메뉴 건너뛰기




Volumn 18, Issue 2, 2016, Pages 202-212

Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis

Author keywords

[No Author keywords available]

Indexed keywords

CASPASE 9; CRISPR ASSOCIATED PROTEIN; CYCLIN B1; DUAL SPECIFICITY TYROSINE REGULATED KINASE; HISTONE H3; PROTEASOME; PROTEIN TYROSINE KINASE; RPT3 PROTEIN; UNCLASSIFIED DRUG; DYRK KINASE; PROTEIN SERINE THREONINE KINASE; PSMC4 PROTEIN, HUMAN; THREONINE;

EID: 84956663117     PISSN: 14657392     EISSN: 14764679     Source Type: Journal    
DOI: 10.1038/ncb3289     Document Type: Article
Times cited : (132)

References (69)
  • 1
    • 0030016595 scopus 로고    scopus 로고
    • Structure and functions of the 20S and 26S proteasomes
    • Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801-847 (1996).
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 801-847
    • Coux, O.1    Tanaka, K.2    Goldberg, A.L.3
  • 2
    • 54249158324 scopus 로고    scopus 로고
    • Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction
    • Tai, H. C. & Schuman, E. M. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9, 826-838 (2008).
    • (2008) Nat. Rev. Neurosci , vol.9 , pp. 826-838
    • Tai, H.C.1    Schuman, E.M.2
  • 4
    • 63649086487 scopus 로고    scopus 로고
    • Targeting the ubiquitin system in cancer therapy
    • Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438-444 (2009).
    • (2009) Nature , vol.458 , pp. 438-444
    • Hoeller, D.1    Dikic, I.2
  • 5
    • 41549133200 scopus 로고    scopus 로고
    • Proteasome inhibitors in cancer therapy: Lessons from the first decade
    • Orlowski, R. Z. & Kuhn, D. J. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res. 14, 1649-1657 (2008).
    • (2008) Clin. Cancer Res. , vol.14 , pp. 1649-1657
    • Orlowski, R.Z.1    Kuhn, D.J.2
  • 6
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477-513 (2009).
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 7
  • 8
    • 84878268667 scopus 로고    scopus 로고
    • Structural insights into proteasome activation by the 19S regulatory particle
    • Ehlinger, A. & Walters, K. J. Structural insights into proteasome activation by the 19S regulatory particle. Biochemistry 52, 3618-3628 (2013).
    • (2013) Biochemistry , vol.52 , pp. 3618-3628
    • Ehlinger, A.1    Walters, K.J.2
  • 10
    • 84890203542 scopus 로고    scopus 로고
    • Regulation of proteasome activity in health and disease
    • Schmidt, M. & Finley, D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843, 13-25 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 13-25
    • Schmidt, M.1    Finley, D.2
  • 11
    • 77950366349 scopus 로고    scopus 로고
    • Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
    • Radhakrishnan, S. K. et al. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38, 17-28 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 17-28
    • Radhakrishnan, S.K.1
  • 12
    • 84878942836 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the eukaryotic proteasome
    • Tomko, R. J. & Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82, 415-445 (2013).
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 415-445
    • Tomko, R.J.1    Hochstrasser, M.2
  • 13
    • 33947380146 scopus 로고    scopus 로고
    • Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
    • Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553-3565 (2007).
    • (2007) Biochemistry , vol.46 , pp. 3553-3565
    • Wang, X.1
  • 14
    • 39049117451 scopus 로고    scopus 로고
    • Identifying dynamic interactors of protein complexes by quantitative mass spectrometry
    • Wang, X. & Huang, L. Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol. Cell Proteomics 7, 46-57 (2008).
    • (2008) Mol. Cell Proteomics , vol.7 , pp. 46-57
    • Wang, X.1    Huang, L.2
  • 15
    • 0030724422 scopus 로고    scopus 로고
    • Roles of ubiquitin-mediated proteolysis in cell cycle control
    • Hershko, A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol. 9, 788-799 (1997).
    • (1997) Curr. Opin. Cell Biol. , vol.9 , pp. 788-799
    • Hershko, A.1
  • 16
    • 84878934964 scopus 로고    scopus 로고
    • Ubiquitin ligases and cell cycle control
    • Teixeira, L. K. & Reed, S. I. Ubiquitin ligases and cell cycle control. Annu. Rev. Biochem. 82, 387-414 (2013).
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 387-414
    • Teixeira, L.K.1    Reed, S.I.2
  • 17
    • 0035947372 scopus 로고    scopus 로고
    • Impairment of the ubiquitin-proteasome system by protein aggregation
    • Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552-1555 (2001).
    • (2001) Science , vol.292 , pp. 1552-1555
    • Bence, N.F.1    Sampat, R.M.2    Kopito, R.R.3
  • 18
    • 84863867994 scopus 로고    scopus 로고
    • Substrate targeting by the ubiquitin-proteasome system in mitosis
    • Min, M. & Lindon, C. Substrate targeting by the ubiquitin-proteasome system in mitosis. Semin. Cell Dev. Biol. 23, 482-491 (2012).
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 482-491
    • Min, M.1    Lindon, C.2
  • 19
    • 49449085504 scopus 로고    scopus 로고
    • A quantitative atlas of mitotic phosphorylation
    • Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762-10767 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 10762-10767
    • Dephoure, N.1
  • 20
    • 77951644400 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
    • Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).
    • (2010) Sci. Signal , vol.3 , pp. ra3
    • Olsen, J.V.1
  • 21
    • 66449086493 scopus 로고    scopus 로고
    • Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment
    • Nagano, K. et al. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-2874 (2009).
    • (2009) Proteomics , vol.9 , pp. 2861-2874
    • Nagano, K.1
  • 22
    • 79959735228 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells
    • Kettenbach, A. N. et al. Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci. Signal. 4, rs5 (2011).
    • (2011) Sci. Signal , vol.4 , pp. rs5
    • Kettenbach, A.N.1
  • 23
    • 84890300195 scopus 로고    scopus 로고
    • An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome
    • Bian, Y. et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J. Proteomics 96, 253-262 (2014).
    • (2014) J. Proteomics , vol.96 , pp. 253-262
    • Bian, Y.1
  • 24
    • 70350462371 scopus 로고    scopus 로고
    • Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions
    • Mayya, V. et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci. Signal. 2, ra46 (2009).
    • (2009) Sci. Signal , vol.2 , pp. ra46
    • Mayya, V.1
  • 25
    • 27644518292 scopus 로고    scopus 로고
    • Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates
    • Kisselev, A. F. & Goldberg, A. L. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol. 398, 364-378 (2005).
    • (2005) Methods Enzymol. , vol.398 , pp. 364-378
    • Kisselev, A.F.1    Goldberg, A.L.2
  • 26
    • 84900862275 scopus 로고    scopus 로고
    • Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
    • Besche, H. C. et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 33, 1159-1176 (2014).
    • (2014) EMBO J , vol.33 , pp. 1159-1176
    • Besche, H.C.1
  • 27
    • 84865695733 scopus 로고    scopus 로고
    • Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition
    • Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150, 987-1001 (2012).
    • (2012) Cell , vol.150 , pp. 987-1001
    • Taipale, M.1
  • 29
    • 66449131251 scopus 로고    scopus 로고
    • Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
    • Djuranovic, S. et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 34, 580-590 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 580-590
    • Djuranovic, S.1
  • 30
    • 84885428073 scopus 로고    scopus 로고
    • Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
    • Beckwith, R., Estrin, E., Worden, E. J. & Martin, A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 20, 1164-1172 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1164-1172
    • Beckwith, R.1    Estrin, E.2    Worden, E.J.3    Martin, A.4
  • 31
    • 33749069075 scopus 로고    scopus 로고
    • ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
    • Liu, C. W. et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell 24, 39-50 (2006).
    • (2006) Mol. Cell , vol.24 , pp. 39-50
    • Liu, C.W.1
  • 32
    • 28444452611 scopus 로고    scopus 로고
    • ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins
    • Smith, D. M. et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 20, 687-698 (2005).
    • (2005) Mol. Cell , vol.20 , pp. 687-698
    • Smith, D.M.1
  • 33
    • 84875130745 scopus 로고    scopus 로고
    • Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs
    • Peth, A., Kukushkin, N., Bosse, M. & Goldberg, A. L. Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J. Biol. Chem. 288, 7781-7790 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 7781-7790
    • Peth, A.1    Kukushkin, N.2    Bosse, M.3    Goldberg, A.L.4
  • 34
    • 84876909425 scopus 로고    scopus 로고
    • Structure of the 26S proteasome with ATP-γ S bound provides insights into the mechanism of nucleotide-dependent substrate translocation
    • Śledź, P. et al. Structure of the 26S proteasome with ATP-γ S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl Acad. Sci. USA 110, 7264-7269 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 7264-7269
    • Śledź, P.1
  • 36
    • 79151483638 scopus 로고    scopus 로고
    • An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients
    • Györffy, B. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 123, 725-731 (2010).
    • (2010) Breast Cancer Res. Treat , vol.123 , pp. 725-731
    • Györffy, B.1
  • 37
    • 84881499406 scopus 로고    scopus 로고
    • A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells
    • Petrocca, F. et al. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell 24, 182-196 (2013).
    • (2013) Cancer Cell , vol.24 , pp. 182-196
    • Petrocca, F.1
  • 38
    • 84866167976 scopus 로고    scopus 로고
    • Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
    • Vilchez, D. et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489, 304-308 (2012).
    • (2012) Nature , vol.489 , pp. 304-308
    • Vilchez, D.1
  • 39
    • 84874547323 scopus 로고    scopus 로고
    • Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib
    • Shabaneh, T. B. et al. Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PLoS ONE 8, e56132 (2013).
    • (2013) PLoS ONE , vol.8
    • Shabaneh, T.B.1
  • 40
    • 0032479207 scopus 로고    scopus 로고
    • Phosphorylation of ATPase subunits of the 26S proteasome
    • Mason, G. G., Murray, R. Z., Pappin, D. & Rivett, A. J. Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett. 430, 269-274 (1998).
    • (1998) FEBS Lett. , vol.430 , pp. 269-274
    • Mason, G.G.1    Murray, R.Z.2    Pappin, D.3    Rivett, A.J.4
  • 41
    • 1542344946 scopus 로고    scopus 로고
    • Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon
    • Bose, S., Stratford, F. L., Broadfoot, K. I., Mason, G. G. & Rivett, A. J. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem. J. 378, 177-184 (2004).
    • (2004) Biochem. J , vol.378 , pp. 177-184
    • Bose, S.1    Stratford, F.L.2    Broadfoot, K.I.3    Mason, G.G.4    Rivett, A.J.5
  • 42
    • 0035895354 scopus 로고    scopus 로고
    • Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit
    • Satoh, K., Sasajima, H., Nyoumura, K.-i., Yokosawa, H. & Sawada, H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40, 314-319 (2000).
    • (2000) Biochemistry , vol.40 , pp. 314-319
    • Satoh, K.1    Sasajima, H.2    Nyoumura, K.-I.3    Yokosawa, H.4    Sawada, H.5
  • 43
    • 0035143449 scopus 로고    scopus 로고
    • Polo-like kinase interacts with proteasomes and regulates their activity
    • Feng, Y., Longo, D. L. & Ferris, D. K. Polo-like kinase interacts with proteasomes and regulates their activity. Cell Growth Differ. 12, 29-37 (2001).
    • (2001) Cell Growth Differ , vol.12 , pp. 29-37
    • Feng, Y.1    Longo, D.L.2    Ferris, D.K.3
  • 44
    • 34547953209 scopus 로고    scopus 로고
    • Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
    • Zhang, F. et al. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 282, 22460-22471 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 22460-22471
    • Zhang, F.1
  • 45
    • 70350389831 scopus 로고    scopus 로고
    • Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II
    • Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N. & Patrick, G. N. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284, 26655-26665 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 26655-26665
    • Djakovic, S.N.1    Schwarz, L.A.2    Barylko, B.3    DeMartino, G.N.4    Patrick, G.N.5
  • 46
    • 76749131595 scopus 로고    scopus 로고
    • Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines
    • Bingol, B. et al. Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567-578 (2010).
    • (2010) Cell , vol.140 , pp. 567-578
    • Bingol, B.1
  • 47
    • 84859529812 scopus 로고    scopus 로고
    • Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons
    • Djakovic, S. N. et al. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J. Neurosci. 32, 5126-5131 (2012).
    • (2012) J. Neurosci , vol.32 , pp. 5126-5131
    • Djakovic, S.N.1
  • 48
    • 84862659641 scopus 로고    scopus 로고
    • Activity-dependent growth of new dendritic spines is regulated by the proteasome
    • Hamilton, A. M. et al. Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron 74, 1023-1030 (2012).
    • (2012) Neuron , vol.74 , pp. 1023-1030
    • Hamilton, A.M.1
  • 49
    • 84880724298 scopus 로고    scopus 로고
    • Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins
    • Ranek, M. J., Terpstra, E. J., Li, J., Kass, D. A. & Wang, X. Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128, 365-376 (2013).
    • (2013) Circulation , vol.128 , pp. 365-376
    • Ranek, M.J.1    Terpstra, E.J.2    Li, J.3    Kass, D.A.4    Wang, X.5
  • 50
    • 79551647919 scopus 로고    scopus 로고
    • DYRK family of protein kinases: Evolutionary relationships, biochemical properties, and functional roles
    • Aranda, S., Laguna, A. & de la Luna, S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J. 25, 449-462 (2011).
    • (2011) FASEB J , vol.25 , pp. 449-462
    • Aranda, S.1    Laguna, A.2    De La Luna, S.3
  • 51
    • 84866754278 scopus 로고    scopus 로고
    • Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control
    • Becker, W. Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control. Cell Cycle 11, 3389-3394 (2012).
    • (2012) Cell Cycle , vol.11 , pp. 3389-3394
    • Becker, W.1
  • 52
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186-191 (2012).
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1
  • 53
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • da Fonseca, P. C. A., He, J. & Morris, E. P. Molecular model of the human 26S proteasome. Mol. Cell 46, 54-66 (2012).
    • (2012) Mol. Cell , vol.46 , pp. 54-66
    • Da Fonseca, P.C.A.1    He, J.2    Morris, E.P.3
  • 54
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela, M. E., Lander, G. C. & Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20, 781-788 (2013).
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 55
    • 0041672360 scopus 로고    scopus 로고
    • Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas
    • Miller, C. T. et al. Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas. Cancer Res. 63, 4136-4143 (2003).
    • (2003) Cancer Res. , vol.63 , pp. 4136-4143
    • Miller, C.T.1
  • 56
    • 78649546043 scopus 로고    scopus 로고
    • Exploring the link between germline and somatic genetic alterations in breast carcinogenesis
    • Bonifaci, N. et al. Exploring the link between germline and somatic genetic alterations in breast carcinogenesis. PLoS ONE 5, e14078 (2010).
    • (2010) PLoS ONE , vol.5
    • Bonifaci, N.1
  • 57
    • 12844276658 scopus 로고    scopus 로고
    • Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization
    • Gorringe, K. L., Boussioutas, A., Bowtell, D. D. & Melbourne Gastric Cancer Group, P. M. M. A. F. Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization. Genes Chromosomes Cancer 42, 247-259 (2005).
    • (2005) Genes Chromosomes Cancer , vol.42 , pp. 247-259
    • P. M. M. A. F1    Gorringe, K.L.2    Boussioutas, A.3    Bowtell, D.D.4
  • 58
    • 84857831583 scopus 로고    scopus 로고
    • DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells
    • Taira, N. et al. DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J. Clin. Invest. 122, 859-872 (2012).
    • (2012) J. Clin. Invest. , vol.122 , pp. 859-872
    • Taira, N.1
  • 59
    • 38149054804 scopus 로고    scopus 로고
    • Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling
    • Guo, X. et al. Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling. Genes Dev. 22, 106-120 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 106-120
    • Guo, X.1
  • 61
    • 84924125611 scopus 로고    scopus 로고
    • Sequence composition of disordered regions fine-tunes protein half-life
    • Fishbain, S. et al. Sequence composition of disordered regions fine-tunes protein half-life. Nat. Struct. Mol. Biol. 22, 214221 (2015).
    • (2015) Nat. Struct. Mol. Biol. , vol.22
    • Fishbain, S.1
  • 62
    • 84878851513 scopus 로고    scopus 로고
    • Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition
    • Soundararajan, M. et al. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 21, 986-996 (2013).
    • (2013) Structure , vol.21 , pp. 986-996
    • Soundararajan, M.1
  • 63
    • 77950642747 scopus 로고    scopus 로고
    • Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy
    • Kaake, R. M., Milenković, T., Pržulj, N., Kaiser, P. & Huang, L. Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J. Proteome Res. 9, 2016-2029 (2010).
    • (2010) J. Proteome Res. , vol.9 , pp. 2016-2029
    • Kaake, R.M.1    Milenković, T.2    Pržulj, N.3    Kaiser, P.4    Huang, L.5
  • 64
    • 34247396011 scopus 로고    scopus 로고
    • A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC)
    • Ong, S. E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650-2660 (2006).
    • (2006) Nat. Protoc , vol.1 , pp. 2650-2660
    • Ong, S.E.1    Mann, M.2
  • 65
    • 81755163621 scopus 로고    scopus 로고
    • UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
    • Guo, X. et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl Acad. Sci. USA 108, 18649-18654 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 18649-18654
    • Guo, X.1
  • 66
    • 79951707743 scopus 로고    scopus 로고
    • ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
    • Smith, D. M., Fraga, H., Reis, C., Kafri, G. & Goldberg, A. L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144, 526-538 (2011).
    • (2011) Cell , vol.144 , pp. 526-538
    • Smith, D.M.1    Fraga, H.2    Reis, C.3    Kafri, G.4    Goldberg, A.L.5
  • 67
    • 84902668478 scopus 로고    scopus 로고
    • Autoregulation of the 26S proteasome by in situ ubiquitination
    • Jacobson, A. D., MacFadden, A., Wu, Z., Peng, J. & Liu, C.-W. Autoregulation of the 26S proteasome by in situ ubiquitination. Mol. Biol. Cell 25, 1824-1835 (2014).
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1824-1835
    • Jacobson, A.D.1    MacFadden, A.2    Wu, Z.3    Peng, J.4    Liu, C.-W.5
  • 68
    • 84887010498 scopus 로고    scopus 로고
    • Genome engineering using the CRISPR-Cas9 system
    • Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308 (2013).
    • (2013) Nat. Protoc , vol.8 , pp. 2281-2308
    • Ran, F.A.1
  • 69
    • 10344247126 scopus 로고    scopus 로고
    • Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry
    • Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588-595 (2004).
    • (2004) Nature , vol.432 , pp. 588-595
    • Rape, M.1    Kirschner, M.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.