메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE; ECM29 PROTEIN, S CEREVISIAE; PRE10 PROTEIN, S CEREVISIAE; PROTEASOME; RPT5 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84975076561     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep27873     Document Type: Article
Times cited : (22)

References (70)
  • 1
    • 84867176120 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system of Saccharomyces cerevisiae
    • Finley, D., Ulrich, H. D., Sommer, T., Kaiser, P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics 192, 319-360, doi: 10.1534/genetics.112.140467 (2012).
    • (2012) Genetics , vol.192 , pp. 319-360
    • Finley, D.1    Ulrich, H.D.2    Sommer, T.3    Kaiser, P.4
  • 2
    • 84959019581 scopus 로고    scopus 로고
    • Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome
    • Shi, Y. et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351, doi: 10.1126/science.aad9421 (2016).
    • (2016) Science , pp. 351
    • Shi, Y.1
  • 3
    • 84952639230 scopus 로고    scopus 로고
    • Gates Channels Switches: Elements of the proteasome machine
    • Finley, D., Chen, X., Walters, K. J. Gates, Channels, Switches: Elements of the Proteasome Machine. Trends Biochem Sci 41, 77-93, doi: 10.1016/j.tibs.2015.10.009 (2016).
    • (2016) Trends Biochem Sci , vol.41 , pp. 77-93
    • Finley, D.1    Chen, X.2    Walters, K.J.3
  • 5
    • 84878942836 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the eukaryotic proteasome
    • Tomko, R. J., Jr., Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82, 415-445, doi: 10.1146/annurev-biochem-060410-150257 (2013).
    • (2013) Annu Rev Biochem , vol.82 , pp. 415-445
    • Tomko, Jr.R.J.1    Hochstrasser, M.2
  • 6
    • 84925652317 scopus 로고    scopus 로고
    • Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association
    • Wani, P. S., Rowland, M. A., Ondracek, A., Deeds, E. J., Roelofs, J. Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun 6, 6384, doi: 10.1038/ncomms7384 (2015).
    • (2015) Nat Commun , vol.6 , pp. 6384
    • Wani, P.S.1    Rowland, M.A.2    Ondracek, A.3    Deeds, E.J.4    Roelofs, J.5
  • 7
    • 84941012942 scopus 로고    scopus 로고
    • Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone
    • Kock, M. et al. Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun 6, 6123, doi: 10.1038/ncomms7123 (2015).
    • (2015) Nat Commun , vol.6 , pp. 6123
    • Kock, M.1
  • 8
    • 67149112112 scopus 로고    scopus 로고
    • Chaperone-mediated pathway of proteasome regulatory particle assembly
    • Roelofs, J. et al. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459, 861-865, doi: 10.1038/nature08063 (2009).
    • (2009) Nature , vol.459 , pp. 861-865
    • Roelofs, J.1
  • 9
    • 84860181809 scopus 로고    scopus 로고
    • Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly
    • Barrault, M. B. et al. Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA 109, E1001-1010, doi: 10.1073/pnas.1116538109 (2012).
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E1001-1010
    • Barrault, M.B.1
  • 10
    • 84877575331 scopus 로고    scopus 로고
    • Conformational dynamics of the rpt6 ATPase in proteasome assembly and rpn14 binding
    • Ehlinger, A. et al. Conformational dynamics of the rpt6 ATPase in proteasome assembly and rpn14 binding. Structure 21, 753-765, doi: 10.1016/j.str.2013.02.021 (2013).
    • (2013) Structure , vol.21 , pp. 753-765
    • Ehlinger, A.1
  • 11
    • 84878131964 scopus 로고    scopus 로고
    • Reconfiguration of the proteasome during chaperone-mediated assembly
    • Park, S. et al. Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 497, 512-516, doi: 10.1038/nature12123 (2013).
    • (2013) Nature , vol.497 , pp. 512-516
    • Park, S.1
  • 12
    • 26844433577 scopus 로고    scopus 로고
    • Proteasome-associated proteins: Regulation of a proteolytic machine
    • Schmidt, M., Hanna, J., Elsasser, S., Finley, D. Proteasome-associated proteins: regulation of a proteolytic machine. Biol Chem 386, 725-737, doi: 10.1515/BC.2005.085 (2005).
    • (2005) Biol Chem , vol.386 , pp. 725-737
    • Schmidt, M.1    Hanna, J.2    Elsasser, S.3    Finley, D.4
  • 13
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol Cell 10, 495-507, doi: 10.1016/S109727650200638X [pii] (2002).
    • (2002) Mol Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1
  • 14
    • 84885586226 scopus 로고    scopus 로고
    • The Proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome
    • De La Mota-Peynado, A. et al. The Proteasome-associated Protein Ecm29 Inhibits Proteasomal ATPase Activity and in Vivo Protein Degradation by the Proteasome. J Biol Chem 288, 29467-29481, doi: 10.1074/jbc.M113.491662 (2013).
    • (2013) J Biol Chem , vol.288 , pp. 29467-29481
    • De La Mota-Peynado, A.1
  • 15
    • 36849059755 scopus 로고    scopus 로고
    • Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
    • Kleijnen, M. F. et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol 14, 1180-1188, doi: 10.1038/nsmb1335 (2007).
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 1180-1188
    • Kleijnen, M.F.1
  • 16
    • 1942489340 scopus 로고    scopus 로고
    • New HEAT-like repeat motifs in proteins regulating proteasome structure and function
    • Kajava, A. V., Gorbea, C., Ortega, J., Rechsteiner, M., Steven, A. C. New HEAT-like repeat motifs in proteins regulating proteasome structure and function. J Struct Biol 146, 425-430, doi: 10.1016/j.jsb.2004.01.013 (2004).
    • (2004) J Struct Biol , vol.146 , pp. 425-430
    • Kajava, A.V.1    Gorbea, C.2    Ortega, J.3    Rechsteiner, M.4    Steven, A.C.5
  • 17
    • 80054702676 scopus 로고    scopus 로고
    • Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
    • Park, S., Kim, W., Tian, G., Gygi, S. P., Finley, D. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 286, 36652-36666, doi: 10.1074/jbc.M111.285924 (2011).
    • (2011) J Biol Chem , vol.286 , pp. 36652-36666
    • Park, S.1    Kim, W.2    Tian, G.3    Gygi, S.P.4    Finley, D.5
  • 18
    • 78649980437 scopus 로고    scopus 로고
    • Regulation of the 26S proteasome complex during oxidative stress
    • Wang, X., Yen, J., Kaiser, P., Huang, L. Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 3, ra88, doi: 10.1126/scisignal.2001232 (2010).
    • (2010) Sci Signal , vol.3 , pp. ra88
    • Wang, X.1    Yen, J.2    Kaiser, P.3    Huang, L.4
  • 19
    • 11144225834 scopus 로고    scopus 로고
    • Characterization of mammalian Ecm29, a 26S proteasomeassociated protein that localizes to the nucleus and membrane vesicles
    • Gorbea, C., Goellner, G. M., Teter, K., Holmes, R. K., Rechsteiner, M. Characterization of mammalian Ecm29, a 26S proteasomeassociated protein that localizes to the nucleus and membrane vesicles. J Biol Chem 279, 54849-54861, doi: 10.1074/jbc.M410444200 (2004).
    • (2004) J Biol Chem , vol.279 , pp. 54849-54861
    • Gorbea, C.1    Goellner, G.M.2    Teter, K.3    Holmes, R.K.4    Rechsteiner, M.5
  • 20
    • 77957817388 scopus 로고    scopus 로고
    • A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components
    • Gorbea, C. et al. A protein interaction network for Ecm29 links the 26S proteasome to molecular motors and endosomal components. J Biol Chem 285, 31616-31633, doi: 10.1074/jbc.M110.154120 (2010).
    • (2010) J Biol Chem , vol.285 , pp. 31616-31633
    • Gorbea, C.1
  • 21
    • 84885793620 scopus 로고    scopus 로고
    • Depletion of the 26S proteasome adaptor Ecm29 increases Toll-like receptor 3 signaling
    • Gorbea, C., Rechsteiner, M., Vallejo, J. G., Bowles, N. E. Depletion of the 26S proteasome adaptor Ecm29 increases Toll-like receptor 3 signaling. Sci Signal 6, ra86, doi: 10.1126/scisignal.2004301 (2013).
    • (2013) Sci Signal , vol.6 , pp. ra86
    • Gorbea, C.1    Rechsteiner, M.2    Vallejo, J.G.3    Bowles, N.E.4
  • 22
    • 84961661738 scopus 로고    scopus 로고
    • Stage-Dependent axon transport of proteasomes contributes to axon development
    • Hsu, M. T. et al. Stage-Dependent Axon Transport of Proteasomes Contributes to Axon Development. Dev Cell 35, 418-431, doi: 10.1016/j.devcel.2015.10.018 (2015).
    • (2015) Dev Cell , vol.35 , pp. 418-431
    • Hsu, M.T.1
  • 23
    • 80054703106 scopus 로고    scopus 로고
    • Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein
    • Lee, S. Y., De la Mota-Peynado, A., Roelofs, J. Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem 286, 36641-36651, doi: 10.1074/jbc.M111.280875 (2011).
    • (2011) J Biol Chem , vol.286 , pp. 36641-36651
    • Lee, S.Y.1    De La Mota-Peynado, A.2    Roelofs, J.3
  • 24
    • 77955503621 scopus 로고    scopus 로고
    • Ecm29 fulfils quality control functions in proteasome assembly
    • Lehmann, A., Niewienda, A., Jechow, K., Janek, K., Enenkel, C. Ecm29 Fulfils Quality Control Functions in Proteasome Assembly. Molecular Cell 38, 879-888, doi: 10.1016/j.molcel.2010.06.016 (2010).
    • (2010) Molecular Cell , vol.38 , pp. 879-888
    • Lehmann, A.1    Niewienda, A.2    Jechow, K.3    Janek, K.4    Enenkel, C.5
  • 25
    • 79953150421 scopus 로고    scopus 로고
    • Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29
    • Panasenko, O. O., Collart, M. A. Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Molecular and Cellular Biology 31, 1610-1623, doi: 10.1128/mcb.01210-10 (2011).
    • (2011) Molecular and Cellular Biology , vol.31 , pp. 1610-1623
    • Panasenko, O.O.1    Collart, M.A.2
  • 26
    • 80555130924 scopus 로고    scopus 로고
    • An asymmetric interface between the regulatory and core particles of the proteasome
    • Tian, G. et al. An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 18, 1259-1267, doi: 10.1038/nsmb.2147 (2011).
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 1259-1267
    • Tian, G.1
  • 27
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186-191, doi: 10.1038/nature10774 (2012).
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1
  • 28
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA 109, 1380-1387, doi: 10.1073/pnas.1120559109 (2012).
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 1380-1387
    • Lasker, K.1
  • 29
    • 84866269021 scopus 로고    scopus 로고
    • Near-atomic resolution structural model of the yeast 26S proteasome
    • Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA 109, 14870-14875, doi: 10.1073/pnas.1213333109 (2012).
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 14870-14875
    • Beck, F.1
  • 30
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 A resolution
    • Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463-471, doi: 10.1038/386463a0 (1997).
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 31
    • 84930188528 scopus 로고    scopus 로고
    • Crystal structure of the human 20S proteasome in complex with carfilzomib
    • Harshbarger, W., Miller, C., Diedrich, C., Sacchettini, J. Crystal structure of the human 20S proteasome in complex with carfilzomib. Structure 23, 418-424, doi: 10.1016/j.str.2014.11.017 (2015).
    • (2015) Structure , vol.23 , pp. 418-424
    • Harshbarger, W.1    Miller, C.2    Diedrich, C.3    Sacchettini, J.4
  • 32
    • 18744391955 scopus 로고    scopus 로고
    • The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle
    • Schmidt, M. et al. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12, 294-303, doi: 10.1038/nsmb914 (2005).
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 294-303
    • Schmidt, M.1
  • 33
    • 19444387760 scopus 로고    scopus 로고
    • The 1.9A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
    • Forster, A., Masters, E. I., Whitby, F. G., Robinson, H., Hill, C. P. The 1.9A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18, 589-599, doi: 10.1016/j.molcel.2005.04.016 (2005).
    • (2005) Mol Cell , vol.18 , pp. 589-599
    • Forster, A.1    Masters, E.I.2    Whitby, F.G.3    Robinson, H.4    Hill, C.P.5
  • 34
    • 42949096020 scopus 로고    scopus 로고
    • Mechanism of Gate Opening in the 20S Proteasome by the Proteasomal ATPases
    • Rabl, J. et al. Mechanism of Gate Opening in the 20S Proteasome by the Proteasomal ATPases. Molecular Cell 30, 360-368, doi: 10.1016/j.molcel.2008.03.004 (2008).
    • (2008) Molecular Cell , vol.30 , pp. 360-368
    • Rabl, J.1
  • 35
    • 57649140340 scopus 로고    scopus 로고
    • Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome
    • Gillette, T. G., Kumar, B., Thompson, D., Slaughter, C. A., DeMartino, G. N. Differential roles of the COOH termini of AAA subunits of PA700 (19S regulator) in asymmetric assembly and activation of the 26S proteasome. J Biol Chem 283, 31813-31822, doi: 10.1074/jbc.M805935200 (2008).
    • (2008) J Biol Chem , vol.283 , pp. 31813-31822
    • Gillette, T.G.1    Kumar, B.2    Thompson, D.3    Slaughter, C.A.4    DeMartino, G.N.5
  • 36
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the Proteasomal ATPases' carboxyl termini in the 20s proteasome's ? Ring opens the gate for substrate entry
    • Smith, D. M. et al. Docking of the Proteasomal ATPases' Carboxyl Termini in the 20S Proteasome's ? Ring Opens the Gate for Substrate Entry. Molecular Cell 27, 731-744, doi: 10.1016/j.molcel.2007.06.033 (2007).
    • (2007) Molecular Cell , vol.27 , pp. 731-744
    • Smith, D.M.1
  • 37
    • 5344237367 scopus 로고    scopus 로고
    • Identification of three phosphorylation sites in the alpha7 subunit of the yeast 20S proteasome in vivo using mass spectrometry
    • Iwafune, Y., Kawasaki, H., Hirano, H. Identification of three phosphorylation sites in the alpha7 subunit of the yeast 20S proteasome in vivo using mass spectrometry. Arch Biochem Biophys 431, 9-15, doi: 10.1016/j.abb.2004.07.020 (2004).
    • (2004) Arch Biochem Biophys , vol.431 , pp. 9-15
    • Iwafune, Y.1    Kawasaki, H.2    Hirano, H.3
  • 38
    • 78649563648 scopus 로고    scopus 로고
    • Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels
    • Helbig, A. O. et al. Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genomics 11, 685, doi: 10.1186/1471-2164-11-685 (2010).
    • (2010) BMC Genomics , vol.11 , Issue.685
    • Helbig, A.O.1
  • 39
    • 70349972517 scopus 로고    scopus 로고
    • Global analysis of the yeast osmotic stress response by quantitative proteomics
    • Soufi, B. et al. Global analysis of the yeast osmotic stress response by quantitative proteomics. Mol Biosyst 5, 1337-1346, doi: 10.1039/b902256b (2009).
    • (2009) Mol Biosyst , vol.5 , pp. 1337-1346
    • Soufi, B.1
  • 40
    • 68549085023 scopus 로고    scopus 로고
    • High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast
    • Gnad, F. et al. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9, 4642-4652, doi: 10.1002/pmic.200900144 (2009).
    • (2009) Proteomics , vol.9 , pp. 4642-4652
    • Gnad, F.1
  • 41
    • 47849125967 scopus 로고    scopus 로고
    • A multidimensional chromatography technology for in-depth phosphoproteome analysis
    • Albuquerque, C. P. et al. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7, 1389-1396, doi: 10.1074/mcp.M700468-MCP200 (2008).
    • (2008) Mol Cell Proteomics , vol.7 , pp. 1389-1396
    • Albuquerque, C.P.1
  • 42
    • 84879613791 scopus 로고    scopus 로고
    • Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
    • Swaney, D. L. et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10, 676-682, doi: 10.1038/nmeth.2519 (2013).
    • (2013) Nat Methods , vol.10 , pp. 676-682
    • Swaney, D.L.1
  • 43
    • 84924976864 scopus 로고    scopus 로고
    • A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, inhibitor binding
    • Gersch, M. et al. A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, inhibitor binding. Chem Biol 22, 404-411, doi: 10.1016/j.chembiol.2015.01.004 (2015).
    • (2015) Chem Biol , vol.22 , pp. 404-411
    • Gersch, M.1
  • 44
    • 33947380146 scopus 로고    scopus 로고
    • Mass spectrometric characterization of the affinity-purified human 26S proteasome complex
    • Wang, X. et al. Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553-3565, doi: 10.1021/bi061994u (2007).
    • (2007) Biochemistry , vol.46 , pp. 3553-3565
    • Wang, X.1
  • 46
    • 1542344946 scopus 로고    scopus 로고
    • Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon
    • Bose, S., Stratford, F. L., Broadfoot, K. I., Mason, G. G., Rivett, A. J. Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon. Biochem J 378, 177-184, doi: 10.1042/BJ20031122 (2004).
    • (2004) Biochem J , vol.378 , pp. 177-184
    • Bose, S.1    Stratford, F.L.2    Broadfoot, K.I.3    Mason, G.G.4    Rivett, A.J.5
  • 47
    • 0029876795 scopus 로고    scopus 로고
    • Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis
    • Castano, J. G., Mahillo, E., Arizti, P., Arribas, J. Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry 35, 3782-3789, doi: 10.1021/bi952540s (1996).
    • (1996) Biochemistry , vol.35 , pp. 3782-3789
    • Castano, J.G.1    Mahillo, E.2    Arizti, P.3    Arribas, J.4
  • 48
    • 0037334895 scopus 로고    scopus 로고
    • One-thousand-and-one substrates of protein kinase CK2?
    • Meggio, F., Pinna, L. A. One-thousand-and-one substrates of protein kinase CK2? FASEB J 17, 349-368, doi: 10.1096/fj.02-0473rev (2003).
    • (2003) FASEB J , vol.17 , pp. 349-368
    • Meggio, F.1    Pinna, L.A.2
  • 49
    • 81755172940 scopus 로고    scopus 로고
    • Keeping proteasomes under control-A role for phosphorylation in the nucleus
    • Sha, Z., Peth, A., Goldberg, A. L. Keeping proteasomes under control-a role for phosphorylation in the nucleus. Proc Natl Acad Sci USA 108, 18573-18574, doi: 10.1073/pnas.1115315108 (2011).
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 18573-18574
    • Sha, Z.1    Peth, A.2    Goldberg, A.L.3
  • 50
    • 70350389831 scopus 로고    scopus 로고
    • Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II
    • Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N., Patrick, G. N. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284, 26655-26665, doi: 10.1074/jbc.M109.021956 (2009).
    • (2009) J Biol Chem , vol.284 , pp. 26655-26665
    • Djakovic, S.N.1    Schwarz, L.A.2    Barylko, B.3    DeMartino, G.N.4    Patrick, G.N.5
  • 51
    • 34547953209 scopus 로고    scopus 로고
    • Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
    • Zhang, F. et al. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J Biol Chem 282, 22460-22471, doi: 10.1074/jbc.M702439200 (2007).
    • (2007) J Biol Chem , vol.282 , pp. 22460-22471
    • Zhang, F.1
  • 52
    • 84952685052 scopus 로고    scopus 로고
    • CAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins
    • Lokireddy, S., Kukushkin, N. V., Goldberg, A. L. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci USA 112, E7176-7185, doi: 10.1073/pnas.1522332112 (2015).
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. E7176-7185
    • Lokireddy, S.1    Kukushkin, N.V.2    Goldberg, A.L.3
  • 53
    • 84956663117 scopus 로고    scopus 로고
    • Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis
    • Guo, X. et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol 18, 202-212, doi: 10.1038/ncb3289 (2016).
    • (2016) Nat Cell Biol , vol.18 , pp. 202-212
    • Guo, X.1
  • 54
    • 81755163621 scopus 로고    scopus 로고
    • UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
    • Guo, X. et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc Natl Acad Sci USA 108, 18649-18654, doi: 10.1073/pnas.1113170108 (2011).
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 18649-18654
    • Guo, X.1
  • 55
    • 0035895354 scopus 로고    scopus 로고
    • Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit
    • Satoh, K., Sasajima, H., Nyoumura, K. I., Yokosawa, H., Sawada, H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 40, 314-319, doi: 10.1021/bi001815n (2001).
    • (2001) Biochemistry , vol.40 , pp. 314-319
    • Satoh, K.1    Sasajima, H.2    Nyoumura, K.I.3    Yokosawa, H.4    Sawada, H.5
  • 56
    • 0037030520 scopus 로고    scopus 로고
    • CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation
    • Semplici, F., Meggio, F., Pinna, L. A., Oliviero, S. CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation. Oncogene 21, 3978-3987, doi: 10.1038/sj. onc.1205574 (2002).
    • (2002) Oncogene , vol.21 , pp. 3978-3987
    • Semplici, F.1    Meggio, F.2    Pinna, L.A.3    Oliviero, S.4
  • 57
    • 84991980677 scopus 로고    scopus 로고
    • Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitinindependent proteasomal degradation
    • Sanchez-Lanzas, R., Castano, J. G. Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitinindependent proteasomal degradation. Biomolecules 4, 1140-1154, doi: 10.3390/biom4041140 (2014).
    • (2014) Biomolecules , vol.4 , pp. 1140-1154
    • Sanchez-Lanzas, R.1    Castano, J.G.2
  • 58
    • 84939832173 scopus 로고    scopus 로고
    • Protein interaction between ameloblastin and proteasome subunit alpha type 3 can facilitate redistribution of ameloblastin domains within forming enamel
    • Geng, S., White, S. N., Paine, M. L., Snead, M. L. Protein Interaction between Ameloblastin and Proteasome Subunit alpha Type 3 Can Facilitate Redistribution of Ameloblastin Domains within Forming Enamel. J Biol Chem 290, 20661-20673, doi: 10.1074/jbc. M115.640185 (2015).
    • (2015) J Biol Chem , vol.290 , pp. 20661-20673
    • Geng, S.1    White, S.N.2    Paine, M.L.3    Snead, M.L.4
  • 59
    • 0035853037 scopus 로고    scopus 로고
    • RPN4 is a ligand, substrate, transcriptional regulator of the 26S proteasome: A negative feedback circuit
    • Xie, Y., Varshavsky, A. RPN4 is a ligand, substrate, transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA 98, 3056-3061, doi: 10.1073/pnas.071022298 (2001).
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3056-3061
    • Xie, Y.1    Varshavsky, A.2
  • 60
    • 0033004441 scopus 로고    scopus 로고
    • Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
    • Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., Feldmann, H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 450, 27-34, doi: 10.1016/S0014-5793(99)00467-6 (1999).
    • (1999) FEBS Lett , vol.450 , pp. 27-34
    • Mannhaupt, G.1    Schnall, R.2    Karpov, V.3    Vetter, I.4    Feldmann, H.5
  • 61
    • 84898807479 scopus 로고    scopus 로고
    • Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome
    • Unverdorben, P. et al. Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA 111, 5544-5549, doi: 10.1073/pnas.1403409111 (2014).
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 5544-5549
    • Unverdorben, P.1
  • 62
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • Matyskiela, M. E., Lander, G. C., Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol 20, 781-788, doi: 10.1038/nsmb.2616 (2013).
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 63
    • 84921752079 scopus 로고    scopus 로고
    • Proteasomes A molecular census of 26S proteasomes in intact neurons
    • Asano, S. et al. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347, 439-442, doi: 10.1126/science.1261197 (2015).
    • (2015) Science , vol.347 , pp. 439-442
    • Asano, S.1
  • 64
    • 84924125611 scopus 로고    scopus 로고
    • Sequence composition of disordered regions fine-tunes protein half-life
    • Fishbain, S. et al. Sequence composition of disordered regions fine-tunes protein half-life. Nat Struct Mol Biol 22, 214-221, doi: 10.1038/nsmb.2958 (2015).
    • (2015) Nat Struct Mol Biol , vol.22 , pp. 214-221
    • Fishbain, S.1
  • 65
    • 0032873415 scopus 로고    scopus 로고
    • Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
    • Goldstein, A. L., McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541-1553, doi: 10.1002/(SICI)1097-0061(199910)15:14 3.0.CO;2-K (1999).
    • (1999) Yeast , vol.15 , pp. 1541-1553
    • Goldstein, A.L.1    McCusker, J.H.2
  • 66
    • 0031820288 scopus 로고    scopus 로고
    • Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
    • Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-961, doi: 10.1002/(SICI)1097-0061(199807)14:10 3.0.CO;2-U (1998).
    • (1998) Yeast , vol.14 , pp. 953-961
    • Longtine, M.S.1
  • 67
    • 27644576445 scopus 로고    scopus 로고
    • Characterization of the Proteasome Using Native Gel Electrophoresis
    • Elsasser, S., Schmidt, M., Finley, D. Characterization of the Proteasome Using Native Gel Electrophoresis. Methods in Enzymology 398, 353-363, doi: 10.1016/s0076-6879(05)98029-4 (2005).
    • (2005) Methods in Enzymology , vol.398 , pp. 353-363
    • Elsasser, S.1    Schmidt, M.2    Finley, D.3
  • 68
    • 0023666139 scopus 로고
    • The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, other stresses
    • Finley, D., Ozkaynak, E., Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, other stresses. Cell 48, 1035-1046, doi: 10.1016/0092-8674(87)90711-2 (1987).
    • (1987) Cell , vol.48 , pp. 1035-1046
    • Finley, D.1    Ozkaynak, E.2    Varshavsky, A.3
  • 69
    • 20344370277 scopus 로고    scopus 로고
    • Purification of proteasomes, proteasome subcomplexes, proteasome-associated proteins from budding yeast
    • Leggett, D. S., Glickman, M. H., Finley, D. Purification of proteasomes, proteasome subcomplexes, proteasome-associated proteins from budding yeast. Methods Mol Biol 301, 57-70, doi: 10.1385/1-59259-895-1:057 (2005).
    • (2005) Methods Mol Biol , vol.301 , pp. 57-70
    • Leggett, D.S.1    Glickman, M.H.2    Finley, D.3
  • 70
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-132, doi: 10.1002/(SICI)1097-0061(19980130)14:2 3.0.CO;2-2 (1998).
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.