-
1
-
-
84878562770
-
Autophagic processes in yeast: Mechanism, machinery and regulation
-
Reggiori, F., and Klionsky, D. J. (2013) Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194, 341-361
-
(2013)
Genetics
, vol.194
, pp. 341-361
-
-
Reggiori, F.1
Klionsky, D.J.2
-
2
-
-
84871002139
-
Selective autophagy in budding yeast
-
Suzuki, K. (2013) Selective autophagy in budding yeast. Cell Death Differ. 20, 43-48
-
(2013)
Cell Death Differ.
, vol.20
, pp. 43-48
-
-
Suzuki, K.1
-
3
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley, D. (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477-513
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
4
-
-
84896032345
-
Paradigms of protein degradation by the proteasome
-
Inobe, T., and Matouschek, A. (2014) Paradigms of protein degradation by the proteasome. Curr. Opin. Struct. Biol. 24, 156-164
-
(2014)
Curr. Opin. Struct. Biol.
, vol.24
, pp. 156-164
-
-
Inobe, T.1
Matouschek, A.2
-
5
-
-
0033229970
-
The economics of ribosome biosynthesis in yeast
-
Warner, J. R. (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437-440
-
(1999)
Trends Biochem. Sci.
, vol.24
, pp. 437-440
-
-
Warner, J.R.1
-
6
-
-
43049138051
-
Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the ubp3p/Bre5p ubiquitin protease
-
Kraft, C., Deplazes, A., Sohrmann, M., and Peter, M. (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10, 602-610
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 602-610
-
-
Kraft, C.1
Deplazes, A.2
Sohrmann, M.3
Peter, M.4
-
7
-
-
77954212973
-
Cdc48 and ufd3, new partners of the ubiquitin protease ubp3, are required for ribophagy
-
Ossareh-Nazari, B., Bonizec, M., Cohen, M., Dokudovskaya, S., Delalande, F., Schaeffer, C., Van Dorsselaer, A., and Dargemont, C. (2010) Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep. 11, 548-554
-
(2010)
EMBO Rep.
, vol.11
, pp. 548-554
-
-
Ossareh-Nazari, B.1
Bonizec, M.2
Cohen, M.3
Dokudovskaya, S.4
Delalande, F.5
Schaeffer, C.6
Van Dorsselaer, A.7
Dargemont, C.8
-
8
-
-
84896265496
-
Ubiquitylation by the ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy
-
Ossareh-Nazari, B., Niño, C. A., Bengtson, M. H., and Lee, J. W., Joazeiro, C. A., and Dargemont, C. (2014) Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J. Cell Biol. 204, 909-917
-
(2014)
J. Cell Biol.
, vol.204
, pp. 909-917
-
-
Ossareh-Nazari, B.1
Niño, C.A.2
Bengtson, M.H.3
Lee, J.W.4
Joazeiro, C.A.5
Dargemont, C.6
-
9
-
-
0024591394
-
Half-life of proteasomes (multiprotease complexes) in rat liver
-
Tanaka, K., and Ichihara, A. (1989) Half-life of proteasomes (multiprotease complexes) in rat liver. Biochem. Biophys. Res. Commun. 159, 1309-1315
-
(1989)
Biochem. Biophys. Res. Commun.
, vol.159
, pp. 1309-1315
-
-
Tanaka, K.1
Ichihara, A.2
-
10
-
-
84928549928
-
Insights into the relationship between the proteasome and autophagy in human and yeast cells
-
Athané, A., Buisson, A., Challier, M., Beaumatin, F., Manon, S., Bhatia-Kiššová, I., and Camougrand, N. (2015) Insights into the relationship between the proteasome and autophagy in human and yeast cells. Int. J. Biochem. Cell Biol. 64, 167-173
-
(2015)
Int. J. Biochem. Cell Biol.
, vol.64
, pp. 167-173
-
-
Athané, A.1
Buisson, A.2
Challier, M.3
Beaumatin, F.4
Manon, S.5
Bhatia-Kiššová, I.6
Camougrand, N.7
-
11
-
-
77950487987
-
Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems
-
Korolchuk, V. I., and Menzies, F. M., and Rubinsztein, D. C. (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 584, 1393-1398
-
(2010)
FEBS Lett.
, vol.584
, pp. 1393-1398
-
-
Korolchuk, V.I.1
Menzies, F.M.2
Rubinsztein, D.C.3
-
12
-
-
34250183177
-
HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
-
Pandey, U. B., Nie, Z., Batlevi, Y., McCray, B. A., and Ritson, G. P., Nedelsky, N. B., Schwartz, S. L., and DiProspero, N. A., Knight, M. A., Schuldiner, O., Padmanabhan, R., Hild, M., Berry, D. L., Garza, D., and Hubbert, C. C., et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863
-
(2007)
Nature
, vol.447
, pp. 859-863
-
-
Pandey, U.B.1
Nie, Z.2
Batlevi, Y.3
McCray, B.A.4
Ritson, G.P.5
Nedelsky, N.B.6
Schwartz, S.L.7
DiProspero, N.A.8
Knight, M.A.9
Schuldiner, O.10
Padmanabhan, R.11
Hild, M.12
Berry, D.L.13
Garza, D.14
Hubbert, C.C.15
-
13
-
-
84868148725
-
Failure of amino acid homeostasis causes cell death following proteasome inhibition
-
Suraweera, A., Münch, C., Hanssum, A., and Bertolotti, A. (2012) Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 48, 242-253
-
(2012)
Mol. Cell
, vol.48
, pp. 242-253
-
-
Suraweera, A.1
Münch, C.2
Hanssum, A.3
Bertolotti, A.4
-
14
-
-
84885593791
-
A novel crosstalk between two major protein degradation systems: Regulation of proteasomal activity by autophagy
-
Wang, X. J., Yu, J., Wong, S. H., and Cheng, A. S., Chan, F. K., Ng, S. S., and Cho, C. H., Sung, J. J., and Wu, W. K. (2013) A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy. Autophagy 9, 1500-1508
-
(2013)
Autophagy
, vol.9
, pp. 1500-1508
-
-
Wang, X.J.1
Yu, J.2
Wong, S.H.3
Cheng, A.S.4
Chan, F.K.5
Ng, S.S.6
Cho, C.H.7
Sung, J.J.8
Wu, W.K.9
-
15
-
-
0028797005
-
Degradation of proteasomes by lysosomes in rat liver
-
Cuervo, A. M., Palmer, A., Rivett, A. J., and Knecht, E. (1995) Degradation of proteasomes by lysosomes in rat liver. Eur. J. Biochem. 227, 792-800
-
(1995)
Eur. J. Biochem.
, vol.227
, pp. 792-800
-
-
Cuervo, A.M.1
Palmer, A.2
Rivett, A.J.3
Knecht, E.4
-
16
-
-
29344464782
-
Protein synthesis upon acute nutrient restriction relies on proteasome function
-
Vabulas, R. M., and Hartl, F. U. (2005) Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960-1963
-
(2005)
Science
, vol.310
, pp. 1960-1963
-
-
Vabulas, R.M.1
Hartl, F.U.2
-
17
-
-
0023666139
-
The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses
-
Finley, D., Ozkaynak, E., and Varshavsky, A. (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035-1046
-
(1987)
Cell
, vol.48
, pp. 1035-1046
-
-
Finley, D.1
Ozkaynak, E.2
Varshavsky, A.3
-
18
-
-
0032873415
-
Three new dominant drug resistance cassettes for gene disruption in saccharomyces cerevisiae
-
Goldstein, A. L., and McCusker, J. H. (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541-1553
-
(1999)
Yeast
, vol.15
, pp. 1541-1553
-
-
Goldstein, A.L.1
McCusker, J.H.2
-
19
-
-
4444271170
-
A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes
-
Janke, C., and Magiera, M. M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and Knop, M. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962
-
(2004)
Yeast
, vol.21
, pp. 947-962
-
-
Janke, C.1
Magiera, M.M.2
Rathfelder, N.3
Taxis, C.4
Reber, S.5
Maekawa, H.6
Moreno-Borchart, A.7
Doenges, G.8
Schwob, E.9
Schiebel, E.10
Knop, M.11
-
20
-
-
27644576445
-
Characterization of the proteasome using native gel electrophoresis
-
Elsasser, S., Schmidt, M., and Finley, D. (2005) Characterization of the proteasome using native gel electrophoresis. Methods Enzymol. 398, 353-363
-
(2005)
Methods Enzymol.
, vol.398
, pp. 353-363
-
-
Elsasser, S.1
Schmidt, M.2
Finley, D.3
-
21
-
-
84885858648
-
Blm10 facilitates nuclear import of proteasome core particles
-
Weberruss, M. H., and Savulescu, A. F., Jando, J., Bissinger, T., Harel, A., and Glickman, M. H., and Enenkel, C. (2013) Blm10 facilitates nuclear import of proteasome core particles. EMBO J. 32, 2697-2707
-
(2013)
EMBO J.
, vol.32
, pp. 2697-2707
-
-
Weberruss, M.H.1
Savulescu, A.F.2
Jando, J.3
Bissinger, T.4
Harel, A.5
Glickman, M.H.6
Enenkel, C.7
-
22
-
-
4444237601
-
The bipartite nuclear localization sequence of rpn2 is required for nuclear import of proteasomal base complexes via karyopherin αβ and proteasome functions
-
Wendler, P., Lehmann, A., Janek, K., Baumgart, S., and Enenkel, C. (2004) The bipartite nuclear localization sequence of Rpn2 is required for nuclear import of proteasomal base complexes via karyopherin αβ and proteasome functions. J. Biol. Chem. 279, 37751-37762
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 37751-37762
-
-
Wendler, P.1
Lehmann, A.2
Janek, K.3
Baumgart, S.4
Enenkel, C.5
-
23
-
-
84896762950
-
Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome
-
Pack, C. G., Yukii, H., Toh-e, A., Kudo, T., Tsuchiya, H., Kaiho, A., Sakata, E., Murata, S., Yokosawa, H., Sako, Y., Baumeister, W., Tanaka, K., and Saeki, Y. (2014) Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat. Commun. 5, 3396
-
(2014)
Nat. Commun.
, vol.5
, pp. 3396
-
-
Pack, C.G.1
Yukii, H.2
Toh-E, A.3
Kudo, T.4
Tsuchiya, H.5
Kaiho, A.6
Sakata, E.7
Murata, S.8
Yokosawa, H.9
Sako, Y.10
Baumeister, W.11
Tanaka, K.12
Saeki, Y.13
-
24
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh, W. K., and Falvo, J. V., Gerke, L. C., Carroll, A. S., and Howson, R. W., Weissman, J. S., and O'Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686-691
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.K.1
Falvo, J.V.2
Gerke, L.C.3
Carroll, A.S.4
Howson, R.W.5
Weissman, J.S.6
O'Shea, E.K.7
-
25
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky, D. J., and Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J. A., Ahn, H. J., Ait-Mohamed, O., Ait-Si-Ali, S., Akematsu, T., Akira, S., et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
Agholme, L.7
Agnello, M.8
Agostinis, P.9
Aguirre-Ghiso, J.A.10
Ahn, H.J.11
Ait-Mohamed, O.12
Ait-Si-Ali, S.13
Akematsu, T.14
Akira, S.15
-
26
-
-
3142677196
-
Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway
-
Shintani, T., and Klionsky, D. J. (2004) Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279, 29889-29894
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 29889-29894
-
-
Shintani, T.1
Klionsky, D.J.2
-
27
-
-
0033118427
-
GFP-labelling of 26S proteasomes in living yeast: Insight into proteasomal functions at the nuclear envelope/rough ER
-
Enenkel, C, Lehmann, A., and Kloetzel, P.M. (1999) GFP-labelling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol. Biol. Rep. 26, 131-135
-
(1999)
Mol. Biol. Rep.
, vol.26
, pp. 131-135
-
-
Enenkel, C.1
Lehmann, A.2
Kloetzel, P.M.3
-
28
-
-
0032538881
-
Localization of the 26S proteasome during mitosis and meiosis in fission yeast
-
Wilkinson, C. R., Wallace, M., Morphew, M., Perry, P., Allshire, R., Javerzat, J. P., and McIntosh, J. R., and Gordon, C. (1998) Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J. 17, 6465-6476
-
(1998)
EMBO J.
, vol.17
, pp. 6465-6476
-
-
Wilkinson, C.R.1
Wallace, M.2
Morphew, M.3
Perry, P.4
Allshire, R.5
Javerzat, J.P.6
McIntosh, J.R.7
Gordon, C.8
-
29
-
-
44649161981
-
Reversible cytoplasmic localization of the proteasome in quiescent yeast cells
-
Laporte, D., Salin, B., Daignan-Fornier, B., and Sagot, I. (2008) Reversible cytoplasmic localization of the proteasome in quiescent yeast cells. J. Cell Biol. 181, 737-745
-
(2008)
J. Cell Biol.
, vol.181
, pp. 737-745
-
-
Laporte, D.1
Salin, B.2
Daignan-Fornier, B.3
Sagot, I.4
-
30
-
-
84878560423
-
Formation and dissociation of proteasome storage granules are regulated by cytosolic pH
-
Peters, L. Z., Hazan, R., Breker, M., Schuldiner, M., and Ben-Aroya, S. (2013) Formation and dissociation of proteasome storage granules are regulated by cytosolic pH. J. Cell Biol. 201, 663-671
-
(2013)
J. Cell Biol.
, vol.201
, pp. 663-671
-
-
Peters, L.Z.1
Hazan, R.2
Breker, M.3
Schuldiner, M.4
Ben-Aroya, S.5
-
31
-
-
34347392289
-
The structure and function of saccharomyces cerevisiae proteinase A
-
Parr, C. L., and Keates, R. A., Bryksa, B. C., Ogawa, M., and Yada, R. Y. (2007) The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 24, 467-480
-
(2007)
Yeast
, vol.24
, pp. 467-480
-
-
Parr, C.L.1
Keates, R.A.2
Bryksa, B.C.3
Ogawa, M.4
Yada, R.Y.5
-
32
-
-
84902491123
-
Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling
-
Lang, M. J., Martinez-Marquez, J. Y., Prosser, D. C., Ganser, L. R., Buelto, D., Wendland, B., and Duncan, M. C. (2014) Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling. J. Biol. Chem. 289, 16736-16747
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 16736-16747
-
-
Lang, M.J.1
Martinez-Marquez, J.Y.2
Prosser, D.C.3
Ganser, L.R.4
Buelto, D.5
Wendland, B.6
Duncan, M.C.7
-
33
-
-
33846514235
-
Hierarchy of atg proteins in pre-autophagosomal structure organization
-
Suzuki, K., Kubota, Y., Sekito, T., and Ohsumi, Y. (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209-218
-
(2007)
Genes Cells
, vol.12
, pp. 209-218
-
-
Suzuki, K.1
Kubota, Y.2
Sekito, T.3
Ohsumi, Y.4
-
34
-
-
57349198328
-
Piecemeal microautophagy of the nucleus requires the core macroautophagy genes
-
Krick, R., Muehe, Y., Prick, T., Bremer, S., Schlotterhose, P., Eskelinen, E. L., Millen, J., and Goldfarb, D. S., and Thumm, M. (2008) Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell 19, 4492-4505
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4492-4505
-
-
Krick, R.1
Muehe, Y.2
Prick, T.3
Bremer, S.4
Schlotterhose, P.5
Eskelinen, E.L.6
Millen, J.7
Goldfarb, D.S.8
Thumm, M.9
-
35
-
-
0033944449
-
Nucleus-vacuole junctions in saccharomyces cerevisiae are formed through the direct interaction of vac8p with nvj1p
-
Pan, X., Roberts, P., Chen, Y., Kvam, E., Shulga, N., Huang, K., Lemmon, S., and Goldfarb, D. S. (2000) Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol. Biol. Cell 11, 2445-2457
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2445-2457
-
-
Pan, X.1
Roberts, P.2
Chen, Y.3
Kvam, E.4
Shulga, N.5
Huang, K.6
Lemmon, S.7
Goldfarb, D.S.8
-
36
-
-
84901801108
-
Organellophagy: Eliminating cellular building blocks via selective autophagy
-
Okamoto, K. (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J. Cell Biol. 205, 435-445
-
(2014)
J. Cell Biol.
, vol.205
, pp. 435-445
-
-
Okamoto, K.1
-
37
-
-
57749173129
-
Lap3 is a selective target of autophagy in yeast, saccharomyces cerevisiae
-
Kageyama, T., Suzuki, K., and Ohsumi, Y. (2009) Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 378, 551-557
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.378
, pp. 551-557
-
-
Kageyama, T.1
Suzuki, K.2
Ohsumi, Y.3
-
38
-
-
1942469479
-
Ald6p is a preferred target for autophagy in yeast, saccharomyces cerevisiae
-
Onodera, J., and Ohsumi, Y. (2004) Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J. Biol. Chem. 279, 16071-16076
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 16071-16076
-
-
Onodera, J.1
Ohsumi, Y.2
-
39
-
-
84937574462
-
Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis
-
Marshall, R. S., Li, F., Gemperline, D. C., Book, A. J., and Vierstra, R. D. (2015) Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis. Mol. Cell 58, 1053-1066
-
(2015)
Mol. Cell
, vol.58
, pp. 1053-1066
-
-
Marshall, R.S.1
Li, F.2
Gemperline, D.C.3
Book, A.J.4
Vierstra, R.D.5
-
40
-
-
65249145158
-
Active destruction of defective ribosomes by a ubiquitin ligase involved in DNA repair
-
Hinnebusch, A. G. (2009) Active destruction of defective ribosomes by a ubiquitin ligase involved in DNA repair. Genes Dev. 23, 891-895
-
(2009)
Genes Dev.
, vol.23
, pp. 891-895
-
-
Hinnebusch, A.G.1
-
41
-
-
84858328465
-
Reticulophagy and ribophagy: Regulated degradation of protein production factories
-
Cebollero, E., Reggiori, F., and Kraft, C. (2012) Reticulophagy and ribophagy: regulated degradation of protein production factories. Int. J. Cell Biol. 2012, 182834
-
(2012)
Int. J. Cell Biol.
, vol.2012
-
-
Cebollero, E.1
Reggiori, F.2
Kraft, C.3
-
42
-
-
77954314106
-
Assembly, structure, and function of the 26S proteasome
-
Bedford, L., Paine, S., Sheppard, P. W., and Mayer, R. J., and Roelofs, J. (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 20, 391-401
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 391-401
-
-
Bedford, L.1
Paine, S.2
Sheppard, P.W.3
Mayer, R.J.4
Roelofs, J.5
-
43
-
-
84885586226
-
The proteasome-associated protein ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome
-
De La Mota-Peynado, A., Lee, S. Y., Pierce, B. M., Wani, P., Singh, C. R., and Roelofs, J. (2013) The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J. Biol. Chem. 288, 29467-29481
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 29467-29481
-
-
De La Mota-Peynado, A.1
Lee, S.Y.2
Pierce, B.M.3
Wani, P.4
Singh, C.R.5
Roelofs, J.6
-
44
-
-
77955503621
-
Ecm29 fulfils quality control functions in proteasome assembly
-
Lehmann, A., Niewienda, A., Jechow, K., Janek, K., and Enenkel, C. (2010) Ecm29 fulfils quality control functions in proteasome assembly. Mol. Cell 38, 879-888
-
(2010)
Mol. Cell
, vol.38
, pp. 879-888
-
-
Lehmann, A.1
Niewienda, A.2
Jechow, K.3
Janek, K.4
Enenkel, C.5
-
45
-
-
84876816592
-
Quality control mechanisms during ribosome maturation
-
Karbstein, K. (2013) Quality control mechanisms during ribosome maturation. Trends Cell Biol. 23, 242-250
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 242-250
-
-
Karbstein, K.1
-
46
-
-
78649324240
-
Cellular strategies for the assembly of molecular machines
-
Chari, A., and Fischer, U. (2010) Cellular strategies for the assembly of molecular machines. Trends Biochem. Sci. 35, 676-683
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 676-683
-
-
Chari, A.1
Fischer, U.2
-
47
-
-
84930353020
-
The protein quality control machinery regulates its misassembled proteasome subunits
-
Peters, L. Z., Karmon, O., David-Kadoch, G., Hazan, R., Yu, T., Glickman, M. H., and Ben-Aroya, S. (2015) The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet. 11, e1005178
-
(2015)
PLoS Genet.
, vol.11
-
-
Peters, L.Z.1
Karmon, O.2
David-Kadoch, G.3
Hazan, R.4
Yu, T.5
Glickman, M.H.6
Ben-Aroya, S.7
-
48
-
-
84878942836
-
Molecular architecture and assembly of the eukaryotic proteasome
-
Tomko, R. J., Jr., and Hochstrasser, M. (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82, 415-445
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 415-445
-
-
Tomko, R.J.1
Hochstrasser, M.2
-
49
-
-
80054703106
-
Loss of rpt5 protein interactions with the core particle and nas2 protein causes the formation of faulty proteasomes that are inhibited by ecm29 protein
-
Lee, S. Y., De la Mota-Peynado, A., and Roelofs, J. (2011) Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J. Biol. Chem. 286, 36641-36651
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 36641-36651
-
-
Lee, S.Y.1
De La Mota-Peynado, A.2
Roelofs, J.3
-
50
-
-
79953150421
-
Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through ecm29
-
Panasenko, O. O., and Collart, M. A. (2011) Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol. Cell. Biol. 31, 1610-1623
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 1610-1623
-
-
Panasenko, O.O.1
Collart, M.A.2
-
51
-
-
80054702676
-
Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response
-
Park, S., Kim, W., Tian, G., Gygi, S. P., and Finley, D. (2011) Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J. Biol. Chem. 286, 36652-36666
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 36652-36666
-
-
Park, S.1
Kim, W.2
Tian, G.3
Gygi, S.P.4
Finley, D.5
-
52
-
-
84934449988
-
Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
-
Mochida, K., Oikawa, Y., Kimura, Y., Kirisako, H., Hirano, H., Ohsumi, Y., and Nakatogawa, H. (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359-362
-
(2015)
Nature
, vol.522
, pp. 359-362
-
-
Mochida, K.1
Oikawa, Y.2
Kimura, Y.3
Kirisako, H.4
Hirano, H.5
Ohsumi, Y.6
Nakatogawa, H.7
-
53
-
-
84863095978
-
A late form of nucleophagy in saccharomyces cerevisiae
-
Mijaljica, D., Prescott, M., and Devenish, R. J. (2012) A late form of nucleophagy in Saccharomyces cerevisiae. PLoS ONE 7, e40013
-
(2012)
PLoS ONE
, vol.7
-
-
Mijaljica, D.1
Prescott, M.2
Devenish, R.J.3
-
54
-
-
0036296150
-
20S proteasomes are importedasprecursor complexes into the nucleus of yeast
-
Lehmann, A., Janek, K., Braun, B., Kloetzel, P. M., and Enenkel, C. (2002) 20S proteasomes are importedasprecursor complexes into the nucleus of yeast. J. Mol. Biol. 317, 401-413
-
(2002)
J. Mol. Biol.
, vol.317
, pp. 401-413
-
-
Lehmann, A.1
Janek, K.2
Braun, B.3
Kloetzel, P.M.4
Enenkel, C.5
-
55
-
-
33846842251
-
The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome
-
Isono, E., Nishihara, K., Saeki, Y., Yashiroda, H., Kamata, N., Ge, L., Ueda, T., Kikuchi, Y., Tanaka, K., Nakano, A., and Toh-e, A. (2007) The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol. Biol. Cell 18, 569-580
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 569-580
-
-
Isono, E.1
Nishihara, K.2
Saeki, Y.3
Yashiroda, H.4
Kamata, N.5
Ge, L.6
Ueda, T.7
Kikuchi, Y.8
Tanaka, K.9
Nakano, A.10
Toh-E, A.11
-
56
-
-
84905449011
-
Glucose- and nitrogen sensing and regulatory mechanisms in saccharomyces cerevisiae
-
Rødkaer, S. V., and Faergeman, N. J. (2014) Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 683-696
-
(2014)
FEMS Yeast Res.
, vol.14
, pp. 683-696
-
-
Rødkaer, S.V.1
Faergeman, N.J.2
-
57
-
-
84920080589
-
Regulation of autophagy by protein post-translational modification
-
Wani, W.Y., Boyer-Guittaut, M., Dodson, M., Chatham, J., Darley-Usmar, V., and Zhang, J. (2015) Regulation of autophagy by protein post-translational modification. Lab. Invest. 95, 14-25
-
(2015)
Lab. Invest.
, vol.95
, pp. 14-25
-
-
Wani, W.Y.1
Boyer-Guittaut, M.2
Dodson, M.3
Chatham, J.4
Darley-Usmar, V.5
Zhang, J.6
-
58
-
-
4444342179
-
Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting doa4 to endosomes
-
Luhtala, N., and Odorizzi, G. (2004) Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. J. Cell Biol. 166, 717-729
-
(2004)
J. Cell Biol.
, vol.166
, pp. 717-729
-
-
Luhtala, N.1
Odorizzi, G.2
-
59
-
-
33645942074
-
The regulation of autophagy in eukaryotic cells: Do all roads pass through atg1?
-
Stephan, J. S., and Herman, P. K. (2006) The regulation of autophagy in eukaryotic cells: do all roads pass through Atg1? Autophagy 2, 146-148
-
(2006)
Autophagy
, vol.2
, pp. 146-148
-
-
Stephan, J.S.1
Herman, P.K.2
-
60
-
-
0033004441
-
Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
-
Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., and Feldmann, H. (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 450, 27-34
-
(1999)
FEBS Lett.
, vol.450
, pp. 27-34
-
-
Mannhaupt, G.1
Schnall, R.2
Karpov, V.3
Vetter, I.4
Feldmann, H.5
-
61
-
-
77950366349
-
Transcription factor nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells
-
Radhakrishnan, S. K., and Lee, C. S., Young, P., Beskow, A., Chan, J. Y., and Deshaies, R. J. (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 38, 17-28
-
(2010)
Mol. Cell
, vol.38
, pp. 17-28
-
-
Radhakrishnan, S.K.1
Lee, C.S.2
Young, P.3
Beskow, A.4
Chan, J.Y.5
Deshaies, R.J.6
-
62
-
-
84904990897
-
Proteasome-mediated processing of nrf1 is essential for coordinate induction of all proteasome subunits and p97
-
Sha, Z., and Goldberg, A. L. (2014) Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr. Biol. 24, 1573-1583
-
(2014)
Curr. Biol.
, vol.24
, pp. 1573-1583
-
-
Sha, Z.1
Goldberg, A.L.2
-
63
-
-
0035853037
-
RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit
-
Xie, Y., and Varshavsky, A. (2001) RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc. Natl. Acad. Sci. U.S.A. 98, 3056-3061
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 3056-3061
-
-
Xie, Y.1
Varshavsky, A.2
-
64
-
-
84858972249
-
Nrf2-dependent induction of proteasome and pa28αβ regulator are required for adaptation to oxidative stress
-
Pickering, A. M., and Linder, R. A., Zhang, H., Forman, H. J., and Davies, K. J. (2012) Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress. J. Biol. Chem. 287, 10021-10031
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 10021-10031
-
-
Pickering, A.M.1
Linder, R.A.2
Zhang, H.3
Forman, H.J.4
Davies, K.J.5
-
65
-
-
33846520786
-
The ubiquitin-proteasome system regulates membrane fusion of yeast vacuoles
-
Kleijnen, M. F., and Kirkpatrick, D. S., and Gygi, S. P. (2007) The ubiquitin-proteasome system regulates membrane fusion of yeast vacuoles. EMBO J. 26, 275-287
-
(2007)
EMBO J.
, vol.26
, pp. 275-287
-
-
Kleijnen, M.F.1
Kirkpatrick, D.S.2
Gygi, S.P.3
|