-
1
-
-
84867176120
-
The ubiquitin-proteasome system of Saccharomyces cerevisiae
-
Finley, D., Ulrich, H. D., Sommer, T., Kaiser, P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192, 319-360, doi: 10.1534/genetics.112.140467 (2012).
-
(2012)
Genetics
, vol.192
, pp. 319-360
-
-
Finley, D.1
Ulrich, H.D.2
Sommer, T.3
Kaiser, P.4
-
2
-
-
84959019581
-
Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
-
Shi, Y. et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351, doi: 10.1126/science.aad9421 (2016).
-
(2016)
Science
, pp. 351
-
-
Shi, Y.1
-
3
-
-
84952639230
-
Gates Channels Switches: Elements of the proteasome machine
-
Finley, D., Chen, X., Walters, K. J. Gates, Channels, Switches: Elements of the Proteasome Machine. Trends Biochem Sci 41, 77-93, doi: 10.1016/j.tibs.2015.10.009 (2016).
-
(2016)
Trends Biochem Sci
, vol.41
, pp. 77-93
-
-
Finley, D.1
Chen, X.2
Walters, K.J.3
-
4
-
-
77954314106
-
Assembly structure, function of the 26S proteasome
-
Bedford, L., Paine, S., Sheppard, P. W., Mayer, R. J., Roelofs, J. Assembly, structure, function of the 26S proteasome. Trends Cell Biol 20, 391-401, doi: 10.1016/j.tcb.2010.03.007 (2010).
-
(2010)
Trends Cell Biol
, vol.20
, pp. 391-401
-
-
Bedford, L.1
Paine, S.2
Sheppard, P.W.3
Mayer, R.J.4
Roelofs, J.5
-
5
-
-
84878942836
-
Molecular architecture and assembly of the eukaryotic proteasome
-
Tomko, R. J., Jr., Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82, 415-445, doi: 10.1146/annurev-biochem-060410-150257 (2013).
-
(2013)
Annu Rev Biochem
, vol.82
, pp. 415-445
-
-
Tomko, Jr.R.J.1
Hochstrasser, M.2
-
6
-
-
84925652317
-
Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association
-
Wani, P. S., Rowland, M. A., Ondracek, A., Deeds, E. J., Roelofs, J. Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun 6, 6384, doi: 10.1038/ncomms7384 (2015).
-
(2015)
Nat Commun
, vol.6
, pp. 6384
-
-
Wani, P.S.1
Rowland, M.A.2
Ondracek, A.3
Deeds, E.J.4
Roelofs, J.5
-
7
-
-
84941012942
-
Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone
-
Kock, M. et al. Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun 6, 6123, doi: 10.1038/ncomms7123 (2015).
-
(2015)
Nat Commun
, vol.6
, pp. 6123
-
-
Kock, M.1
-
8
-
-
67149112112
-
Chaperone-mediated pathway of proteasome regulatory particle assembly
-
Roelofs, J. et al. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459, 861-865, doi: 10.1038/nature08063 (2009).
-
(2009)
Nature
, vol.459
, pp. 861-865
-
-
Roelofs, J.1
-
9
-
-
84860181809
-
Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly
-
Barrault, M. B. et al. Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA 109, E1001-1010, doi: 10.1073/pnas.1116538109 (2012).
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E1001-1010
-
-
Barrault, M.B.1
-
10
-
-
84877575331
-
Conformational dynamics of the rpt6 ATPase in proteasome assembly and rpn14 binding
-
Ehlinger, A. et al. Conformational dynamics of the rpt6 ATPase in proteasome assembly and rpn14 binding. Structure 21, 753-765, doi: 10.1016/j.str.2013.02.021 (2013).
-
(2013)
Structure
, vol.21
, pp. 753-765
-
-
Ehlinger, A.1
-
11
-
-
84878131964
-
Reconfiguration of the proteasome during chaperone-mediated assembly
-
Park, S. et al. Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497, 512-516, doi: 10.1038/nature12123 (2013).
-
(2013)
Nature
, vol.497
, pp. 512-516
-
-
Park, S.1
-
12
-
-
26844433577
-
Proteasome-associated proteins: Regulation of a proteolytic machine
-
Schmidt, M., Hanna, J., Elsasser, S., Finley, D. Proteasome-associated proteins: regulation of a proteolytic machine. Biol Chem 386, 725-737, doi: 10.1515/BC.2005.085 (2005).
-
(2005)
Biol Chem
, vol.386
, pp. 725-737
-
-
Schmidt, M.1
Hanna, J.2
Elsasser, S.3
Finley, D.4
-
13
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell 10, 495-507, doi: 10.1016/S109727650200638X [pii] (2002).
-
(2002)
Mol Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.S.1
-
14
-
-
84885586226
-
The Proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome
-
De La Mota-Peynado, A. et al. The Proteasome-associated Protein Ecm29 Inhibits Proteasomal ATPase Activity and in Vivo Protein Degradation by the Proteasome. J Biol Chem 288, 29467-29481, doi: 10.1074/jbc.M113.491662 (2013).
-
(2013)
J Biol Chem
, vol.288
, pp. 29467-29481
-
-
De La Mota-Peynado, A.1
-
15
-
-
36849059755
-
Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
-
Kleijnen, M. F. et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14, 1180-1188, doi: 10.1038/nsmb1335 (2007).
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 1180-1188
-
-
Kleijnen, M.F.1
-
16
-
-
1942489340
-
New HEAT-like repeat motifs in proteins regulating proteasome structure and function
-
Kajava, A. V., Gorbea, C., Ortega, J., Rechsteiner, M., Steven, A. C. New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J Struct Biol 146, 425-430, doi: 10.1016/j.jsb.2004.01.013 (2004).
-
(2004)
J Struct Biol
, vol.146
, pp. 425-430
-
-
Kajava, A.V.1
Gorbea, C.2
Ortega, J.3
Rechsteiner, M.4
Steven, A.C.5
-
17
-
-
80054702676
-
Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
-
Park, S., Kim, W., Tian, G., Gygi, S. P., Finley, D. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286, 36652-36666, doi: 10.1074/jbc.M111.285924 (2011).
-
(2011)
J Biol Chem
, vol.286
, pp. 36652-36666
-
-
Park, S.1
Kim, W.2
Tian, G.3
Gygi, S.P.4
Finley, D.5
-
18
-
-
78649980437
-
Regulation of the 26S proteasome complex during oxidative stress
-
Wang, X., Yen, J., Kaiser, P., Huang, L. Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 3, ra88, doi: 10.1126/scisignal.2001232 (2010).
-
(2010)
Sci Signal
, vol.3
, pp. ra88
-
-
Wang, X.1
Yen, J.2
Kaiser, P.3
Huang, L.4
-
19
-
-
11144225834
-
Characterization of mammalian Ecm29, a 26S proteasomeassociated protein that localizes to the nucleus and membrane vesicles
-
Gorbea, C., Goellner, G. M., Teter, K., Holmes, R. K., Rechsteiner, M. Characterization of mammalian Ecm29, a 26S proteasomeassociated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 279, 54849-54861, doi: 10.1074/jbc.M410444200 (2004).
-
(2004)
J Biol Chem
, vol.279
, pp. 54849-54861
-
-
Gorbea, C.1
Goellner, G.M.2
Teter, K.3
Holmes, R.K.4
Rechsteiner, M.5
-
20
-
-
77957817388
-
A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components
-
Gorbea, C. et al. A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components. J Biol Chem 285, 31616-31633, doi: 10.1074/jbc.M110.154120 (2010).
-
(2010)
J Biol Chem
, vol.285
, pp. 31616-31633
-
-
Gorbea, C.1
-
21
-
-
84885793620
-
Depletion of the 26S proteasome adaptor Ecm29 increases Toll-like receptor 3 signaling
-
Gorbea, C., Rechsteiner, M., Vallejo, J. G., Bowles, N. E. Depletion of the 26S proteasome adaptor Ecm29 increases Toll-like receptor 3 signaling. Sci Signal 6, ra86, doi: 10.1126/scisignal.2004301 (2013).
-
(2013)
Sci Signal
, vol.6
, pp. ra86
-
-
Gorbea, C.1
Rechsteiner, M.2
Vallejo, J.G.3
Bowles, N.E.4
-
22
-
-
84961661738
-
Stage-Dependent axon transport of proteasomes contributes to axon development
-
Hsu, M. T. et al. Stage-Dependent Axon Transport of Proteasomes Contributes to Axon Development. Dev Cell 35, 418-431, doi: 10.1016/j.devcel.2015.10.018 (2015).
-
(2015)
Dev Cell
, vol.35
, pp. 418-431
-
-
Hsu, M.T.1
-
23
-
-
80054703106
-
Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
-
Lee, S. Y., De la Mota-Peynado, A., Roelofs, J. Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem 286, 36641-36651, doi: 10.1074/jbc.M111.280875 (2011).
-
(2011)
J Biol Chem
, vol.286
, pp. 36641-36651
-
-
Lee, S.Y.1
De La Mota-Peynado, A.2
Roelofs, J.3
-
24
-
-
77955503621
-
Ecm29 fulfils quality control functions in proteasome assembly
-
Lehmann, A., Niewienda, A., Jechow, K., Janek, K., Enenkel, C. Ecm29 Fulfils Quality Control Functions in Proteasome Assembly. Molecular Cell 38, 879-888, doi: 10.1016/j.molcel.2010.06.016 (2010).
-
(2010)
Molecular Cell
, vol.38
, pp. 879-888
-
-
Lehmann, A.1
Niewienda, A.2
Jechow, K.3
Janek, K.4
Enenkel, C.5
-
25
-
-
79953150421
-
Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29
-
Panasenko, O. O., Collart, M. A. Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Molecular and Cellular Biology 31, 1610-1623, doi: 10.1128/mcb.01210-10 (2011).
-
(2011)
Molecular and Cellular Biology
, vol.31
, pp. 1610-1623
-
-
Panasenko, O.O.1
Collart, M.A.2
-
26
-
-
80555130924
-
An asymmetric interface between the regulatory and core particles of the proteasome
-
Tian, G. et al. An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18, 1259-1267, doi: 10.1038/nsmb.2147 (2011).
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 1259-1267
-
-
Tian, G.1
-
27
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186-191, doi: 10.1038/nature10774 (2012).
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
-
28
-
-
84857134729
-
Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
-
Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109, 1380-1387, doi: 10.1073/pnas.1120559109 (2012).
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 1380-1387
-
-
Lasker, K.1
-
29
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 109, 14870-14875, doi: 10.1073/pnas.1213333109 (2012).
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
-
30
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 A resolution
-
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463-471, doi: 10.1038/386463a0 (1997).
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
-
31
-
-
84930188528
-
Crystal structure of the human 20S proteasome in complex with carfilzomib
-
Harshbarger, W., Miller, C., Diedrich, C., Sacchettini, J. Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure 23, 418-424, doi: 10.1016/j.str.2014.11.017 (2015).
-
(2015)
Structure
, vol.23
, pp. 418-424
-
-
Harshbarger, W.1
Miller, C.2
Diedrich, C.3
Sacchettini, J.4
-
32
-
-
18744391955
-
The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle
-
Schmidt, M. et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12, 294-303, doi: 10.1038/nsmb914 (2005).
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 294-303
-
-
Schmidt, M.1
-
33
-
-
19444387760
-
The 1.9A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Forster, A., Masters, E. I., Whitby, F. G., Robinson, H., Hill, C. P. The 1.9A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18, 589-599, doi: 10.1016/j.molcel.2005.04.016 (2005).
-
(2005)
Mol Cell
, vol.18
, pp. 589-599
-
-
Forster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
34
-
-
42949096020
-
Mechanism of Gate Opening in the 20S Proteasome by the Proteasomal ATPases
-
Rabl, J. et al. Mechanism of Gate Opening in the 20S Proteasome by the Proteasomal ATPases. Molecular Cell 30, 360-368, doi: 10.1016/j.molcel.2008.03.004 (2008).
-
(2008)
Molecular Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
-
35
-
-
57649140340
-
Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome
-
Gillette, T. G., Kumar, B., Thompson, D., Slaughter, C. A., DeMartino, G. N. Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome. J Biol Chem 283, 31813-31822, doi: 10.1074/jbc.M805935200 (2008).
-
(2008)
J Biol Chem
, vol.283
, pp. 31813-31822
-
-
Gillette, T.G.1
Kumar, B.2
Thompson, D.3
Slaughter, C.A.4
DeMartino, G.N.5
-
36
-
-
34548274872
-
Docking of the Proteasomal ATPases' carboxyl termini in the 20s proteasome's ? Ring opens the gate for substrate entry
-
Smith, D. M. et al. Docking of the Proteasomal ATPases' Carboxyl Termini in the 20S Proteasome's ? Ring Opens the Gate for Substrate Entry. Molecular Cell 27, 731-744, doi: 10.1016/j.molcel.2007.06.033 (2007).
-
(2007)
Molecular Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
-
37
-
-
5344237367
-
Identification of three phosphorylation sites in the alpha7 subunit of the yeast 20S proteasome in vivo using mass spectrometry
-
Iwafune, Y., Kawasaki, H., Hirano, H. Identification of three phosphorylation sites in the alpha7 subunit of the yeast 20S proteasome in vivo using mass spectrometry. Arch Biochem Biophys 431, 9-15, doi: 10.1016/j.abb.2004.07.020 (2004).
-
(2004)
Arch Biochem Biophys
, vol.431
, pp. 9-15
-
-
Iwafune, Y.1
Kawasaki, H.2
Hirano, H.3
-
38
-
-
78649563648
-
Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels
-
Helbig, A. O. et al. Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genomics 11, 685, doi: 10.1186/1471-2164-11-685 (2010).
-
(2010)
BMC Genomics
, vol.11
, Issue.685
-
-
Helbig, A.O.1
-
39
-
-
70349972517
-
Global analysis of the yeast osmotic stress response by quantitative proteomics
-
Soufi, B. et al. Global analysis of the yeast osmotic stress response by quantitative proteomics. Mol Biosyst 5, 1337-1346, doi: 10.1039/b902256b (2009).
-
(2009)
Mol Biosyst
, vol.5
, pp. 1337-1346
-
-
Soufi, B.1
-
40
-
-
68549085023
-
High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast
-
Gnad, F. et al. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9, 4642-4652, doi: 10.1002/pmic.200900144 (2009).
-
(2009)
Proteomics
, vol.9
, pp. 4642-4652
-
-
Gnad, F.1
-
41
-
-
47849125967
-
A multidimensional chromatography technology for in-depth phosphoproteome analysis
-
Albuquerque, C. P. et al. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7, 1389-1396, doi: 10.1074/mcp.M700468-MCP200 (2008).
-
(2008)
Mol Cell Proteomics
, vol.7
, pp. 1389-1396
-
-
Albuquerque, C.P.1
-
42
-
-
84879613791
-
Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
-
Swaney, D. L. et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10, 676-682, doi: 10.1038/nmeth.2519 (2013).
-
(2013)
Nat Methods
, vol.10
, pp. 676-682
-
-
Swaney, D.L.1
-
43
-
-
84924976864
-
A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, inhibitor binding
-
Gersch, M. et al. A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, inhibitor binding. Chem Biol 22, 404-411, doi: 10.1016/j.chembiol.2015.01.004 (2015).
-
(2015)
Chem Biol
, vol.22
, pp. 404-411
-
-
Gersch, M.1
-
44
-
-
33947380146
-
Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
-
Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553-3565, doi: 10.1021/bi061994u (2007).
-
(2007)
Biochemistry
, vol.46
, pp. 3553-3565
-
-
Wang, X.1
-
45
-
-
0036689908
-
Mapping and structural dissection of human 20S proteasome using proteomic approaches
-
Claverol, S., Burlet-Schiltz, O., Girbal-Neuhauser, E., Gairin, J. E., Monsarrat, B. Mapping and structural dissection of human 20S proteasome using proteomic approaches. Mol Cell Proteomics 1, 567-578 doi: 10.1074/mcp.M200030-MCP200 (2002).
-
(2002)
Mol Cell Proteomics
, vol.1
, pp. 567-578
-
-
Claverol, S.1
Burlet-Schiltz, O.2
Girbal-Neuhauser, E.3
Gairin, J.E.4
Monsarrat, B.5
-
46
-
-
1542344946
-
Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon
-
Bose, S., Stratford, F. L., Broadfoot, K. I., Mason, G. G., Rivett, A. J. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J 378, 177-184, doi: 10.1042/BJ20031122 (2004).
-
(2004)
Biochem J
, vol.378
, pp. 177-184
-
-
Bose, S.1
Stratford, F.L.2
Broadfoot, K.I.3
Mason, G.G.4
Rivett, A.J.5
-
47
-
-
0029876795
-
Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis
-
Castano, J. G., Mahillo, E., Arizti, P., Arribas, J. Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry 35, 3782-3789, doi: 10.1021/bi952540s (1996).
-
(1996)
Biochemistry
, vol.35
, pp. 3782-3789
-
-
Castano, J.G.1
Mahillo, E.2
Arizti, P.3
Arribas, J.4
-
48
-
-
0037334895
-
One-thousand-and-one substrates of protein kinase CK2?
-
Meggio, F., Pinna, L. A. One-thousand-and-one substrates of protein kinase CK2? FASEB J 17, 349-368, doi: 10.1096/fj.02-0473rev (2003).
-
(2003)
FASEB J
, vol.17
, pp. 349-368
-
-
Meggio, F.1
Pinna, L.A.2
-
49
-
-
81755172940
-
Keeping proteasomes under control-A role for phosphorylation in the nucleus
-
Sha, Z., Peth, A., Goldberg, A. L. Keeping proteasomes under control-a role for phosphorylation in the nucleus. Proc Natl Acad Sci USA 108, 18573-18574, doi: 10.1073/pnas.1115315108 (2011).
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 18573-18574
-
-
Sha, Z.1
Peth, A.2
Goldberg, A.L.3
-
50
-
-
70350389831
-
Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II
-
Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N., Patrick, G. N. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284, 26655-26665, doi: 10.1074/jbc.M109.021956 (2009).
-
(2009)
J Biol Chem
, vol.284
, pp. 26655-26665
-
-
Djakovic, S.N.1
Schwarz, L.A.2
Barylko, B.3
DeMartino, G.N.4
Patrick, G.N.5
-
51
-
-
34547953209
-
Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
-
Zhang, F. et al. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 282, 22460-22471, doi: 10.1074/jbc.M702439200 (2007).
-
(2007)
J Biol Chem
, vol.282
, pp. 22460-22471
-
-
Zhang, F.1
-
52
-
-
84952685052
-
CAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins
-
Lokireddy, S., Kukushkin, N. V., Goldberg, A. L. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA 112, E7176-7185, doi: 10.1073/pnas.1522332112 (2015).
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E7176-7185
-
-
Lokireddy, S.1
Kukushkin, N.V.2
Goldberg, A.L.3
-
53
-
-
84956663117
-
Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis
-
Guo, X. et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol 18, 202-212, doi: 10.1038/ncb3289 (2016).
-
(2016)
Nat Cell Biol
, vol.18
, pp. 202-212
-
-
Guo, X.1
-
54
-
-
81755163621
-
UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
-
Guo, X. et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc Natl Acad Sci USA 108, 18649-18654, doi: 10.1073/pnas.1113170108 (2011).
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 18649-18654
-
-
Guo, X.1
-
55
-
-
0035895354
-
Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit
-
Satoh, K., Sasajima, H., Nyoumura, K. I., Yokosawa, H., Sawada, H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40, 314-319, doi: 10.1021/bi001815n (2001).
-
(2001)
Biochemistry
, vol.40
, pp. 314-319
-
-
Satoh, K.1
Sasajima, H.2
Nyoumura, K.I.3
Yokosawa, H.4
Sawada, H.5
-
56
-
-
0037030520
-
CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation
-
Semplici, F., Meggio, F., Pinna, L. A., Oliviero, S. CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation. Oncogene 21, 3978-3987, doi: 10.1038/sj. onc.1205574 (2002).
-
(2002)
Oncogene
, vol.21
, pp. 3978-3987
-
-
Semplici, F.1
Meggio, F.2
Pinna, L.A.3
Oliviero, S.4
-
57
-
-
84991980677
-
Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitinindependent proteasomal degradation
-
Sanchez-Lanzas, R., Castano, J. G. Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitinindependent proteasomal degradation. Biomolecules 4, 1140-1154, doi: 10.3390/biom4041140 (2014).
-
(2014)
Biomolecules
, vol.4
, pp. 1140-1154
-
-
Sanchez-Lanzas, R.1
Castano, J.G.2
-
58
-
-
84939832173
-
Protein interaction between ameloblastin and proteasome subunit alpha type 3 can facilitate redistribution of ameloblastin domains within forming enamel
-
Geng, S., White, S. N., Paine, M. L., Snead, M. L. Protein Interaction between Ameloblastin and Proteasome Subunit alpha Type 3 Can Facilitate Redistribution of Ameloblastin Domains within Forming Enamel. J Biol Chem 290, 20661-20673, doi: 10.1074/jbc. M115.640185 (2015).
-
(2015)
J Biol Chem
, vol.290
, pp. 20661-20673
-
-
Geng, S.1
White, S.N.2
Paine, M.L.3
Snead, M.L.4
-
59
-
-
0035853037
-
RPN4 is a ligand, substrate, transcriptional regulator of the 26S proteasome: A negative feedback circuit
-
Xie, Y., Varshavsky, A. RPN4 is a ligand, substrate, transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 98, 3056-3061, doi: 10.1073/pnas.071022298 (2001).
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 3056-3061
-
-
Xie, Y.1
Varshavsky, A.2
-
60
-
-
0033004441
-
Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
-
Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., Feldmann, H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 450, 27-34, doi: 10.1016/S0014-5793(99)00467-6 (1999).
-
(1999)
FEBS Lett
, vol.450
, pp. 27-34
-
-
Mannhaupt, G.1
Schnall, R.2
Karpov, V.3
Vetter, I.4
Feldmann, H.5
-
61
-
-
84898807479
-
Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
-
Unverdorben, P. et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 111, 5544-5549, doi: 10.1073/pnas.1403409111 (2014).
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 5544-5549
-
-
Unverdorben, P.1
-
62
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela, M. E., Lander, G. C., Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20, 781-788, doi: 10.1038/nsmb.2616 (2013).
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
63
-
-
84921752079
-
Proteasomes A molecular census of 26S proteasomes in intact neurons
-
Asano, S. et al. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347, 439-442, doi: 10.1126/science.1261197 (2015).
-
(2015)
Science
, vol.347
, pp. 439-442
-
-
Asano, S.1
-
64
-
-
84924125611
-
Sequence composition of disordered regions fine-tunes protein half-life
-
Fishbain, S. et al. Sequence composition of disordered regions fine-tunes protein half-life. Nat Struct Mol Biol 22, 214-221, doi: 10.1038/nsmb.2958 (2015).
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 214-221
-
-
Fishbain, S.1
-
65
-
-
0032873415
-
Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
-
Goldstein, A. L., McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541-1553, doi: 10.1002/(SICI)1097-0061(199910)15:14 3.0.CO;2-K (1999).
-
(1999)
Yeast
, vol.15
, pp. 1541-1553
-
-
Goldstein, A.L.1
McCusker, J.H.2
-
66
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961, doi: 10.1002/(SICI)1097-0061(199807)14:10 3.0.CO;2-U (1998).
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
-
67
-
-
27644576445
-
Characterization of the Proteasome Using Native Gel Electrophoresis
-
Elsasser, S., Schmidt, M., Finley, D. Characterization of the Proteasome Using Native Gel Electrophoresis. Methods in Enzymology 398, 353-363, doi: 10.1016/s0076-6879(05)98029-4 (2005).
-
(2005)
Methods in Enzymology
, vol.398
, pp. 353-363
-
-
Elsasser, S.1
Schmidt, M.2
Finley, D.3
-
68
-
-
0023666139
-
The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, other stresses
-
Finley, D., Ozkaynak, E., Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, other stresses. Cell 48, 1035-1046, doi: 10.1016/0092-8674(87)90711-2 (1987).
-
(1987)
Cell
, vol.48
, pp. 1035-1046
-
-
Finley, D.1
Ozkaynak, E.2
Varshavsky, A.3
-
69
-
-
20344370277
-
Purification of proteasomes, proteasome subcomplexes, proteasome-associated proteins from budding yeast
-
Leggett, D. S., Glickman, M. H., Finley, D. Purification of proteasomes, proteasome subcomplexes, proteasome-associated proteins from budding yeast. Methods Mol Biol 301, 57-70, doi: 10.1385/1-59259-895-1:057 (2005).
-
(2005)
Methods Mol Biol
, vol.301
, pp. 57-70
-
-
Leggett, D.S.1
Glickman, M.H.2
Finley, D.3
-
70
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-132, doi: 10.1002/(SICI)1097-0061(19980130)14:2 3.0.CO;2-2 (1998).
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
|