-
1
-
-
84863903065
-
Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis
-
Lindquist S.L., Kelly J.W. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol. 2011, 3.
-
(2011)
Cold Spring Harb. Perspect. Biol.
, vol.3
-
-
Lindquist, S.L.1
Kelly, J.W.2
-
2
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
3
-
-
0034602845
-
Recognition of the polyubiquitin proteolytic signal
-
Thrower J.S., Hoffman L., Rechsteiner M., Pickart C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19:94-102.
-
(2000)
EMBO J.
, vol.19
, pp. 94-102
-
-
Thrower, J.S.1
Hoffman, L.2
Rechsteiner, M.3
Pickart, C.M.4
-
4
-
-
84862776836
-
APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1
-
Dimova N.V., Hathaway N.A., Lee B.H., Kirkpatrick D.S., Berkowitz M.L., Gygi S.P., Finley D., King R.W. APC/C-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin B1. Nat. Cell Biol. 2012, 14:168-176.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 168-176
-
-
Dimova, N.V.1
Hathaway, N.A.2
Lee, B.H.3
Kirkpatrick, D.S.4
Berkowitz, M.L.5
Gygi, S.P.6
Finley, D.7
King, R.W.8
-
5
-
-
84867398821
-
The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation
-
Shabek N., Herman-Bachinsky Y., Buchsbaum S., Lewinson O., Haj-Yahya M., Hejjaoui M., Lashuel H.A., Sommer T., Brik A., Ciechanover A. The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation. Mol. Cell 2012, 48:87-97.
-
(2012)
Mol. Cell
, vol.48
, pp. 87-97
-
-
Shabek, N.1
Herman-Bachinsky, Y.2
Buchsbaum, S.3
Lewinson, O.4
Haj-Yahya, M.5
Hejjaoui, M.6
Lashuel, H.A.7
Sommer, T.8
Brik, A.9
Ciechanover, A.10
-
6
-
-
84862667721
-
An historic perspective of proteasome inhibition
-
Esseltine D.L., Mulligan G. An historic perspective of proteasome inhibition. Semin. Hematol. 2012, 49:196-206.
-
(2012)
Semin. Hematol.
, vol.49
, pp. 196-206
-
-
Esseltine, D.L.1
Mulligan, G.2
-
7
-
-
63649086487
-
Targeting the ubiquitin system in cancer therapy
-
Hoeller D., Dikic I. Targeting the ubiquitin system in cancer therapy. Nature 2009, 458:438-444.
-
(2009)
Nature
, vol.458
, pp. 438-444
-
-
Hoeller, D.1
Dikic, I.2
-
8
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4Ǻ resolution
-
Groll M., Ditzel L., Lowe J., Stock D., Bochtler M., Bartunik H.D., Huber R. Structure of 20S proteasome from yeast at 2.4Ǻ resolution. Nature 1997, 386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
Ditzel, L.2
Lowe, J.3
Stock, D.4
Bochtler, M.5
Bartunik, H.D.6
Huber, R.7
-
9
-
-
0033766480
-
A gated channel into the proteasome core particle
-
Groll M., Bajorek M., Kohler A., Moroder L., Rubin D.M., Huber R., Glickman M.H., Finley D. A gated channel into the proteasome core particle. Nat. Struct. Biol. 2000, 7:1062-1067.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 1062-1067
-
-
Groll, M.1
Bajorek, M.2
Kohler, A.3
Moroder, L.4
Rubin, D.M.5
Huber, R.6
Glickman, M.H.7
Finley, D.8
-
10
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby F.G., Masters E.I., Kramer L., Knowlton J.R., Yao Y., Wang C.C., Hill C.P. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115-120.
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
Masters, E.I.2
Kramer, L.3
Knowlton, J.R.4
Yao, Y.5
Wang, C.C.6
Hill, C.P.7
-
12
-
-
59649115172
-
Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination
-
Baugh J.M., Viktorova E.G., Pilipenko E.V. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J. Mol. Biol. 2009, 386:814-827.
-
(2009)
J. Mol. Biol.
, vol.386
, pp. 814-827
-
-
Baugh, J.M.1
Viktorova, E.G.2
Pilipenko, E.V.3
-
13
-
-
68149164657
-
A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha-ring channel
-
Osmulski P.A., Hochstrasser M., Gaczynska M. A tetrahedral transition state at the active sites of the 20S proteasome is coupled to opening of the alpha-ring channel. Structure 2009, 17:1137-1147.
-
(2009)
Structure
, vol.17
, pp. 1137-1147
-
-
Osmulski, P.A.1
Hochstrasser, M.2
Gaczynska, M.3
-
14
-
-
0032483546
-
A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
-
Glickman M.H., Rubin D.M., Coux O., Wefes I., Pfeifer G., Cjeka Z., Baumeister W., Fried V.A., Finley D. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 1998, 94:615-623.
-
(1998)
Cell
, vol.94
, pp. 615-623
-
-
Glickman, M.H.1
Rubin, D.M.2
Coux, O.3
Wefes, I.4
Pfeifer, G.5
Cjeka, Z.6
Baumeister, W.7
Fried, V.A.8
Finley, D.9
-
15
-
-
84856976866
-
Complete subunit architecture of the proteasome regulatory particle
-
Lander G.C., Estrin E., Matyskiela M.E., Bashore C., Nogales E., Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature 2012, 482:186-191.
-
(2012)
Nature
, vol.482
, pp. 186-191
-
-
Lander, G.C.1
Estrin, E.2
Matyskiela, M.E.3
Bashore, C.4
Nogales, E.5
Martin, A.6
-
16
-
-
84866269021
-
Near-atomic resolution structural model of the yeast 26S proteasome
-
Beck F., Unverdorben P., Bohn S., Schweitzer A., Pfeifer G., Sakata E., Nickell S., Plitzko J.M., Villa E., Baumeister W., et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:14870-14875.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 14870-14875
-
-
Beck, F.1
Unverdorben, P.2
Bohn, S.3
Schweitzer, A.4
Pfeifer, G.5
Sakata, E.6
Nickell, S.7
Plitzko, J.M.8
Villa, E.9
Baumeister, W.10
-
17
-
-
84876909425
-
Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation
-
Sledz P., Unverdorben P., Beck F., Pfeifer G., Schweitzer A., Forster F., Baumeister W. Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:7264-7269.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 7264-7269
-
-
Sledz, P.1
Unverdorben, P.2
Beck, F.3
Pfeifer, G.4
Schweitzer, A.5
Forster, F.6
Baumeister, W.7
-
18
-
-
44349116590
-
Proteasome subunit Rpn13 is a novel ubiquitin receptor
-
Husnjak K., Elsasser S., Zhang N., Chen X., Randles L., Shi Y., Hofmann K., Walters K.J., Finley D., Dikic I. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453:481-488.
-
(2008)
Nature
, vol.453
, pp. 481-488
-
-
Husnjak, K.1
Elsasser, S.2
Zhang, N.3
Chen, X.4
Randles, L.5
Shi, Y.6
Hofmann, K.7
Walters, K.J.8
Finley, D.9
Dikic, I.10
-
19
-
-
84856023509
-
The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together
-
Pathare G.R., Nagy I., Bohn S., Unverdorben P., Hubert A., Korner R., Nickell S., Lasker K., Sali A., Tamura T., et al. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:149-154.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 149-154
-
-
Pathare, G.R.1
Nagy, I.2
Bohn, S.3
Unverdorben, P.4
Hubert, A.5
Korner, R.6
Nickell, S.7
Lasker, K.8
Sali, A.9
Tamura, T.10
-
20
-
-
0037131243
-
Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
-
Verma R., Aravind L., Oania R., McDonald W.H., Yates J.R., Koonin E.V., Deshaies R.J. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002, 298:611-615.
-
(2002)
Science
, vol.298
, pp. 611-615
-
-
Verma, R.1
Aravind, L.2
Oania, R.3
McDonald, W.H.4
Yates, J.R.5
Koonin, E.V.6
Deshaies, R.J.7
-
21
-
-
0037179694
-
A cryptic protease couples deubiquitination and degradation by the proteasome
-
Yao T., Cohen R.E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002, 419:403-407.
-
(2002)
Nature
, vol.419
, pp. 403-407
-
-
Yao, T.1
Cohen, R.E.2
-
22
-
-
69249217672
-
An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome
-
Forster F., Lasker K., Beck F., Nickell S., Sali A., Baumeister W. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem. Biophys. Res. Commun. 2009, 388:228-233.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.388
, pp. 228-233
-
-
Forster, F.1
Lasker, K.2
Beck, F.3
Nickell, S.4
Sali, A.5
Baumeister, W.6
-
23
-
-
84880157841
-
Conformational switching of the 26S proteasome enables substrate degradation
-
Matyskiela M.E., Lander G.C., Martin A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 2013, 20:781-788.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 781-788
-
-
Matyskiela, M.E.1
Lander, G.C.2
Martin, A.3
-
24
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith D.M., Chang S.C., Park S., Finley D., Cheng Y., Goldberg A.L. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27:731-744.
-
(2007)
Mol. Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
Chang, S.C.2
Park, S.3
Finley, D.4
Cheng, Y.5
Goldberg, A.L.6
-
25
-
-
69949136026
-
Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
-
Thompson D., Hakala K., DeMartino G.N. Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J. Biol. Chem. 2009, 284:24891-24903.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 24891-24903
-
-
Thompson, D.1
Hakala, K.2
DeMartino, G.N.3
-
26
-
-
83355169695
-
Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism
-
Dange T., Smith D., Noy T., Rommel P.C., Jurzitza L., Cordero R.J., Legendre A., Finley D., Goldberg A.L., Schmidt M. Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J. Biol. Chem. 2011, 286:42830-42839.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 42830-42839
-
-
Dange, T.1
Smith, D.2
Noy, T.3
Rommel, P.C.4
Jurzitza, L.5
Cordero, R.J.6
Legendre, A.7
Finley, D.8
Goldberg, A.L.9
Schmidt, M.10
-
27
-
-
77649243592
-
Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening
-
Sadre-Bazzaz K., Whitby F.G., Robinson H., Formosa T., Hill C.P. Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 2010, 37:728-735.
-
(2010)
Mol. Cell
, vol.37
, pp. 728-735
-
-
Sadre-Bazzaz, K.1
Whitby, F.G.2
Robinson, H.3
Formosa, T.4
Hill, C.P.5
-
28
-
-
84865094127
-
Identification of the Cdc48*20S proteasome as an ancient AAA+ proteolytic machine
-
Barthelme D., Sauer R.T. Identification of the Cdc48*20S proteasome as an ancient AAA+ proteolytic machine. Science 2012, 337:843-846.
-
(2012)
Science
, vol.337
, pp. 843-846
-
-
Barthelme, D.1
Sauer, R.T.2
-
29
-
-
0033176770
-
The base of the proteasome regulatory particle exhibits chaperone-like activity
-
Braun B.C., Glickman M., Kraft R., Dahlmann B., Kloetzel P.M., Finley D., Schmidt M. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat. Cell Biol. 1999, 1:221-226.
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. 221-226
-
-
Braun, B.C.1
Glickman, M.2
Kraft, R.3
Dahlmann, B.4
Kloetzel, P.M.5
Finley, D.6
Schmidt, M.7
-
30
-
-
0034090632
-
Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome
-
Strickland E., Hakala K., Thomas P.J., DeMartino G.N. Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J. Biol. Chem. 2000, 275:5565-5572.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 5565-5572
-
-
Strickland, E.1
Hakala, K.2
Thomas, P.J.3
DeMartino, G.N.4
-
31
-
-
55849123303
-
Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability
-
Blickwedehl J., Agarwal M., Seong C., Pandita R.K., Melendy T., Sung P., Pandita T.K., Bangia N. Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:16165-16170.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 16165-16170
-
-
Blickwedehl, J.1
Agarwal, M.2
Seong, C.3
Pandita, R.K.4
Melendy, T.5
Sung, P.6
Pandita, T.K.7
Bangia, N.8
-
32
-
-
18744391955
-
The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle
-
Schmidt M., Haas W., Crosas B., Santamaria P.G., Gygi S.P., Walz T., Finley D. The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat. Struct. Mol. Biol. 2005, 12:294-303.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 294-303
-
-
Schmidt, M.1
Haas, W.2
Crosas, B.3
Santamaria, P.G.4
Gygi, S.P.5
Walz, T.6
Finley, D.7
-
33
-
-
36849024844
-
The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation
-
Marques A.J., Glanemann C., Ramos P.C., Dohmen R.J. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem. 2007, 282:34869-34876.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34869-34876
-
-
Marques, A.J.1
Glanemann, C.2
Ramos, P.C.3
Dohmen, R.J.4
-
34
-
-
0242522904
-
Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly
-
Fehlker M., Wendler P., Lehmann A., Enenkel C. Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep. 2003, 4:959-963.
-
(2003)
EMBO Rep.
, vol.4
, pp. 959-963
-
-
Fehlker, M.1
Wendler, P.2
Lehmann, A.3
Enenkel, C.4
-
35
-
-
79952342817
-
Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10
-
Lopez A.D., Tar K., Krugel U., Dange T., Ros I.G., Schmidt M. Proteasomal degradation of Sfp1 contributes to the repression of ribosome biogenesis during starvation and is mediated by the proteasome activator Blm10. Mol. Biol. Cell 2011, 22:528-540.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 528-540
-
-
Lopez, A.D.1
Tar, K.2
Krugel, U.3
Dange, T.4
Ros, I.G.5
Schmidt, M.6
-
36
-
-
33645813390
-
Proteasome activator PA200 is required for normal spermatogenesis
-
Khor B., Bredemeyer A.L., Huang C.Y., Turnbull I.R., Evans R., Maggi L.B., White J.M., Walker L.M., Carnes K., Hess R.A., et al. Proteasome activator PA200 is required for normal spermatogenesis. Mol. Cell. Biol. 2006, 26:2999-3007.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 2999-3007
-
-
Khor, B.1
Bredemeyer, A.L.2
Huang, C.Y.3
Turnbull, I.R.4
Evans, R.5
Maggi, L.B.6
White, J.M.7
Walker, L.M.8
Carnes, K.9
Hess, R.A.10
-
37
-
-
84883572040
-
Loss of a 20S proteasome activator in Saccharomyces cerevisiae downregulates genes important for genomic integrity, increases DNA damage, and selectively sensitizes cells to agents with diverse mechanisms of action
-
Doherty K.M., Pride L.D., Lukose J., Snydsman B.E., Charles R., Pramanik A., Muller E.G., Botstein D., Moore C.W. Loss of a 20S proteasome activator in Saccharomyces cerevisiae downregulates genes important for genomic integrity, increases DNA damage, and selectively sensitizes cells to agents with diverse mechanisms of action. G3 (Bethesda) 2012, 2:943-959.
-
(2012)
G3 (Bethesda)
, vol.2
, pp. 943-959
-
-
Doherty, K.M.1
Pride, L.D.2
Lukose, J.3
Snydsman, B.E.4
Charles, R.5
Pramanik, A.6
Muller, E.G.7
Botstein, D.8
Moore, C.W.9
-
38
-
-
34447549100
-
Proteasomes and proteasome activator 200kDa (PA200) accumulate on chromatin in response to ionizing radiation
-
Blickwedehl J., McEvoy S., Wong I., Kousis P., Clements J., Elliott R., Cresswell P., Liang P., Bangia N. Proteasomes and proteasome activator 200kDa (PA200) accumulate on chromatin in response to ionizing radiation. Radiat. Res. 2007, 167:663-674.
-
(2007)
Radiat. Res.
, vol.167
, pp. 663-674
-
-
Blickwedehl, J.1
McEvoy, S.2
Wong, I.3
Kousis, P.4
Clements, J.5
Elliott, R.6
Cresswell, P.7
Liang, P.8
Bangia, N.9
-
39
-
-
84878314537
-
Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis
-
Qian M.X., Pang Y., Liu C.H., Haratake K., Du B.Y., Ji D.Y., Wang G.F., Zhu Q.Q., Song W., Yu Y., et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 2013, 153:1012-1024.
-
(2013)
Cell
, vol.153
, pp. 1012-1024
-
-
Qian, M.X.1
Pang, Y.2
Liu, C.H.3
Haratake, K.4
Du, B.Y.5
Ji, D.Y.6
Wang, G.F.7
Zhu, Q.Q.8
Song, W.9
Yu, Y.10
-
40
-
-
19444387760
-
The 1.9Ǻ structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions
-
Forster A., Masters E.I., Whitby F.G., Robinson H., Hill C.P. The 1.9Ǻ structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol. Cell 2005, 18:589-599.
-
(2005)
Mol. Cell
, vol.18
, pp. 589-599
-
-
Forster, A.1
Masters, E.I.2
Whitby, F.G.3
Robinson, H.4
Hill, C.P.5
-
41
-
-
0026498493
-
Purification of an 11 S regulator of the multicatalytic protease
-
Dubiel W., Pratt G., Ferrell K., Rechsteiner M. Purification of an 11 S regulator of the multicatalytic protease. J. Biol. Chem. 1992, 267:22369-22377.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 22369-22377
-
-
Dubiel, W.1
Pratt, G.2
Ferrell, K.3
Rechsteiner, M.4
-
42
-
-
0026669739
-
Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain)
-
Ma C.P., Slaughter C.A., DeMartino G.N. Identification, purification, and characterization of a protein activator (PA28) of the 20 S proteasome (macropain). J. Biol. Chem. 1992, 267:10515-10523.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 10515-10523
-
-
Ma, C.P.1
Slaughter, C.A.2
DeMartino, G.N.3
-
43
-
-
0034640520
-
Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis
-
Tanahashi N., Murakami Y., Minami Y., Shimbara N., Hendil K.B., Tanaka K. Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J. Biol. Chem. 2000, 275:14336-14345.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 14336-14345
-
-
Tanahashi, N.1
Murakami, Y.2
Minami, Y.3
Shimbara, N.4
Hendil, K.B.5
Tanaka, K.6
-
44
-
-
0035955559
-
Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28alphabeta activator: ultrastructure and peptidase activities
-
Kopp F., Dahlmann B., Kuehn L. Reconstitution of hybrid proteasomes from purified PA700-20 S complexes and PA28alphabeta activator: ultrastructure and peptidase activities. J. Mol. Biol. 2001, 313:465-471.
-
(2001)
J. Mol. Biol.
, vol.313
, pp. 465-471
-
-
Kopp, F.1
Dahlmann, B.2
Kuehn, L.3
-
45
-
-
0037013955
-
Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes
-
Cascio P., Call M., Petre B.M., Walz T., Goldberg A.L. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J. 2002, 21:2636-2645.
-
(2002)
EMBO J.
, vol.21
, pp. 2636-2645
-
-
Cascio, P.1
Call, M.2
Petre, B.M.3
Walz, T.4
Goldberg, A.L.5
-
46
-
-
0030611045
-
Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators
-
Realini C., Jensen C.C., Zhang Z., Johnston S.C., Knowlton J.R., Hill C.P., Rechsteiner M. Characterization of recombinant REGalpha, REGbeta, and REGgamma proteasome activators. J. Biol. Chem. 1997, 272:25483-25492.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 25483-25492
-
-
Realini, C.1
Jensen, C.C.2
Zhang, Z.3
Johnston, S.C.4
Knowlton, J.R.5
Hill, C.P.6
Rechsteiner, M.7
-
47
-
-
0036776741
-
The role of the proteasome activator PA28 in MHC class I antigen processing
-
Sijts A., Sun Y., Janek K., Kral S., Paschen A., Schadendorf D., Kloetzel P.M. The role of the proteasome activator PA28 in MHC class I antigen processing. Mol. Immunol. 2002, 39:165-169.
-
(2002)
Mol. Immunol.
, vol.39
, pp. 165-169
-
-
Sijts, A.1
Sun, Y.2
Janek, K.3
Kral, S.4
Paschen, A.5
Schadendorf, D.6
Kloetzel, P.M.7
-
48
-
-
0034703630
-
Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats
-
Noda C., Tanahashi N., Shimbara N., Hendil K.B., Tanaka K. Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochem. Biophys. Res. Commun. 2000, 277:348-354.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.277
, pp. 348-354
-
-
Noda, C.1
Tanahashi, N.2
Shimbara, N.3
Hendil, K.B.4
Tanaka, K.5
-
49
-
-
0033621341
-
Growth retardation in mice lacking the proteasome activator PA28gamma
-
Murata S., Kawahara H., Tohma S., Yamamoto K., Kasahara M., Nabeshima Y., Tanaka K., Chiba T. Growth retardation in mice lacking the proteasome activator PA28gamma. J. Biol. Chem. 1999, 274:38211-38215.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 38211-38215
-
-
Murata, S.1
Kawahara, H.2
Tohma, S.3
Yamamoto, K.4
Kasahara, M.5
Nabeshima, Y.6
Tanaka, K.7
Chiba, T.8
-
50
-
-
34250339984
-
Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway
-
Li X., Amazit L., Long W., Lonard D.M., Monaco J.J., O'Malley B.W. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol. Cell 2007, 26:831-842.
-
(2007)
Mol. Cell
, vol.26
, pp. 831-842
-
-
Li, X.1
Amazit, L.2
Long, W.3
Lonard, D.M.4
Monaco, J.J.5
O'Malley, B.W.6
-
51
-
-
34250342888
-
Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome
-
Chen X., Barton L.F., Chi Y., Clurman B.E., Roberts J.M. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome. Mol. Cell 2007, 26:843-852.
-
(2007)
Mol. Cell
, vol.26
, pp. 843-852
-
-
Chen, X.1
Barton, L.F.2
Chi, Y.3
Clurman, B.E.4
Roberts, J.M.5
-
52
-
-
0025886546
-
Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes
-
Brown M.G., Driscoll J., Monaco J.J. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 1991, 353:355-357.
-
(1991)
Nature
, vol.353
, pp. 355-357
-
-
Brown, M.G.1
Driscoll, J.2
Monaco, J.J.3
-
53
-
-
0025998206
-
Subunit of the '20S' proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex
-
Ortiz-Navarrete V., Seelig A., Gernold M., Frentzel S., Kloetzel P.M., Hammerling G.J. Subunit of the '20S' proteasome (multicatalytic proteinase) encoded by the major histocompatibility complex. Nature 1991, 353:662-664.
-
(1991)
Nature
, vol.353
, pp. 662-664
-
-
Ortiz-Navarrete, V.1
Seelig, A.2
Gernold, M.3
Frentzel, S.4
Kloetzel, P.M.5
Hammerling, G.J.6
-
54
-
-
0029993775
-
A third interferon-gamma-induced subunit exchange in the 20S proteasome
-
Groettrup M., Kraft R., Kostka S., Standera S., Stohwasser R., Kloetzel P.M. A third interferon-gamma-induced subunit exchange in the 20S proteasome. Eur. J. Immunol. 1996, 26:863-869.
-
(1996)
Eur. J. Immunol.
, vol.26
, pp. 863-869
-
-
Groettrup, M.1
Kraft, R.2
Kostka, S.3
Standera, S.4
Stohwasser, R.5
Kloetzel, P.M.6
-
55
-
-
0029878931
-
Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit
-
Nandi D., Jiang H., Monaco J.J. Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit. J. Immunol. 1996, 156:2361-2364.
-
(1996)
J. Immunol.
, vol.156
, pp. 2361-2364
-
-
Nandi, D.1
Jiang, H.2
Monaco, J.J.3
-
56
-
-
84857313367
-
Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity
-
Huber E.M., Basler M., Schwab R., Heinemeyer W., Kirk C.J., Groettrup M., Groll M. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 2012, 148:727-738.
-
(2012)
Cell
, vol.148
, pp. 727-738
-
-
Huber, E.M.1
Basler, M.2
Schwab, R.3
Heinemeyer, W.4
Kirk, C.J.5
Groettrup, M.6
Groll, M.7
-
57
-
-
84862750546
-
Immunoproteasomes: structure, function, and antigen presentation
-
Ferrington D.A., Gregerson D.S. Immunoproteasomes: structure, function, and antigen presentation. Prog. Mol. Biol. Transl. Sci. 2012, 109:75-112.
-
(2012)
Prog. Mol. Biol. Transl. Sci.
, vol.109
, pp. 75-112
-
-
Ferrington, D.A.1
Gregerson, D.S.2
-
58
-
-
84861869794
-
Differential roles of proteasome and immunoproteasome regulators Pa28alphabeta, Pa28gamma and Pa200 in the degradation of oxidized proteins
-
Pickering A.M., Davies K.J. Differential roles of proteasome and immunoproteasome regulators Pa28alphabeta, Pa28gamma and Pa200 in the degradation of oxidized proteins. Arch. Biochem. Biophys. 2012, 523:181-190.
-
(2012)
Arch. Biochem. Biophys.
, vol.523
, pp. 181-190
-
-
Pickering, A.M.1
Davies, K.J.2
-
59
-
-
77955596988
-
Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress
-
Seifert U., Bialy L.P., Ebstein F., Bech-Otschir D., Voigt A., Schroter F., Prozorovski T., Lange N., Steffen J., Rieger M., et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 2010, 142:613-624.
-
(2010)
Cell
, vol.142
, pp. 613-624
-
-
Seifert, U.1
Bialy, L.P.2
Ebstein, F.3
Bech-Otschir, D.4
Voigt, A.5
Schroter, F.6
Prozorovski, T.7
Lange, N.8
Steffen, J.9
Rieger, M.10
-
60
-
-
80053397654
-
A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans
-
Kitamura A., Maekawa Y., Uehara H., Izumi K., Kawachi I., Nishizawa M., Toyoshima Y., Takahashi H., Standley D.M., Tanaka K., et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J. Clin. Invest. 2011, 121:4150-4160.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4150-4160
-
-
Kitamura, A.1
Maekawa, Y.2
Uehara, H.3
Izumi, K.4
Kawachi, I.5
Nishizawa, M.6
Toyoshima, Y.7
Takahashi, H.8
Standley, D.M.9
Tanaka, K.10
-
61
-
-
84874787780
-
Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins
-
Nathan J.A., Spinnenhirn V., Schmidtke G., Basler M., Groettrup M., Goldberg A.L. Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell 2013, 152:1184-1194.
-
(2013)
Cell
, vol.152
, pp. 1184-1194
-
-
Nathan, J.A.1
Spinnenhirn, V.2
Schmidtke, G.3
Basler, M.4
Groettrup, M.5
Goldberg, A.L.6
-
62
-
-
34249883977
-
+ T cell development by thymus-specific proteasomes
-
+ T cell development by thymus-specific proteasomes. Science 2007, 316:1349-1353.
-
(2007)
Science
, vol.316
, pp. 1349-1353
-
-
Murata, S.1
Sasaki, K.2
Kishimoto, T.3
Niwa, S.4
Hayashi, H.5
Takahama, Y.6
Tanaka, K.7
-
63
-
-
74549144385
-
+ T cells
-
+ T cells. Immunity 2010, 32:29-40.
-
(2010)
Immunity
, vol.32
, pp. 29-40
-
-
Nitta, T.1
Murata, S.2
Sasaki, K.3
Fujii, H.4
Ripen, A.M.5
Ishimaru, N.6
Koyasu, S.7
Tanaka, K.8
Takahama, Y.9
-
64
-
-
0028235965
-
A 26 S protease subunit that binds ubiquitin conjugates
-
Deveraux Q., Ustrell V., Pickart C., Rechsteiner M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 1994, 269:7059-7061.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 7059-7061
-
-
Deveraux, Q.1
Ustrell, V.2
Pickart, C.3
Rechsteiner, M.4
-
65
-
-
3042677641
-
Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome
-
Elsasser S., Chandler-Militello D., Muller B., Hanna J., Finley D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J. Biol. Chem. 2004, 279:26817-26822.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 26817-26822
-
-
Elsasser, S.1
Chandler-Militello, D.2
Muller, B.3
Hanna, J.4
Finley, D.5
-
66
-
-
55049090325
-
Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome
-
Matiuhin Y., Kirkpatrick D.S., Ziv I., Kim W., Dakshinamurthy A., Kleifeld O., Gygi S.P., Reis N., Glickman M.H. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol. Cell 2008, 32:415-425.
-
(2008)
Mol. Cell
, vol.32
, pp. 415-425
-
-
Matiuhin, Y.1
Kirkpatrick, D.S.2
Ziv, I.3
Kim, W.4
Dakshinamurthy, A.5
Kleifeld, O.6
Gygi, S.P.7
Reis, N.8
Glickman, M.H.9
-
67
-
-
84864003919
-
Transfer of Ho endonuclease and Ufo1 to the proteasome by the UbL-UbA shuttle protein, Ddi1, analysed by complex formation in vitro
-
Voloshin O., Bakhrat A., Herrmann S., Raveh D. Transfer of Ho endonuclease and Ufo1 to the proteasome by the UbL-UbA shuttle protein, Ddi1, analysed by complex formation in vitro. PLoS One 2012, 7:e39210.
-
(2012)
PLoS One
, vol.7
-
-
Voloshin, O.1
Bakhrat, A.2
Herrmann, S.3
Raveh, D.4
-
68
-
-
33749049581
-
Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
-
Hanna J., Hathaway N.A., Tone Y., Crosas B., Elsasser S., Kirkpatrick D.S., Leggett D.S., Gygi S.P., King R.W., Finley D. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 2006, 127:99-111.
-
(2006)
Cell
, vol.127
, pp. 99-111
-
-
Hanna, J.1
Hathaway, N.A.2
Tone, Y.3
Crosas, B.4
Elsasser, S.5
Kirkpatrick, D.S.6
Leggett, D.S.7
Gygi, S.P.8
King, R.W.9
Finley, D.10
-
69
-
-
41649091606
-
Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome
-
Koulich E., Li X., DeMartino G.N. Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol. Biol. Cell 2008, 19:1072-1082.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1072-1082
-
-
Koulich, E.1
Li, X.2
DeMartino, G.N.3
-
70
-
-
77956527159
-
Enhancement of proteasome activity by a small-molecule inhibitor of USP14
-
Lee B.H., Lee M.J., Park S., Oh D.C., Elsasser S., Chen P.C., Gartner C., Dimova N., Hanna J., Gygi S.P., et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467:179-184.
-
(2010)
Nature
, vol.467
, pp. 179-184
-
-
Lee, B.H.1
Lee, M.J.2
Park, S.3
Oh, D.C.4
Elsasser, S.5
Chen, P.C.6
Gartner, C.7
Dimova, N.8
Hanna, J.9
Gygi, S.P.10
-
71
-
-
0031038169
-
Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome
-
Lam Y.A., Xu W., DeMartino G.N., Cohen R.E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 1997, 385:737-740.
-
(1997)
Nature
, vol.385
, pp. 737-740
-
-
Lam, Y.A.1
Xu, W.2
DeMartino, G.N.3
Cohen, R.E.4
-
72
-
-
0036713383
-
Proteasome subunit Rpn1 binds ubiquitin-like protein domains
-
Elsasser S., Gali R.R., Schwickart M., Larsen C.N., Leggett D.S., Muller B., Feng M.T., Tubing F., Dittmar G.A., Finley D. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 2002, 4:725-730.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 725-730
-
-
Elsasser, S.1
Gali, R.R.2
Schwickart, M.3
Larsen, C.N.4
Leggett, D.S.5
Muller, B.6
Feng, M.T.7
Tubing, F.8
Dittmar, G.A.9
Finley, D.10
-
73
-
-
0344629427
-
Ubiquitin depletion as a key mediator of toxicity by translational inhibitors
-
Hanna J., Leggett D.S., Finley D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 2003, 23:9251-9261.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 9251-9261
-
-
Hanna, J.1
Leggett, D.S.2
Finley, D.3
-
74
-
-
33845600006
-
Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities
-
Crosas B., Hanna J., Kirkpatrick D.S., Zhang D.P., Tone Y., Hathaway N.A., Buecker C., Leggett D.S., Schmidt M., King R.W., et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 2006, 127:1401-1413.
-
(2006)
Cell
, vol.127
, pp. 1401-1413
-
-
Crosas, B.1
Hanna, J.2
Kirkpatrick, D.S.3
Zhang, D.P.4
Tone, Y.5
Hathaway, N.A.6
Buecker, C.7
Leggett, D.S.8
Schmidt, M.9
King, R.W.10
-
75
-
-
80455122748
-
Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins
-
Fang N.N., Ng A.H., Measday V., Mayor T. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat. Cell Biol. 2011, 13:1344-1352.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1344-1352
-
-
Fang, N.N.1
Ng, A.H.2
Measday, V.3
Mayor, T.4
-
76
-
-
0034646298
-
Physical association of ubiquitin ligases and the 26S proteasome
-
Xie Y., Varshavsky A. Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:2497-2502.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 2497-2502
-
-
Xie, Y.1
Varshavsky, A.2
-
77
-
-
22544466122
-
E3 ubiquitin ligase RNF2 interacts with the S6' proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6'
-
Lee S.J., Choi D., Rhim H., Kang S. E3 ubiquitin ligase RNF2 interacts with the S6' proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6'. Biochem. J. 2005, 389:457-463.
-
(2005)
Biochem. J.
, vol.389
, pp. 457-463
-
-
Lee, S.J.1
Choi, D.2
Rhim, H.3
Kang, S.4
-
78
-
-
20544450823
-
Interaction of U-box E3 ligase SNEV with PSMB4, the beta7 subunit of the 20 S proteasome
-
Loscher M., Fortschegger K., Ritter G., Wostry M., Voglauer R., Schmid J.A., Watters S., Rivett A.J., Ajuh P., Lamond A.I., et al. Interaction of U-box E3 ligase SNEV with PSMB4, the beta7 subunit of the 20 S proteasome. Biochem. J. 2005, 388:593-603.
-
(2005)
Biochem. J.
, vol.388
, pp. 593-603
-
-
Loscher, M.1
Fortschegger, K.2
Ritter, G.3
Wostry, M.4
Voglauer, R.5
Schmid, J.A.6
Watters, S.7
Rivett, A.J.8
Ajuh, P.9
Lamond, A.I.10
-
79
-
-
0038268188
-
Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins
-
Seeger M., Hartmann-Petersen R., Wilkinson C.R., Wallace M., Samejima I., Taylor M.S., Gordon C. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins. J. Biol. Chem. 2003, 278:16791-16796.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 16791-16796
-
-
Seeger, M.1
Hartmann-Petersen, R.2
Wilkinson, C.R.3
Wallace, M.4
Samejima, I.5
Taylor, M.S.6
Gordon, C.7
-
80
-
-
0033791447
-
Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
-
Verma R., Chen S., Feldman R., Schieltz D., Yates J., Dohmen J., Deshaies R.J. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 2000, 11:3425-3439.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 3425-3439
-
-
Verma, R.1
Chen, S.2
Feldman, R.3
Schieltz, D.4
Yates, J.5
Dohmen, J.6
Deshaies, R.J.7
-
81
-
-
77956254963
-
Parkin directly modulates 26S proteasome activity
-
Um J.W., Im E., Lee H.J., Min B., Yoo L., Yoo J., Lubbert H., Stichel-Gunkel C., Cho H.S., Yoon J.B., et al. Parkin directly modulates 26S proteasome activity. J. Neurosci. 2010, 30:11805-11814.
-
(2010)
J. Neurosci.
, vol.30
, pp. 11805-11814
-
-
Um, J.W.1
Im, E.2
Lee, H.J.3
Min, B.4
Yoo, L.5
Yoo, J.6
Lubbert, H.7
Stichel-Gunkel, C.8
Cho, H.S.9
Yoon, J.B.10
-
82
-
-
0036904663
-
UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis
-
Xie Y., Varshavsky A. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nat. Cell Biol. 2002, 4:1003-1007.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 1003-1007
-
-
Xie, Y.1
Varshavsky, A.2
-
83
-
-
85027955696
-
A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding
-
Kusmierczyk A.R., Kunjappu M.J., Kim R.Y., Hochstrasser M. A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat. Struct. Mol. Biol. 2011, 18:622-629.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 622-629
-
-
Kusmierczyk, A.R.1
Kunjappu, M.J.2
Kim, R.Y.3
Hochstrasser, M.4
-
84
-
-
0034674655
-
CDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome
-
McCutchen-Maloney S.L., Matsuda K., Shimbara N., Binns D.D., Tanaka K., Slaughter C.A., DeMartino G.N. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem. 2000, 275:18557-18565.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 18557-18565
-
-
McCutchen-Maloney, S.L.1
Matsuda, K.2
Shimbara, N.3
Binns, D.D.4
Tanaka, K.5
Slaughter, C.A.6
DeMartino, G.N.7
-
85
-
-
0032828077
-
The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes
-
Zaiss D.M., Standera S., Holzhutter H., Kloetzel P., Sijts A.J. The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes. FEBS Lett. 1999, 457:333-338.
-
(1999)
FEBS Lett.
, vol.457
, pp. 333-338
-
-
Zaiss, D.M.1
Standera, S.2
Holzhutter, H.3
Kloetzel, P.4
Sijts, A.J.5
-
86
-
-
0037195136
-
PI31 is a modulator of proteasome formation and antigen processing
-
Zaiss D.M., Standera S., Kloetzel P.M., Sijts A.J. PI31 is a modulator of proteasome formation and antigen processing. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:14344-14349.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 14344-14349
-
-
Zaiss, D.M.1
Standera, S.2
Kloetzel, P.M.3
Sijts, A.J.4
-
87
-
-
79955544968
-
A conserved F box regulatory complex controls proteasome activity in Drosophila
-
Bader M., Benjamin S., Wapinski O.L., Smith D.M., Goldberg A.L., Steller H. A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 2011, 145:371-382.
-
(2011)
Cell
, vol.145
, pp. 371-382
-
-
Bader, M.1
Benjamin, S.2
Wapinski, O.L.3
Smith, D.M.4
Goldberg, A.L.5
Steller, H.6
-
89
-
-
84887405374
-
Roles of cdc48 in regulated protein degradation in yeast
-
Buchberger A. Roles of cdc48 in regulated protein degradation in yeast. Subcell. Biochem. 2013, 66:195-222.
-
(2013)
Subcell. Biochem.
, vol.66
, pp. 195-222
-
-
Buchberger, A.1
-
90
-
-
84874452437
-
Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase
-
Barthelme D., Sauer R.T. Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:3327-3332.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 3327-3332
-
-
Barthelme, D.1
Sauer, R.T.2
-
91
-
-
33846608310
-
Transcriptional regulation of protein complexes within and across species
-
Tan K., Shlomi T., Feizi H., Ideker T., Sharan R. Transcriptional regulation of protein complexes within and across species. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:1283-1288.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 1283-1288
-
-
Tan, K.1
Shlomi, T.2
Feizi, H.3
Ideker, T.4
Sharan, R.5
-
92
-
-
0037821846
-
Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes
-
Meiners S., Heyken D., Weller A., Ludwig A., Stangl K., Kloetzel P.M., Kruger E. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J. Biol. Chem. 2003, 278:21517-21525.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 21517-21525
-
-
Meiners, S.1
Heyken, D.2
Weller, A.3
Ludwig, A.4
Stangl, K.5
Kloetzel, P.M.6
Kruger, E.7
-
93
-
-
0033004441
-
Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
-
Mannhaupt G., Schnall R., Karpov V., Vetter I., Feldmann H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 1999, 450:27-34.
-
(1999)
FEBS Lett.
, vol.450
, pp. 27-34
-
-
Mannhaupt, G.1
Schnall, R.2
Karpov, V.3
Vetter, I.4
Feldmann, H.5
-
94
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett D.S., Hanna J., Borodovsky A., Crosas B., Schmidt M., Baker R.T., Walz T., Ploegh H., Finley D. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10:495-507.
-
(2002)
Mol. Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.S.1
Hanna, J.2
Borodovsky, A.3
Crosas, B.4
Schmidt, M.5
Baker, R.T.6
Walz, T.7
Ploegh, H.8
Finley, D.9
-
95
-
-
0033772765
-
Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes
-
Jelinsky S.A., Estep P., Church G.M., Samson L.D. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell. Biol. 2000, 20:8157-8167.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 8157-8167
-
-
Jelinsky, S.A.1
Estep, P.2
Church, G.M.3
Samson, L.D.4
-
96
-
-
3543037588
-
Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit
-
Ju D., Wang L., Mao X., Xie Y. Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochem. Biophys. Res. Commun. 2004, 321:51-57.
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.321
, pp. 51-57
-
-
Ju, D.1
Wang, L.2
Mao, X.3
Xie, Y.4
-
97
-
-
2642560445
-
Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and -independent
-
Ju D., Xie Y. Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and -independent. J. Biol. Chem. 2004, 279:23851-23854.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 23851-23854
-
-
Ju, D.1
Xie, Y.2
-
98
-
-
11244343965
-
Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
-
Wang L., Mao X., Ju D., Xie Y. Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J. Biol. Chem. 2004, 279:55218-55223.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 55218-55223
-
-
Wang, L.1
Mao, X.2
Ju, D.3
Xie, Y.4
-
99
-
-
78549260740
-
Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae
-
Ma M., Liu Z.L. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics 2010, 11:660.
-
(2010)
BMC Genomics
, vol.11
, pp. 660
-
-
Ma, M.1
Liu, Z.L.2
-
100
-
-
77950366349
-
Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
-
Radhakrishnan S.K., Lee C.S., Young P., Beskow A., Chan J.Y., Deshaies R.J. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 2010, 38:17-28.
-
(2010)
Mol. Cell
, vol.38
, pp. 17-28
-
-
Radhakrishnan, S.K.1
Lee, C.S.2
Young, P.3
Beskow, A.4
Chan, J.Y.5
Deshaies, R.J.6
-
101
-
-
77957341511
-
Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop
-
Steffen J., Seeger M., Koch A., Kruger E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 2010, 40:147-158.
-
(2010)
Mol. Cell
, vol.40
, pp. 147-158
-
-
Steffen, J.1
Seeger, M.2
Koch, A.3
Kruger, E.4
-
102
-
-
33744477355
-
Preincubation with the proteasome inhibitor MG-132 enhances proteasome activity via the Nrf2 transcription factor in aging human skin fibroblasts
-
Kraft D.C., Deocaris C.C., Wadhwa R., Rattan S.I. Preincubation with the proteasome inhibitor MG-132 enhances proteasome activity via the Nrf2 transcription factor in aging human skin fibroblasts. Ann. N. Y. Acad. Sci. 2006, 1067:420-424.
-
(2006)
Ann. N. Y. Acad. Sci.
, vol.1067
, pp. 420-424
-
-
Kraft, D.C.1
Deocaris, C.C.2
Wadhwa, R.3
Rattan, S.I.4
-
103
-
-
84858972249
-
Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress
-
Pickering A.M., Linder R.A., Zhang H., Forman H.J., Davies K.J. Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress. J. Biol. Chem. 2012, 287:10021-10031.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 10021-10031
-
-
Pickering, A.M.1
Linder, R.A.2
Zhang, H.3
Forman, H.J.4
Davies, K.J.5
-
104
-
-
77950907407
-
Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts
-
Kapeta S., Chondrogianni N., Gonos E.S. Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J. Biol. Chem. 2010, 285:8171-8184.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 8171-8184
-
-
Kapeta, S.1
Chondrogianni, N.2
Gonos, E.S.3
-
105
-
-
0242721624
-
Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway
-
Kwak M.K., Wakabayashi N., Greenlaw J.L., Yamamoto M., Kensler T.W. Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol. Cell. Biol. 2003, 23:8786-8794.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8786-8794
-
-
Kwak, M.K.1
Wakabayashi, N.2
Greenlaw, J.L.3
Yamamoto, M.4
Kensler, T.W.5
-
106
-
-
77953012548
-
Stress-activated cap'n'collar transcription factors in aging and human disease
-
Sykiotis G.P., Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease. Sci. Signal. 2010, 3:re3.
-
(2010)
Sci. Signal.
, vol.3
-
-
Sykiotis, G.P.1
Bohmann, D.2
-
107
-
-
57749120460
-
Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes
-
Ohtsuji M., Katsuoka F., Kobayashi A., Aburatani H., Hayes J.D., Yamamoto M. Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J. Biol. Chem. 2008, 283:33554-33562.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 33554-33562
-
-
Ohtsuji, M.1
Katsuoka, F.2
Kobayashi, A.3
Aburatani, H.4
Hayes, J.D.5
Yamamoto, M.6
-
108
-
-
33745807575
-
Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function
-
Wang W., Chan J.Y. Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J. Biol. Chem. 2006, 281:19676-19687.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 19676-19687
-
-
Wang, W.1
Chan, J.Y.2
-
109
-
-
42649130014
-
PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria
-
Lo S.C., Hannink M. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp. Cell Res. 2008, 314:1789-1803.
-
(2008)
Exp. Cell Res.
, vol.314
, pp. 1789-1803
-
-
Lo, S.C.1
Hannink, M.2
-
110
-
-
0032536783
-
Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice
-
Chan J.Y., Kwong M., Lu R., Chang J., Wang B., Yen T.S., Kan Y.W. Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J. 1998, 17:1779-1787.
-
(1998)
EMBO J.
, vol.17
, pp. 1779-1787
-
-
Chan, J.Y.1
Kwong, M.2
Lu, R.3
Chang, J.4
Wang, B.5
Yen, T.S.6
Kan, Y.W.7
-
111
-
-
34447326718
-
Vacuolar leukoencephalopathy with widespread astrogliosis in mice lacking transcription factor Nrf2
-
Hubbs A.F., Benkovic S.A., Miller D.B., O'Callaghan J.P., Battelli L., Schwegler-Berry D., Ma Q. Vacuolar leukoencephalopathy with widespread astrogliosis in mice lacking transcription factor Nrf2. Am. J. Pathol. 2007, 170:2068-2076.
-
(2007)
Am. J. Pathol.
, vol.170
, pp. 2068-2076
-
-
Hubbs, A.F.1
Benkovic, S.A.2
Miller, D.B.3
O'Callaghan, J.P.4
Battelli, L.5
Schwegler-Berry, D.6
Ma, Q.7
-
112
-
-
0034785941
-
Nrf2-deficient female mice develop lupus-like autoimmune nephritis
-
Yoh K., Itoh K., Enomoto A., Hirayama A., Yamaguchi N., Kobayashi M., Morito N., Koyama A., Yamamoto M., Takahashi S. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int. 2001, 60:1343-1353.
-
(2001)
Kidney Int.
, vol.60
, pp. 1343-1353
-
-
Yoh, K.1
Itoh, K.2
Enomoto, A.3
Hirayama, A.4
Yamaguchi, N.5
Kobayashi, M.6
Morito, N.7
Koyama, A.8
Yamamoto, M.9
Takahashi, S.10
-
113
-
-
83255185776
-
Dual regulation of the transcriptional activity of Nrf1 by beta-TrCP- and Hrd1-dependent degradation mechanisms
-
Tsuchiya Y., Morita T., Kim M., Iemura S., Natsume T., Yamamoto M., Kobayashi A. Dual regulation of the transcriptional activity of Nrf1 by beta-TrCP- and Hrd1-dependent degradation mechanisms. Mol. Cell. Biol. 2011, 31:4500-4512.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 4500-4512
-
-
Tsuchiya, Y.1
Morita, T.2
Kim, M.3
Iemura, S.4
Natsume, T.5
Yamamoto, M.6
Kobayashi, A.7
-
114
-
-
11144264663
-
BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase
-
Furukawa M., Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 2005, 25:162-171.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 162-171
-
-
Furukawa, M.1
Xiong, Y.2
-
115
-
-
38149092669
-
Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans
-
Kahn N.W., Rea S.L., Moyle S., Kell A., Johnson T.E. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans. Biochem. J. 2008, 409:205-213.
-
(2008)
Biochem. J.
, vol.409
, pp. 205-213
-
-
Kahn, N.W.1
Rea, S.L.2
Moyle, S.3
Kell, A.4
Johnson, T.E.5
-
116
-
-
79959823394
-
Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity
-
Li X., Matilainen O., Jin C., Glover-Cutter K.M., Holmberg C.I., Blackwell T.K. Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genet. 2011, 7:e1002119.
-
(2011)
PLoS Genet.
, vol.7
-
-
Li, X.1
Matilainen, O.2
Jin, C.3
Glover-Cutter, K.M.4
Holmberg, C.I.5
Blackwell, T.K.6
-
117
-
-
84873417130
-
A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative-stress adaptation in mammals, C. elegans and D. melanogaster
-
Pickering A.M., Staab T.A., Tower J., Sieburth D.S., Davies K.J. A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative-stress adaptation in mammals, C. elegans and D. melanogaster. J. Exp. Biol. 2012, 216:543-553.
-
(2012)
J. Exp. Biol.
, vol.216
, pp. 543-553
-
-
Pickering, A.M.1
Staab, T.A.2
Tower, J.3
Sieburth, D.S.4
Davies, K.J.5
-
118
-
-
66349105688
-
The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans
-
Choe K.P., Przybysz A.J., Strange K. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol. Cell. Biol. 2009, 29:2704-2715.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 2704-2715
-
-
Choe, K.P.1
Przybysz, A.J.2
Strange, K.3
-
119
-
-
79551614016
-
Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans
-
Niu W., Lu Z.J., Zhong M., Sarov M., Murray J.I., Brdlik C.M., Janette J., Chen C., Alves P., Preston E., et al. Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans. Genome Res. 2011, 21:245-254.
-
(2011)
Genome Res.
, vol.21
, pp. 245-254
-
-
Niu, W.1
Lu, Z.J.2
Zhong, M.3
Sarov, M.4
Murray, J.I.5
Brdlik, C.M.6
Janette, J.7
Chen, C.8
Alves, P.9
Preston, E.10
-
120
-
-
84866182143
-
RPN-6 determines C. elegans longevity under proteotoxic stress conditions
-
Vilchez D., Morantte I., Liu Z., Douglas P.M., Merkwirth C., Rodrigues A.P., Manning G., Dillin A. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 2012, 489:263-268.
-
(2012)
Nature
, vol.489
, pp. 263-268
-
-
Vilchez, D.1
Morantte, I.2
Liu, Z.3
Douglas, P.M.4
Merkwirth, C.5
Rodrigues, A.P.6
Manning, G.7
Dillin, A.8
-
121
-
-
80052968161
-
Regulation of FOXO protein stability via ubiquitination and proteasome degradation
-
Huang H., Tindall D.J. Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim. Biophys. Acta 2011, 1813:1961-1964.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1961-1964
-
-
Huang, H.1
Tindall, D.J.2
-
122
-
-
41449113346
-
Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor
-
Zhao J., Brault J.J., Schild A., Goldberg A.L. Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 2008, 4:378-380.
-
(2008)
Autophagy
, vol.4
, pp. 378-380
-
-
Zhao, J.1
Brault, J.J.2
Schild, A.3
Goldberg, A.L.4
-
123
-
-
77955107424
-
Co- and post-translational modifications of the 26S proteasome in yeast
-
Kikuchi J., Iwafune Y., Akiyama T., Okayama A., Nakamura H., Arakawa N., Kimura Y., Hirano H. Co- and post-translational modifications of the 26S proteasome in yeast. Proteomics 2010, 10:2769-2779.
-
(2010)
Proteomics
, vol.10
, pp. 2769-2779
-
-
Kikuchi, J.1
Iwafune, Y.2
Akiyama, T.3
Okayama, A.4
Nakamura, H.5
Arakawa, N.6
Kimura, Y.7
Hirano, H.8
-
124
-
-
33747429762
-
Mapping the murine cardiac 26S proteasome complexes
-
Gomes A.V., Zong C., Edmondson R.D., Li X., Stefani E., Zhang J., Jones R.C., Thyparambil S., Wang G.W., Qiao X., et al. Mapping the murine cardiac 26S proteasome complexes. Circ. Res. 2006, 99:362-371.
-
(2006)
Circ. Res.
, vol.99
, pp. 362-371
-
-
Gomes, A.V.1
Zong, C.2
Edmondson, R.D.3
Li, X.4
Stefani, E.5
Zhang, J.6
Jones, R.C.7
Thyparambil, S.8
Wang, G.W.9
Qiao, X.10
-
125
-
-
0346965700
-
O-GlcNAc modification is an endogenous inhibitor of the proteasome
-
Zhang F., Su K., Yang X., Bowe D.B., Paterson A.J., Kudlow J.E. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 2003, 115:715-725.
-
(2003)
Cell
, vol.115
, pp. 715-725
-
-
Zhang, F.1
Su, K.2
Yang, X.3
Bowe, D.B.4
Paterson, A.J.5
Kudlow, J.E.6
-
126
-
-
0035839573
-
Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion
-
Bulteau A.L., Lundberg K.C., Humphries K.M., Sadek H.A., Szweda P.A., Friguet B., Szweda L.I. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J. Biol. Chem. 2001, 276:30057-30063.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30057-30063
-
-
Bulteau, A.L.1
Lundberg, K.C.2
Humphries, K.M.3
Sadek, H.A.4
Szweda, P.A.5
Friguet, B.6
Szweda, L.I.7
-
127
-
-
0037401702
-
Impact of ageing on proteasome structure and function in human lymphocytes
-
Carrard G., Dieu M., Raes M., Toussaint O., Friguet B. Impact of ageing on proteasome structure and function in human lymphocytes. Int. J. Biochem. Cell Biol. 2003, 35:728-739.
-
(2003)
Int. J. Biochem. Cell Biol.
, vol.35
, pp. 728-739
-
-
Carrard, G.1
Dieu, M.2
Raes, M.3
Toussaint, O.4
Friguet, B.5
-
128
-
-
78649980437
-
Regulation of the 26S proteasome complex during oxidative stress
-
Wang X., Yen J., Kaiser P., Huang L. Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal. 2010, 3:ra88.
-
(2010)
Sci. Signal.
, vol.3
-
-
Wang, X.1
Yen, J.2
Kaiser, P.3
Huang, L.4
-
129
-
-
84868534561
-
N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome
-
Kimura A., Kato Y., Hirano H. N-myristoylation of the Rpt2 subunit regulates intracellular localization of the yeast 26S proteasome. Biochemistry 2012, 51:8856-8866.
-
(2012)
Biochemistry
, vol.51
, pp. 8856-8866
-
-
Kimura, A.1
Kato, Y.2
Hirano, H.3
-
130
-
-
77953113655
-
Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome
-
Isasa M., Katz E.J., Kim W., Yugo V., Gonzalez S., Kirkpatrick D.S., Thomson T.M., Finley D., Gygi S.P., Crosas B. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol. Cell 2010, 38:733-745.
-
(2010)
Mol. Cell
, vol.38
, pp. 733-745
-
-
Isasa, M.1
Katz, E.J.2
Kim, W.3
Yugo, V.4
Gonzalez, S.5
Kirkpatrick, D.S.6
Thomson, T.M.7
Finley, D.8
Gygi, S.P.9
Crosas, B.10
-
131
-
-
84859184764
-
Ubiquitylation of Drosophila p54/Rpn10/S5a regulates its interaction with the UBA-UBL polyubiquitin receptors
-
Lipinszki Z., Kovacs L., Deak P., Udvardy A. Ubiquitylation of Drosophila p54/Rpn10/S5a regulates its interaction with the UBA-UBL polyubiquitin receptors. Biochemistry 2012, 51:2461-2470.
-
(2012)
Biochemistry
, vol.51
, pp. 2461-2470
-
-
Lipinszki, Z.1
Kovacs, L.2
Deak, P.3
Udvardy, A.4
-
132
-
-
84859867653
-
Redox control of 20S proteasome gating
-
Silva G.M., Netto L.E., Simoes V., Santos L.F., Gozzo F.C., Demasi M.A., Oliveira C.L., Bicev R.N., Klitzke C.F., Sogayar M.C., et al. Redox control of 20S proteasome gating. Antioxid. Redox Signal. 2012, 16:1183-1194.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 1183-1194
-
-
Silva, G.M.1
Netto, L.E.2
Simoes, V.3
Santos, L.F.4
Gozzo, F.C.5
Demasi, M.A.6
Oliveira, C.L.7
Bicev, R.N.8
Klitzke, C.F.9
Sogayar, M.C.10
-
133
-
-
0033033698
-
Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones
-
Ullrich O., Reinheckel T., Sitte N., Hass R., Grune T., Davies K.J. Poly-ADP ribose polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:6223-6228.
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 6223-6228
-
-
Ullrich, O.1
Reinheckel, T.2
Sitte, N.3
Hass, R.4
Grune, T.5
Davies, K.J.6
-
134
-
-
84876935501
-
Proteasome regulation by ADP-ribosylation
-
Cho-Park P.F., Steller H. Proteasome regulation by ADP-ribosylation. Cell 2013, 153:614-627.
-
(2013)
Cell
, vol.153
, pp. 614-627
-
-
Cho-Park, P.F.1
Steller, H.2
-
135
-
-
34547953209
-
Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6
-
Zhang F., Hu Y., Huang P., Toleman C.A., Paterson A.J., Kudlow J.E. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 2007, 282:22460-22471.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 22460-22471
-
-
Zhang, F.1
Hu, Y.2
Huang, P.3
Toleman, C.A.4
Paterson, A.J.5
Kudlow, J.E.6
-
136
-
-
33747416363
-
Regulation of murine cardiac 20S proteasomes: role of associating partners
-
Zong C., Gomes A.V., Drews O., Li X., Young G.W., Berhane B., Qiao X., French S.W., Bardag-Gorce F., Ping P. Regulation of murine cardiac 20S proteasomes: role of associating partners. Circ. Res. 2006, 99:372-380.
-
(2006)
Circ. Res.
, vol.99
, pp. 372-380
-
-
Zong, C.1
Gomes, A.V.2
Drews, O.3
Li, X.4
Young, G.W.5
Berhane, B.6
Qiao, X.7
French, S.W.8
Bardag-Gorce, F.9
Ping, P.10
-
137
-
-
0025012292
-
Phosphorylation of the multicatalytic proteinase complex from bovine pituitaries by a copurifying cAMP-dependent protein kinase
-
Pereira M.E., Wilk S. Phosphorylation of the multicatalytic proteinase complex from bovine pituitaries by a copurifying cAMP-dependent protein kinase. Arch. Biochem. Biophys. 1990, 283:68-74.
-
(1990)
Arch. Biochem. Biophys.
, vol.283
, pp. 68-74
-
-
Pereira, M.E.1
Wilk, S.2
-
138
-
-
61449156253
-
PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts
-
Asai M., Tsukamoto O., Minamino T., Asanuma H., Fujita M., Asano Y., Takahama H., Sasaki H., Higo S., Asakura M., et al. PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts. J. Mol. Cell. Cardiol. 2009, 46:452-462.
-
(2009)
J. Mol. Cell. Cardiol.
, vol.46
, pp. 452-462
-
-
Asai, M.1
Tsukamoto, O.2
Minamino, T.3
Asanuma, H.4
Fujita, M.5
Asano, Y.6
Takahama, H.7
Sasaki, H.8
Higo, S.9
Asakura, M.10
-
139
-
-
84859529812
-
Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons
-
Djakovic S.N., Marquez-Lona E.M., Jakawich S.K., Wright R., Chu C., Sutton M.A., Patrick G.N. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J. Neurosci. 2012, 32:5126-5131.
-
(2012)
J. Neurosci.
, vol.32
, pp. 5126-5131
-
-
Djakovic, S.N.1
Marquez-Lona, E.M.2
Jakawich, S.K.3
Wright, R.4
Chu, C.5
Sutton, M.A.6
Patrick, G.N.7
-
140
-
-
0035895354
-
Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit
-
Satoh K., Sasajima H., Nyoumura K.I., Yokosawa H., Sawada H. Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit. Biochemistry 2001, 40:314-319.
-
(2001)
Biochemistry
, vol.40
, pp. 314-319
-
-
Satoh, K.1
Sasajima, H.2
Nyoumura, K.I.3
Yokosawa, H.4
Sawada, H.5
-
141
-
-
33646145066
-
Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation
-
Liu X., Huang W., Li C., Li P., Yuan J., Li X., Qiu X.B., Ma Q., Cao C. Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation. Mol. Cell 2006, 22:317-327.
-
(2006)
Mol. Cell
, vol.22
, pp. 317-327
-
-
Liu, X.1
Huang, W.2
Li, C.3
Li, P.4
Yuan, J.5
Li, X.6
Qiu, X.B.7
Ma, Q.8
Cao, C.9
-
142
-
-
78650632460
-
Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation
-
Lee S.H., Park Y., Yoon S.K., Yoon J.B. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. J. Biol. Chem. 2010, 285:41280-41289.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 41280-41289
-
-
Lee, S.H.1
Park, Y.2
Yoon, S.K.3
Yoon, J.B.4
-
143
-
-
59949100645
-
Regulation of global protein translation and protein degradation in aerobic dormancy
-
Ramnanan C.J., Allan M.E., Groom A.G., Storey K.B. Regulation of global protein translation and protein degradation in aerobic dormancy. Mol. Cell. Biochem. 2009, 323:9-20.
-
(2009)
Mol. Cell. Biochem.
, vol.323
, pp. 9-20
-
-
Ramnanan, C.J.1
Allan, M.E.2
Groom, A.G.3
Storey, K.B.4
-
144
-
-
81755163621
-
UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity
-
Guo X., Engel J.L., Xiao J., Tagliabracci V.S., Wang X., Huang L., Dixon J.E. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:18649-18654.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 18649-18654
-
-
Guo, X.1
Engel, J.L.2
Xiao, J.3
Tagliabracci, V.S.4
Wang, X.5
Huang, L.6
Dixon, J.E.7
-
145
-
-
0031906567
-
The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis
-
Delic J., Masdehors P., Omura S., Cosset J.M., Dumont J., Binet J.L., Magdelenat H. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. Br. J. Cancer 1998, 77:1103-1107.
-
(1998)
Br. J. Cancer
, vol.77
, pp. 1103-1107
-
-
Delic, J.1
Masdehors, P.2
Omura, S.3
Cosset, J.M.4
Dumont, J.5
Binet, J.L.6
Magdelenat, H.7
-
146
-
-
0032189685
-
Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor
-
Orlowski R.Z., Eswara J.R., Lafond-Walker A., Grever M.R., Orlowski M., Dang C.V. Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor. Cancer Res. 1998, 58:4342-4348.
-
(1998)
Cancer Res.
, vol.58
, pp. 4342-4348
-
-
Orlowski, R.Z.1
Eswara, J.R.2
Lafond-Walker, A.3
Grever, M.R.4
Orlowski, M.5
Dang, C.V.6
-
147
-
-
21344469230
-
Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue
-
Chen L., Madura K. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res. 2005, 65:5599-5606.
-
(2005)
Cancer Res.
, vol.65
, pp. 5599-5606
-
-
Chen, L.1
Madura, K.2
-
148
-
-
0037111832
-
Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies
-
Orlowski R.Z., Stinchcombe T.E., Mitchell B.S., Shea T.C., Baldwin A.S., Stahl S., Adams J., Esseltine D.L., Elliott P.J., Pien C.S., et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J. Clin. Oncol. 2002, 20:4420-4427.
-
(2002)
J. Clin. Oncol.
, vol.20
, pp. 4420-4427
-
-
Orlowski, R.Z.1
Stinchcombe, T.E.2
Mitchell, B.S.3
Shea, T.C.4
Baldwin, A.S.5
Stahl, S.6
Adams, J.7
Esseltine, D.L.8
Elliott, P.J.9
Pien, C.S.10
-
149
-
-
5644250621
-
A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma
-
Jagannath S., Barlogie B., Berenson J., Siegel D., Irwin D., Richardson P.G., Niesvizky R., Alexanian R., Limentani S.A., Alsina M., et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br. J. Haematol. 2004, 127:165-172.
-
(2004)
Br. J. Haematol.
, vol.127
, pp. 165-172
-
-
Jagannath, S.1
Barlogie, B.2
Berenson, J.3
Siegel, D.4
Irwin, D.5
Richardson, P.G.6
Niesvizky, R.7
Alexanian, R.8
Limentani, S.A.9
Alsina, M.10
-
150
-
-
84865405382
-
Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development
-
Huber E.M., Groll M. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew. Chem. Int. Ed. Engl. 2012, 51:8708-8720.
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 8708-8720
-
-
Huber, E.M.1
Groll, M.2
-
151
-
-
81255179936
-
The 26S proteasome complex: an attractive target for cancer therapy
-
Frankland-Searby S., Bhaumik S.R. The 26S proteasome complex: an attractive target for cancer therapy. Biochim. Biophys. Acta 2012, 1825:64-76.
-
(2012)
Biochim. Biophys. Acta
, vol.1825
, pp. 64-76
-
-
Frankland-Searby, S.1
Bhaumik, S.R.2
-
152
-
-
84871545425
-
Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib
-
Wang Z., Yang J., Kirk C., Fang Y., Alsina M., Badros A., Papadopoulos K., Wong A., Woo T., Bomba D., et al. Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab. Dispos. 2013, 41:230-237.
-
(2013)
Drug Metab. Dispos.
, vol.41
, pp. 230-237
-
-
Wang, Z.1
Yang, J.2
Kirk, C.3
Fang, Y.4
Alsina, M.5
Badros, A.6
Papadopoulos, K.7
Wong, A.8
Woo, T.9
Bomba, D.10
-
153
-
-
33644958956
-
Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells
-
Nencioni A., Garuti A., Schwarzenberg K., Cirmena G., Dal Bello G., Rocco I., Barbieri E., Brossart P., Patrone F., Ballestrero A. Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells. Eur. J. Immunol. 2006, 36:681-689.
-
(2006)
Eur. J. Immunol.
, vol.36
, pp. 681-689
-
-
Nencioni, A.1
Garuti, A.2
Schwarzenberg, K.3
Cirmena, G.4
Dal Bello, G.5
Rocco, I.6
Barbieri, E.7
Brossart, P.8
Patrone, F.9
Ballestrero, A.10
-
154
-
-
80052098744
-
Depletion of alloreactive T-cells in vitro using the proteasome inhibitor bortezomib preserves the immune response against pathogens
-
Blanco B., Sanchez-Abarca L.I., Caballero-Velazquez T., Santamaria C., Inoges S., Perez-Simon J.A. Depletion of alloreactive T-cells in vitro using the proteasome inhibitor bortezomib preserves the immune response against pathogens. Leuk. Res. 2011, 35:1412-1415.
-
(2011)
Leuk. Res.
, vol.35
, pp. 1412-1415
-
-
Blanco, B.1
Sanchez-Abarca, L.I.2
Caballero-Velazquez, T.3
Santamaria, C.4
Inoges, S.5
Perez-Simon, J.A.6
-
155
-
-
84862653224
-
Proteasome inhibitors as immunosuppressants: biological rationale and clinical experience
-
Moran E., Carbone F., Augusti V., Patrone F., Ballestrero A., Nencioni A. Proteasome inhibitors as immunosuppressants: biological rationale and clinical experience. Semin. Hematol. 2012, 49:270-276.
-
(2012)
Semin. Hematol.
, vol.49
, pp. 270-276
-
-
Moran, E.1
Carbone, F.2
Augusti, V.3
Patrone, F.4
Ballestrero, A.5
Nencioni, A.6
-
156
-
-
67650388103
-
A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis
-
Muchamuel T., Basler M., Aujay M.A., Suzuki E., Kalim K.W., Lauer C., Sylvain C., Ring E.R., Shields J., Jiang J., et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 2009, 15:781-787.
-
(2009)
Nat. Med.
, vol.15
, pp. 781-787
-
-
Muchamuel, T.1
Basler, M.2
Aujay, M.A.3
Suzuki, E.4
Kalim, K.W.5
Lauer, C.6
Sylvain, C.7
Ring, E.R.8
Shields, J.9
Jiang, J.10
-
157
-
-
77956198116
-
Prevention of experimental colitis by a selective inhibitor of the immunoproteasome
-
Basler M., Dajee M., Moll C., Groettrup M., Kirk C.J. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J. Immunol. 2010, 185:634-641.
-
(2010)
J. Immunol.
, vol.185
, pp. 634-641
-
-
Basler, M.1
Dajee, M.2
Moll, C.3
Groettrup, M.4
Kirk, C.J.5
-
158
-
-
78650034178
-
Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications
-
Huang Q., Figueiredo-Pereira M.E. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis 2010, 15:1292-1311.
-
(2010)
Apoptosis
, vol.15
, pp. 1292-1311
-
-
Huang, Q.1
Figueiredo-Pereira, M.E.2
-
159
-
-
84879077265
-
Alzheimer disease in the United States (2010-2050) estimated using the 2010 census
-
Hebert L.E., Weuve J., Scherr P.A., Evans D.A. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013, 80:1778-1783.
-
(2013)
Neurology
, vol.80
, pp. 1778-1783
-
-
Hebert, L.E.1
Weuve, J.2
Scherr, P.A.3
Evans, D.A.4
-
161
-
-
27344441173
-
Metabolism of amyloid-beta peptide and Alzheimer's disease
-
Iwata N., Higuchi M., Saido T.C. Metabolism of amyloid-beta peptide and Alzheimer's disease. Pharmacol. Ther. 2005, 108:129-148.
-
(2005)
Pharmacol. Ther.
, vol.108
, pp. 129-148
-
-
Iwata, N.1
Higuchi, M.2
Saido, T.C.3
-
162
-
-
77949764687
-
Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation
-
Kaneko M., Koike H., Saito R., Kitamura Y., Okuma Y., Nomura Y. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J. Neurosci. 2010, 30:3924-3932.
-
(2010)
J. Neurosci.
, vol.30
, pp. 3924-3932
-
-
Kaneko, M.1
Koike, H.2
Saito, R.3
Kitamura, Y.4
Okuma, Y.5
Nomura, Y.6
-
163
-
-
51449096696
-
Abeta inhibits the proteasome and enhances amyloid and tau accumulation
-
Tseng B.P., Green K.N., Chan J.L., Blurton-Jones M., LaFerla F.M. Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol. Aging 2008, 29:1607-1618.
-
(2008)
Neurobiol. Aging
, vol.29
, pp. 1607-1618
-
-
Tseng, B.P.1
Green, K.N.2
Chan, J.L.3
Blurton-Jones, M.4
LaFerla, F.M.5
-
164
-
-
0034605045
-
Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes
-
Takei Y., Teng J., Harada A., Hirokawa N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J. Cell Biol. 2000, 150:989-1000.
-
(2000)
J. Cell Biol.
, vol.150
, pp. 989-1000
-
-
Takei, Y.1
Teng, J.2
Harada, A.3
Hirokawa, N.4
-
165
-
-
77954622545
-
Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions
-
Grune T., Botzen D., Engels M., Voss P., Kaiser B., Jung T., Grimm S., Ermak G., Davies K.J. Tau protein degradation is catalyzed by the ATP/ubiquitin-independent 20S proteasome under normal cell conditions. Arch. Biochem. Biophys. 2010, 500:181-188.
-
(2010)
Arch. Biochem. Biophys.
, vol.500
, pp. 181-188
-
-
Grune, T.1
Botzen, D.2
Engels, M.3
Voss, P.4
Kaiser, B.5
Jung, T.6
Grimm, S.7
Ermak, G.8
Davies, K.J.9
-
166
-
-
84878114130
-
Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system
-
Lee M.J., Lee J.H., Rubinsztein D.C. Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol. 2013, 105:600-604.
-
(2013)
Prog. Neurobiol.
, vol.105
, pp. 600-604
-
-
Lee, M.J.1
Lee, J.H.2
Rubinsztein, D.C.3
-
167
-
-
77957001697
-
Acetylation of tau inhibits its degradation and contributes to tauopathy
-
Min S.W., Cho S.H., Zhou Y., Schroeder S., Haroutunian V., Seeley W.W., Huang E.J., Shen Y., Masliah E., Mukherjee C., et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010, 67:953-966.
-
(2010)
Neuron
, vol.67
, pp. 953-966
-
-
Min, S.W.1
Cho, S.H.2
Zhou, Y.3
Schroeder, S.4
Haroutunian, V.5
Seeley, W.W.6
Huang, E.J.7
Shen, Y.8
Masliah, E.9
Mukherjee, C.10
-
168
-
-
11144356089
-
CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation
-
Petrucelli L., Dickson D., Kehoe K., Taylor J., Snyder H., Grover A., De Lucia M., McGowan E., Lewis J., Prihar G., et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet. 2004, 13:703-714.
-
(2004)
Hum. Mol. Genet.
, vol.13
, pp. 703-714
-
-
Petrucelli, L.1
Dickson, D.2
Kehoe, K.3
Taylor, J.4
Snyder, H.5
Grover, A.6
De Lucia, M.7
McGowan, E.8
Lewis, J.9
Prihar, G.10
-
169
-
-
42149111606
-
Akt and CHIP coregulate tau degradation through coordinated interactions
-
Dickey C.A., Koren J., Zhang Y.J., Xu Y.F., Jinwal U.K., Birnbaum M.J., Monks B., Sun M., Cheng J.Q., Patterson C., et al. Akt and CHIP coregulate tau degradation through coordinated interactions. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:3622-3627.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 3622-3627
-
-
Dickey, C.A.1
Koren, J.2
Zhang, Y.J.3
Xu, Y.F.4
Jinwal, U.K.5
Birnbaum, M.J.6
Monks, B.7
Sun, M.8
Cheng, J.Q.9
Patterson, C.10
-
170
-
-
0037381710
-
Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease
-
Keck S., Nitsch R., Grune T., Ullrich O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J. Neurochem. 2003, 85:115-122.
-
(2003)
J. Neurochem.
, vol.85
, pp. 115-122
-
-
Keck, S.1
Nitsch, R.2
Grune, T.3
Ullrich, O.4
-
171
-
-
80052398365
-
Alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation
-
Bartels T., Choi J.G., Selkoe D.J. alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011, 477:107-110.
-
(2011)
Nature
, vol.477
, pp. 107-110
-
-
Bartels, T.1
Choi, J.G.2
Selkoe, D.J.3
-
172
-
-
0035976835
-
Alpha-Synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome
-
Tofaris G.K., Layfield R., Spillantini M.G. alpha-Synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett. 2001, 509:22-26.
-
(2001)
FEBS Lett.
, vol.509
, pp. 22-26
-
-
Tofaris, G.K.1
Layfield, R.2
Spillantini, M.G.3
-
173
-
-
51149121890
-
Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies
-
Bedford L., Hay D., Devoy A., Paine S., Powe D.G., Seth R., Gray T., Topham I., Fone K., Rezvani N., et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 2008, 28:8189-8198.
-
(2008)
J. Neurosci.
, vol.28
, pp. 8189-8198
-
-
Bedford, L.1
Hay, D.2
Devoy, A.3
Paine, S.4
Powe, D.G.5
Seth, R.6
Gray, T.7
Topham, I.8
Fone, K.9
Rezvani, N.10
-
174
-
-
84873844495
-
Pale body-like inclusion formation and neurodegeneration following depletion of 26S proteasomes in mouse brain neurons are independent of alpha-synuclein
-
Paine S.M., Anderson G., Bedford K., Lawler K., Mayer R.J., Lowe J., Bedford L. Pale body-like inclusion formation and neurodegeneration following depletion of 26S proteasomes in mouse brain neurons are independent of alpha-synuclein. PLoS One 2013, 8:e54711.
-
(2013)
PLoS One
, vol.8
-
-
Paine, S.M.1
Anderson, G.2
Bedford, K.3
Lawler, K.4
Mayer, R.J.5
Lowe, J.6
Bedford, L.7
-
175
-
-
49749112843
-
A comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson's disease patients
-
Wahl C., Kautzmann S., Krebiehl G., Strauss K., Woitalla D., Muller T., Bauer P., Riess O., Kruger R. A comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson's disease patients. J. Neural Transm. 2008, 115:1141-1148.
-
(2008)
J. Neural Transm.
, vol.115
, pp. 1141-1148
-
-
Wahl, C.1
Kautzmann, S.2
Krebiehl, G.3
Strauss, K.4
Woitalla, D.5
Muller, T.6
Bauer, P.7
Riess, O.8
Kruger, R.9
-
176
-
-
84867386032
-
The ubiquitin-proteasome system in Huntington's disease: are proteasomes impaired, initiators of disease, or coming to the rescue?
-
Schipper-Krom S., Juenemann K., Reits E.A. The ubiquitin-proteasome system in Huntington's disease: are proteasomes impaired, initiators of disease, or coming to the rescue?. Biochem. Res. Int. 2012, 2012:837015.
-
(2012)
Biochem. Res. Int.
, vol.2012
, pp. 837015
-
-
Schipper-Krom, S.1
Juenemann, K.2
Reits, E.A.3
-
177
-
-
0027480960
-
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group
-
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 1993, 72:971-983.
-
(1993)
Cell
, vol.72
, pp. 971-983
-
-
-
178
-
-
0027261537
-
Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease
-
Snell R.G., MacMillan J.C., Cheadle J.P., Fenton I., Lazarou L.P., Davies P., MacDonald M.E., Gusella J.F., Harper P.S., Shaw D.J. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat. Genet. 1993, 4:393-397.
-
(1993)
Nat. Genet.
, vol.4
, pp. 393-397
-
-
Snell, R.G.1
MacMillan, J.C.2
Cheadle, J.P.3
Fenton, I.4
Lazarou, L.P.5
Davies, P.6
MacDonald, M.E.7
Gusella, J.F.8
Harper, P.S.9
Shaw, D.J.10
-
179
-
-
0037461730
-
Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders
-
Sanchez I., Mahlke C., Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 2003, 421:373-379.
-
(2003)
Nature
, vol.421
, pp. 373-379
-
-
Sanchez, I.1
Mahlke, C.2
Yuan, J.3
-
180
-
-
0031469707
-
Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse
-
Ordway J.M., Tallaksen-Greene S., Gutekunst C.A., Bernstein E.M., Cearley J.A., Wiener H.W., Dure L.S., Lindsey R., Hersch S.M., Jope R.S., et al. Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 1997, 91:753-763.
-
(1997)
Cell
, vol.91
, pp. 753-763
-
-
Ordway, J.M.1
Tallaksen-Greene, S.2
Gutekunst, C.A.3
Bernstein, E.M.4
Cearley, J.A.5
Wiener, H.W.6
Dure, L.S.7
Lindsey, R.8
Hersch, S.M.9
Jope, R.S.10
-
181
-
-
9444239187
-
Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme
-
Kalchman M.A., Graham R.K., Xia G., Koide H.B., Hodgson J.G., Graham K.C., Goldberg Y.P., Gietz R.D., Pickart C.M., Hayden M.R. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem. 1996, 271:19385-19394.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 19385-19394
-
-
Kalchman, M.A.1
Graham, R.K.2
Xia, G.3
Koide, H.B.4
Hodgson, J.G.5
Graham, K.C.6
Goldberg, Y.P.7
Gietz, R.D.8
Pickart, C.M.9
Hayden, M.R.10
-
182
-
-
84859983420
-
Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease
-
Hipp M.S., Patel C.N., Bersuker K., Riley B.E., Kaiser S.E., Shaler T.A., Brandeis M., Kopito R.R. Indirect inhibition of 26S proteasome activity in a cellular model of Huntington's disease. J. Cell Biol. 2012, 196:573-587.
-
(2012)
J. Cell Biol.
, vol.196
, pp. 573-587
-
-
Hipp, M.S.1
Patel, C.N.2
Bersuker, K.3
Riley, B.E.4
Kaiser, S.E.5
Shaler, T.A.6
Brandeis, M.7
Kopito, R.R.8
-
183
-
-
34249802905
-
Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease
-
Hunter J.M., Lesort M., Johnson G.V. Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease. J. Neurosci. Res. 2007, 85:1774-1788.
-
(2007)
J. Neurosci. Res.
, vol.85
, pp. 1774-1788
-
-
Hunter, J.M.1
Lesort, M.2
Johnson, G.V.3
-
184
-
-
0035947372
-
Impairment of the ubiquitin-proteasome system by protein aggregation
-
Bence N.F., Sampat R.M., Kopito R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001, 292:1552-1555.
-
(2001)
Science
, vol.292
, pp. 1552-1555
-
-
Bence, N.F.1
Sampat, R.M.2
Kopito, R.R.3
-
185
-
-
9144223729
-
Inefficient degradation of truncated polyglutamine proteins by the proteasome
-
Holmberg C.I., Staniszewski K.E., Mensah K.N., Matouschek A., Morimoto R.I. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 2004, 23:4307-4318.
-
(2004)
EMBO J.
, vol.23
, pp. 4307-4318
-
-
Holmberg, C.I.1
Staniszewski, K.E.2
Mensah, K.N.3
Matouschek, A.4
Morimoto, R.I.5
-
186
-
-
1842766144
-
Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins
-
Venkatraman P., Wetzel R., Tanaka M., Nukina N., Goldberg A.L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell 2004, 14:95-104.
-
(2004)
Mol. Cell
, vol.14
, pp. 95-104
-
-
Venkatraman, P.1
Wetzel, R.2
Tanaka, M.3
Nukina, N.4
Goldberg, A.L.5
-
187
-
-
45149115090
-
Proteasomes cleave at multiple sites within polyglutamine tracts: activation by PA28gamma(K188E)
-
Pratt G., Rechsteiner M. Proteasomes cleave at multiple sites within polyglutamine tracts: activation by PA28gamma(K188E). J. Biol. Chem. 2008, 283:12919-12925.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 12919-12925
-
-
Pratt, G.1
Rechsteiner, M.2
-
188
-
-
34948845308
-
Proteasome activator enhances survival of Huntington's disease neuronal model cells
-
Seo H., Sonntag K.C., Kim W., Cattaneo E., Isacson O. Proteasome activator enhances survival of Huntington's disease neuronal model cells. PLoS One 2007, 2:e238.
-
(2007)
PLoS One
, vol.2
-
-
Seo, H.1
Sonntag, K.C.2
Kim, W.3
Cattaneo, E.4
Isacson, O.5
-
189
-
-
84861226898
-
Recent advances in the genetics of the ALS-FTLD complex
-
Morris H.R., Waite A.J., Williams N.M., Neal J.W., Blake D.J. Recent advances in the genetics of the ALS-FTLD complex. Curr. Neurol. Neurosci. Rep. 2012, 12:243-250.
-
(2012)
Curr. Neurol. Neurosci. Rep.
, vol.12
, pp. 243-250
-
-
Morris, H.R.1
Waite, A.J.2
Williams, N.M.3
Neal, J.W.4
Blake, D.J.5
-
190
-
-
84871150225
-
Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis
-
Tashiro Y., Urushitani M., Inoue H., Koike M., Uchiyama Y., Komatsu M., Tanaka K., Yamazaki M., Abe M., Misawa H., et al. Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J. Biol. Chem. 2012, 287:42984-42994.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42984-42994
-
-
Tashiro, Y.1
Urushitani, M.2
Inoue, H.3
Koike, M.4
Uchiyama, Y.5
Komatsu, M.6
Tanaka, K.7
Yamazaki, M.8
Abe, M.9
Misawa, H.10
-
191
-
-
79955060100
-
The ubiquitin-proteasome system in cardiomyopathies
-
Schlossarek S., Carrier L. The ubiquitin-proteasome system in cardiomyopathies. Curr. Opin. Cardiol. 2011, 26:190-195.
-
(2011)
Curr. Opin. Cardiol.
, vol.26
, pp. 190-195
-
-
Schlossarek, S.1
Carrier, L.2
-
192
-
-
84862741327
-
The ubiquitin-proteasome system and cardiovascular disease
-
Powell S.R., Herrmann J., Lerman A., Patterson C., Wang X. The ubiquitin-proteasome system and cardiovascular disease. Prog. Mol. Biol. Transl. Sci. 2012, 109:295-346.
-
(2012)
Prog. Mol. Biol. Transl. Sci.
, vol.109
, pp. 295-346
-
-
Powell, S.R.1
Herrmann, J.2
Lerman, A.3
Patterson, C.4
Wang, X.5
-
193
-
-
84865497050
-
Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice
-
Tian Z., Zheng H., Li J., Li Y., Su H., Wang X. Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice. Circ. Res. 2012, 111:532-542.
-
(2012)
Circ. Res.
, vol.111
, pp. 532-542
-
-
Tian, Z.1
Zheng, H.2
Li, J.3
Li, Y.4
Su, H.5
Wang, X.6
-
194
-
-
80052386730
-
Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice
-
Li J., Horak K.M., Su H., Sanbe A., Robbins J., Wang X. Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J. Clin. Invest. 2011, 121:3689-3700.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 3689-3700
-
-
Li, J.1
Horak, K.M.2
Su, H.3
Sanbe, A.4
Robbins, J.5
Wang, X.6
-
195
-
-
84869051809
-
Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases
-
Baraibar M.A., Liu L., Ahmed E.K., Friguet B. Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases. Oxidative Med. Cell. Longev. 2012, 2012:919832.
-
(2012)
Oxidative Med. Cell. Longev.
, vol.2012
, pp. 919832
-
-
Baraibar, M.A.1
Liu, L.2
Ahmed, E.K.3
Friguet, B.4
-
196
-
-
0033610079
-
Gene expression profile of aging and its retardation by caloric restriction
-
Lee C.K., Klopp R.G., Weindruch R., Prolla T.A. Gene expression profile of aging and its retardation by caloric restriction. Science 1999, 285:1390-1393.
-
(1999)
Science
, vol.285
, pp. 1390-1393
-
-
Lee, C.K.1
Klopp, R.G.2
Weindruch, R.3
Prolla, T.A.4
-
197
-
-
34548479261
-
Aging perturbs 26S proteasome assembly in Drosophila melanogaster
-
Vernace V.A., Arnaud L., Schmidt-Glenewinkel T., Figueiredo-Pereira M.E. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 2007, 21:2672-2682.
-
(2007)
FASEB J.
, vol.21
, pp. 2672-2682
-
-
Vernace, V.A.1
Arnaud, L.2
Schmidt-Glenewinkel, T.3
Figueiredo-Pereira, M.E.4
-
198
-
-
0038686574
-
Proteasome disassembly and downregulation is correlated with viability during stationary phase
-
Bajorek M., Finley D., Glickman M.H. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr. Biol. 2003, 13:1140-1144.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1140-1144
-
-
Bajorek, M.1
Finley, D.2
Glickman, M.H.3
-
199
-
-
4344677922
-
Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease
-
Grune T., Jung T., Merker K., Davies K.J. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 2004, 36:2519-2530.
-
(2004)
Int. J. Biochem. Cell Biol.
, vol.36
, pp. 2519-2530
-
-
Grune, T.1
Jung, T.2
Merker, K.3
Davies, K.J.4
-
200
-
-
84863181604
-
Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities
-
Tomaru U., Takahashi S., Ishizu A., Miyatake Y., Gohda A., Suzuki S., Ono A., Ohara J., Baba T., Murata S., et al. Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities. Am. J. Pathol. 2012, 180:963-972.
-
(2012)
Am. J. Pathol.
, vol.180
, pp. 963-972
-
-
Tomaru, U.1
Takahashi, S.2
Ishizu, A.3
Miyatake, Y.4
Gohda, A.5
Suzuki, S.6
Ono, A.7
Ohara, J.8
Baba, T.9
Murata, S.10
-
201
-
-
0033792614
-
Fibroblast cultures from healthy centenarians have an active proteasome
-
Chondrogianni N., Petropoulos I., Franceschi C., Friguet B., Gonos E.S. Fibroblast cultures from healthy centenarians have an active proteasome. Exp. Gerontol. 2000, 35:721-728.
-
(2000)
Exp. Gerontol.
, vol.35
, pp. 721-728
-
-
Chondrogianni, N.1
Petropoulos, I.2
Franceschi, C.3
Friguet, B.4
Gonos, E.S.5
-
202
-
-
62549088648
-
Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat
-
Perez V.I., Buffenstein R., Masamsetti V., Leonard S., Salmon A.B., Mele J., Andziak B., Yang T., Edrey Y., Friguet B., et al. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:3059-3064.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 3059-3064
-
-
Perez, V.I.1
Buffenstein, R.2
Masamsetti, V.3
Leonard, S.4
Salmon, A.B.5
Mele, J.6
Andziak, B.7
Yang, T.8
Edrey, Y.9
Friguet, B.10
-
203
-
-
68549101905
-
The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis
-
Salmon A.B., Leonard S., Masamsetti V., Pierce A., Podlutsky A.J., Podlutskaya N., Richardson A., Austad S.N., Chaudhuri A.R. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J. 2009, 23:2317-2326.
-
(2009)
FASEB J.
, vol.23
, pp. 2317-2326
-
-
Salmon, A.B.1
Leonard, S.2
Masamsetti, V.3
Pierce, A.4
Podlutsky, A.J.5
Podlutskaya, N.6
Richardson, A.7
Austad, S.N.8
Chaudhuri, A.R.9
-
204
-
-
84875175883
-
Testing predictions of the oxidative stress hypothesis of aging using a novel invertebrate model of longevity: the giant clam (Tridacna derasa)
-
Ungvari Z., Csiszar A., Sosnowska D., Philipp E.E., Campbell C.M., McQuary P.R., Chow T.T., Coelho M., Didier E.S., Gelino S., et al. Testing predictions of the oxidative stress hypothesis of aging using a novel invertebrate model of longevity: the giant clam (Tridacna derasa). J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68:359-367.
-
(2013)
J. Gerontol. A Biol. Sci. Med. Sci.
, vol.68
, pp. 359-367
-
-
Ungvari, Z.1
Csiszar, A.2
Sosnowska, D.3
Philipp, E.E.4
Campbell, C.M.5
McQuary, P.R.6
Chow, T.T.7
Coelho, M.8
Didier, E.S.9
Gelino, S.10
-
205
-
-
28744438867
-
Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome?
-
Chen Q., Thorpe J., Dohmen J.R., Li F., Keller J.N. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome?. Free Radic. Biol. Med. 2006, 40:120-126.
-
(2006)
Free Radic. Biol. Med.
, vol.40
, pp. 120-126
-
-
Chen, Q.1
Thorpe, J.2
Dohmen, J.R.3
Li, F.4
Keller, J.N.5
-
206
-
-
59449095881
-
Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process
-
Tonoki A., Kuranaga E., Tomioka T., Hamazaki J., Murata S., Tanaka K., Miura M. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell. Biol. 2009, 29:1095-1106.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 1095-1106
-
-
Tonoki, A.1
Kuranaga, E.2
Tomioka, T.3
Hamazaki, J.4
Murata, S.5
Tanaka, K.6
Miura, M.7
-
207
-
-
80053445278
-
Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae
-
Kruegel U., Robison B., Dange T., Kahlert G., Delaney J.R., Kotireddy S., Tsuchiya M., Tsuchiyama S., Murakami C.J., Schleit J., et al. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet. 2011, 7:e1002253.
-
(2011)
PLoS Genet.
, vol.7
-
-
Kruegel, U.1
Robison, B.2
Dange, T.3
Kahlert, G.4
Delaney, J.R.5
Kotireddy, S.6
Tsuchiya, M.7
Tsuchiyama, S.8
Murakami, C.J.9
Schleit, J.10
|