메뉴 건너뛰기




Volumn 591, Issue 19, 2017, Pages 3089-3103

mTORC1 and mTORC2 as regulators of cell metabolism in immunity

Author keywords

dendritic cell; glycolysis; immune cell metabolism; lipid metabolism; macrophage; mitochondria; mTORC1; mTORC2; T cell

Indexed keywords

MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MULTIPROTEIN COMPLEX; TARGET OF RAPAMYCIN KINASE; TOR COMPLEX 2;

EID: 85021293508     PISSN: 00145793     EISSN: 18733468     Source Type: Journal    
DOI: 10.1002/1873-3468.12711     Document Type: Review
Times cited : (193)

References (125)
  • 1
    • 85014844261 scopus 로고    scopus 로고
    • mTOR signaling in growth, metabolism, and disease
    • Saxton RA and Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976.
    • (2017) Cell , vol.168 , pp. 960-976
    • Saxton, R.A.1    Sabatini, D.M.2
  • 4
    • 0042847309 scopus 로고    scopus 로고
    • Mechanism of ribosomal p70S6 kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils: cooperation of a MEK-related, THR421/SER424 kinase and a rapamycin-sensitive, m-TOR-related THR389 kinase
    • Lehman JA, Calvo V and Gomez-Cambronero J (2003) Mechanism of ribosomal p70S6 kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils: cooperation of a MEK-related, THR421/SER424 kinase and a rapamycin-sensitive, m-TOR-related THR389 kinase. J Biol Chem 278, 28130–28138.
    • (2003) J Biol Chem , vol.278 , pp. 28130-28138
    • Lehman, J.A.1    Calvo, V.2    Gomez-Cambronero, J.3
  • 6
    • 50949130076 scopus 로고    scopus 로고
    • Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells
    • Ohtani M, Nagai S, Kondo S, Mizuno S, Nakamura K, Tanabe M, Takeuchi T, Matsuda S and Koyasu S (2008) Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112, 635–643.
    • (2008) Blood , vol.112 , pp. 635-643
    • Ohtani, M.1    Nagai, S.2    Kondo, S.3    Mizuno, S.4    Nakamura, K.5    Tanabe, M.6    Takeuchi, T.7    Matsuda, S.8    Koyasu, S.9
  • 12
    • 79958806173 scopus 로고    scopus 로고
    • mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment
    • Jiang Q, Weiss JM, Back T, Chan T, Ortaldo JR, Guichard S and Wiltrout RH (2011) mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Res 71, 4074–4084.
    • (2011) Cancer Res , vol.71 , pp. 4074-4084
    • Jiang, Q.1    Weiss, J.M.2    Back, T.3    Chan, T.4    Ortaldo, J.R.5    Guichard, S.6    Wiltrout, R.H.7
  • 13
    • 67651155938 scopus 로고    scopus 로고
    • Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury
    • Lorne E, Zhao X, Zmijewski JW, Liu G, Park YJ, Tsuruta Y and Abraham E (2009) Participation of mammalian target of rapamycin complex 1 in Toll-like receptor 2- and 4-induced neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol 41, 237–245.
    • (2009) Am J Respir Cell Mol Biol , vol.41 , pp. 237-245
    • Lorne, E.1    Zhao, X.2    Zmijewski, J.W.3    Liu, G.4    Park, Y.J.5    Tsuruta, Y.6    Abraham, E.7
  • 18
    • 84947591002 scopus 로고    scopus 로고
    • T cell metabolism drives immunity
    • Buck MD, O'Sullivan D and Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212, 1345–1360.
    • (2015) J Exp Med , vol.212 , pp. 1345-1360
    • Buck, M.D.1    O'Sullivan, D.2    Pearce, E.L.3
  • 19
    • 84865301337 scopus 로고    scopus 로고
    • mTOR, metabolism, and the regulation of T-cell differentiation and function
    • Waickman AT and Powell JD (2012) mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 249, 43–58.
    • (2012) Immunol Rev , vol.249 , pp. 43-58
    • Waickman, A.T.1    Powell, J.D.2
  • 20
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M and Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149, 274–293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 22
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: the mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M and Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15, 155–162.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 25
    • 79957553362 scopus 로고    scopus 로고
    • Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: implications for NO synthase 2 expression
    • Lopez-Pelaez M, Soria-Castro I, Bosca L, Fernandez M and Alemany S (2011) Cot/tpl2 activity is required for TLR-induced activation of the Akt p70 S6k pathway in macrophages: implications for NO synthase 2 expression. Eur J Immunol 41, 1733–1741.
    • (2011) Eur J Immunol , vol.41 , pp. 1733-1741
    • Lopez-Pelaez, M.1    Soria-Castro, I.2    Bosca, L.3    Fernandez, M.4    Alemany, S.5
  • 26
    • 17444431201 scopus 로고    scopus 로고
    • Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
    • Ma L, Chen Z, Erdjument-Bromage H, Tempst P and Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193.
    • (2005) Cell , vol.121 , pp. 179-193
    • Ma, L.1    Chen, Z.2    Erdjument-Bromage, H.3    Tempst, P.4    Pandolfi, P.P.5
  • 30
    • 84903441668 scopus 로고    scopus 로고
    • Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation
    • Schott J, Reitter S, Philipp J, Haneke K, Schafer H and Stoecklin G (2014) Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet 10, e1004368.
    • (2014) PLoS Genet , vol.10
    • Schott, J.1    Reitter, S.2    Philipp, J.3    Haneke, K.4    Schafer, H.5    Stoecklin, G.6
  • 31
    • 38049037441 scopus 로고    scopus 로고
    • Regulation of translation is required for dendritic cell function and survival during activation
    • Lelouard H, Schmidt EK, Camosseto V, Clavarino G, Ceppi M, Hsu HT and Pierre P (2007) Regulation of translation is required for dendritic cell function and survival during activation. J Cell Biol 179, 1427–1439.
    • (2007) J Cell Biol , vol.179 , pp. 1427-1439
    • Lelouard, H.1    Schmidt, E.K.2    Camosseto, V.3    Clavarino, G.4    Ceppi, M.5    Hsu, H.T.6    Pierre, P.7
  • 32
    • 84887917428 scopus 로고    scopus 로고
    • Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR
    • Ivanov SS and Roy CR (2013) Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat Immunol 14, 1219–1228.
    • (2013) Nat Immunol , vol.14 , pp. 1219-1228
    • Ivanov, S.S.1    Roy, C.R.2
  • 33
    • 0028207001 scopus 로고
    • Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family
    • Jefferies HB, Reinhard C, Kozma SC and Thomas G (1994) Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA 91, 4441–4445.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 4441-4445
    • Jefferies, H.B.1    Reinhard, C.2    Kozma, S.C.3    Thomas, G.4
  • 35
    • 33846529557 scopus 로고    scopus 로고
    • PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages
    • Fox R, Nhan TQ, Law GL, Morris DR, Liles WC and Schwartz SM (2007) PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages. EMBO J 26, 505–515.
    • (2007) EMBO J , vol.26 , pp. 505-515
    • Fox, R.1    Nhan, T.Q.2    Law, G.L.3    Morris, D.R.4    Liles, W.C.5    Schwartz, S.M.6
  • 37
    • 84864767892 scopus 로고    scopus 로고
    • Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor-activated macrophages
    • Lopez-Pelaez M, Fumagalli S, Sanz C, Herrero C, Guerra S, Fernandez M and Alemany S (2012) Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor-activated macrophages. Mol Biol Cell 23, 2982–2992.
    • (2012) Mol Biol Cell , vol.23 , pp. 2982-2992
    • Lopez-Pelaez, M.1    Fumagalli, S.2    Sanz, C.3    Herrero, C.4    Guerra, S.5    Fernandez, M.6    Alemany, S.7
  • 39
  • 40
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC and Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 41
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
    • De Berardinis RJ, Lum JJ, Hatzivassiliou G and Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11–20.
    • (2008) Cell Metab , vol.7 , pp. 11-20
    • De Berardinis, R.J.1    Lum, J.J.2    Hatzivassiliou, G.3    Thompson, C.B.4
  • 42
    • 75149148563 scopus 로고    scopus 로고
    • Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer
    • De Berardinis RJ and Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324.
    • (2010) Oncogene , vol.29 , pp. 313-324
    • De Berardinis, R.J.1    Cheng, T.2
  • 43
    • 84905816041 scopus 로고    scopus 로고
    • Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation
    • Abo Alrob O and Lopaschuk GD (2014) Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans 42, 1043–1051.
    • (2014) Biochem Soc Trans , vol.42 , pp. 1043-1051
    • Abo Alrob, O.1    Lopaschuk, G.D.2
  • 44
    • 84988431514 scopus 로고    scopus 로고
    • Serine and one-carbon metabolism in cancer
    • Yang M and Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16, 650–662.
    • (2016) Nat Rev Cancer , vol.16 , pp. 650-662
    • Yang, M.1    Vousden, K.H.2
  • 45
    • 84868019043 scopus 로고    scopus 로고
    • Cancer cell metabolism: one hallmark, many faces
    • Cantor JR and Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2, 881–898.
    • (2012) Cancer Discov , vol.2 , pp. 881-898
    • Cantor, J.R.1    Sabatini, D.M.2
  • 46
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt SY and Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27, 441–464.
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 47
    • 84959451365 scopus 로고    scopus 로고
    • The Warburg effect: how does it benefit cancer cells?
    • Liberti MV and Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41, 211–218.
    • (2016) Trends Biochem Sci , vol.41 , pp. 211-218
    • Liberti, M.V.1    Locasale, J.W.2
  • 49
    • 84995581587 scopus 로고    scopus 로고
    • A flux balance of glucose metabolism clarifies the requirements of the Warburg effect
    • Dai Z, Shestov AA, Lai L and Locasale JW (2016) A flux balance of glucose metabolism clarifies the requirements of the Warburg effect. Biophys J 111, 1088–1100.
    • (2016) Biophys J , vol.111 , pp. 1088-1100
    • Dai, Z.1    Shestov, A.A.2    Lai, L.3    Locasale, J.W.4
  • 50
    • 84982757058 scopus 로고    scopus 로고
    • Macromolecular crowding explains overflow metabolism in cells
    • Vazquez A and Oltvai ZN (2016) Macromolecular crowding explains overflow metabolism in cells. Sci Rep 6, 31007.
    • (2016) Sci Rep , vol.6 , pp. 31007
    • Vazquez, A.1    Oltvai, Z.N.2
  • 56
    • 84924311131 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate
    • Movafagh S, Crook S and Vo K (2015) Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem 116, 696–703.
    • (2015) J Cell Biochem , vol.116 , pp. 696-703
    • Movafagh, S.1    Crook, S.2    Vo, K.3
  • 57
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
    • Kim JW, Tchernyshyov I, Semenza GL and Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177–185.
    • (2006) Cell Metab , vol.3 , pp. 177-185
    • Kim, J.W.1    Tchernyshyov, I.2    Semenza, G.L.3    Dang, C.V.4
  • 58
    • 33644622570 scopus 로고    scopus 로고
    • HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
    • Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3, 187–197.
    • (2006) Cell Metab , vol.3 , pp. 187-197
    • Papandreou, I.1    Cairns, R.A.2    Fontana, L.3    Lim, A.L.4    Denko, N.C.5
  • 64
    • 79960369458 scopus 로고    scopus 로고
    • HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR and Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208, 1367–1376.
    • (2011) J Exp Med , vol.208 , pp. 1367-1376
    • Shi, L.Z.1    Wang, R.2    Huang, G.3    Vogel, P.4    Neale, G.5    Green, D.R.6    Chi, H.7
  • 68
    • 84991625002 scopus 로고    scopus 로고
    • Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses
    • Yang J, Lin X, Pan Y, Wang J, Chen P, Huang H, Xue HH, Gao J and Zhong XP (2016) Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. Elife 5, e17936.
    • (2016) Elife , vol.5
    • Yang, J.1    Lin, X.2    Pan, Y.3    Wang, J.4    Chen, P.5    Huang, H.6    Xue, H.H.7    Gao, J.8    Zhong, X.P.9
  • 70
    • 44449165597 scopus 로고    scopus 로고
    • Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
    • Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ and Rathmell JC (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180, 4476–4486.
    • (2008) J Immunol , vol.180 , pp. 4476-4486
    • Jacobs, S.R.1    Herman, C.E.2    Maciver, N.J.3    Wofford, J.A.4    Wieman, H.L.5    Hammen, J.J.6    Rathmell, J.C.7
  • 74
    • 0014736780 scopus 로고
    • Some biochemical aspects of the immune macrophage
    • Hard GC (1970) Some biochemical aspects of the immune macrophage. Br J Exp Pathol 51, 97–105.
    • (1970) Br J Exp Pathol , vol.51 , pp. 97-105
    • Hard, G.C.1
  • 77
    • 84907069550 scopus 로고    scopus 로고
    • Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function
    • Amiel E, Everts B, Fritz D, Beauchamp S, Ge B, Pearce EL and Pearce EJ (2014) Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J Immunol 193, 2821–2830.
    • (2014) J Immunol , vol.193 , pp. 2821-2830
    • Amiel, E.1    Everts, B.2    Fritz, D.3    Beauchamp, S.4    Ge, B.5    Pearce, E.L.6    Pearce, E.J.7
  • 78
  • 79
    • 84994797642 scopus 로고    scopus 로고
    • Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation
    • Huang SC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD and Pearce EJ (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817–830.
    • (2016) Immunity , vol.45 , pp. 817-830
    • Huang, S.C.1    Smith, A.M.2    Everts, B.3    Colonna, M.4    Pearce, E.L.5    Schilling, J.D.6    Pearce, E.J.7
  • 80
    • 85006987618 scopus 로고    scopus 로고
    • Essential role of mTORC1 in self-renewal of murine alveolar macrophages
    • Deng W, Yang J, Lin X, Shin J, Gao J and Zhong XP (2017) Essential role of mTORC1 in self-renewal of murine alveolar macrophages. J Immunol 198, 492–504.
    • (2017) J Immunol , vol.198 , pp. 492-504
    • Deng, W.1    Yang, J.2    Lin, X.3    Shin, J.4    Gao, J.5    Zhong, X.P.6
  • 86
    • 84893804974 scopus 로고    scopus 로고
    • Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation
    • Pantel A, Teixeira A, Haddad E, Wood EG, Steinman RM and Longhi MP (2014) Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol 12, e1001759.
    • (2014) PLoS Biol , vol.12
    • Pantel, A.1    Teixeira, A.2    Haddad, E.3    Wood, E.G.4    Steinman, R.M.5    Longhi, M.P.6
  • 88
    • 84890288918 scopus 로고    scopus 로고
    • Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells
    • Wang Y, Huang G, Zeng H, Yang K, Lamb RF and Chi H (2013) Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proc Natl Acad Sci USA 110, E4894–E4903.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E4894-E4903
    • Wang, Y.1    Huang, G.2    Zeng, H.3    Yang, K.4    Lamb, R.F.5    Chi, H.6
  • 89
    • 53349091768 scopus 로고    scopus 로고
    • TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
    • Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y and Zheng P (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205, 2397–2408.
    • (2008) J Exp Med , vol.205 , pp. 2397-2408
    • Chen, C.1    Liu, Y.2    Liu, R.3    Ikenoue, T.4    Guan, K.L.5    Liu, Y.6    Zheng, P.7
  • 92
    • 36749081539 scopus 로고    scopus 로고
    • mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK and Puigserver P (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450, 736–740.
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1    Rodgers, J.T.2    Arlow, D.H.3    Vazquez, F.4    Mootha, V.K.5    Puigserver, P.6
  • 99
    • 84881098989 scopus 로고    scopus 로고
    • Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology
    • Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N and Hall MN (2013) Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA 110, 12526–12534.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 12526-12534
    • Betz, C.1    Stracka, D.2    Prescianotto-Baschong, C.3    Frieden, M.4    Demaurex, N.5    Hall, M.N.6
  • 101
    • 84904433925 scopus 로고    scopus 로고
    • Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease
    • Hung CM, Calejman CM, Sanchez-Gurmaches J, Li H, Clish CB, Hettmer S, Wagers AJ and Guertin DA (2014) Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep 8, 256–271.
    • (2014) Cell Rep , vol.8 , pp. 256-271
    • Hung, C.M.1    Calejman, C.M.2    Sanchez-Gurmaches, J.3    Li, H.4    Clish, C.B.5    Hettmer, S.6    Wagers, A.J.7    Guertin, D.A.8
  • 103
    • 80051997049 scopus 로고    scopus 로고
    • The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function
    • Yang K, Neale G, Green DR, He W and Chi H (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12, 888–897.
    • (2011) Nat Immunol , vol.12 , pp. 888-897
    • Yang, K.1    Neale, G.2    Green, D.R.3    He, W.4    Chi, H.5
  • 105
    • 79953280262 scopus 로고    scopus 로고
    • Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis
    • Neuman NA and Henske EP (2011) Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis. EMBO Mol Med 3, 189–200.
    • (2011) EMBO Mol Med , vol.3 , pp. 189-200
    • Neuman, N.A.1    Henske, E.P.2
  • 106
    • 84964267895 scopus 로고    scopus 로고
    • Fatty acid metabolism in the regulation of T cell function
    • Lochner M, Berod L and Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36, 81–91.
    • (2015) Trends Immunol , vol.36 , pp. 81-91
    • Lochner, M.1    Berod, L.2    Sparwasser, T.3
  • 107
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton JD, Goldstein JL and Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125–1131.
    • (2002) J Clin Invest , vol.109 , pp. 1125-1131
    • Horton, J.D.1    Goldstein, J.L.2    Brown, M.S.3
  • 110
    • 26244464326 scopus 로고    scopus 로고
    • PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP
    • Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J and Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24, 6465–6481.
    • (2005) Oncogene , vol.24 , pp. 6465-6481
    • Porstmann, T.1    Griffiths, B.2    Chung, Y.L.3    Delpuech, O.4    Griffiths, J.R.5    Downward, J.6    Schulze, A.7
  • 113
    • 84967205798 scopus 로고    scopus 로고
    • mTOR complex-2 stimulates acetyl-CoA and de novo lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast cancer
    • Chen Y, Qian J, He Q, Zhao H, Toral-Barza L, Shi C, Zhang X, Wu J and Yu K (2016) mTOR complex-2 stimulates acetyl-CoA and de novo lipogenesis through ATP citrate lyase in HER2/PIK3CA-hyperactive breast cancer. Oncotarget 7, 25224–25240.
    • (2016) Oncotarget , vol.7 , pp. 25224-25240
    • Chen, Y.1    Qian, J.2    He, Q.3    Zhao, H.4    Toral-Barza, L.5    Shi, C.6    Zhang, X.7    Wu, J.8    Yu, K.9
  • 114
    • 85009376389 scopus 로고    scopus 로고
    • Effects of interferons and viruses on metabolism
    • Fritsch SD and Weichhart T (2016) Effects of interferons and viruses on metabolism. Front Immunol 7, 630.
    • (2016) Front Immunol , vol.7 , pp. 630
    • Fritsch, S.D.1    Weichhart, T.2
  • 116
    • 84865294745 scopus 로고    scopus 로고
    • Metabolic reprogramming and metabolic dependency in T cells
    • Wang R and Green DR (2012) Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev 249, 14–26.
    • (2012) Immunol Rev , vol.249 , pp. 14-26
    • Wang, R.1    Green, D.R.2
  • 117
    • 84952902890 scopus 로고    scopus 로고
    • Immunometabolism: cellular metabolism turns immune regulator
    • Loftus RM and Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291, 1–10.
    • (2016) J Biol Chem , vol.291 , pp. 1-10
    • Loftus, R.M.1    Finlay, D.K.2
  • 118
    • 84890137621 scopus 로고    scopus 로고
    • T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
    • Yang K, Shrestha S, Zeng H, Karmaus PW, Neale G, Vogel P, Guertin DA, Lamb RF and Chi H (2013) T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056.
    • (2013) Immunity , vol.39 , pp. 1043-1056
    • Yang, K.1    Shrestha, S.2    Zeng, H.3    Karmaus, P.W.4    Neale, G.5    Vogel, P.6    Guertin, D.A.7    Lamb, R.F.8    Chi, H.9
  • 120
    • 84958211912 scopus 로고    scopus 로고
    • Functional crosstalk between membrane lipids and TLR biology
    • Koberlin MS, Heinz LX and Superti-Furga G (2016) Functional crosstalk between membrane lipids and TLR biology. Curr Opin Cell Biol 39, 28–36.
    • (2016) Curr Opin Cell Biol , vol.39 , pp. 28-36
    • Koberlin, M.S.1    Heinz, L.X.2    Superti-Furga, G.3
  • 124
    • 77952413531 scopus 로고    scopus 로고
    • Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes
    • Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H and Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci USA 107, 7817–7822.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 7817-7822
    • Ecker, J.1    Liebisch, G.2    Englmaier, M.3    Grandl, M.4    Robenek, H.5    Schmitz, G.6
  • 125
    • 84957587533 scopus 로고    scopus 로고
    • TOR complexes and the maintenance of cellular homeostasis
    • Eltschinger S and Loewith R (2016) TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol 26, 148–159.
    • (2016) Trends Cell Biol , vol.26 , pp. 148-159
    • Eltschinger, S.1    Loewith, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.