-
1
-
-
0030016595
-
Structure and functions of the 20S and 26S proteasomes
-
Coux, O., Tanaka, K. & Goldberg, A. L. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801-847 (1996).
-
(1996)
Annu. Rev. Biochem.
, vol.65
, pp. 801-847
-
-
Coux, O.1
Tanaka, K.2
Goldberg, A.L.3
-
2
-
-
54249158324
-
Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction
-
Tai, H. C. & Schuman, E. M. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9, 826-838 (2008).
-
(2008)
Nat. Rev. Neurosci
, vol.9
, pp. 826-838
-
-
Tai, H.C.1
Schuman, E.M.2
-
3
-
-
84878864199
-
The hallmarks of aging
-
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194-1217 (2013).
-
(2013)
Cell
, vol.153
, pp. 1194-1217
-
-
López-Otín, C.1
Blasco, M.A.2
Partridge, L.3
Serrano, M.4
Kroemer, G.5
-
4
-
-
63649086487
-
Targeting the ubiquitin system in cancer therapy
-
Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438-444 (2009).
-
(2009)
Nature
, vol.458
, pp. 438-444
-
-
Hoeller, D.1
Dikic, I.2
-
5
-
-
41549133200
-
Proteasome inhibitors in cancer therapy: Lessons from the first decade
-
Orlowski, R. Z. & Kuhn, D. J. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin. Cancer Res. 14, 1649-1657 (2008).
-
(2008)
Clin. Cancer Res.
, vol.14
, pp. 1649-1657
-
-
Orlowski, R.Z.1
Kuhn, D.J.2
-
6
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477-513 (2009).
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
7
-
-
84894555108
-
Regulated protein turnover: Snapshots of the proteasome in action
-
Bhattacharyya, S., Yu, H., Mim, C. & Matouschek, A. Regulated protein turnover: snapshots of the proteasome in action. Nat. Rev. Mol. Cell Biol. 15, 122-133 (2014).
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 122-133
-
-
Bhattacharyya, S.1
Yu, H.2
Mim, C.3
Matouschek, A.4
-
8
-
-
84878268667
-
Structural insights into proteasome activation by the 19S regulatory particle
-
Ehlinger, A. & Walters, K. J. Structural insights into proteasome activation by the 19S regulatory particle. Biochemistry 52, 3618-3628 (2013).
-
(2013)
Biochemistry
, vol.52
, pp. 3618-3628
-
-
Ehlinger, A.1
Walters, K.J.2
-
9
-
-
58849093135
-
Molecular mechanisms of proteasome assembly
-
Murata, S., Yashiroda, H. & Tanaka, K. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 10, 104-115 (2009).
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 104-115
-
-
Murata, S.1
Yashiroda, H.2
Tanaka, K.3
-
10
-
-
84890203542
-
Regulation of proteasome activity in health and disease
-
Schmidt, M. & Finley, D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843, 13-25 (2014).
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 13-25
-
-
Schmidt, M.1
Finley, D.2
-
11
-
-
77950366349
-
Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
-
Radhakrishnan, S. K. et al. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38, 17-28 (2010).
-
(2010)
Mol. Cell
, vol.38
, pp. 17-28
-
-
Radhakrishnan, S.K.1
-
12
-
-
84878942836
-
Molecular architecture and assembly of the eukaryotic proteasome
-
Tomko, R. J. & Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82, 415-445 (2013).
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 415-445
-
-
Tomko, R.J.1
Hochstrasser, M.2
-
13
-
-
33947380146
-
Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
-
Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553-3565 (2007).
-
(2007)
Biochemistry
, vol.46
, pp. 3553-3565
-
-
Wang, X.1
-
14
-
-
39049117451
-
Identifying dynamic interactors of protein complexes by quantitative mass spectrometry
-
Wang, X. & Huang, L. Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol. Cell Proteomics 7, 46-57 (2008).
-
(2008)
Mol. Cell Proteomics
, vol.7
, pp. 46-57
-
-
Wang, X.1
Huang, L.2
-
15
-
-
0030724422
-
Roles of ubiquitin-mediated proteolysis in cell cycle control
-
Hershko, A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol. 9, 788-799 (1997).
-
(1997)
Curr. Opin. Cell Biol.
, vol.9
, pp. 788-799
-
-
Hershko, A.1
-
16
-
-
84878934964
-
Ubiquitin ligases and cell cycle control
-
Teixeira, L. K. & Reed, S. I. Ubiquitin ligases and cell cycle control. Annu. Rev. Biochem. 82, 387-414 (2013).
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 387-414
-
-
Teixeira, L.K.1
Reed, S.I.2
-
17
-
-
0035947372
-
Impairment of the ubiquitin-proteasome system by protein aggregation
-
Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552-1555 (2001).
-
(2001)
Science
, vol.292
, pp. 1552-1555
-
-
Bence, N.F.1
Sampat, R.M.2
Kopito, R.R.3
-
18
-
-
84863867994
-
Substrate targeting by the ubiquitin-proteasome system in mitosis
-
Min, M. & Lindon, C. Substrate targeting by the ubiquitin-proteasome system in mitosis. Semin. Cell Dev. Biol. 23, 482-491 (2012).
-
(2012)
Semin. Cell Dev. Biol.
, vol.23
, pp. 482-491
-
-
Min, M.1
Lindon, C.2
-
19
-
-
49449085504
-
A quantitative atlas of mitotic phosphorylation
-
Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762-10767 (2008).
-
(2008)
Proc. Natl Acad. Sci. USA
, vol.105
, pp. 10762-10767
-
-
Dephoure, N.1
-
20
-
-
77951644400
-
Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
-
Olsen, J. V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).
-
(2010)
Sci. Signal
, vol.3
, pp. ra3
-
-
Olsen, J.V.1
-
21
-
-
66449086493
-
Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment
-
Nagano, K. et al. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-2874 (2009).
-
(2009)
Proteomics
, vol.9
, pp. 2861-2874
-
-
Nagano, K.1
-
22
-
-
79959735228
-
Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells
-
Kettenbach, A. N. et al. Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci. Signal. 4, rs5 (2011).
-
(2011)
Sci. Signal
, vol.4
, pp. rs5
-
-
Kettenbach, A.N.1
-
23
-
-
84890300195
-
An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome
-
Bian, Y. et al. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J. Proteomics 96, 253-262 (2014).
-
(2014)
J. Proteomics
, vol.96
, pp. 253-262
-
-
Bian, Y.1
-
24
-
-
70350462371
-
Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions
-
Mayya, V. et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci. Signal. 2, ra46 (2009).
-
(2009)
Sci. Signal
, vol.2
, pp. ra46
-
-
Mayya, V.1
-
25
-
-
27644518292
-
Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates
-
Kisselev, A. F. & Goldberg, A. L. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol. 398, 364-378 (2005).
-
(2005)
Methods Enzymol.
, vol.398
, pp. 364-378
-
-
Kisselev, A.F.1
Goldberg, A.L.2
-
26
-
-
84900862275
-
Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates
-
Besche, H. C. et al. Autoubiquitination of the 26S proteasome on Rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 33, 1159-1176 (2014).
-
(2014)
EMBO J
, vol.33
, pp. 1159-1176
-
-
Besche, H.C.1
-
27
-
-
84865695733
-
Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition
-
Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150, 987-1001 (2012).
-
(2012)
Cell
, vol.150
, pp. 987-1001
-
-
Taipale, M.1
-
28
-
-
0037032835
-
The protein kinase complement of the human genome
-
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912-1934 (2002).
-
(2002)
Science
, vol.298
, pp. 1912-1934
-
-
Manning, G.1
Whyte, D.B.2
Martinez, R.3
Hunter, T.4
Sudarsanam, S.5
-
29
-
-
66449131251
-
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
-
Djuranovic, S. et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 34, 580-590 (2009).
-
(2009)
Mol. Cell
, vol.34
, pp. 580-590
-
-
Djuranovic, S.1
-
30
-
-
84885428073
-
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase
-
Beckwith, R., Estrin, E., Worden, E. J. & Martin, A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 20, 1164-1172 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 1164-1172
-
-
Beckwith, R.1
Estrin, E.2
Worden, E.J.3
Martin, A.4
-
31
-
-
33749069075
-
ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome
-
Liu, C. W. et al. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol. Cell 24, 39-50 (2006).
-
(2006)
Mol. Cell
, vol.24
, pp. 39-50
-
-
Liu, C.W.1
-
32
-
-
28444452611
-
ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins
-
Smith, D. M. et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 20, 687-698 (2005).
-
(2005)
Mol. Cell
, vol.20
, pp. 687-698
-
-
Smith, D.M.1
-
33
-
-
84875130745
-
Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs
-
Peth, A., Kukushkin, N., Bosse, M. & Goldberg, A. L. Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs. J. Biol. Chem. 288, 7781-7790 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 7781-7790
-
-
Peth, A.1
Kukushkin, N.2
Bosse, M.3
Goldberg, A.L.4
-
34
-
-
84876909425
-
Structure of the 26S proteasome with ATP-γ S bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Śledź, P. et al. Structure of the 26S proteasome with ATP-γ S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl Acad. Sci. USA 110, 7264-7269 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 7264-7269
-
-
Śledź, P.1
-
35
-
-
72949103929
-
A census of amplified and overexpressed human cancer genes
-
Santarius, T., Shipley, J., Brewer, D., Stratton, M. R. & Cooper, C. S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer 10, 59-64 (2010).
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 59-64
-
-
Santarius, T.1
Shipley, J.2
Brewer, D.3
Stratton, M.R.4
Cooper, C.S.5
-
36
-
-
79151483638
-
An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients
-
Györffy, B. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 123, 725-731 (2010).
-
(2010)
Breast Cancer Res. Treat
, vol.123
, pp. 725-731
-
-
Györffy, B.1
-
37
-
-
84881499406
-
A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells
-
Petrocca, F. et al. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell 24, 182-196 (2013).
-
(2013)
Cancer Cell
, vol.24
, pp. 182-196
-
-
Petrocca, F.1
-
38
-
-
84866167976
-
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
-
Vilchez, D. et al. Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489, 304-308 (2012).
-
(2012)
Nature
, vol.489
, pp. 304-308
-
-
Vilchez, D.1
-
39
-
-
84874547323
-
Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib
-
Shabaneh, T. B. et al. Molecular basis of differential sensitivity of myeloma cells to clinically relevant bolus treatment with bortezomib. PLoS ONE 8, e56132 (2013).
-
(2013)
PLoS ONE
, vol.8
-
-
Shabaneh, T.B.1
-
40
-
-
0032479207
-
Phosphorylation of ATPase subunits of the 26S proteasome
-
Mason, G. G., Murray, R. Z., Pappin, D. & Rivett, A. J. Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett. 430, 269-274 (1998).
-
(1998)
FEBS Lett.
, vol.430
, pp. 269-274
-
-
Mason, G.G.1
Murray, R.Z.2
Pappin, D.3
Rivett, A.J.4
-
41
-
-
1542344946
-
Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon
-
Bose, S., Stratford, F. L., Broadfoot, K. I., Mason, G. G. & Rivett, A. J. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem. J. 378, 177-184 (2004).
-
(2004)
Biochem. J
, vol.378
, pp. 177-184
-
-
Bose, S.1
Stratford, F.L.2
Broadfoot, K.I.3
Mason, G.G.4
Rivett, A.J.5
-
42
-
-
0035895354
-
Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit
-
Satoh, K., Sasajima, H., Nyoumura, K.-i., Yokosawa, H. & Sawada, H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40, 314-319 (2000).
-
(2000)
Biochemistry
, vol.40
, pp. 314-319
-
-
Satoh, K.1
Sasajima, H.2
Nyoumura, K.-I.3
Yokosawa, H.4
Sawada, H.5
-
43
-
-
0035143449
-
Polo-like kinase interacts with proteasomes and regulates their activity
-
Feng, Y., Longo, D. L. & Ferris, D. K. Polo-like kinase interacts with proteasomes and regulates their activity. Cell Growth Differ. 12, 29-37 (2001).
-
(2001)
Cell Growth Differ
, vol.12
, pp. 29-37
-
-
Feng, Y.1
Longo, D.L.2
Ferris, D.K.3
-
44
-
-
34547953209
-
Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
-
Zhang, F. et al. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 282, 22460-22471 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 22460-22471
-
-
Zhang, F.1
-
45
-
-
70350389831
-
Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II
-
Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N. & Patrick, G. N. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284, 26655-26665 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 26655-26665
-
-
Djakovic, S.N.1
Schwarz, L.A.2
Barylko, B.3
DeMartino, G.N.4
Patrick, G.N.5
-
46
-
-
76749131595
-
Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines
-
Bingol, B. et al. Autophosphorylated CaMKIIα acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567-578 (2010).
-
(2010)
Cell
, vol.140
, pp. 567-578
-
-
Bingol, B.1
-
47
-
-
84859529812
-
Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons
-
Djakovic, S. N. et al. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J. Neurosci. 32, 5126-5131 (2012).
-
(2012)
J. Neurosci
, vol.32
, pp. 5126-5131
-
-
Djakovic, S.N.1
-
48
-
-
84862659641
-
Activity-dependent growth of new dendritic spines is regulated by the proteasome
-
Hamilton, A. M. et al. Activity-dependent growth of new dendritic spines is regulated by the proteasome. Neuron 74, 1023-1030 (2012).
-
(2012)
Neuron
, vol.74
, pp. 1023-1030
-
-
Hamilton, A.M.1
-
49
-
-
84880724298
-
Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins
-
Ranek, M. J., Terpstra, E. J., Li, J., Kass, D. A. & Wang, X. Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128, 365-376 (2013).
-
(2013)
Circulation
, vol.128
, pp. 365-376
-
-
Ranek, M.J.1
Terpstra, E.J.2
Li, J.3
Kass, D.A.4
Wang, X.5
-
50
-
-
79551647919
-
DYRK family of protein kinases: Evolutionary relationships, biochemical properties, and functional roles
-
Aranda, S., Laguna, A. & de la Luna, S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J. 25, 449-462 (2011).
-
(2011)
FASEB J
, vol.25
, pp. 449-462
-
-
Aranda, S.1
Laguna, A.2
De La Luna, S.3
-
51
-
-
84866754278
-
Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control
-
Becker, W. Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control. Cell Cycle 11, 3389-3394 (2012).
-
(2012)
Cell Cycle
, vol.11
, pp. 3389-3394
-
-
Becker, W.1
-
52
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186-191 (2012).
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
-
53
-
-
84859702750
-
Molecular model of the human 26S proteasome
-
da Fonseca, P. C. A., He, J. & Morris, E. P. Molecular model of the human 26S proteasome. Mol. Cell 46, 54-66 (2012).
-
(2012)
Mol. Cell
, vol.46
, pp. 54-66
-
-
Da Fonseca, P.C.A.1
He, J.2
Morris, E.P.3
-
54
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela, M. E., Lander, G. C. & Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20, 781-788 (2013).
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
55
-
-
0041672360
-
Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas
-
Miller, C. T. et al. Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas. Cancer Res. 63, 4136-4143 (2003).
-
(2003)
Cancer Res.
, vol.63
, pp. 4136-4143
-
-
Miller, C.T.1
-
56
-
-
78649546043
-
Exploring the link between germline and somatic genetic alterations in breast carcinogenesis
-
Bonifaci, N. et al. Exploring the link between germline and somatic genetic alterations in breast carcinogenesis. PLoS ONE 5, e14078 (2010).
-
(2010)
PLoS ONE
, vol.5
-
-
Bonifaci, N.1
-
57
-
-
12844276658
-
Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization
-
Gorringe, K. L., Boussioutas, A., Bowtell, D. D. & Melbourne Gastric Cancer Group, P. M. M. A. F. Novel regions of chromosomal amplification at 6p21, 5p13, and 12q14 in gastric cancer identified by array comparative genomic hybridization. Genes Chromosomes Cancer 42, 247-259 (2005).
-
(2005)
Genes Chromosomes Cancer
, vol.42
, pp. 247-259
-
-
P. M. M. A. F1
Gorringe, K.L.2
Boussioutas, A.3
Bowtell, D.D.4
-
58
-
-
84857831583
-
DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells
-
Taira, N. et al. DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J. Clin. Invest. 122, 859-872 (2012).
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 859-872
-
-
Taira, N.1
-
59
-
-
38149054804
-
Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling
-
Guo, X. et al. Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling. Genes Dev. 22, 106-120 (2008).
-
(2008)
Genes Dev.
, vol.22
, pp. 106-120
-
-
Guo, X.1
-
60
-
-
79951850741
-
Defining the geometry of the two-component proteasome degron
-
Inobe, T., Fishbain, S., Prakash, S. & Matouschek, A. Defining the geometry of the two-component proteasome degron. Nat. Chem. Biol. 7, 161167 (2011).
-
(2011)
Nat. Chem. Biol.
, vol.7
-
-
Inobe, T.1
Fishbain, S.2
Prakash, S.3
Matouschek, A.4
-
61
-
-
84924125611
-
Sequence composition of disordered regions fine-tunes protein half-life
-
Fishbain, S. et al. Sequence composition of disordered regions fine-tunes protein half-life. Nat. Struct. Mol. Biol. 22, 214221 (2015).
-
(2015)
Nat. Struct. Mol. Biol.
, vol.22
-
-
Fishbain, S.1
-
62
-
-
84878851513
-
Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition
-
Soundararajan, M. et al. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 21, 986-996 (2013).
-
(2013)
Structure
, vol.21
, pp. 986-996
-
-
Soundararajan, M.1
-
63
-
-
77950642747
-
Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy
-
Kaake, R. M., Milenković, T., Pržulj, N., Kaiser, P. & Huang, L. Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J. Proteome Res. 9, 2016-2029 (2010).
-
(2010)
J. Proteome Res.
, vol.9
, pp. 2016-2029
-
-
Kaake, R.M.1
Milenković, T.2
Pržulj, N.3
Kaiser, P.4
Huang, L.5
-
64
-
-
34247396011
-
A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC)
-
Ong, S. E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650-2660 (2006).
-
(2006)
Nat. Protoc
, vol.1
, pp. 2650-2660
-
-
Ong, S.E.1
Mann, M.2
-
65
-
-
81755163621
-
UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
-
Guo, X. et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl Acad. Sci. USA 108, 18649-18654 (2011).
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 18649-18654
-
-
Guo, X.1
-
66
-
-
79951707743
-
ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle
-
Smith, D. M., Fraga, H., Reis, C., Kafri, G. & Goldberg, A. L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144, 526-538 (2011).
-
(2011)
Cell
, vol.144
, pp. 526-538
-
-
Smith, D.M.1
Fraga, H.2
Reis, C.3
Kafri, G.4
Goldberg, A.L.5
-
67
-
-
84902668478
-
Autoregulation of the 26S proteasome by in situ ubiquitination
-
Jacobson, A. D., MacFadden, A., Wu, Z., Peng, J. & Liu, C.-W. Autoregulation of the 26S proteasome by in situ ubiquitination. Mol. Biol. Cell 25, 1824-1835 (2014).
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1824-1835
-
-
Jacobson, A.D.1
MacFadden, A.2
Wu, Z.3
Peng, J.4
Liu, C.-W.5
-
68
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308 (2013).
-
(2013)
Nat. Protoc
, vol.8
, pp. 2281-2308
-
-
Ran, F.A.1
-
69
-
-
10344247126
-
Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry
-
Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588-595 (2004).
-
(2004)
Nature
, vol.432
, pp. 588-595
-
-
Rape, M.1
Kirschner, M.W.2
|