472654
-
Ubiquitin binding proteins protect ubiquitin conjugates from disassembly
-
Hartmann-Petersen R, Hendil KB, Gordon C. 2003. Ubiquitin binding proteins protect ubiquitin conjugates from disassembly. FEBS Lett. 535:77-81
-
(2003)
FEBS Lett
, vol.535
, pp. 77-81
-
-
Hartmann-Petersen, R.1
Hendil, K.B.2
Gordon, C.3
-
135
-
-
0036382885
-
Identification of ubiquitin-like protein-binding subunits of the 26S proteasome
-
Saeki Y, Sone T, Toh-e A, Yokosawa H. 2002. Identification of ubiquitin-like protein-binding subunits of the 26S proteasome. Biochem. Biophys. Res. Commun. 296:813-19
-
(2002)
Biochem. Biophys. Res. Commun
, vol.296
, pp. 813-819
-
-
Saeki, Y.1
Sone, T.2
Toh-e, A.3
Yokosawa, H.4
-
136
-
-
0038268188
-
Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins
-
Seeger M, Hartmann-Petersen R, Wilkinson CR, Wallace M, Samejima I, et al. 2003. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins. J. Biol. Chem. 278:16791-96
-
(2003)
J. Biol. Chem
, vol.278
, pp. 16791-16796
-
-
Seeger, M.1
Hartmann-Petersen, R.2
Wilkinson, C.R.3
Wallace, M.4
Samejima, I.5
-
137
-
-
0029165247
-
Cloning and sequencing of a non-ATPase subunit of the regulatory complex of the Drosophila 26S protease
-
Haracska L, Udvardy A. 1995. Cloning and sequencing of a non-ATPase subunit of the regulatory complex of the Drosophila 26S protease. Eur. J. Biochem. 231:720-25
-
(1995)
Eur. J. Biochem
, vol.231
, pp. 720-725
-
-
Haracska, L.1
Udvardy, A.2
-
138
-
-
55049090325
-
Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome
-
Matiuhin Y, Kirkpatrick DS, Ziv I, Kim W, Dakshinamurthy A, et al. 2008. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol. Cell 32:415-25
-
(2008)
Mol. Cell
, vol.32
, pp. 415-425
-
-
Matiuhin, Y.1
Kirkpatrick, D.S.2
Ziv, I.3
Kim, W.4
Dakshinamurthy, A.5
-
139
-
-
33751581527
-
Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway
-
Ishii T, Funakoshi M, Kobayashi H. 2006. Yeast Pth2 is a UBL domain-binding protein that participates in the ubiquitin-proteasome pathway. EMBO J. 25:5492-503
-
(2006)
EMBO J
, vol.25
, pp. 5492-5503
-
-
Ishii, T.1
Funakoshi, M.2
Kobayashi, H.3
-
140
-
-
0035822688
-
A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control
-
Krylov DM, Koonin EV. 2001. A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control. Curr. Biol. 11:R584-R587
-
(2001)
Curr. Biol
, vol.11
-
-
Krylov, D.M.1
Koonin, E.V.2
-
141
-
-
33750831567
-
Ddi1, a eukaryotic protein with the retroviral protease fold
-
Sirkis R, Gerst JE, Fass D. 2006. Ddi1, a eukaryotic protein with the retroviral protease fold. J. Mol. Biol. 364:376-87
-
(2006)
J. Mol. Biol
, vol.364
, pp. 376-387
-
-
Sirkis, R.1
Gerst, J.E.2
Fass, D.3
-
142
-
-
55549084908
-
Different domains of the UBL-UBA ubiquitin receptor, Ddi1/Vsm1, are involved in its multiple cellular roles
-
Gabriely G, Kama R, Gelin-Licht R, Gerst JE. 2008. Different domains of the UBL-UBA ubiquitin receptor, Ddi1/Vsm1, are involved in its multiple cellular roles. Mol. Biol. Cell 19:3625-37
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3625-3637
-
-
Gabriely, G.1
Kama, R.2
Gelin-Licht, R.3
Gerst, J.E.4
-
143
-
-
4744372012
-
The effects of the polyglutamine repeat protein ataxin-1 on the UbL-UBA protein A1Up
-
Riley BE, Xu Y, Zoghbi HY, Orr HT. 2004. The effects of the polyglutamine repeat protein ataxin-1 on the UbL-UBA protein A1Up. J. Biol. Chem. 279:42290-301
-
(2004)
J. Biol. Chem
, vol.279
, pp. 42290-42301
-
-
Riley, B.E.1
Xu, Y.2
Zoghbi, H.Y.3
Orr, H.T.4
-
144
-
-
41949131052
-
A novel connexin43- interacting protein, CIP75, which belongs to the UbL-UBA protein family, regulates the turnover of connexin43
-
Li X, Su V, Kurata WE, Jin C, Lau AF. 2008. A novel connexin43- interacting protein, CIP75, which belongs to the UbL-UBA protein family, regulates the turnover of connexin43. J. Biol. Chem. 283:5748-59
-
(2008)
J. Biol. Chem
, vol.283
, pp. 5748-5759
-
-
Li, X.1
Su, V.2
Kurata, W.E.3
Jin, C.4
Lau, A.F.5
-
145
-
-
47749148062
-
p62 serves as a shuttling factor for TrkA interaction with the proteasome
-
Geetha T, Seibenhener ML, Chen L, Madura K, Wooten MW. 2008. p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem. Biophys. Res. Comm. 374:33-37
-
(2008)
Biochem. Biophys. Res. Comm
, vol.374
, pp. 33-37
-
-
Geetha, T.1
Seibenhener, M.L.2
Chen, L.3
Madura, K.4
Wooten, M.W.5
-
146
-
-
0024514688
-
A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein
-
Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, et al. 1989. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576-83
-
(1989)
Science
, vol.243
, pp. 1576-1583
-
-
Chau, V.1
Tobias, J.W.2
Bachmair, A.3
Marriott, D.4
Ecker, D.J.5
-
147
-
-
0028146192
-
Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant
-
Finley D, Sadis S, Monia BP, Boucher P, Ecker DJ, et al. 1994. Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Mol. Cell. Biol. 14:5501-9
-
(1994)
Mol. Cell. Biol
, vol.14
, pp. 5501-5509
-
-
Finley, D.1
Sadis, S.2
Monia, B.P.3
Boucher, P.4
Ecker, D.J.5
-
148
-
-
0028847989
-
A ubiquitin mutant with specific defects in DNA repair and multiubiquitination
-
Spence J, Sadis S, Haas AL, Finley D. 1995. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15:1265-73
-
(1995)
Mol. Cell. Biol
, vol.15
, pp. 1265-1273
-
-
Spence, J.1
Sadis, S.2
Haas, A.L.3
Finley, D.4
-
149
-
-
0037068455
-
RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
-
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135-41
-
(2002)
Nature
, vol.419
, pp. 135-141
-
-
Hoege, C.1
Pfander, B.2
Moldovan, G.L.3
Pyrowolakis, G.4
Jentsch, S.5
-
150
-
-
59649086030
-
Nonproteolytic functions of ubiquitin in cell signaling
-
Chen ZJ, Sun LJ. 2009. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33:275-86
-
(2009)
Mol. Cell
, vol.33
, pp. 275-286
-
-
Chen, Z.J.1
Sun, L.J.2
-
151
-
-
0030028574
-
Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5
-
Baboshina OV, Haas AL. 1996. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J. Biol. Chem. 271:2823-31
-
(1996)
J. Biol. Chem
, vol.271
, pp. 2823-2831
-
-
Baboshina, O.V.1
Haas, A.L.2
-
152
-
-
0033525589
-
A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly
-
Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, et al. 1999. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635-44
-
(1999)
Cell
, vol.96
, pp. 635-644
-
-
Koegl, M.1
Hoppe, T.2
Schlenker, S.3
Ulrich, H.D.4
Mayer, T.U.5
-
153
-
-
0035958926
-
In vitro assembly and recognition of Lys-63 polyubiquitin chains
-
Hofmann RM, Pickart CM. 2001. In vitro assembly and recognition of Lys-63 polyubiquitin chains. J. Biol. Chem. 276:27936-43
-
(2001)
J. Biol. Chem
, vol.276
, pp. 27936-27943
-
-
Hofmann, R.M.1
Pickart, C.M.2
-
154
-
-
33745742269
-
Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology
-
Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J, et al. 2006. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8:700-10
-
(2006)
Nat. Cell Biol
, vol.8
, pp. 700-710
-
-
Kirkpatrick, D.S.1
Hathaway, N.A.2
Hanna, J.3
Elsasser, S.4
Rush, J.5
-
155
-
-
43049162227
-
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
-
Jin L,Williamson A, Banerjee S, Philipp I, Rape M. 2008. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133:653-65
-
(2008)
Cell
, vol.133
, pp. 653-665
-
-
Jin, L.1
Williamson, A.2
Banerjee, S.3
Philipp, I.4
Rape, M.5
-
156
-
-
26944465404
-
Diverse polyubiquitin interaction properties of ubiquitin-associated domains
-
Raasi S, Varadan R, Fushman D, Pickart CM. 2005. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat. Struct. Mol. Biol. 12:708-14
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 708-714
-
-
Raasi, S.1
Varadan, R.2
Fushman, D.3
Pickart, C.M.4
-
157
-
-
60549107173
-
Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
-
Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, et al. 2009. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28:359-71
-
(2009)
EMBO J
, vol.28
, pp. 359-371
-
-
Saeki, Y.1
Kudo, T.2
Sone, T.3
Kikuchi, Y.4
Yokosawa, H.5
-
158
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional polyubiquitin chains in proteasomal degradation
-
Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, et al. 2009. Quantitative proteomics reveals the function of unconventional polyubiquitin chains in proteasomal degradation. Cell 137:133-45
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
Duong, D.M.2
Seyfried, N.T.3
Cheng, D.4
Xie, Y.5
-
159
-
-
34547130325
-
Certain pairs of ubiquitinconjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages
-
Kim HT, Kim KP, Lledias F, Kisselev AF, Scaglione KM, et al. 2007. Certain pairs of ubiquitinconjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282:17375-86
-
(2007)
J. Biol. Chem
, vol.282
, pp. 17375-17386
-
-
Kim, H.T.1
Kim, K.P.2
Lledias, F.3
Kisselev, A.F.4
Scaglione, K.M.5
-
160
-
-
34447523329
-
Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors
-
Boutet SC, Disatnik MH, Chan LS, Iori K, Rando TA. 2007. Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 130:349-62
-
(2007)
Cell
, vol.130
, pp. 349-362
-
-
Boutet, S.C.1
Disatnik, M.H.2
Chan, L.S.3
Iori, K.4
Rando, T.A.5
-
161
-
-
0026714435
-
Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination
-
Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, et al. 1992. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597-99
-
(1992)
Nature
, vol.360
, pp. 597-599
-
-
Murakami, Y.1
Matsufuji, S.2
Kameji, T.3
Hayashi, S.4
Igarashi, K.5
-
162
-
-
0345701307
-
Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate
-
Zhang M, Pickart CM, Coffino P. 2003. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 22:1488-96
-
(2003)
EMBO J
, vol.22
, pp. 1488-1496
-
-
Zhang, M.1
Pickart, C.M.2
Coffino, P.3
-
163
-
-
57749090398
-
HTLV-1 HBZ protein bypasses the targeting function of ubiquitination
-
Isono O, Ohshima T, Saeki Y, Matsumoto J, Hijikata M, et al. 2008. HTLV-1 HBZ protein bypasses the targeting function of ubiquitination. J. Biol. Chem. 283:34273-82
-
(2008)
J. Biol. Chem
, vol.283
, pp. 34273-34282
-
-
Isono, O.1
Ohshima, T.2
Saeki, Y.3
Matsumoto, J.4
Hijikata, M.5
-
164
-
-
17644376207
-
FAT10, a ubiquitin-independent signal for proteasomal degradation
-
Hipp MS, Kalveram B, Raasi S, Groettrup M, Schmidtke G. 2005. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol. Cell. Biol. 25:3483-91
-
(2005)
Mol. Cell. Biol
, vol.25
, pp. 3483-3491
-
-
Hipp, M.S.1
Kalveram, B.2
Raasi, S.3
Groettrup, M.4
Schmidtke, G.5
-
165
-
-
58649086714
-
Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L
-
Schmidtke G, Kalveram B, Groettrup M. 2009. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett. 583:591-94
-
(2009)
FEBS Lett
, vol.583
, pp. 591-594
-
-
Schmidtke, G.1
Kalveram, B.2
Groettrup, M.3
-
166
-
-
0034640520
-
Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis
-
Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, et al. 2000. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J. Biol. Chem. 275:14336-45
-
(2000)
J. Biol. Chem
, vol.275
, pp. 14336-14345
-
-
Tanahashi, N.1
Murakami, Y.2
Minami, Y.3
Shimbara, N.4
Hendil, K.B.5
-
167
-
-
33845416970
-
Global organization and function of mammalian cytosolic proteasome pools: Implications for PA28 and 19S regulatory complexes
-
Shibatani T, Carlson EJ, Larabee F, McCormack AL, Fruh K, et al. 2006. Global organization and function of mammalian cytosolic proteasome pools: implications for PA28 and 19S regulatory complexes. Mol. Biol. Cell 17:4962-71.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 4962-4971
-
-
Shibatani, T.1
Carlson, E.J.2
Larabee, F.3
McCormack, A.L.4
Fruh, K.5
-
168
-
-
18744391955
-
The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle
-
Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, et al. 2005. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol. 12:294-303
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 294-303
-
-
Schmidt, M.1
Haas, W.2
Crosas, B.3
Santamaria, P.G.4
Gygi, S.P.5
-
169
-
-
0035847095
-
Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGgamma (PA28gamma)
-
Masson P, Andersson O, PetersenUM,Young P. 2001. Identification and characterization of a Drosophila nuclear proteasome regulator. A homolog of human 11 S REGgamma (PA28gamma). J. Biol. Chem. 276:1383-90
-
(2001)
J. Biol. Chem
, vol.276
, pp. 1383-1390
-
-
Masson, P.1
Andersson, O.2
PetersenUM3
Young, P.4
-
170
-
-
31044449824
-
The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome
-
Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q, et al. 2006. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell 124:381-92
-
(2006)
Cell
, vol.124
, pp. 381-392
-
-
Li, X.1
Lonard, D.M.2
Jung, S.Y.3
Malovannaya, A.4
Feng, Q.5
-
171
-
-
34250342888
-
Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome
-
Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM. 2007. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol. Cell 26:843-52
-
(2007)
Mol. Cell
, vol.26
, pp. 843-852
-
-
Chen, X.1
Barton, L.F.2
Chi, Y.3
Clurman, B.E.4
Roberts, J.M.5
-
172
-
-
0141856404
-
Proteasome activator PA28gammadependent nuclear retention and degradation of hepatitis C virus core protein
-
Moriishi K, Okabayashi T, Nakai K, Moriya K, Koike K, et al. 2003. Proteasome activator PA28gammadependent nuclear retention and degradation of hepatitis C virus core protein. J. Virol. 77:10237-49
-
(2003)
J. Virol
, vol.77
, pp. 10237-10249
-
-
Moriishi, K.1
Okabayashi, T.2
Nakai, K.3
Moriya, K.4
Koike, K.5
-
173
-
-
0033621341
-
Growth retardation in mice lacking the proteasome activator PA28gamma
-
Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, et al. 1999. Growth retardation in mice lacking the proteasome activator PA28gamma. J. Biol. Chem. 274:38211-15
-
(1999)
J. Biol. Chem
, vol.274
, pp. 38211-38215
-
-
Murata, S.1
Kawahara, H.2
Tohma, S.3
Yamamoto, K.4
Kasahara, M.5
-
174
-
-
1542724417
-
Immune defects in 28-kDa proteasome activator gamma-deficient mice
-
Barton LF, Runnels HA, Schell TD, Cho Y, Gibbons R, et al. 2004. Immune defects in 28-kDa proteasome activator gamma-deficient mice. J. Immunol. 172:3948-54
-
(2004)
J. Immunol
, vol.172
, pp. 3948-3954
-
-
Barton, L.F.1
Runnels, H.A.2
Schell, T.D.3
Cho, Y.4
Gibbons, R.5
-
175
-
-
58149115206
-
REGgamma, a proteasome activator and beyond?
-
Mao I, Liu J, Li X, Luo H. 2008. REGgamma, a proteasome activator and beyond? Cell. Mol. Life Sci. 65:3971-80
-
(2008)
Cell. Mol. Life Sci
, vol.65
, pp. 3971-3980
-
-
Mao, I.1
Liu, J.2
Li, X.3
Luo, H.4
-
176
-
-
0036646488
-
PA200, a nuclear proteasome activator involved in DNA repair
-
Ustrell V, Hoffman L, Pratt G, Rechsteiner M. 2002. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 21:3516-25
-
(2002)
EMBO J
, vol.21
, pp. 3516-3525
-
-
Ustrell, V.1
Hoffman, L.2
Pratt, G.3
Rechsteiner, M.4
-
177
-
-
33749265270
-
Structure of the Blm10-20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes
-
Iwanczyk J, Sadre-Bazzaz K, Ferrell K, Kondrashkina E, Formosa T, et al. 2006. Structure of the Blm10-20 S proteasome complex by cryo-electron microscopy. Insights into the mechanism of activation of mature yeast proteasomes. J. Mol. Biol. 363:648-59
-
(2006)
J. Mol. Biol
, vol.363
, pp. 648-659
-
-
Iwanczyk, J.1
Sadre-Bazzaz, K.2
Ferrell, K.3
Kondrashkina, E.4
Formosa, T.5
-
178
-
-
1942489340
-
New HEAT-like repeat motifs in proteins regulating proteasome structure and function
-
Kajava AV, Gorbea C, Ortega J, Rechsteiner M, Steven AC. 2004. New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J. Struct. Biol. 146:425-30
-
(2004)
J. Struct. Biol
, vol.146
, pp. 425-430
-
-
Kajava, A.V.1
Gorbea, C.2
Ortega, J.3
Rechsteiner, M.4
Steven, A.C.5
-
179
-
-
33645813390
-
Proteasome activator PA200 is required for normal spermatogenesis
-
Khor B, Bredemeyer AL, Huang C-Y, Turnbull IR, Evans R, et al. 2006. Proteasome activator PA200 is required for normal spermatogenesis. Mol. Cell. Biol. 26:2999-3007
-
(2006)
Mol. Cell. Biol
, vol.26
, pp. 2999-3007
-
-
Khor, B.1
Bredemeyer, A.L.2
Huang, C.-Y.3
Turnbull, I.R.4
Evans, R.5
-
180
-
-
0242522904
-
Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly
-
4:959-63
-
Fehlker M, Wendler P, Lehmann A, Enenkel C. 2003. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 4:959-63
-
(2003)
EMBO Rep
-
-
Fehlker, M.1
Wendler, P.2
Lehmann, A.3
Enenkel, C.4
-
181
-
-
36849024844
-
The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation
-
Marques AJ, Glanemann C, Ramos PC, Dohmen RJ. 2007. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem. 282:34869-76
-
(2007)
J. Biol. Chem
, vol.282
, pp. 34869-34876
-
-
Marques, A.J.1
Glanemann, C.2
Ramos, P.C.3
Dohmen, R.J.4
-
182
-
-
0033791447
-
Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
-
Verma R, Chen S, Feldman R, Schieltz D, Yates J, et al. 2000. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11:3425-39
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 3425-3439
-
-
Verma, R.1
Chen, S.2
Feldman, R.3
Schieltz, D.4
Yates, J.5
-
183
-
-
33644670152
-
An integrated mass spectrometry-based proteomic approach: Quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network
-
Guerrero C, Tagwerker C, Kaiser P, Huang L. 2006. An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol. Cell. Proteomics 5:366-78
-
(2006)
Mol. Cell. Proteomics
, vol.5
, pp. 366-378
-
-
Guerrero, C.1
Tagwerker, C.2
Kaiser, P.3
Huang, L.4
-
184
-
-
33947380146
-
Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
-
Wang X, Chen C-F, Baker PR, Chen P-L, Kaiser P, et al. 2007. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46:3553-65
-
(2007)
Biochemistry
, vol.46
, pp. 3553-3565
-
-
Wang, X.1
Chen, C.-F.2
Baker, P.R.3
Chen, P.-L.4
Kaiser, P.5
-
185
-
-
39049117451
-
Identifying dynamic interactors of protein complexes by quantitative mass spectrometry
-
Wang X, Huang L. 2008. Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol. Cell. Proteomics 7:46-57
-
(2008)
Mol. Cell. Proteomics
, vol.7
, pp. 46-57
-
-
Wang, X.1
Huang, L.2
-
186
-
-
51749093587
-
Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis
-
Guerrero C, Milenkovic T, Przulj N, Kaiser P, Huang L. 2008. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc. Nat. Acad. Sci. USA 105:13333-38
-
(2008)
Proc. Nat. Acad. Sci. USA
, vol.105
, pp. 13333-13338
-
-
Guerrero, C.1
Milenkovic, T.2
Przulj, N.3
Kaiser, P.4
Huang, L.5
-
187
-
-
1342300578
-
Integral UBL domain proteins: A family of proteasome interacting proteins
-
Hartmann-Petersen R, Gordon C. 2004. Integral UBL domain proteins: a family of proteasome interacting proteins. Semin. Cell Dev. Biol. 15:247-59
-
(2004)
Semin. Cell Dev. Biol
, vol.15
, pp. 247-259
-
-
Hartmann-Petersen, R.1
Gordon, C.2
-
188
-
-
29144522878
-
Unique proteasome subunit Xrpn10c is a specific receptor for the antiapoptotic ubiquitin-like protein Scythe
-
Kikukawa Y, Minami R, Shimada M, Kobayashi M, Tanaka K, et al. 2005. Unique proteasome subunit Xrpn10c is a specific receptor for the antiapoptotic ubiquitin-like protein Scythe. FEBS J. 272:6373-86
-
(2005)
FEBS J
, vol.272
, pp. 6373-6386
-
-
Kikukawa, Y.1
Minami, R.2
Shimada, M.3
Kobayashi, M.4
Tanaka, K.5
-
189
-
-
33845970909
-
The deubiquitinating enzyme Ubp2 modulates Rsp5-dependentLys63-linked polyubiquitin conjugates in Saccharomyces cerevisiae
-
Kee Y, Muñoz W, Lyon N, Huibregtse JM. 2006. The deubiquitinating enzyme Ubp2 modulates Rsp5-dependentLys63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J. Biol. Chem. 281:36724-31
-
(2006)
J. Biol. Chem
, vol.281
, pp. 36724-36731
-
-
Kee, Y.1
Muñoz, W.2
Lyon, N.3
Huibregtse, J.M.4
-
190
-
-
47749090557
-
Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation
-
Kohlmann S, Schäfer A,Wolf DH. 2008. Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation. J. Biol. Chem. 283:16374-83
-
(2008)
J. Biol. Chem
, vol.283
, pp. 16374-16383
-
-
Kohlmann, S.1
Schäfer, A.2
Wolf, D.H.3
-
191
-
-
0036904663
-
UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis
-
Xie Y, Varshavsky A. 2002. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat. Cell Biol. 4:1003-7
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 1003-1007
-
-
Xie, Y.1
Varshavsky, A.2
-
192
-
-
33644680847
-
Saccharomyces cerevisiae ub-conjugating enzyme Ubc4 binds the proteasome in the presence of translationally damaged proteins
-
Chuang S-M,Madura K. 2005. Saccharomyces cerevisiae ub-conjugating enzyme Ubc4 binds the proteasome in the presence of translationally damaged proteins. Genetics 171:1477-84
-
(2005)
Genetics
, vol.171
, pp. 1477-1484
-
-
Chuang, S.-M.1
Madura, K.2
-
193
-
-
17944366393
-
SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase
-
Farras R, Ferrando A, Jasik J, Kleinow T, Okresz L, et al. 2001. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J. 20:2742-56
-
(2001)
EMBO J
, vol.20
, pp. 2742-2756
-
-
Farras, R.1
Ferrando, A.2
Jasik, J.3
Kleinow, T.4
Okresz, L.5
-
194
-
-
0037368598
-
Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain
-
4:301-6
-
Sakata E, Yamaguchi Y, Kurimoto E, Kikuchi J, Yokoyama S, et al. 2003. Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep. 4:301-6
-
(2003)
EMBO Rep
-
-
Sakata, E.1
Yamaguchi, Y.2
Kurimoto, E.3
Kikuchi, J.4
Yokoyama, S.5
-
195
-
-
0035882157
-
Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4
-
Jäger S, Strayle J, Heinemeyer W, Wolf DH. 2001. Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4. EMBO J. 20:4423-31
-
(2001)
EMBO J
, vol.20
, pp. 4423-4431
-
-
Jäger, S.1
Strayle, J.2
Heinemeyer, W.3
Wolf, D.H.4
-
196
-
-
33748439489
-
An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity
-
Stanhill A, Haynes CM, Zhang Y, Min G, Steele MC, et al. 2006. An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol. Cell 23:875-85
-
(2006)
Mol. Cell
, vol.23
, pp. 875-885
-
-
Stanhill, A.1
Haynes, C.M.2
Zhang, Y.3
Min, G.4
Steele, M.C.5
-
197
-
-
44349160257
-
Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans
-
Yun C, Stanhill A, Yang Y, Zhang Y, Haynes CM. 2008. Proteasomal adaptation to environmental stress links resistance to proteotoxicity with longevity in Caenorhabditis elegans. Proc. Nat. Acad. Sci. USA 105:7094-99
-
(2008)
Proc. Nat. Acad. Sci. USA
, vol.105
, pp. 7094-7099
-
-
Yun, C.1
Stanhill, A.2
Yang, Y.3
Zhang, Y.4
Haynes, C.M.5
-
198
-
-
0036103598
-
The structure of the mammalian 20S proteasome at 2.75 ?A resolution
-
Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, et al. 2002. The structure of the mammalian 20S proteasome at 2.75 ?A resolution. Structure 10:609-18
-
(2002)
Structure
, vol.10
, pp. 609-618
-
-
Unno, M.1
Mizushima, T.2
Morimoto, Y.3
Tomisugi, Y.4
Tanaka, K.5
-
199
-
-
44749085669
-
Thymoproteasome: Probable role in generating positively selecting peptides
-
Murata S, Takahama Y, Tanaka K. 2008. Thymoproteasome: probable role in generating positively selecting peptides. Curr. Opin. Immunol. 20:192-96
-
(2008)
Curr. Opin. Immunol
, vol.20
, pp. 192-196
-
-
Murata, S.1
Takahama, Y.2
Tanaka, K.3
-
200
-
-
34249883977
-
Regulation of CD8+ T cell development by thymus-specific proteasomes
-
Murata S, Sasaki K, Kishimoto T, Niwa S-I, Hayashi H, et al. 2007. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316:1349-53
-
(2007)
Science
, vol.316
, pp. 1349-1353
-
-
Murata, S.1
Sasaki, K.2
Kishimoto, T.3
Niwa, S.-I.4
Hayashi, H.5
-
201
-
-
1342346597
-
Purification of the Arabidopsis 26 S proteasome: Biochemical and molecular analyses revealed the presence of multiple isoforms
-
Yang P, Fu H,Walker J, Papa CM, Smalle J, et al. 2004. Purification of the Arabidopsis 26 S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J. Biol. Chem. 279:6401-13
-
(2004)
J. Biol. Chem
, vol.279
, pp. 6401-6413
-
-
Yang, P.1
Fu, H.2
Walker, J.3
Papa, C.M.4
Smalle, J.5
-
202
-
-
0042329502
-
Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine
-
Kenniston JA, Baker TA, Fernandez JM, Sauer RT. 2003. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114:511-20
-
(2003)
Cell
, vol.114
, pp. 511-520
-
-
Kenniston, J.A.1
Baker, T.A.2
Fernandez, J.M.3
Sauer, R.T.4
-
203
-
-
4344559454
-
An unstructured initiation site is required for efficient proteasome-mediated degradation
-
Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. 2004. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11:830-37
-
(2004)
Nat. Struct. Mol. Biol
, vol.11
, pp. 830-837
-
-
Prakash, S.1
Tian, L.2
Ratliff, K.S.3
Lehotzky, R.E.4
Matouschek, A.5
-
204
-
-
20744457369
-
Role of theGYVGpore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase
-
Park E, Rho YM, Koh OJ, Ahn SW, Seong IS, et al. 2005. Role of theGYVGpore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J. Biol. Chem. 280:22892-98
-
(2005)
J. Biol. Chem
, vol.280
, pp. 22892-22898
-
-
Park, E.1
Rho, Y.M.2
Koh, O.J.3
Ahn, S.W.4
Seong, I.S.5
-
205
-
-
1542283751
-
Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates
-
Siddiqui SM, Sauer RT, Baker TA. 2004. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev. 18:369-74
-
(2004)
Genes Dev
, vol.18
, pp. 369-374
-
-
Siddiqui, S.M.1
Sauer, R.T.2
Baker, T.A.3
-
206
-
-
21244480104
-
Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation
-
Hinnerwisch J, FentonWA, Furtak KJ, Farr GW, Horwich AL. 2005. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121:1029-41
-
(2005)
Cell
, vol.121
, pp. 1029-1041
-
-
Hinnerwisch, J.1
Fenton, W.A.2
Furtak, K.J.3
Farr, G.W.4
Horwich, A.L.5
-
207
-
-
55549088522
-
Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
-
Martin A, Baker TA, Sauer RT. 2008. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15:1147-51
-
(2008)
Nat. Struct. Mol. Biol
, vol.15
, pp. 1147-1151
-
-
Martin, A.1
Baker, T.A.2
Sauer, R.T.3
-
208
-
-
33846216003
-
Proteasome substrate degradation requires association plus extended peptide
-
Takeuchi J, Chen H, Coffino P. 2007. Proteasome substrate degradation requires association plus extended peptide. EMBO J. 26:123-31
-
(2007)
EMBO J
, vol.26
, pp. 123-131
-
-
Takeuchi, J.1
Chen, H.2
Coffino, P.3
-
209
-
-
57749102552
-
Substrate selection by the proteasome during degradation of protein complexes
-
Prakash S, Inobe T, Hatch AJ, Matouschek A. 2009. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 5:29-36
-
(2009)
Nat. Chem. Biol
, vol.5
, pp. 29-36
-
-
Prakash, S.1
Inobe, T.2
Hatch, A.J.3
Matouschek, A.4
-
210
-
-
0030775380
-
Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1
-
Levitskaya J, Sharipo A, Leonchiks A, Ciechanover A, Masucci MG. 1997. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl. Acad. Sci. USA 94:12616-21
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, pp. 12616-12621
-
-
Levitskaya, J.1
Sharipo, A.2
Leonchiks, A.3
Ciechanover, A.4
Masucci, M.G.5
-
211
-
-
1542305655
-
Repeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing
-
Zhang M, Coffino P. 2004. Repeat sequence of Epstein-Barr virus-encoded nuclear antigen 1 protein interrupts proteasome substrate processing. J. Biol. Chem. 279:8635-41
-
(2004)
J. Biol. Chem
, vol.279
, pp. 8635-8641
-
-
Zhang, M.1
Coffino, P.2
-
212
-
-
33646152750
-
Glycine-alanine repeats impair proper substrate unfolding by the proteasome
-
Hoyt MA, Zich J, Takeuchi J, Zhang M, Govaerts C, et al. 2006. Glycine-alanine repeats impair proper substrate unfolding by the proteasome. EMBO J. 25:1720-29
-
(2006)
EMBO J
, vol.25
, pp. 1720-1729
-
-
Hoyt, M.A.1
Zich, J.2
Takeuchi, J.3
Zhang, M.4
Govaerts, C.5
-
213
-
-
0035371394
-
Membrane-bound transcription factors: Regulated release by RIP or RUP
-
Hoppe T, Rape M, Jentsch S. 2001. Membrane-bound transcription factors: regulated release by RIP or RUP. Curr. Opin. Cell Biol. 13:344-48
-
(2001)
Curr. Opin. Cell Biol
, vol.13
, pp. 344-348
-
-
Hoppe, T.1
Rape, M.2
Jentsch, S.3
-
214
-
-
0034268493
-
Activation of a membranebound transcription factor by regulated ubiquitin/proteasome-dependent processing
-
Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, et al. 2000. Activation of a membranebound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102:577-86
-
(2000)
Cell
, vol.102
, pp. 577-586
-
-
Hoppe, T.1
Matuschewski, K.2
Rape, M.3
Schlenker, S.4
Ulrich, H.D.5
-
215
-
-
28544434064
-
A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB
-
Tian L, Holmgren RA, Matouschek A. 2005. A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-κB. Nat. Struct. Mol. Biol. 12:1045-53
-
(2005)
Nat. Struct. Mol. Biol
, vol.12
, pp. 1045-1053
-
-
Tian, L.1
Holmgren, R.A.2
Matouschek, A.3
-
216
-
-
33751264911
-
Gankyrin, the 26 S proteasome, the cell cycle and cancer
-
Mayer RJ, Fujita J. 2006. Gankyrin, the 26 S proteasome, the cell cycle and cancer. Biochem. Soc. Trans. 34:746-48
-
(2006)
Biochem. Soc. Trans
, vol.34
, pp. 746-748
-
-
Mayer, R.J.1
Fujita, J.2
-
217
-
-
33846820426
-
Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome
-
Nakamura Y, Nakano K, Umehara T, Kimura M, Hayashizaki Y, et al. 2007. Structure of the oncoprotein gankyrin in complex with S6 ATPase of the 26S proteasome. Structure 15:179-89
-
(2007)
Structure
, vol.15
, pp. 179-189
-
-
Nakamura, Y.1
Nakano, K.2
Umehara, T.3
Kimura, M.4
Hayashizaki, Y.5
-
218
-
-
34250194038
-
Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome
-
Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, et al. 2007. Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem. Biophys. Res. Commun. 359:503-9
-
(2007)
Biochem. Biophys. Res. Commun
, vol.359
, pp. 503-509
-
-
Nakamura, Y.1
Umehara, T.2
Tanaka, A.3
Horikoshi, M.4
Padmanabhan, B.5
-
219
-
-
0030726159
-
Protein translocation channels in the proteasome and other proteases
-
Larsen CN, Finley D. 1997. Protein translocation channels in the proteasome and other proteases. Cell 91:431-34
-
(1997)
Cell
, vol.91
, pp. 431-434
-
-
Larsen, C.N.1
Finley, D.2
|