-
1
-
-
85014844261
-
mTOR signaling in growth, metabolism, and disease
-
Saxton RA and Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976.
-
(2017)
Cell
, vol.168
, pp. 960-976
-
-
Saxton, R.A.1
Sabatini, D.M.2
-
2
-
-
77958126087
-
A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation
-
Haidinger M, Poglitsch M, Geyeregger R, Kasturi S, Zeyda M, Zlabinger GJ, Pulendran B, Horl WH, Saemann MD and Weichhart T (2010) A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J Immunol 185, 3919–3931.
-
(2010)
J Immunol
, vol.185
, pp. 3919-3931
-
-
Haidinger, M.1
Poglitsch, M.2
Geyeregger, R.3
Kasturi, S.4
Zeyda, M.5
Zlabinger, G.J.6
Pulendran, B.7
Horl, W.H.8
Saemann, M.D.9
Weichhart, T.10
-
3
-
-
77958470125
-
Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling
-
Sathaliyawala T, O'Gorman WE, Greter M, Bogunovic M, Konjufca V, Hou ZE, Nolan GP, Miller MJ, Merad M and Reizis B (2010) Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 33, 597–606.
-
(2010)
Immunity
, vol.33
, pp. 597-606
-
-
Sathaliyawala, T.1
O'Gorman, W.E.2
Greter, M.3
Bogunovic, M.4
Konjufca, V.5
Hou, Z.E.6
Nolan, G.P.7
Miller, M.J.8
Merad, M.9
Reizis, B.10
-
4
-
-
0042847309
-
Mechanism of ribosomal p70S6 kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils: cooperation of a MEK-related, THR421/SER424 kinase and a rapamycin-sensitive, m-TOR-related THR389 kinase
-
Lehman JA, Calvo V and Gomez-Cambronero J (2003) Mechanism of ribosomal p70S6 kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils: cooperation of a MEK-related, THR421/SER424 kinase and a rapamycin-sensitive, m-TOR-related THR389 kinase. J Biol Chem 278, 28130–28138.
-
(2003)
J Biol Chem
, vol.278
, pp. 28130-28138
-
-
Lehman, J.A.1
Calvo, V.2
Gomez-Cambronero, J.3
-
5
-
-
0036707521
-
PI3K-mediated negative feedback regulation of IL-12 production in DCs
-
Fukao T, Tanabe M, Terauchi Y, Ota T, Matsuda S, Asano T, Kadowaki T, Takeuchi T and Koyasu S (2002) PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat Immunol 3, 875–881.
-
(2002)
Nat Immunol
, vol.3
, pp. 875-881
-
-
Fukao, T.1
Tanabe, M.2
Terauchi, Y.3
Ota, T.4
Matsuda, S.5
Asano, T.6
Kadowaki, T.7
Takeuchi, T.8
Koyasu, S.9
-
6
-
-
50949130076
-
Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells
-
Ohtani M, Nagai S, Kondo S, Mizuno S, Nakamura K, Tanabe M, Takeuchi T, Matsuda S and Koyasu S (2008) Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112, 635–643.
-
(2008)
Blood
, vol.112
, pp. 635-643
-
-
Ohtani, M.1
Nagai, S.2
Kondo, S.3
Mizuno, S.4
Nakamura, K.5
Tanabe, M.6
Takeuchi, T.7
Matsuda, S.8
Koyasu, S.9
-
7
-
-
54949109311
-
The TSC-mTOR signaling pathway regulates the innate inflammatory response
-
Weichhart T, Costantino G, Poglitsch M, Rosner M, Zeyda M, Stuhlmeier KM, Kolbe T, Stulnig TM, Horl WH, Hengstschlager M et al. (2008) The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577.
-
(2008)
Immunity
, vol.29
, pp. 565-577
-
-
Weichhart, T.1
Costantino, G.2
Poglitsch, M.3
Rosner, M.4
Zeyda, M.5
Stuhlmeier, K.M.6
Kolbe, T.7
Stulnig, T.M.8
Horl, W.H.9
Hengstschlager, M.10
-
8
-
-
77954525749
-
Sirolimus in renal transplant recipients with tuberous sclerosis complex: clinical effectiveness and implications for innate immunity
-
Haidinger M, Hecking M, Weichhart T, Poglitsch M, Enkner W, Vonbank K, Prayer D, Geusau A, Oberbauer R, Zlabinger GJ et al. (2010) Sirolimus in renal transplant recipients with tuberous sclerosis complex: clinical effectiveness and implications for innate immunity. Transpl Int 23, 777–785.
-
(2010)
Transpl Int
, vol.23
, pp. 777-785
-
-
Haidinger, M.1
Hecking, M.2
Weichhart, T.3
Poglitsch, M.4
Enkner, W.5
Vonbank, K.6
Prayer, D.7
Geusau, A.8
Oberbauer, R.9
Zlabinger, G.J.10
-
9
-
-
79955973785
-
Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells
-
Weichhart T, Haidinger M, Katholnig K, Kopecky C, Poglitsch M, Lassnig C, Rosner M, Zlabinger GJ, Hengstschlager M, Muller M et al. (2011) Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells. Blood 117, 4273–4283.
-
(2011)
Blood
, vol.117
, pp. 4273-4283
-
-
Weichhart, T.1
Haidinger, M.2
Katholnig, K.3
Kopecky, C.4
Poglitsch, M.5
Lassnig, C.6
Rosner, M.7
Zlabinger, G.J.8
Hengstschlager, M.9
Muller, M.10
-
10
-
-
58149352480
-
Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells
-
Schmitz F, Heit A, Dreher S, Eisenacher K, Mages J, Haas T, Krug A, Janssen KP, Kirschning CJ and Wagner H (2008) Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. Eur J Immunol 38, 2981–2992.
-
(2008)
Eur J Immunol
, vol.38
, pp. 2981-2992
-
-
Schmitz, F.1
Heit, A.2
Dreher, S.3
Eisenacher, K.4
Mages, J.5
Haas, T.6
Krug, A.7
Janssen, K.P.8
Kirschning, C.J.9
Wagner, H.10
-
11
-
-
77954748989
-
mTOR and GSK-3 shape the CD4+ T-cell stimulatory and differentiation capacity of myeloid DCs after exposure to LPS
-
Turnquist HR, Cardinal J, Macedo C, Rosborough BR, Sumpter TL, Geller DA, Metes D and Thomson AW (2010) mTOR and GSK-3 shape the CD4+ T-cell stimulatory and differentiation capacity of myeloid DCs after exposure to LPS. Blood 115, 4758–4769.
-
(2010)
Blood
, vol.115
, pp. 4758-4769
-
-
Turnquist, H.R.1
Cardinal, J.2
Macedo, C.3
Rosborough, B.R.4
Sumpter, T.L.5
Geller, D.A.6
Metes, D.7
Thomson, A.W.8
-
12
-
-
79958806173
-
mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment
-
Jiang Q, Weiss JM, Back T, Chan T, Ortaldo JR, Guichard S and Wiltrout RH (2011) mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Res 71, 4074–4084.
-
(2011)
Cancer Res
, vol.71
, pp. 4074-4084
-
-
Jiang, Q.1
Weiss, J.M.2
Back, T.3
Chan, T.4
Ortaldo, J.R.5
Guichard, S.6
Wiltrout, R.H.7
-
13
-
-
67651155938
-
Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury
-
Lorne E, Zhao X, Zmijewski JW, Liu G, Park YJ, Tsuruta Y and Abraham E (2009) Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol 41, 237–245.
-
(2009)
Am J Respir Cell Mol Biol
, vol.41
, pp. 237-245
-
-
Lorne, E.1
Zhao, X.2
Zmijewski, J.W.3
Liu, G.4
Park, Y.J.5
Tsuruta, Y.6
Abraham, E.7
-
14
-
-
77953262646
-
The phosphoproteome of toll-like receptor-activated macrophages
-
Weintz G, Olsen JV, Fruhauf K, Niedzielska M, Amit I, Jantsch J, Mages J, Frech C, Dolken L, Mann M et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371.
-
(2010)
Mol Syst Biol
, vol.6
, pp. 371
-
-
Weintz, G.1
Olsen, J.V.2
Fruhauf, K.3
Niedzielska, M.4
Amit, I.5
Jantsch, J.6
Mages, J.7
Frech, C.8
Dolken, L.9
Mann, M.10
-
15
-
-
84907363576
-
TSC1 controls macrophage polarization to prevent inflammatory disease
-
Zhu L, Yang T, Li L, Sun L, Hou Y, Hu X, Zhang L, Tian H, Zhao Q, Peng J et al. (2014) TSC1 controls macrophage polarization to prevent inflammatory disease. Nat Commun 5, 4696.
-
(2014)
Nat Commun
, vol.5
, pp. 4696
-
-
Zhu, L.1
Yang, T.2
Li, L.3
Sun, L.4
Hou, Y.5
Hu, X.6
Zhang, L.7
Tian, H.8
Zhao, Q.9
Peng, J.10
-
16
-
-
84889249320
-
The TSC-mTOR pathway regulates macrophage polarization
-
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD and Horng T (2013) The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 4, 2834.
-
(2013)
Nat Commun
, vol.4
, pp. 2834
-
-
Byles, V.1
Covarrubias, A.J.2
Ben-Sahra, I.3
Lamming, D.W.4
Sabatini, D.M.5
Manning, B.D.6
Horng, T.7
-
17
-
-
84904725488
-
The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells
-
Marcais A, Cherfils-Vicini J, Viant C, Degouve S, Viel S, Fenis A, Rabilloud J, Mayol K, Tavares A, Bienvenu J et al. (2014) The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 15, 749–757.
-
(2014)
Nat Immunol
, vol.15
, pp. 749-757
-
-
Marcais, A.1
Cherfils-Vicini, J.2
Viant, C.3
Degouve, S.4
Viel, S.5
Fenis, A.6
Rabilloud, J.7
Mayol, K.8
Tavares, A.9
Bienvenu, J.10
-
19
-
-
84865301337
-
mTOR, metabolism, and the regulation of T-cell differentiation and function
-
Waickman AT and Powell JD (2012) mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 249, 43–58.
-
(2012)
Immunol Rev
, vol.249
, pp. 43-58
-
-
Waickman, A.T.1
Powell, J.D.2
-
20
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante M and Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149, 274–293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
21
-
-
84904497700
-
Rab8a interacts directly with PI3Kgamma to modulate TLR4-driven PI3K and mTOR signalling
-
Luo L, Wall AA, Yeo JC, Condon ND, Norwood SJ, Schoenwaelder S, Chen KW, Jackson S, Jenkins BJ, Hartland EL et al. (2014) Rab8a interacts directly with PI3Kgamma to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun 5, 4407.
-
(2014)
Nat Commun
, vol.5
, pp. 4407
-
-
Luo, L.1
Wall, A.A.2
Yeo, J.C.3
Condon, N.D.4
Norwood, S.J.5
Schoenwaelder, S.6
Chen, K.W.7
Jackson, S.8
Jenkins, B.J.9
Hartland, E.L.10
-
22
-
-
84894523716
-
Making new contacts: the mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M and Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15, 155–162.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
23
-
-
84873560535
-
p38alpha senses environmental stress to control innate immune responses via mechanistic target of rapamycin
-
Katholnig K, Kaltenecker CC, Hayakawa H, Rosner M, Lassnig C, Zlabinger GJ, Gaestel M, Muller M, Hengstschlager M, Horl WH et al. (2013) p38alpha senses environmental stress to control innate immune responses via mechanistic target of rapamycin. J Immunol 190, 1519–1527.
-
(2013)
J Immunol
, vol.190
, pp. 1519-1527
-
-
Katholnig, K.1
Kaltenecker, C.C.2
Hayakawa, H.3
Rosner, M.4
Lassnig, C.5
Zlabinger, G.J.6
Gaestel, M.7
Muller, M.8
Hengstschlager, M.9
Horl, W.H.10
-
24
-
-
84886876102
-
Cross talk between the Akt and p38alpha pathways in macrophages downstream of Toll-like receptor signaling
-
McGuire VA, Gray A, Monk CE, Santos SG, Lee K, Aubareda A, Crowe J, Ronkina N, Schwermann J, Batty IH et al. (2013) Cross talk between the Akt and p38alpha pathways in macrophages downstream of Toll-like receptor signaling. Mol Cell Biol 33, 4152–4165.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 4152-4165
-
-
McGuire, V.A.1
Gray, A.2
Monk, C.E.3
Santos, S.G.4
Lee, K.5
Aubareda, A.6
Crowe, J.7
Ronkina, N.8
Schwermann, J.9
Batty, I.H.10
-
25
-
-
79957553362
-
Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: implications for NO synthase 2 expression
-
Lopez-Pelaez M, Soria-Castro I, Bosca L, Fernandez M and Alemany S (2011) Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: implications for NO synthase 2 expression. Eur J Immunol 41, 1733–1741.
-
(2011)
Eur J Immunol
, vol.41
, pp. 1733-1741
-
-
Lopez-Pelaez, M.1
Soria-Castro, I.2
Bosca, L.3
Fernandez, M.4
Alemany, S.5
-
26
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
-
Ma L, Chen Z, Erdjument-Bromage H, Tempst P and Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193.
-
(2005)
Cell
, vol.121
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
27
-
-
84961281785
-
Cross talk between the Akt and p38alpha pathways in macrophages downstream of Toll-like receptor signaling
-
Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, Wang J, Ben-Sahra I, Byles V, Polynne-Stapornkul T et al. (2016) Cross talk between the Akt and p38alpha pathways in macrophages downstream of Toll-like receptor signaling. Elife 5, e11612.
-
(2016)
Elife
, vol.5
-
-
Covarrubias, A.J.1
Aksoylar, H.I.2
Yu, J.3
Snyder, N.W.4
Worth, A.J.5
Iyer, S.S.6
Wang, J.7
Ben-Sahra, I.8
Byles, V.9
Polynne-Stapornkul, T.10
-
28
-
-
67749091321
-
Infectious tolerance via the consumption of essential amino acids and mTOR signaling
-
Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, Fairchild PJ, Mellor AL, Ron D and Waldmann H (2009) Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci USA 106, 12055–12060.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 12055-12060
-
-
Cobbold, S.P.1
Adams, E.2
Farquhar, C.A.3
Nolan, K.F.4
Howie, D.5
Lui, K.O.6
Fairchild, P.J.7
Mellor, A.L.8
Ron, D.9
Waldmann, H.10
-
29
-
-
33750068623
-
mTOR, translation initiation and cancer
-
Mamane Y, Petroulakis E, LeBacquer O and Sonenberg N (2006) mTOR, translation initiation and cancer. Oncogene 25, 6416–6422.
-
(2006)
Oncogene
, vol.25
, pp. 6416-6422
-
-
Mamane, Y.1
Petroulakis, E.2
LeBacquer, O.3
Sonenberg, N.4
-
30
-
-
84903441668
-
Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation
-
Schott J, Reitter S, Philipp J, Haneke K, Schafer H and Stoecklin G (2014) Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet 10, e1004368.
-
(2014)
PLoS Genet
, vol.10
-
-
Schott, J.1
Reitter, S.2
Philipp, J.3
Haneke, K.4
Schafer, H.5
Stoecklin, G.6
-
31
-
-
38049037441
-
Regulation of translation is required for dendritic cell function and survival during activation
-
Lelouard H, Schmidt EK, Camosseto V, Clavarino G, Ceppi M, Hsu HT and Pierre P (2007) Regulation of translation is required for dendritic cell function and survival during activation. J Cell Biol 179, 1427–1439.
-
(2007)
J Cell Biol
, vol.179
, pp. 1427-1439
-
-
Lelouard, H.1
Schmidt, E.K.2
Camosseto, V.3
Clavarino, G.4
Ceppi, M.5
Hsu, H.T.6
Pierre, P.7
-
32
-
-
84887917428
-
Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR
-
Ivanov SS and Roy CR (2013) Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat Immunol 14, 1219–1228.
-
(2013)
Nat Immunol
, vol.14
, pp. 1219-1228
-
-
Ivanov, S.S.1
Roy, C.R.2
-
33
-
-
0028207001
-
Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family
-
Jefferies HB, Reinhard C, Kozma SC and Thomas G (1994) Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA 91, 4441–4445.
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 4441-4445
-
-
Jefferies, H.B.1
Reinhard, C.2
Kozma, S.C.3
Thomas, G.4
-
34
-
-
84924347993
-
Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens
-
Jovanovic M, Rooney MS, Mertins P, Przybylski D, Chevrier N, Satija R, Rodriguez EH, Fields AP, Schwartz S, Raychowdhury R et al. (2015) Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science 347, 1259038.
-
(2015)
Science
, vol.347
, pp. 1259038
-
-
Jovanovic, M.1
Rooney, M.S.2
Mertins, P.3
Przybylski, D.4
Chevrier, N.5
Satija, R.6
Rodriguez, E.H.7
Fields, A.P.8
Schwartz, S.9
Raychowdhury, R.10
-
35
-
-
33846529557
-
PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages
-
Fox R, Nhan TQ, Law GL, Morris DR, Liles WC and Schwartz SM (2007) PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages. EMBO J 26, 505–515.
-
(2007)
EMBO J
, vol.26
, pp. 505-515
-
-
Fox, R.1
Nhan, T.Q.2
Law, G.L.3
Morris, D.R.4
Liles, W.C.5
Schwartz, S.M.6
-
37
-
-
84864767892
-
Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor-activated macrophages
-
Lopez-Pelaez M, Fumagalli S, Sanz C, Herrero C, Guerra S, Fernandez M and Alemany S (2012) Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor-activated macrophages. Mol Biol Cell 23, 2982–2992.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 2982-2992
-
-
Lopez-Pelaez, M.1
Fumagalli, S.2
Sanz, C.3
Herrero, C.4
Guerra, S.5
Fernandez, M.6
Alemany, S.7
-
38
-
-
41149133368
-
Translational control of the innate immune response through IRF-7
-
Colina R, Costa-Mattioli M, Dowling RJ, Jaramillo M, Tai LH, Breitbach CJ, Martineau Y, Larsson O, Rong L, Svitkin YV et al. (2008) Translational control of the innate immune response through IRF-7. Nature 452, 323–328.
-
(2008)
Nature
, vol.452
, pp. 323-328
-
-
Colina, R.1
Costa-Mattioli, M.2
Dowling, R.J.3
Jaramillo, M.4
Tai, L.H.5
Breitbach, C.J.6
Martineau, Y.7
Larsson, O.8
Rong, L.9
Svitkin, Y.V.10
-
39
-
-
84880532574
-
Immune responses of macrophages and dendritic cells regulated by mTOR signalling
-
Katholnig K, Linke M, Pham H, Hengstschlager M and Weichhart T (2013) Immune responses of macrophages and dendritic cells regulated by mTOR signalling. Biochem Soc Trans 41, 927–933.
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 927-933
-
-
Katholnig, K.1
Linke, M.2
Pham, H.3
Hengstschlager, M.4
Weichhart, T.5
-
40
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC and Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
41
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
De Berardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11–20.
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
De Berardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
42
-
-
75149148563
-
Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer
-
De Berardinis RJ and Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324.
-
(2010)
Oncogene
, vol.29
, pp. 313-324
-
-
De Berardinis, R.J.1
Cheng, T.2
-
43
-
-
84905816041
-
Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation
-
Abo Alrob O and Lopaschuk GD (2014) Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans 42, 1043–1051.
-
(2014)
Biochem Soc Trans
, vol.42
, pp. 1043-1051
-
-
Abo Alrob, O.1
Lopaschuk, G.D.2
-
44
-
-
84988431514
-
Serine and one-carbon metabolism in cancer
-
Yang M and Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16, 650–662.
-
(2016)
Nat Rev Cancer
, vol.16
, pp. 650-662
-
-
Yang, M.1
Vousden, K.H.2
-
45
-
-
84868019043
-
Cancer cell metabolism: one hallmark, many faces
-
Cantor JR and Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2, 881–898.
-
(2012)
Cancer Discov
, vol.2
, pp. 881-898
-
-
Cantor, J.R.1
Sabatini, D.M.2
-
46
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
Lunt SY and Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27, 441–464.
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
47
-
-
84959451365
-
The Warburg effect: how does it benefit cancer cells?
-
Liberti MV and Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41, 211–218.
-
(2016)
Trends Biochem Sci
, vol.41
, pp. 211-218
-
-
Liberti, M.V.1
Locasale, J.W.2
-
48
-
-
85010962151
-
Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism
-
Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A and Palsson BO (2017) Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep 7, 41241.
-
(2017)
Sci Rep
, vol.7
, pp. 41241
-
-
Zielinski, D.C.1
Jamshidi, N.2
Corbett, A.J.3
Bordbar, A.4
Thomas, A.5
Palsson, B.O.6
-
49
-
-
84995581587
-
A flux balance of glucose metabolism clarifies the requirements of the Warburg effect
-
Dai Z, Shestov AA, Lai L and Locasale JW (2016) A flux balance of glucose metabolism clarifies the requirements of the Warburg effect. Biophys J 111, 1088–1100.
-
(2016)
Biophys J
, vol.111
, pp. 1088-1100
-
-
Dai, Z.1
Shestov, A.A.2
Lai, L.3
Locasale, J.W.4
-
50
-
-
84982757058
-
Macromolecular crowding explains overflow metabolism in cells
-
Vazquez A and Oltvai ZN (2016) Macromolecular crowding explains overflow metabolism in cells. Sci Rep 6, 31007.
-
(2016)
Sci Rep
, vol.6
, pp. 31007
-
-
Vazquez, A.1
Oltvai, Z.N.2
-
51
-
-
84959280789
-
Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells
-
Hosios AM, Hecht VC, Danai LV, Johnson MO, Rathmell JC, Steinhauser ML, Manalis SR and Vander Heiden MG (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 36, 540–549.
-
(2016)
Dev Cell
, vol.36
, pp. 540-549
-
-
Hosios, A.M.1
Hecht, V.C.2
Danai, L.V.3
Johnson, M.O.4
Rathmell, J.C.5
Steinhauser, M.L.6
Manalis, S.R.7
Vander Heiden, M.G.8
-
52
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S et al. (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39, 171–183.
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
Triantafellow, E.7
Ma, Q.8
Gorski, R.9
Cleaver, S.10
-
54
-
-
84871861969
-
PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
-
Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, Panteleyev AA, Okkenhaug K and Cantrell DA (2012) PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med 209, 2441–2453.
-
(2012)
J Exp Med
, vol.209
, pp. 2441-2453
-
-
Finlay, D.K.1
Rosenzweig, E.2
Sinclair, L.V.3
Feijoo-Carnero, C.4
Hukelmann, J.L.5
Rolf, J.6
Panteleyev, A.A.7
Okkenhaug, K.8
Cantrell, D.A.9
-
55
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha
-
Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH et al. (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496, 238–242.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
Palsson-McDermott, E.M.4
McGettrick, A.F.5
Goel, G.6
Frezza, C.7
Bernard, N.J.8
Kelly, B.9
Foley, N.H.10
-
56
-
-
84924311131
-
Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate
-
Movafagh S, Crook S and Vo K (2015) Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem 116, 696–703.
-
(2015)
J Cell Biochem
, vol.116
, pp. 696-703
-
-
Movafagh, S.1
Crook, S.2
Vo, K.3
-
57
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
-
Kim JW, Tchernyshyov I, Semenza GL and Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177–185.
-
(2006)
Cell Metab
, vol.3
, pp. 177-185
-
-
Kim, J.W.1
Tchernyshyov, I.2
Semenza, G.L.3
Dang, C.V.4
-
58
-
-
33644622570
-
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
-
Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3, 187–197.
-
(2006)
Cell Metab
, vol.3
, pp. 187-197
-
-
Papandreou, I.1
Cairns, R.A.2
Fontana, L.3
Lim, A.L.4
Denko, N.C.5
-
59
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J et al. (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882.
-
(2011)
Immunity
, vol.35
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
Milasta, S.4
Carter, R.5
Finkelstein, D.6
McCormick, L.L.7
Fitzgerald, P.8
Chi, H.9
Munger, J.10
-
60
-
-
84887430714
-
mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
-
Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, Iwanami A, Liu F, Villa GR, Gu Y et al. (2013) mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab 18, 726–739.
-
(2013)
Cell Metab
, vol.18
, pp. 726-739
-
-
Masui, K.1
Tanaka, K.2
Akhavan, D.3
Babic, I.4
Gini, B.5
Matsutani, T.6
Iwanami, A.7
Liu, F.8
Villa, G.R.9
Gu, Y.10
-
61
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH and Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777.
-
(2002)
Immunity
, vol.16
, pp. 769-777
-
-
Frauwirth, K.A.1
Riley, J.L.2
Harris, M.H.3
Parry, R.V.4
Rathmell, J.C.5
Plas, D.R.6
Elstrom, R.L.7
June, C.H.8
Thompson, C.B.9
-
62
-
-
27144496045
-
CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms
-
Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB and Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25, 9543–9553.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 9543-9553
-
-
Parry, R.V.1
Chemnitz, J.M.2
Frauwirth, K.A.3
Lanfranco, A.R.4
Braunstein, I.5
Kobayashi, S.V.6
Linsley, P.S.7
Thompson, C.B.8
Riley, J.L.9
-
63
-
-
73949088551
-
PD-L1 regulates the development, maintenance, and function of induced regulatory T cells
-
Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK and Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206, 3015–3029.
-
(2009)
J Exp Med
, vol.206
, pp. 3015-3029
-
-
Francisco, L.M.1
Salinas, V.H.2
Brown, K.E.3
Vanguri, V.K.4
Freeman, G.J.5
Kuchroo, V.K.6
Sharpe, A.H.7
-
64
-
-
79960369458
-
HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR and Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208, 1367–1376.
-
(2011)
J Exp Med
, vol.208
, pp. 1367-1376
-
-
Shi, L.Z.1
Wang, R.2
Huang, G.3
Vogel, P.4
Neale, G.5
Green, D.R.6
Chi, H.7
-
65
-
-
80052277906
-
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
-
Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR et al. (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146, 772–784.
-
(2011)
Cell
, vol.146
, pp. 772-784
-
-
Dang, E.V.1
Barbi, J.2
Yang, H.Y.3
Jinasena, D.4
Yu, H.5
Zheng, Y.6
Bordman, Z.7
Fu, J.8
Kim, Y.9
Yen, H.R.10
-
66
-
-
84929008302
-
mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation
-
Pollizzi KN, Patel CH, Sun IH, Oh MH, Waickman AT, Wen J, Delgoffe GM and Powell JD (2015) mTORC1 and mTORC2 selectively regulate CD8(+) T cell differentiation. J Clin Invest 125, 2090–2108.
-
(2015)
J Clin Invest
, vol.125
, pp. 2090-2108
-
-
Pollizzi, K.N.1
Patel, C.H.2
Sun, I.H.3
Oh, M.H.4
Waickman, A.T.5
Wen, J.6
Delgoffe, G.M.7
Powell, J.D.8
-
67
-
-
84990996523
-
mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T Cell differentiation
-
Zeng H, Cohen S, Guy C, Shrestha S, Neale G, Brown SA, Cloer C, Kishton RJ, Gao X, Youngblood B et al. (2016) mTORC1 and mTORC2 kinase signaling and glucose metabolism drive follicular helper T Cell differentiation. Immunity 45, 540–554.
-
(2016)
Immunity
, vol.45
, pp. 540-554
-
-
Zeng, H.1
Cohen, S.2
Guy, C.3
Shrestha, S.4
Neale, G.5
Brown, S.A.6
Cloer, C.7
Kishton, R.J.8
Gao, X.9
Youngblood, B.10
-
68
-
-
84991625002
-
Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses
-
Yang J, Lin X, Pan Y, Wang J, Chen P, Huang H, Xue HH, Gao J and Zhong XP (2016) Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. Elife 5, e17936.
-
(2016)
Elife
, vol.5
-
-
Yang, J.1
Lin, X.2
Pan, Y.3
Wang, J.4
Chen, P.5
Huang, H.6
Xue, H.H.7
Gao, J.8
Zhong, X.P.9
-
69
-
-
84896269174
-
Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype
-
Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, Macintyre AN, Goraksha-Hicks P, Rathmell JC and Makowski L (2014) Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem 289, 7884–7896.
-
(2014)
J Biol Chem
, vol.289
, pp. 7884-7896
-
-
Freemerman, A.J.1
Johnson, A.R.2
Sacks, G.N.3
Milner, J.J.4
Kirk, E.L.5
Troester, M.A.6
Macintyre, A.N.7
Goraksha-Hicks, P.8
Rathmell, J.C.9
Makowski, L.10
-
70
-
-
44449165597
-
Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
-
Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ and Rathmell JC (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180, 4476–4486.
-
(2008)
J Immunol
, vol.180
, pp. 4476-4486
-
-
Jacobs, S.R.1
Herman, C.E.2
Maciver, N.J.3
Wofford, J.A.4
Wieman, H.L.5
Hammen, J.J.6
Rathmell, J.C.7
-
71
-
-
84941366350
-
Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor t cell responses
-
Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui YC, Cui G, Micevic G, Perales JC et al. (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor t cell responses. Cell 162, 1217–1228.
-
(2015)
Cell
, vol.162
, pp. 1217-1228
-
-
Ho, P.C.1
Bihuniak, J.D.2
Macintyre, A.N.3
Staron, M.4
Liu, X.5
Amezquita, R.6
Tsui, Y.C.7
Cui, G.8
Micevic, G.9
Perales, J.C.10
-
72
-
-
84945474595
-
Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants
-
De Rosa V, Galgani M, Porcellini A, Colamatteo A, Santopaolo M, Zuchegna C, Romano A, De Simone S, Procaccini C, La Rocca C et al. (2015) Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat Immunol 16, 1174–1184.
-
(2015)
Nat Immunol
, vol.16
, pp. 1174-1184
-
-
De Rosa, V.1
Galgani, M.2
Porcellini, A.3
Colamatteo, A.4
Santopaolo, M.5
Zuchegna, C.6
Romano, A.7
De Simone, S.8
Procaccini, C.9
La Rocca, C.10
-
73
-
-
84878831880
-
Posttranscriptional control of T cell effector function by aerobic glycolysis
-
Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J et al. (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251.
-
(2013)
Cell
, vol.153
, pp. 1239-1251
-
-
Chang, C.H.1
Curtis, J.D.2
Maggi, L.B.3
Faubert, B.4
Villarino, A.V.5
O'Sullivan, D.6
Huang, S.C.7
van der Windt, G.J.8
Blagih, J.9
Qiu, J.10
-
74
-
-
0014736780
-
Some biochemical aspects of the immune macrophage
-
Hard GC (1970) Some biochemical aspects of the immune macrophage. Br J Exp Pathol 51, 97–105.
-
(1970)
Br J Exp Pathol
, vol.51
, pp. 97-105
-
-
Hard, G.C.1
-
75
-
-
77956213727
-
Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation
-
Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, Cascante M and Bosca L (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185, 605–614.
-
(2010)
J Immunol
, vol.185
, pp. 605-614
-
-
Rodriguez-Prados, J.C.1
Traves, P.G.2
Cuenca, J.3
Rico, D.4
Aragones, J.5
Martin-Sanz, P.6
Cascante, M.7
Bosca, L.8
-
76
-
-
84924935721
-
Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
-
Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B et al. (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430.
-
(2015)
Immunity
, vol.42
, pp. 419-430
-
-
Jha, A.K.1
Huang, S.C.2
Sergushichev, A.3
Lampropoulou, V.4
Ivanova, Y.5
Loginicheva, E.6
Chmielewski, K.7
Stewart, K.M.8
Ashall, J.9
Everts, B.10
-
77
-
-
84907069550
-
Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function
-
Amiel E, Everts B, Fritz D, Beauchamp S, Ge B, Pearce EL and Pearce EJ (2014) Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J Immunol 193, 2821–2830.
-
(2014)
J Immunol
, vol.193
, pp. 2821-2830
-
-
Amiel, E.1
Everts, B.2
Fritz, D.3
Beauchamp, S.4
Ge, B.5
Pearce, E.L.6
Pearce, E.J.7
-
78
-
-
84994452826
-
GM-CSF induces inflammatory macrophages by regulating glycolysis and lipid metabolism
-
Na YR, Gu GJ, Jung D, Kim YW, Na J, Woo JS, Cho JY, Youn H and Seok SH (2016) GM-CSF induces inflammatory macrophages by regulating glycolysis and lipid metabolism. J Immunol 197, 4101–4109.
-
(2016)
J Immunol
, vol.197
, pp. 4101-4109
-
-
Na, Y.R.1
Gu, G.J.2
Jung, D.3
Kim, Y.W.4
Na, J.5
Woo, J.S.6
Cho, J.Y.7
Youn, H.8
Seok, S.H.9
-
79
-
-
84994797642
-
Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation
-
Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD and Pearce EJ (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817–830.
-
(2016)
Immunity
, vol.45
, pp. 817-830
-
-
Huang, S.C.1
Smith, A.M.2
Everts, B.3
Colonna, M.4
Pearce, E.L.5
Schilling, J.D.6
Pearce, E.J.7
-
80
-
-
85006987618
-
Essential role of mTORC1 in self-renewal of murine alveolar macrophages
-
Deng W, Yang J, Lin X, Shin J, Gao J and Zhong XP (2017) Essential role of mTORC1 in self-renewal of murine alveolar macrophages. J Immunol 198, 492–504.
-
(2017)
J Immunol
, vol.198
, pp. 492-504
-
-
Deng, W.1
Yang, J.2
Lin, X.3
Shin, J.4
Gao, J.5
Zhong, X.P.6
-
81
-
-
85009759011
-
Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression
-
Linke M, Pham HT, Katholnig K, Schnoller T, Miller A, Demel F, Schutz B, Rosner M, Kovacic B, Sukhbaatar N et al. (2017) Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol 18, 293–302.
-
(2017)
Nat Immunol
, vol.18
, pp. 293-302
-
-
Linke, M.1
Pham, H.T.2
Katholnig, K.3
Schnoller, T.4
Miller, A.5
Demel, F.6
Schutz, B.7
Rosner, M.8
Kovacic, B.9
Sukhbaatar, N.10
-
82
-
-
0037423948
-
HIF-1alpha is essential for myeloid cell-mediated inflammation
-
Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V et al. (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645–657.
-
(2003)
Cell
, vol.112
, pp. 645-657
-
-
Cramer, T.1
Yamanishi, Y.2
Clausen, B.E.3
Forster, I.4
Pawlinski, R.5
Mackman, N.6
Haase, V.H.7
Jaenisch, R.8
Corr, M.9
Nizet, V.10
-
83
-
-
84896654124
-
TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation
-
Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJ et al. (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol 15, 323–332.
-
(2014)
Nat Immunol
, vol.15
, pp. 323-332
-
-
Everts, B.1
Amiel, E.2
Huang, S.C.3
Smith, A.M.4
Chang, C.H.5
Lam, W.Y.6
Redmann, V.7
Freitas, T.C.8
Blagih, J.9
van der Windt, G.J.10
-
84
-
-
77954735369
-
Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation
-
Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG et al. (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749.
-
(2010)
Blood
, vol.115
, pp. 4742-4749
-
-
Krawczyk, C.M.1
Holowka, T.2
Sun, J.3
Blagih, J.4
Amiel, E.5
DeBerardinis, R.J.6
Cross, J.R.7
Jung, E.8
Thompson, C.B.9
Jones, R.G.10
-
85
-
-
84865197492
-
Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells
-
Everts B, Amiel E, van der Windt GJ, Freitas TC, Chott R, Yarasheski KE, Pearce EL and Pearce EJ (2012) Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120, 1422–1431.
-
(2012)
Blood
, vol.120
, pp. 1422-1431
-
-
Everts, B.1
Amiel, E.2
van der Windt, G.J.3
Freitas, T.C.4
Chott, R.5
Yarasheski, K.E.6
Pearce, E.L.7
Pearce, E.J.8
-
86
-
-
84893804974
-
Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation
-
Pantel A, Teixeira A, Haddad E, Wood EG, Steinman RM and Longhi MP (2014) Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol 12, e1001759.
-
(2014)
PLoS Biol
, vol.12
-
-
Pantel, A.1
Teixeira, A.2
Haddad, E.3
Wood, E.G.4
Steinman, R.M.5
Longhi, M.P.6
-
87
-
-
84907543940
-
mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity
-
Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A et al. (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684.
-
(2014)
Science
, vol.345
, pp. 1250684
-
-
Cheng, S.C.1
Quintin, J.2
Cramer, R.A.3
Shepardson, K.M.4
Saeed, S.5
Kumar, V.6
Giamarellos-Bourboulis, E.J.7
Martens, J.H.8
Rao, N.A.9
Aghajanirefah, A.10
-
88
-
-
84890288918
-
Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells
-
Wang Y, Huang G, Zeng H, Yang K, Lamb RF and Chi H (2013) Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proc Natl Acad Sci USA 110, E4894–E4903.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. E4894-E4903
-
-
Wang, Y.1
Huang, G.2
Zeng, H.3
Yang, K.4
Lamb, R.F.5
Chi, H.6
-
89
-
-
53349091768
-
TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
-
Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y and Zheng P (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205, 2397–2408.
-
(2008)
J Exp Med
, vol.205
, pp. 2397-2408
-
-
Chen, C.1
Liu, Y.2
Liu, R.3
Ikenoue, T.4
Guan, K.L.5
Liu, Y.6
Zheng, P.7
-
90
-
-
84866678666
-
In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities
-
Pello OM, Chevre R, Laoui D, De Juan A, Lolo F, Andres-Manzano MJ, Serrano M, Van Ginderachter JA and Andres V (2012) In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities. PLoS One 7, e45399.
-
(2012)
PLoS One
, vol.7
-
-
Pello, O.M.1
Chevre, R.2
Laoui, D.3
De Juan, A.4
Lolo, F.5
Andres-Manzano, M.J.6
Serrano, M.7
Van Ginderachter, J.A.8
Andres, V.9
-
91
-
-
84937513657
-
mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation
-
Moon JS, Hisata S, Park MA, De Nicola GM, Ryter SW, Nakahira K and Choi AM (2015) mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep 12, 102–115.
-
(2015)
Cell Rep
, vol.12
, pp. 102-115
-
-
Moon, J.S.1
Hisata, S.2
Park, M.A.3
De Nicola, G.M.4
Ryter, S.W.5
Nakahira, K.6
Choi, A.M.7
-
92
-
-
36749081539
-
mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK and Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450, 736–740.
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
93
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F, Xia J, Casanova E, Costa CF, Brink M et al. (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8, 411–424.
-
(2008)
Cell Metab
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
Romanino, K.2
Cloetta, D.3
Lin, S.4
Mascarenhas, J.B.5
Oliveri, F.6
Xia, J.7
Casanova, E.8
Costa, C.F.9
Brink, M.10
-
94
-
-
84887415150
-
mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
-
Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, Gandin V, Avizonis D, Arguello M, Zakaria C et al. (2013) mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 18, 698–711.
-
(2013)
Cell Metab
, vol.18
, pp. 698-711
-
-
Morita, M.1
Gravel, S.P.2
Chenard, V.3
Sikstrom, K.4
Zheng, L.5
Alain, T.6
Gandin, V.7
Avizonis, D.8
Arguello, M.9
Zakaria, C.10
-
95
-
-
85003874915
-
Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex
-
Ebrahimi-Fakhari D, Saffari A, Wahlster L, DiNardo A, Turner D, Lewis TL Jr, Conrad C, Rothberg JM, Lipton JO, Kolker S et al. (2016) Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep 17, 2162.
-
(2016)
Cell Rep
, vol.17
, pp. 2162
-
-
Ebrahimi-Fakhari, D.1
Saffari, A.2
Wahlster, L.3
DiNardo, A.4
Turner, D.5
Lewis, T.L.6
Conrad, C.7
Rothberg, J.M.8
Lipton, J.O.9
Kolker, S.10
-
96
-
-
84890850876
-
mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome
-
Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, Uhde L, Hui J, Wall VZ, Gagnidze A et al. (2013) mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528.
-
(2013)
Science
, vol.342
, pp. 1524-1528
-
-
Johnson, S.C.1
Yanos, M.E.2
Kayser, E.B.3
Quintana, A.4
Sangesland, M.5
Castanza, A.6
Uhde, L.7
Hui, J.8
Wall, V.Z.9
Gagnidze, A.10
-
97
-
-
74049088121
-
Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
-
Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, Richard-Bulteau H, Vignaud A, Baas D, Defour A et al. (2009) Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 187, 859–874.
-
(2009)
J Cell Biol
, vol.187
, pp. 859-874
-
-
Risson, V.1
Mazelin, L.2
Roceri, M.3
Sanchez, H.4
Moncollin, V.5
Corneloup, C.6
Richard-Bulteau, H.7
Vignaud, A.8
Baas, D.9
Defour, A.10
-
98
-
-
79953206927
-
Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction
-
Colombi M, Molle KD, Benjamin D, Rattenbacher-Kiser K, Schaefer C, Betz C, Thiemeyer A, Regenass U, Hall MN and Moroni C (2011) Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction. Oncogene 30, 1551–1565.
-
(2011)
Oncogene
, vol.30
, pp. 1551-1565
-
-
Colombi, M.1
Molle, K.D.2
Benjamin, D.3
Rattenbacher-Kiser, K.4
Schaefer, C.5
Betz, C.6
Thiemeyer, A.7
Regenass, U.8
Hall, M.N.9
Moroni, C.10
-
99
-
-
84881098989
-
Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology
-
Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N and Hall MN (2013) Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA 110, 12526–12534.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 12526-12534
-
-
Betz, C.1
Stracka, D.2
Prescianotto-Baschong, C.3
Frieden, M.4
Demaurex, N.5
Hall, M.N.6
-
100
-
-
84952912744
-
Hepatic FOXO1 target genes are co-regulated by thyroid hormone via RICTOR protein deacetylation and MTORC2-AKT protein inhibition
-
Singh BK, Sinha RA, Zhou J, Tripathi M, Ohba K, Wang ME, Astapova I, Ghosh S, Hollenberg AN, Gauthier K et al. (2016) Hepatic FOXO1 target genes are co-regulated by thyroid hormone via RICTOR protein deacetylation and MTORC2-AKT protein inhibition. J Biol Chem 291, 198–214.
-
(2016)
J Biol Chem
, vol.291
, pp. 198-214
-
-
Singh, B.K.1
Sinha, R.A.2
Zhou, J.3
Tripathi, M.4
Ohba, K.5
Wang, M.E.6
Astapova, I.7
Ghosh, S.8
Hollenberg, A.N.9
Gauthier, K.10
-
101
-
-
84904433925
-
Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease
-
Hung CM, Calejman CM, Sanchez-Gurmaches J, Li H, Clish CB, Hettmer S, Wagers AJ and Guertin DA (2014) Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep 8, 256–271.
-
(2014)
Cell Rep
, vol.8
, pp. 256-271
-
-
Hung, C.M.1
Calejman, C.M.2
Sanchez-Gurmaches, J.3
Li, H.4
Clish, C.B.5
Hettmer, S.6
Wagers, A.J.7
Guertin, D.A.8
-
102
-
-
80054721266
-
Regulation of T-cell survival and mitochondrial homeostasis by TSC1
-
O'Brien TF, Gorentla BK, Xie D, Srivatsan S, McLeod IX, He YW and Zhong XP (2011) Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol 41, 3361–3370.
-
(2011)
Eur J Immunol
, vol.41
, pp. 3361-3370
-
-
O'Brien, T.F.1
Gorentla, B.K.2
Xie, D.3
Srivatsan, S.4
McLeod, I.X.5
He, Y.W.6
Zhong, X.P.7
-
103
-
-
80051997049
-
The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function
-
Yang K, Neale G, Green DR, He W and Chi H (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12, 888–897.
-
(2011)
Nat Immunol
, vol.12
, pp. 888-897
-
-
Yang, K.1
Neale, G.2
Green, D.R.3
He, W.4
Chi, H.5
-
104
-
-
84963704497
-
AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival
-
Kishton RJ, Barnes CE, Nichols AG, Cohen S, Gerriets VA, Siska PJ, Macintyre AN, Goraksha-Hicks P, de Cubas AA, Liu T et al. (2016) AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab 23, 649–662.
-
(2016)
Cell Metab
, vol.23
, pp. 649-662
-
-
Kishton, R.J.1
Barnes, C.E.2
Nichols, A.G.3
Cohen, S.4
Gerriets, V.A.5
Siska, P.J.6
Macintyre, A.N.7
Goraksha-Hicks, P.8
de Cubas, A.A.9
Liu, T.10
-
105
-
-
79953280262
-
Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis
-
Neuman NA and Henske EP (2011) Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 3, 189–200.
-
(2011)
EMBO Mol Med
, vol.3
, pp. 189-200
-
-
Neuman, N.A.1
Henske, E.P.2
-
106
-
-
84964267895
-
Fatty acid metabolism in the regulation of T cell function
-
Lochner M, Berod L and Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36, 81–91.
-
(2015)
Trends Immunol
, vol.36
, pp. 81-91
-
-
Lochner, M.1
Berod, L.2
Sparwasser, T.3
-
107
-
-
0036251153
-
SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton JD, Goldstein JL and Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125–1131.
-
(2002)
J Clin Invest
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
108
-
-
84876684375
-
Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity
-
Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP, Marbois BN, Komisopoulou E, Wilson EB, Osborne TF et al. (2013) Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 14, 489–499.
-
(2013)
Nat Immunol
, vol.14
, pp. 489-499
-
-
Kidani, Y.1
Elsaesser, H.2
Hock, M.B.3
Vergnes, L.4
Williams, K.J.5
Argus, J.P.6
Marbois, B.N.7
Komisopoulou, E.8
Wilson, E.B.9
Osborne, T.F.10
-
109
-
-
2942724235
-
mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways
-
Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, Manola J, Brugarolas J, McDonnell TJ, Golub TR et al. (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10, 594–601.
-
(2004)
Nat Med
, vol.10
, pp. 594-601
-
-
Majumder, P.K.1
Febbo, P.G.2
Bikoff, R.3
Berger, R.4
Xue, Q.5
McMahon, L.M.6
Manola, J.7
Brugarolas, J.8
McDonnell, T.J.9
Golub, T.R.10
-
110
-
-
26244464326
-
PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP
-
Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J and Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24, 6465–6481.
-
(2005)
Oncogene
, vol.24
, pp. 6465-6481
-
-
Porstmann, T.1
Griffiths, B.2
Chung, Y.L.3
Delpuech, O.4
Griffiths, J.R.5
Downward, J.6
Schulze, A.7
-
111
-
-
79959996153
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH et al. (2011) Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 14, 21–32.
-
(2011)
Cell Metab
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
Zhang, H.H.2
Menon, S.3
Liu, S.4
Yecies, D.5
Lipovsky, A.I.6
Gorgun, C.7
Kwiatkowski, D.J.8
Hotamisligil, G.S.9
Lee, C.H.10
-
112
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Ruegg MA and Hall MN (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15, 725–738.
-
(2012)
Cell Metab
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
Cornu, M.2
Cybulski, N.3
Polak, P.4
Betz, C.5
Trapani, F.6
Terracciano, L.7
Heim, M.H.8
Ruegg, M.A.9
Hall, M.N.10
-
113
-
-
84967205798
-
mTOR complex-2 stimulates acetyl-CoA and de novo lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast cancer
-
Chen Y, Qian J, He Q, Zhao H, Toral-Barza L, Shi C, Zhang X, Wu J and Yu K (2016) mTOR complex-2 stimulates acetyl-CoA and de novo lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast cancer. Oncotarget 7, 25224–25240.
-
(2016)
Oncotarget
, vol.7
, pp. 25224-25240
-
-
Chen, Y.1
Qian, J.2
He, Q.3
Zhao, H.4
Toral-Barza, L.5
Shi, C.6
Zhang, X.7
Wu, J.8
Yu, K.9
-
114
-
-
85009376389
-
Effects of interferons and viruses on metabolism
-
Fritsch SD and Weichhart T (2016) Effects of interferons and viruses on metabolism. Front Immunol 7, 630.
-
(2016)
Front Immunol
, vol.7
, pp. 630
-
-
Fritsch, S.D.1
Weichhart, T.2
-
115
-
-
84883423963
-
CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
-
van der Windt GJ, O'Sullivan D, Everts B, Huang SC, Buck MD, Curtis JD, Chang CH, Smith AM, Ai T, Faubert B et al. (2013) CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci USA 110, 14336–14341.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 14336-14341
-
-
van der Windt, G.J.1
O'Sullivan, D.2
Everts, B.3
Huang, S.C.4
Buck, M.D.5
Curtis, J.D.6
Chang, C.H.7
Smith, A.M.8
Ai, T.9
Faubert, B.10
-
116
-
-
84865294745
-
Metabolic reprogramming and metabolic dependency in T cells
-
Wang R and Green DR (2012) Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev 249, 14–26.
-
(2012)
Immunol Rev
, vol.249
, pp. 14-26
-
-
Wang, R.1
Green, D.R.2
-
117
-
-
84952902890
-
Immunometabolism: cellular metabolism turns immune regulator
-
Loftus RM and Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291, 1–10.
-
(2016)
J Biol Chem
, vol.291
, pp. 1-10
-
-
Loftus, R.M.1
Finlay, D.K.2
-
118
-
-
84890137621
-
T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
-
Yang K, Shrestha S, Zeng H, Karmaus PW, Neale G, Vogel P, Guertin DA, Lamb RF and Chi H (2013) T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056.
-
(2013)
Immunity
, vol.39
, pp. 1043-1056
-
-
Yang, K.1
Shrestha, S.2
Zeng, H.3
Karmaus, P.W.4
Neale, G.5
Vogel, P.6
Guertin, D.A.7
Lamb, R.F.8
Chi, H.9
-
119
-
-
84950247027
-
Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling
-
York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, Gray EE, Zhen A, Wu NC, Yamada DH et al. (2015) Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729.
-
(2015)
Cell
, vol.163
, pp. 1716-1729
-
-
York, A.G.1
Williams, K.J.2
Argus, J.P.3
Zhou, Q.D.4
Brar, G.5
Vergnes, L.6
Gray, E.E.7
Zhen, A.8
Wu, N.C.9
Yamada, D.H.10
-
121
-
-
84991744596
-
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses
-
Lee J, Moraes-Vieira PM, Castoldi A, Aryal P, Yee EU, Vickers C, Parnas O, Donaldson CJ, Saghatelian A and Kahn BB (2016) Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses. J Biol Chem 291, 22207–22217.
-
(2016)
J Biol Chem
, vol.291
, pp. 22207-22217
-
-
Lee, J.1
Moraes-Vieira, P.M.2
Castoldi, A.3
Aryal, P.4
Yee, E.U.5
Vickers, C.6
Parnas, O.7
Donaldson, C.J.8
Saghatelian, A.9
Kahn, B.B.10
-
122
-
-
33745428666
-
Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
-
Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ and Chawla A (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4, 13–24.
-
(2006)
Cell Metab
, vol.4
, pp. 13-24
-
-
Vats, D.1
Mukundan, L.2
Odegaard, J.I.3
Zhang, L.4
Smith, K.L.5
Morel, C.R.6
Wagner, R.A.7
Greaves, D.R.8
Murray, P.J.9
Chawla, A.10
-
123
-
-
84906319549
-
Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
-
Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O'Neill CM et al. (2014) Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 15, 846–855.
-
(2014)
Nat Immunol
, vol.15
, pp. 846-855
-
-
Huang, S.C.1
Everts, B.2
Ivanova, Y.3
O'Sullivan, D.4
Nascimento, M.5
Smith, A.M.6
Beatty, W.7
Love-Gregory, L.8
Lam, W.Y.9
O'Neill, C.M.10
-
124
-
-
77952413531
-
Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes
-
Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H and Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci USA 107, 7817–7822.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7817-7822
-
-
Ecker, J.1
Liebisch, G.2
Englmaier, M.3
Grandl, M.4
Robenek, H.5
Schmitz, G.6
-
125
-
-
84957587533
-
TOR complexes and the maintenance of cellular homeostasis
-
Eltschinger S and Loewith R (2016) TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol 26, 148–159.
-
(2016)
Trends Cell Biol
, vol.26
, pp. 148-159
-
-
Eltschinger, S.1
Loewith, R.2
|