메뉴 건너뛰기




Volumn 428, Issue 9, 2016, Pages 1714-1724

Mechanisms of Selective Autophagy

Author keywords

Atg8; autophagosome; autophagy; cargo receptor; isolation membrane

Indexed keywords

AUTOPHAGOSOME; CELL VACUOLE; CYTOPLASM; HUMAN; LYSOSOME; MEMBRANE FORMATION; MITOCHONDRION; NONHUMAN; OLIGOMERIZATION; PRIORITY JOURNAL; REVIEW; SELECTIVE AUTOPHAGY; AUTOPHAGY; HOMEOSTASIS; METABOLISM;

EID: 84959045499     PISSN: 00222836     EISSN: 10898638     Source Type: Journal    
DOI: 10.1016/j.jmb.2016.02.004     Document Type: Review
Times cited : (451)

References (119)
  • 1
    • 84865302358 scopus 로고    scopus 로고
    • Mechanisms and regulation of autophagosome formation
    • C. Kraft, and S. Martens Mechanisms and regulation of autophagosome formation Curr. Opin. Cell Biol. 24 4 2012 496 501
    • (2012) Curr. Opin. Cell Biol. , vol.24 , Issue.4 , pp. 496-501
    • Kraft, C.1    Martens, S.2
  • 2
    • 0035503594 scopus 로고    scopus 로고
    • The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
    • K. Suzuki, and et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation EMBO J. 20 21 2001 5971 5981
    • (2001) EMBO J. , vol.20 , Issue.21 , pp. 5971-5981
    • Suzuki, K.1
  • 3
    • 0026668042 scopus 로고
    • Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
    • K. Takeshige, and et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction J. Cell Biol. 119 2 1992 301 311
    • (1992) J. Cell Biol. , vol.119 , Issue.2 , pp. 301-311
    • Takeshige, K.1
  • 4
    • 0000730374 scopus 로고
    • Cytoplasmic components in hepatic cell lysosomes
    • T.P. Ashford, and K.R. Porter Cytoplasmic components in hepatic cell lysosomes J. Cell Biol. 12 1962 198 202
    • (1962) J. Cell Biol. , vol.12 , pp. 198-202
    • Ashford, T.P.1    Porter, K.R.2
  • 5
    • 0038208502 scopus 로고
    • Cytolysomes and mitochondrial degeneration
    • A.B. Novikoff, and E. Essner Cytolysomes and mitochondrial degeneration J. Cell Biol. 15 1962 140 146
    • (1962) J. Cell Biol. , vol.15 , pp. 140-146
    • Novikoff, A.B.1    Essner, E.2
  • 7
    • 0017697151 scopus 로고
    • Induction of autophagy by amino-acid deprivation in perfused rat liver
    • G.E. Mortimore, and C.M. Schworer Induction of autophagy by amino-acid deprivation in perfused rat liver Nature 270 5633 1977 174 176
    • (1977) Nature , vol.270 , Issue.5633 , pp. 174-176
    • Mortimore, G.E.1    Schworer, C.M.2
  • 8
    • 0025051251 scopus 로고
    • Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes
    • J. Kopitz, and et al. Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes J. Cell Biol. 111 3 1990 941 953
    • (1990) J. Cell Biol. , vol.111 , Issue.3 , pp. 941-953
    • Kopitz, J.1
  • 9
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • A. Kuma, and et al. The role of autophagy during the early neonatal starvation period Nature 432 7020 2004 1032 1036
    • (2004) Nature , vol.432 , Issue.7020 , pp. 1032-1036
    • Kuma, A.1
  • 10
    • 69349102568 scopus 로고    scopus 로고
    • Selective types of autophagy in yeast
    • C. Kraft, F. Reggiori, and M. Peter Selective types of autophagy in yeast Biochim. Biophys. Acta 1793 9 2009 1404 1412
    • (2009) Biochim. Biophys. Acta , vol.1793 , Issue.9 , pp. 1404-1412
    • Kraft, C.1    Reggiori, F.2    Peter, M.3
  • 11
    • 84964419115 scopus 로고    scopus 로고
    • Ubiquitin-dependent and independent signals in selective autophagy
    • A. Khaminets, C. Behl, and I. Dikic Ubiquitin-dependent and independent signals in selective autophagy Trends Cell Biol. 2015
    • (2015) Trends Cell Biol.
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 12
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • V. Rogov, and et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy Mol. Cell 53 2 2014 167 178
    • (2014) Mol. Cell , vol.53 , Issue.2 , pp. 167-178
    • Rogov, V.1
  • 13
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • T. Hara, and et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice Nature 441 7095 2006 885 889
    • (2006) Nature , vol.441 , Issue.7095 , pp. 885-889
    • Hara, T.1
  • 14
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • M. Komatsu, and et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice Cell 131 6 2007 1149 1163
    • (2007) Cell , vol.131 , Issue.6 , pp. 1149-1163
    • Komatsu, M.1
  • 15
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • B. Levine, and G. Kroemer Autophagy in the pathogenesis of disease Cell 132 1 2008 27 42
    • (2008) Cell , vol.132 , Issue.1 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 16
    • 79955377420 scopus 로고    scopus 로고
    • Autophagy-deficient mice develop multiple liver tumors
    • A. Takamura, and et al. Autophagy-deficient mice develop multiple liver tumors Genes Dev. 25 8 2011 795 800
    • (2011) Genes Dev. , vol.25 , Issue.8 , pp. 795-800
    • Takamura, A.1
  • 17
    • 84898624312 scopus 로고    scopus 로고
    • Self and nonself: How autophagy targets mitochondria and bacteria
    • F. Randow, and R.J. Youle Self and nonself: how autophagy targets mitochondria and bacteria Cell Host Microbe 15 4 2014 403 411
    • (2014) Cell Host Microbe , vol.15 , Issue.4 , pp. 403-411
    • Randow, F.1    Youle, R.J.2
  • 18
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • V. Deretic, T. Saitoh, and S. Akira Autophagy in infection, inflammation and immunity Nat. Rev. Immunol. 13 10 2013 722 737
    • (2013) Nat. Rev. Immunol. , vol.13 , Issue.10 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 19
    • 84946615455 scopus 로고    scopus 로고
    • Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis
    • J.D. Mancias, and et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis Elife 4 2015
    • (2015) Elife , vol.4
    • Mancias, J.D.1
  • 20
    • 84907042842 scopus 로고    scopus 로고
    • Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells
    • C. Kishi-Itakura, and et al. Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells J. Cell Sci. 127 Pt 18 2014 4089 4102
    • (2014) J. Cell Sci. , vol.127 , pp. 4089-4102
    • Kishi-Itakura, C.1
  • 21
    • 84899746695 scopus 로고    scopus 로고
    • Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
    • J.D. Mancias, and et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy Nature 509 7498 2014 105 109
    • (2014) Nature , vol.509 , Issue.7498 , pp. 105-109
    • Mancias, J.D.1
  • 22
    • 84908466248 scopus 로고    scopus 로고
    • Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
    • W.E. Dowdle, and et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo Nat. Cell Biol. 16 11 2014 1069 1079
    • (2014) Nat. Cell Biol. , vol.16 , Issue.11 , pp. 1069-1079
    • Dowdle, W.E.1
  • 23
    • 0028800171 scopus 로고
    • Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
    • T.M. Harding, and et al. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway J. Cell Biol. 1995 591 602
    • (1995) J. Cell Biol. , pp. 591-602
    • Harding, T.M.1
  • 24
    • 0035827541 scopus 로고    scopus 로고
    • Vacuolar localization of oligomeric-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae
    • M.U. Hutchins, and D.J. Klionsky Vacuolar localization of oligomeric-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae J. Biol. Chem. 2001 20491 20498
    • (2001) J. Biol. Chem. , pp. 20491-20498
    • Hutchins, M.U.1    Klionsky, D.J.2
  • 25
    • 79953850827 scopus 로고    scopus 로고
    • Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae
    • M. Yuga, and et al. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae J. Biol. Chem. 2011 13704 13713
    • (2011) J. Biol. Chem. , pp. 13704-13713
    • Yuga, M.1
  • 26
    • 79961219046 scopus 로고    scopus 로고
    • Selective autophagy regulates insertional mutagenesis by the Ty1 retrotransposon in Saccharomyces cerevisiae
    • K. Suzuki, and et al. Selective autophagy regulates insertional mutagenesis by the Ty1 retrotransposon in Saccharomyces cerevisiae Dev. Cell 21 2 2011 358 365
    • (2011) Dev. Cell , vol.21 , Issue.2 , pp. 358-365
    • Suzuki, K.1
  • 27
    • 0014359297 scopus 로고
    • Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration
    • A.U. Arstila, and B.F. Trump Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration Am. J. Pathol. 1968 687 733
    • (1968) Am. J. Pathol. , pp. 687-733
    • Arstila, A.U.1    Trump, B.F.2
  • 28
    • 0028230738 scopus 로고
    • Ultrastructural analysis of the autophagic process in yeast: Detection of autophagosomes and their characterization
    • M. Baba, and et al. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization J. Cell Biol. 1994 903 913
    • (1994) J. Cell Biol. , pp. 903-913
    • Baba, M.1
  • 29
    • 0031417385 scopus 로고    scopus 로고
    • Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome
    • M. Baba, and et al. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome J Cell Biol. 1997 1687 1695
    • (1997) J Cell Biol. , pp. 1687-1695
    • Baba, M.1
  • 30
    • 84899848892 scopus 로고    scopus 로고
    • Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy
    • J. Sawa-Makarska, and et al. Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy 2014 Nat. Cell Biol. 425 433
    • (2014) Nat. Cell Biol. , pp. 425-433
    • Sawa-Makarska, J.1
  • 31
    • 77950510302 scopus 로고    scopus 로고
    • The CVT pathway as a model for selective autophagy
    • M.A. Lynch-Day, and D.J. Klionsky The CVT pathway as a model for selective autophagy FEBS Lett. 584 7 2010 1359 1366
    • (2010) FEBS Lett. , vol.584 , Issue.7 , pp. 1359-1366
    • Lynch-Day, M.A.1    Klionsky, D.J.2
  • 32
    • 0030997923 scopus 로고    scopus 로고
    • Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway
    • J. Kim, and et al. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway J. Cell Biol. 137 3 1997 609 618
    • (1997) J. Cell Biol. , vol.137 , Issue.3 , pp. 609-618
    • Kim, J.1
  • 33
    • 84858991802 scopus 로고    scopus 로고
    • Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway
    • M. Morales Quinones, J.T. Winston, and P.E. Stromhaug Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway J. Biol. Chem. 287 13 2012 10121 10133
    • (2012) J. Biol. Chem. , vol.287 , Issue.13 , pp. 10121-10133
    • Morales Quinones, M.1    Winston, J.T.2    Stromhaug, P.E.3
  • 34
    • 84953888250 scopus 로고    scopus 로고
    • Structure of yeast Ape1 and its role in autophagic vesicle formation
    • M.Y. Su, and et al. Structure of yeast Ape1 and its role in autophagic vesicle formation Autophagy 11 9 2015 1580 1593
    • (2015) Autophagy , vol.11 , Issue.9 , pp. 1580-1593
    • Su, M.Y.1
  • 35
    • 0034964443 scopus 로고    scopus 로고
    • Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway
    • S.V. Scott, and et al. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway Mol. Cell 7 6 2001 1131 1141
    • (2001) Mol. Cell , vol.7 , Issue.6 , pp. 1131-1141
    • Scott, S.V.1
  • 36
    • 0036901104 scopus 로고    scopus 로고
    • Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway
    • T. Shintani, and et al. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway Dev. Cell 3 6 2002 825 837
    • (2002) Dev. Cell , vol.3 , Issue.6 , pp. 825-837
    • Shintani, T.1
  • 37
    • 0035800870 scopus 로고    scopus 로고
    • Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole
    • R. Leber, and et al. Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole J. Biol. Chem. 276 31 2001 29210 29217
    • (2001) J. Biol. Chem. , vol.276 , Issue.31 , pp. 29210-29217
    • Leber, R.1
  • 38
    • 77956913181 scopus 로고    scopus 로고
    • Selective transport of alpha-mannosidase by autophagic pathways: Structural basis for cargo recognition by Atg19 and Atg34
    • Y. Watanabe, and et al. Selective transport of alpha-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34 J. Biol. Chem. 285 39 2010 30026 30033
    • (2010) J. Biol. Chem. , vol.285 , Issue.39 , pp. 30026-30033
    • Watanabe, Y.1
  • 39
    • 16344365254 scopus 로고    scopus 로고
    • Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway
    • T. Yorimitsu, and D.J. Klionsky Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway Mol. Biol. Cell 16 4 2005 1593 1605
    • (2005) Mol. Biol. Cell , vol.16 , Issue.4 , pp. 1593-1605
    • Yorimitsu, T.1    Klionsky, D.J.2
  • 40
    • 0036900568 scopus 로고    scopus 로고
    • Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae
    • K. Suzuki, Y. Kamada, and Y. Ohsumi Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae Dev. Cell 3 6 2002 815 824
    • (2002) Dev. Cell , vol.3 , Issue.6 , pp. 815-824
    • Suzuki, K.1    Kamada, Y.2    Ohsumi, Y.3
  • 41
    • 67349100157 scopus 로고    scopus 로고
    • Ferritins: A family of molecules for iron storage, antioxidation and more
    • P. Arosio, R. Ingrassia, and P. Cavadini Ferritins: a family of molecules for iron storage, antioxidation and more Biochim. Biophys. Acta 1790 7 2009 589 599
    • (2009) Biochim. Biophys. Acta , vol.1790 , Issue.7 , pp. 589-599
    • Arosio, P.1    Ingrassia, R.2    Cavadini, P.3
  • 42
    • 54049156405 scopus 로고    scopus 로고
    • The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel
    • X.P. Dong, and et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel Nature 455 7215 2008 992 996
    • (2008) Nature , vol.455 , Issue.7215 , pp. 992-996
    • Dong, X.P.1
  • 43
    • 41049114693 scopus 로고    scopus 로고
    • Lysosomes in iron metabolism, ageing and apoptosis
    • T. Kurz, and et al. Lysosomes in iron metabolism, ageing and apoptosis Histochem. Cell Biol. 129 4 2008 389 406
    • (2008) Histochem. Cell Biol. , vol.129 , Issue.4 , pp. 389-406
    • Kurz, T.1
  • 44
    • 4444220680 scopus 로고    scopus 로고
    • Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
    • M.L. Seibenhener, and et al. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation Mol. Cell. Biol. 24 18 2004 8055 8068
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.18 , pp. 8055-8068
    • Seibenhener, M.L.1
  • 45
    • 27944504351 scopus 로고    scopus 로고
    • P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on Huntingtin-induced cell death
    • G. Bjorkoy, and et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on Huntingtin-induced cell death J. Cell Biol. 171 4 2005 603 614
    • (2005) J. Cell Biol. , vol.171 , Issue.4 , pp. 603-614
    • Bjorkoy, G.1
  • 46
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • S. Pankiv, and et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy J. Biol. Chem. 282 33 2007 24131 24145
    • (2007) J. Biol. Chem. , vol.282 , Issue.33 , pp. 24131-24145
    • Pankiv, S.1
  • 47
    • 74049126112 scopus 로고    scopus 로고
    • The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
    • Y.T. Zheng, and et al. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway J. Immunol. 183 9 2009 5909 5916
    • (2009) J. Immunol. , vol.183 , Issue.9 , pp. 5909-5916
    • Zheng, Y.T.1
  • 48
    • 26944465404 scopus 로고    scopus 로고
    • Diverse polyubiquitin interaction properties of ubiquitin-associated domains
    • S. Raasi, and et al. Diverse polyubiquitin interaction properties of ubiquitin-associated domains Nat. Struct. Mol. Biol. 12 8 2005 708 714
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , Issue.8 , pp. 708-714
    • Raasi, S.1
  • 49
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • V. Kirkin, and et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates Mol. Cell 33 4 2009 505 516
    • (2009) Mol. Cell , vol.33 , Issue.4 , pp. 505-516
    • Kirkin, V.1
  • 50
    • 74649083113 scopus 로고    scopus 로고
    • Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling
    • J. Long, and et al. Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling J. Mol. Biol. 396 1 2010 178 194
    • (2010) J. Mol. Biol. , vol.396 , Issue.1 , pp. 178-194
    • Long, J.1
  • 51
    • 80052405329 scopus 로고    scopus 로고
    • Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin
    • S. Isogai, and et al. Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin J. Biol. Chem. 286 36 2011 31864 31874
    • (2011) J. Biol. Chem. , vol.286 , Issue.36 , pp. 31864-31874
    • Isogai, S.1
  • 52
    • 82455172117 scopus 로고    scopus 로고
    • Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
    • G. Matsumoto, and et al. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins Mol. Cell 44 2 2011 279 289
    • (2011) Mol. Cell , vol.44 , Issue.2 , pp. 279-289
    • Matsumoto, G.1
  • 53
    • 0141445968 scopus 로고    scopus 로고
    • Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins
    • T. Lamark, and et al. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins J. Biol. Chem 2003 34568 34581
    • (2003) J. Biol. Chem , pp. 34568-34581
    • Lamark, T.1
  • 54
    • 0041625934 scopus 로고    scopus 로고
    • PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62
    • M.I. Wilson, and et al. PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62 Mol. Cell 2003 39 50
    • (2003) Mol. Cell , pp. 39-50
    • Wilson, M.I.1
  • 55
    • 84933679024 scopus 로고    scopus 로고
    • The selective autophagy receptor p62 forms a flexible filamentous helical scaffold
    • R. Ciuffa, and et al. The selective autophagy receptor p62 forms a flexible filamentous helical scaffold Cell Rep. 11 5 2015 748 758
    • (2015) Cell Rep. , vol.11 , Issue.5 , pp. 748-758
    • Ciuffa, R.1
  • 56
    • 84949992730 scopus 로고    scopus 로고
    • Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy
    • B. Wurzer, and et al. Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy Elife 4 2015
    • (2015) Elife , vol.4
    • Wurzer, B.1
  • 58
    • 38349114036 scopus 로고    scopus 로고
    • Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases
    • J.M. Tan, and et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases Hum. Mol. Genet. 17 3 2008 431 439
    • (2008) Hum. Mol. Genet. , vol.17 , Issue.3 , pp. 431-439
    • Tan, J.M.1
  • 59
    • 41949134141 scopus 로고    scopus 로고
    • Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch
    • J. Long, and et al. Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch J. Biol. Chem. 283 9 2008 5427 5440
    • (2008) J. Biol. Chem. , vol.283 , Issue.9 , pp. 5427-5440
    • Long, J.1
  • 60
    • 84933679024 scopus 로고    scopus 로고
    • The Selective Autophagy Receptor p62 Forms a Flexible Filamentous Helical Scaffold
    • The Authors
    • R. Ciuffa, and et al. The Selective Autophagy Receptor p62 Forms a Flexible Filamentous Helical Scaffold Cell Reports 2015 The Authors 1 12
    • (2015) Cell Reports , pp. 1-12
    • Ciuffa, R.1
  • 61
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy
    • Elsevier Inc.
    • J.-M. Heo, and et al. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy Molecular Cell 2015 Elsevier Inc. 1 15
    • (2015) Molecular Cell , pp. 1-15
    • Heo, J.-M.1
  • 62
    • 79960670161 scopus 로고    scopus 로고
    • P62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways
    • S. Mostowy, and et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways J. Biol. Chem 2011 26987 26995
    • (2011) J. Biol. Chem , pp. 26987-26995
    • Mostowy, S.1
  • 63
    • 70350450808 scopus 로고    scopus 로고
    • The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria
    • Nature Publishing Group
    • T.L.M. Thurston, and et al. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria Nat. Immunol. 2009 Nature Publishing Group 1215 1221
    • (2009) Nat. Immunol. , pp. 1215-1221
    • Thurston, T.L.M.1
  • 64
    • 84964482632 scopus 로고    scopus 로고
    • LC3C, Bound Selectively by a Noncanonical LIR Motif in NDP52, Is Required for Antibacterial Autophagy
    • Elsevier Inc.
    • N. von Muhlinen, and et al. LC3C, Bound Selectively by a Noncanonical LIR Motif in NDP52, Is Required for Antibacterial Autophagy Mol. Cell 2012 Elsevier Inc. 1 14
    • (2012) Mol. Cell , pp. 1-14
    • Von Muhlinen, N.1
  • 65
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • M. Lazarou, and et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy Nature 524 7565 2015 309 314
    • (2015) Nature , vol.524 , Issue.7565 , pp. 309-314
    • Lazarou, M.1
  • 66
    • 0029024780 scopus 로고
    • Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment
    • F. Korioth, and et al. Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment J. Cell Biol. 130 1 1995 1 13
    • (1995) J. Cell Biol. , vol.130 , Issue.1 , pp. 1-13
    • Korioth, F.1
  • 67
    • 0030879705 scopus 로고    scopus 로고
    • Cellular localization, expression, and structure of the nuclear dot protein 52
    • T. Sternsdorf, and et al. Cellular localization, expression, and structure of the nuclear dot protein 52 J. Cell Biol. 138 2 1997 435 448
    • (1997) J. Cell Biol. , vol.138 , Issue.2 , pp. 435-448
    • Sternsdorf, T.1
  • 68
    • 84953868676 scopus 로고    scopus 로고
    • Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2
    • X. Xie, and et al. Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2 Autophagy 11 10 2015 1775 1789
    • (2015) Autophagy , vol.11 , Issue.10 , pp. 1775-1789
    • Xie, X.1
  • 69
    • 84946085716 scopus 로고    scopus 로고
    • The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of Salmonella typhimurium by autophagy
    • D.A. Tumbarello, and et al. The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of Salmonella typhimurium by autophagy PLoS Pathog. 11 10 2015 e1005174
    • (2015) PLoS Pathog. , vol.11 , Issue.10
    • Tumbarello, D.A.1
  • 70
    • 84901036068 scopus 로고    scopus 로고
    • Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin
    • E. Walinda, and et al. Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin J. Biol. Chem. 289 20 2014 13890 13902
    • (2014) J. Biol. Chem. , vol.289 , Issue.20 , pp. 13890-13902
    • Walinda, E.1
  • 71
    • 58549084167 scopus 로고    scopus 로고
    • Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
    • P.K. Kim, and et al. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes Proc. Natl. Acad. Sci. U. S. A. 105 52 2008 20567 20574
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , Issue.52 , pp. 20567-20574
    • Kim, P.K.1
  • 72
    • 78049495046 scopus 로고    scopus 로고
    • Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: A potential role for protein aggregation in autophagic substrate selection
    • B.E. Riley, and et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection J. Cell Biol. 191 3 2010 537 552
    • (2010) J. Cell Biol. , vol.191 , Issue.3 , pp. 537-552
    • Riley, B.E.1
  • 73
    • 0034707036 scopus 로고    scopus 로고
    • A ubiquitin-like system mediates protein lipidation
    • Y. Ichimura, and et al. A ubiquitin-like system mediates protein lipidation Nature 408 6811 2000 488 492
    • (2000) Nature , vol.408 , Issue.6811 , pp. 488-492
    • Ichimura, Y.1
  • 74
    • 0034676037 scopus 로고    scopus 로고
    • The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway
    • T. Kirisako, and et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway J. Cell Biol. 151 2 2000 263 276
    • (2000) J. Cell Biol. , vol.151 , Issue.2 , pp. 263-276
    • Kirisako, T.1
  • 75
    • 38049098543 scopus 로고    scopus 로고
    • The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
    • T. Hanada, and et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy J. Biol. Chem. 282 52 2007 37298 37302
    • (2007) J. Biol. Chem. , vol.282 , Issue.52 , pp. 37298-37302
    • Hanada, T.1
  • 76
    • 84869210001 scopus 로고    scopus 로고
    • Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation
    • J. Romanov, and et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation EMBO J. 31 22 2012 4304 4317
    • (2012) EMBO J. , vol.31 , Issue.22 , pp. 4304-4317
    • Romanov, J.1
  • 77
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Y. Kabeya, and et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing EMBO J. 19 21 2000 5720 5728
    • (2000) EMBO J. , vol.19 , Issue.21 , pp. 5720-5728
    • Kabeya, Y.1
  • 78
    • 0042206454 scopus 로고    scopus 로고
    • Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B
    • H. He, and et al. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B J. Biol. Chem. 278 31 2003 29278 29287
    • (2003) J. Biol. Chem. , vol.278 , Issue.31 , pp. 29278-29287
    • He, H.1
  • 79
    • 3242888703 scopus 로고    scopus 로고
    • LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation
    • Y. Kabeya, and et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation J. Cell Sci. 117 Pt 13 2004 2805 2812
    • (2004) J. Cell Sci. , vol.117 , pp. 2805-2812
    • Kabeya, Y.1
  • 80
    • 79960878784 scopus 로고    scopus 로고
    • Atg8: An autophagy-related ubiquitin-like protein family
    • T. Shpilka, and et al. Atg8: an autophagy-related ubiquitin-like protein family Genome Biol. 12 7 2011 226
    • (2011) Genome Biol. , vol.12 , Issue.7 , pp. 226
    • Shpilka, T.1
  • 81
    • 53049103308 scopus 로고    scopus 로고
    • Structural basis for sorting mechanism of p62 in selective autophagy
    • Y. Ichimura, and et al. Structural basis for sorting mechanism of p62 in selective autophagy J. Biol. Chem. 283 33 2008 22847 22857
    • (2008) J. Biol. Chem. , vol.283 , Issue.33 , pp. 22847-22857
    • Ichimura, Y.1
  • 82
    • 84883414890 scopus 로고    scopus 로고
    • The LIR motif - Crucial for selective autophagy
    • Å.B. Birgisdottir, T. Lamark, and T. Johansen The LIR motif - crucial for selective autophagy J. Cell Sci. 126 15 2013 3237 3247
    • (2013) J. Cell Sci. , vol.126 , Issue.15 , pp. 3237-3247
    • Birgisdottir, Å.B.1    Lamark, T.2    Johansen, T.3
  • 83
    • 84869222326 scopus 로고    scopus 로고
    • ATG8 family proteins act as scaffolds for assembly of the ULK complex: Sequence requirements for LC3-interacting region (LIR) motifs
    • E.A. Alemu, and et al. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs J. Biol. Chem. 287 47 2012 39275 39290
    • (2012) J. Biol. Chem. , vol.287 , Issue.47 , pp. 39275-39290
    • Alemu, E.A.1
  • 84
    • 74049153002 scopus 로고    scopus 로고
    • Nix is a selective autophagy receptor for mitochondrial clearance
    • I. Novak, and et al. Nix is a selective autophagy receptor for mitochondrial clearance EMBO Rep. 11 1 2010 45 51
    • (2010) EMBO Rep. , vol.11 , Issue.1 , pp. 45-51
    • Novak, I.1
  • 85
    • 84869080400 scopus 로고    scopus 로고
    • LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
    • N. von Muhlinen, and et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy Mol. Cell 48 3 2012 329 342
    • (2012) Mol. Cell , vol.48 , Issue.3 , pp. 329-342
    • Von Muhlinen, N.1
  • 86
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • P. Wild, and et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth Science 333 6039 2011 228 233
    • (2011) Science , vol.333 , Issue.6039 , pp. 228-233
    • Wild, P.1
  • 87
    • 84883369848 scopus 로고    scopus 로고
    • Structural basis for phosphorylation-triggered autophagic clearance of Salmonella
    • V.V. Rogov, and et al. Structural basis for phosphorylation-triggered autophagic clearance of Salmonella Biochem. J. 454 3 2013 459 466
    • (2013) Biochem. J. , vol.454 , Issue.3 , pp. 459-466
    • Rogov, V.V.1
  • 88
    • 79959498837 scopus 로고    scopus 로고
    • Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1
    • A. Rozenknop, and et al. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1 J. Mol. Biol. 410 3 2011 477 487
    • (2011) J. Mol. Biol. , vol.410 , Issue.3 , pp. 477-487
    • Rozenknop, A.1
  • 89
    • 79959950861 scopus 로고    scopus 로고
    • Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes
    • E. Shvets, and et al. Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes Autophagy 7 7 2011 683 688
    • (2011) Autophagy , vol.7 , Issue.7 , pp. 683-688
    • Shvets, E.1
  • 90
    • 77949455790 scopus 로고    scopus 로고
    • Posttranslational modifications, localization, and protein interactions of optineurin, the product of a glaucoma gene
    • H. Ying, and et al. Posttranslational modifications, localization, and protein interactions of optineurin, the product of a glaucoma gene PLoS One 5 2 2010 e9168
    • (2010) PLoS One , vol.5 , Issue.2 , pp. e9168
    • Ying, H.1
  • 91
    • 84875908545 scopus 로고    scopus 로고
    • Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8
    • B.-W. Kim, and et al. Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8 Nat. Commun. 4 2013 1613
    • (2013) Nat. Commun. , vol.4 , pp. 1613
    • Kim, B.-W.1
  • 92
    • 17744390860 scopus 로고    scopus 로고
    • The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane
    • C. Monaco, and et al. The RFG oligomerization domain mediates kinase activation and re-localization of the RET/PTC3 oncoprotein to the plasma membrane Oncogene 20 5 2001 599 608
    • (2001) Oncogene , vol.20 , Issue.5 , pp. 599-608
    • Monaco, C.1
  • 93
    • 0036510366 scopus 로고    scopus 로고
    • Negative regulation of toll-like receptor-mediated signaling by Tollip
    • G. Zhang, and S. Ghosh Negative regulation of toll-like receptor-mediated signaling by Tollip J. Biophys. Chem. 277 9 2002 7059 7065
    • (2002) J. Biophys. Chem. , vol.277 , Issue.9 , pp. 7059-7065
    • Zhang, G.1    Ghosh, S.2
  • 94
    • 84891748139 scopus 로고    scopus 로고
    • A current perspective of autophagosome biogenesis
    • S.T. Shibutani, and T. Yoshimori A current perspective of autophagosome biogenesis Cell Res. 24 1 2014 58 68
    • (2014) Cell Res. , vol.24 , Issue.1 , pp. 58-68
    • Shibutani, S.T.1    Yoshimori, T.2
  • 95
    • 77950465542 scopus 로고    scopus 로고
    • Current knowledge of the pre-autophagosomal structure (PAS)
    • K. Suzuki, and Y. Ohsumi Current knowledge of the pre-autophagosomal structure (PAS) FEBS Lett. 584 7 2010 1280 1286
    • (2010) FEBS Lett. , vol.584 , Issue.7 , pp. 1280-1286
    • Suzuki, K.1    Ohsumi, Y.2
  • 96
    • 84916213552 scopus 로고    scopus 로고
    • Autophagosome formation in response to intracellular bacterial invasion
    • S.T. Shibutani, and T. Yoshimori Autophagosome formation in response to intracellular bacterial invasion Cell. Microbiol. 16 11 2014 1619 1626
    • (2014) Cell. Microbiol. , vol.16 , Issue.11 , pp. 1619-1626
    • Shibutani, S.T.1    Yoshimori, T.2
  • 98
    • 33846514235 scopus 로고    scopus 로고
    • Hierarchy of Atg proteins in pre-autophagosomal structure organization
    • K. Suzuki, and et al. Hierarchy of Atg proteins in pre-autophagosomal structure organization Genes Cells 12 2 2007 209 218
    • (2007) Genes Cells , vol.12 , Issue.2 , pp. 209-218
    • Suzuki, K.1
  • 99
    • 84885662059 scopus 로고    scopus 로고
    • Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site
    • I. Koyama-Honda, and et al. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site Autophagy 9 10 2013 1491 1499
    • (2013) Autophagy , vol.9 , Issue.10 , pp. 1491-1499
    • Koyama-Honda, I.1
  • 100
    • 77955884684 scopus 로고    scopus 로고
    • Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
    • E. Itakura, and N. Mizushima Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins Autophagy 6 6 2010 764 776
    • (2010) Autophagy , vol.6 , Issue.6 , pp. 764-776
    • Itakura, E.1    Mizushima, N.2
  • 101
    • 77956924900 scopus 로고    scopus 로고
    • Selective transport of alpha-mannosidase by autophagic pathways: Identification of a novel receptor, Atg34p
    • K. Suzuki, and et al. Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p J. Biol. Chem. 285 39 2010 30019 30025
    • (2010) J. Biol. Chem. , vol.285 , Issue.39 , pp. 30019-30025
    • Suzuki, K.1
  • 102
    • 84934449988 scopus 로고    scopus 로고
    • Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
    • K. Mochida, and et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus Nature 522 7556 2015 359 362
    • (2015) Nature , vol.522 , Issue.7556 , pp. 359-362
    • Mochida, K.1
  • 103
    • 84934449989 scopus 로고    scopus 로고
    • Regulation of endoplasmic reticulum turnover by selective autophagy
    • A. Khaminets, and et al. Regulation of endoplasmic reticulum turnover by selective autophagy Nature 522 7556 2015 354 358
    • (2015) Nature , vol.522 , Issue.7556 , pp. 354-358
    • Khaminets, A.1
  • 104
    • 43049138051 scopus 로고    scopus 로고
    • Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
    • C. Kraft, and et al. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease Nat. Cell Biol. 10 5 2008 602 610
    • (2008) Nat. Cell Biol. , vol.10 , Issue.5 , pp. 602-610
    • Kraft, C.1
  • 105
    • 1942469479 scopus 로고    scopus 로고
    • Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae
    • J. Onodera, and Y. Ohsumi Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae J. Biol. Chem. 279 16 2004 16071 16076
    • (2004) J. Biol. Chem. , vol.279 , Issue.16 , pp. 16071-16076
    • Onodera, J.1    Ohsumi, Y.2
  • 106
    • 57749173129 scopus 로고    scopus 로고
    • Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae
    • T. Kageyama, K. Suzuki, and Y. Ohsumi Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae Biochem. Biophys. Res. Commun. 378 3 2009 551 557
    • (2009) Biochem. Biophys. Res. Commun. , vol.378 , Issue.3 , pp. 551-557
    • Kageyama, T.1    Suzuki, K.2    Ohsumi, Y.3
  • 107
    • 84905491871 scopus 로고    scopus 로고
    • Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family
    • K. Lu, I. Psakhye, and S. Jentsch Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family Cell 158 3 2014 549 563
    • (2014) Cell , vol.158 , Issue.3 , pp. 549-563
    • Lu, K.1    Psakhye, I.2    Jentsch, S.3
  • 108
    • 84964480248 scopus 로고    scopus 로고
    • Starvation induces proteasome autophagy with different pathways for core and regulatory particle
    • K.A. Waite, and et al. Starvation induces proteasome autophagy with different pathways for core and regulatory particle J. Biol. Chem. 2015
    • (2015) J. Biol. Chem.
    • Waite, K.A.1
  • 109
    • 77955172368 scopus 로고    scopus 로고
    • Autophagy negatively regulates wnt signalling by promoting dishevelled degradation
    • C. Gao, and et al. Autophagy negatively regulates wnt signalling by promoting dishevelled degradation Nat. Cell Biol. 12 8 2010 781 790
    • (2010) Nat. Cell Biol. , vol.12 , Issue.8 , pp. 781-790
    • Gao, C.1
  • 110
    • 31544454404 scopus 로고    scopus 로고
    • Rapamycin alleviates toxicity of different aggregate-prone proteins
    • Z. Berger, and et al. Rapamycin alleviates toxicity of different aggregate-prone proteins Hum. Mol. Genet. 15 3 2006 433 442
    • (2006) Hum. Mol. Genet. , vol.15 , Issue.3 , pp. 433-442
    • Berger, Z.1
  • 111
    • 84937574462 scopus 로고    scopus 로고
    • Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis
    • R.S. Marshall, and et al. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis Mol. Cell 58 6 2015 1053 1066
    • (2015) Mol. Cell , vol.58 , Issue.6 , pp. 1053-1066
    • Marshall, R.S.1
  • 112
    • 78651282673 scopus 로고    scopus 로고
    • P62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding
    • E. Itakura, and N. Mizushima p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding J. Cell Biol. 192 1 2011 17 27
    • (2011) J. Cell Biol. , vol.192 , Issue.1 , pp. 17-27
    • Itakura, E.1    Mizushima, N.2
  • 113
    • 3142677196 scopus 로고    scopus 로고
    • Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway
    • T. Shintani, and D.J. Klionsky Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway J. Biol. Chem. 279 29 2004 29889 29894
    • (2004) J. Biol. Chem. , vol.279 , Issue.29 , pp. 29889-29894
    • Shintani, T.1    Klionsky, D.J.2
  • 114
    • 84938744997 scopus 로고    scopus 로고
    • Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase
    • R.A. Kamber, C.J. Shoemaker, and V. Denic Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase Mol. Cell 59 3 2015 372 381
    • (2015) Mol. Cell , vol.59 , Issue.3 , pp. 372-381
    • Kamber, R.A.1    Shoemaker, C.J.2    Denic, V.3
  • 115
    • 84886897936 scopus 로고    scopus 로고
    • Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin
    • N. Fujita, and et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin J. Cell Biol. 203 1 2013 115 128
    • (2013) J. Cell Biol. , vol.203 , Issue.1 , pp. 115-128
    • Fujita, N.1
  • 116
    • 84857850213 scopus 로고    scopus 로고
    • Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy
    • E. Itakura, and et al. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy J. Cell Sci. 125 Pt 6 2012 1488 1499
    • (2012) J. Cell Sci. , vol.125 , pp. 1488-1499
    • Itakura, E.1
  • 117
    • 84960432718 scopus 로고    scopus 로고
    • TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity
    • T. Kimura, and et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity J. Cell Biol. 210 6 2015 973 989
    • (2015) J. Cell Biol. , vol.210 , Issue.6 , pp. 973-989
    • Kimura, T.1
  • 118
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • E.L. Axe, and et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum J. Cell Biol. 182 4 2008 685 701
    • (2008) J. Cell Biol. , vol.182 , Issue.4 , pp. 685-701
    • Axe, E.L.1
  • 119
    • 84903131140 scopus 로고    scopus 로고
    • ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants
    • R. Le Bars, and et al. ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants Nat. Commun. 5 2014 4121
    • (2014) Nat. Commun. , vol.5 , pp. 4121
    • Le Bars, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.