메뉴 건너뛰기




Volumn 249, Issue 1, 2012, Pages 43-58

mTOR, metabolism, and the regulation of T-cell differentiation and function

Author keywords

Anergy; Cell activation; Cell differentiation; T cells; T helper cells

Indexed keywords

HYPOXIA INDUCIBLE FACTOR 1ALPHA; MAMMALIAN TARGET OF RAPAMYCIN; MYC PROTEIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; STEROL REGULATORY ELEMENT BINDING PROTEIN; T LYMPHOCYTE RECEPTOR;

EID: 84865301337     PISSN: 01052896     EISSN: 1600065X     Source Type: Journal    
DOI: 10.1111/j.1600-065X.2012.01152.x     Document Type: Article
Times cited : (317)

References (212)
  • 2
    • 0014941813 scopus 로고
    • A theory of self-nonself discrimination
    • Bretscher P, Cohn M. A theory of self-nonself discrimination. Science 1970;169:1042-1049.
    • (1970) Science , vol.169 , pp. 1042-1049
    • Bretscher, P.1    Cohn, M.2
  • 3
    • 0031725323 scopus 로고    scopus 로고
    • Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy
    • Powell JD, Ragheb JA, Kitagawa-Sakakida S, Schwartz RH. Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy. Immunol Rev 1998;165:287-300.
    • (1998) Immunol Rev , vol.165 , pp. 287-300
    • Powell, J.D.1    Ragheb, J.A.2    Kitagawa-Sakakida, S.3    Schwartz, R.H.4
  • 4
    • 0025947895 scopus 로고
    • CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells
    • Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 1991;147:2461-2466.
    • (1991) J Immunol , vol.147 , pp. 2461-2466
    • Jenkins, M.K.1    Taylor, P.S.2    Norton, S.D.3    Urdahl, K.B.4
  • 5
    • 33644556146 scopus 로고    scopus 로고
    • Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin
    • Colombetti S, Basso V, Mueller DL, Mondino A. Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin. J Immunol 2006;176:2730-2738.
    • (2006) J Immunol , vol.176 , pp. 2730-2738
    • Colombetti, S.1    Basso, V.2    Mueller, D.L.3    Mondino, A.4
  • 6
    • 0032033419 scopus 로고    scopus 로고
    • Cytokines induce the development of functionally heterogeneous T helper cell subsets
    • O'Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998;8:275-283.
    • (1998) Immunity , vol.8 , pp. 275-283
    • O'Garra, A.1
  • 7
    • 67650502393 scopus 로고    scopus 로고
    • Th9 and allergic disease
    • Soroosh P, Doherty TA. Th9 and allergic disease. Immunology 2009;127:450-458.
    • (2009) Immunology , vol.127 , pp. 450-458
    • Soroosh, P.1    Doherty, T.A.2
  • 8
    • 33646164439 scopus 로고    scopus 로고
    • Expanding the effector CD4 T-cell repertoire: the Th17 lineage
    • Harrington LE, Mangan PR, Weaver CT. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 2006;18:349-356.
    • (2006) Curr Opin Immunol , vol.18 , pp. 349-356
    • Harrington, L.E.1    Mangan, P.R.2    Weaver, C.T.3
  • 9
    • 79954486763 scopus 로고    scopus 로고
    • Regulatory T cells and Foxp3
    • Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev 2011;241:260-268.
    • (2011) Immunol Rev , vol.241 , pp. 260-268
    • Rudensky, A.Y.1
  • 10
    • 77957054466 scopus 로고    scopus 로고
    • The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism
    • Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010;33:301-311.
    • (2010) Immunity , vol.33 , pp. 301-311
    • Powell, J.D.1    Delgoffe, G.M.2
  • 11
    • 67650553603 scopus 로고    scopus 로고
    • mTOR: taking cues from the immune microenvironment
    • Delgoffe GM, Powell JD. mTOR: taking cues from the immune microenvironment. Immunology 2009;127:459-465.
    • (2009) Immunology , vol.127 , pp. 459-465
    • Delgoffe, G.M.1    Powell, J.D.2
  • 12
    • 70350418625 scopus 로고    scopus 로고
    • mTOR signaling at a glance
    • -Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009;122:3589-3594.
    • (2009) J Cell Sci , vol.122 , pp. 3589-3594
    • -Laplante, M.1    Sabatini, D.M.2
  • 13
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • -Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • -Laplante, M.1    Sabatini, D.M.2
  • 14
    • 0033104824 scopus 로고    scopus 로고
    • Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation
    • Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 1999;162:2775-2784.
    • (1999) J Immunol , vol.162 , pp. 2775-2784
    • Powell, J.D.1    Lerner, C.G.2    Schwartz, R.H.3
  • 15
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009;30:832-844.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1
  • 16
    • 67650074206 scopus 로고    scopus 로고
    • mTOR regulates memory CD8 T-cell differentiation
    • Araki K, et al. mTOR regulates memory CD8 T-cell differentiation. Nature 2009;460:108-112.
    • (2009) Nature , vol.460 , pp. 108-112
    • Araki, K.1
  • 17
    • 79956142389 scopus 로고    scopus 로고
    • Characterization of the metabolic phenotype of rapamycin-treated CD8 T cells with augmented ability to generate long-lasting memory cells
    • He S, et al. Characterization of the metabolic phenotype of rapamycin-treated CD8 T cells with augmented ability to generate long-lasting memory cells. PLoS ONE 2011;6:e20107.
    • (2011) PLoS ONE , vol.6
    • He, S.1
  • 18
    • 74649085700 scopus 로고    scopus 로고
    • The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
    • Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 2010;32:67-78.
    • (2010) Immunity , vol.32 , pp. 67-78
    • Rao, R.R.1    Li, Q.2    Odunsi, K.3    Shrikant, P.A.4
  • 19
    • 79251569252 scopus 로고    scopus 로고
    • Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production
    • Zhang S, et al. Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood 2011;117:1228-1238.
    • (2011) Blood , vol.117 , pp. 1228-1238
    • Zhang, S.1
  • 20
    • 77955488179 scopus 로고    scopus 로고
    • Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells
    • Lazorchak AS, et al. Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol Cell 2010;39:433-443.
    • (2010) Mol Cell , vol.39 , pp. 433-443
    • Lazorchak, A.S.1
  • 21
    • 77958470125 scopus 로고    scopus 로고
    • Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling
    • Sathaliyawala T, et al. Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 2010;33:597-606.
    • (2010) Immunity , vol.33 , pp. 597-606
    • Sathaliyawala, T.1
  • 22
    • 34249805413 scopus 로고    scopus 로고
    • Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance
    • Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW. Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 2007;178:7018-7031.
    • (2007) J Immunol , vol.178 , pp. 7018-7031
    • Turnquist, H.R.1    Raimondi, G.2    Zahorchak, A.F.3    Fischer, R.T.4    Wang, Z.5    Thomson, A.W.6
  • 23
    • 54949109311 scopus 로고    scopus 로고
    • The TSC-mTOR signaling pathway regulates the innate inflammatory response
    • Weichhart T, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 2008;29:565-577.
    • (2008) Immunity , vol.29 , pp. 565-577
    • Weichhart, T.1
  • 24
    • 27744519400 scopus 로고    scopus 로고
    • Fuel feeds function: energy metabolism and the T-cell response
    • Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005;5:844-852.
    • (2005) Nat Rev Immunol , vol.5 , pp. 844-852
    • Fox, C.J.1    Hammerman, P.S.2    Thompson, C.B.3
  • 25
    • 6344227760 scopus 로고    scopus 로고
    • Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand
    • Bauer DE, et al. Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 2004;18:1303-1305.
    • (2004) FASEB J , vol.18 , pp. 1303-1305
    • Bauer, D.E.1
  • 26
    • 1842581892 scopus 로고    scopus 로고
    • Regulation of T lymphocyte metabolism
    • Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol 2004;172:4661-4665.
    • (2004) J Immunol , vol.172 , pp. 4661-4665
    • Frauwirth, K.A.1    Thompson, C.B.2
  • 27
    • 0036069699 scopus 로고    scopus 로고
    • The CD28 signaling pathway regulates glucose metabolism
    • Frauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002;16:769-777.
    • (2002) Immunity , vol.16 , pp. 769-777
    • Frauwirth, K.A.1
  • 28
    • 77955475969 scopus 로고    scopus 로고
    • Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
    • Carr EL, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 2010;185:1037-1044.
    • (2010) J Immunol , vol.185 , pp. 1037-1044
    • Carr, E.L.1
  • 30
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T-cell memory by modulating fatty acid metabolism
    • Pearce EL, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009;460:103-107.
    • (2009) Nature , vol.460 , pp. 103-107
    • Pearce, E.L.1
  • 31
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
    • van der Windt GJ, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012;36:68-78.
    • (2012) Immunity , vol.36 , pp. 68-78
    • van der Windt, G.J.1
  • 32
    • 0028237671 scopus 로고
    • rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein
    • Yamagata K, et al. rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 1994;269:16333-16339.
    • (1994) J Biol Chem , vol.269 , pp. 16333-16339
    • Yamagata, K.1
  • 33
    • 0038141979 scopus 로고    scopus 로고
    • Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
    • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003;5:578-581.
    • (2003) Nat Cell Biol , vol.5 , pp. 578-581
    • Zhang, Y.1    Gao, X.2    Saucedo, L.J.3    Ru, B.4    Edgar, B.A.5    Pan, D.6
  • 34
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648-657.
    • (2002) Nat Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3    Wu, J.4    Guan, K.L.5
  • 36
    • 34547099855 scopus 로고    scopus 로고
    • PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
    • Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007;282:20036-20044.
    • (2007) J Biol Chem , vol.282 , pp. 20036-20044
    • Wang, L.1    Harris, T.E.2    Roth, R.A.3    Lawrence Jr, J.C.4
  • 37
    • 0037662713 scopus 로고    scopus 로고
    • Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability
    • Beugnet A, Tee AR, Taylor PM, Proud CG. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 2003;372:555-566.
    • (2003) Biochem J , vol.372 , pp. 555-566
    • Beugnet, A.1    Tee, A.R.2    Taylor, P.M.3    Proud, C.G.4
  • 38
    • 0028207001 scopus 로고
    • Rapamycin selectively represses translation of the 'polypyrimidine tract' mRNA family
    • Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the 'polypyrimidine tract' mRNA family. Proc Natl Acad Sci USA 1994;91:4441-4445.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 4441-4445
    • Jefferies, H.B.1    Reinhard, C.2    Kozma, S.C.3    Thomas, G.4
  • 39
    • 84862777192 scopus 로고    scopus 로고
    • The translational landscape of mTOR signalling steers cancer initiation and metastasis
    • Hsieh AC, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012;485:55-61.
    • (2012) Nature , vol.485 , pp. 55-61
    • Hsieh, A.C.1
  • 40
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011;144:757-768.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4
  • 41
    • 79952119614 scopus 로고    scopus 로고
    • ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor
    • Chen CH, et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3beta-mediated phosphorylation of rictor. Sci Signal 2011;4:ra10.
    • (2011) Sci Signal , vol.4
    • Chen, C.H.1
  • 42
    • 58649092475 scopus 로고    scopus 로고
    • mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
    • Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 2008;416:375-385.
    • (2008) Biochem J , vol.416 , pp. 375-385
    • Garcia-Martinez, J.M.1    Alessi, D.R.2
  • 43
    • 33751348056 scopus 로고    scopus 로고
    • Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
    • Guertin DA, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006;11:859-871.
    • (2006) Dev Cell , vol.11 , pp. 859-871
    • Guertin, D.A.1
  • 44
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe GM, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011;12:295-303.
    • (2011) Nat Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 45
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010;32:743-753.
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1
  • 46
    • 0028304998 scopus 로고
    • Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor zeta chain is dependent on T cell activation
    • Exley M, Varticovski L, Peter M, Sancho J, Terhorst C. Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor zeta chain is dependent on T cell activation. J Biol Chem 1994;269:15140-15146.
    • (1994) J Biol Chem , vol.269 , pp. 15140-15146
    • Exley, M.1    Varticovski, L.2    Peter, M.3    Sancho, J.4    Terhorst, C.5
  • 47
    • 0035869402 scopus 로고    scopus 로고
    • Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo
    • Harada Y, et al. Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo. J Immunol 2001;166:3797-3803.
    • (2001) J Immunol , vol.166 , pp. 3797-3803
    • Harada, Y.1
  • 48
    • 0035221568 scopus 로고    scopus 로고
    • Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines
    • Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol 2001;2:37-44.
    • (2001) Nat Immunol , vol.2 , pp. 37-44
    • Kane, L.P.1    Andres, P.G.2    Howland, K.C.3    Abbas, A.K.4    Weiss, A.5
  • 49
    • 49649098826 scopus 로고    scopus 로고
    • ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse
    • Fos C, et al. ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse. J Immunol 2008;181:1969-1977.
    • (2008) J Immunol , vol.181 , pp. 1969-1977
    • Fos, C.1
  • 50
    • 84862908662 scopus 로고    scopus 로고
    • New insights on OX40 in the control of t cell immunity and immune tolerance in vivo
    • Xiao X, et al. New insights on OX40 in the control of t cell immunity and immune tolerance in vivo. J Immunol 2012;188:892-901.
    • (2012) J Immunol , vol.188 , pp. 892-901
    • Xiao, X.1
  • 51
    • 79953185367 scopus 로고    scopus 로고
    • OX40 complexes with phosphoinositide 3-kinase and protein kinase B (PKB) to augment TCR-dependent PKB signaling
    • So T, Choi H, Croft M. OX40 complexes with phosphoinositide 3-kinase and protein kinase B (PKB) to augment TCR-dependent PKB signaling. J Immunol 2011;186:3547-3555.
    • (2011) J Immunol , vol.186 , pp. 3547-3555
    • So, T.1    Choi, H.2    Croft, M.3
  • 52
    • 33846399187 scopus 로고    scopus 로고
    • Anti-OX40 stimulation in vivo enhances CD8+ memory T cell survival and significantly increases recall responses
    • Ruby CE, Redmond WL, Haley D, Weinberg AD. Anti-OX40 stimulation in vivo enhances CD8+ memory T cell survival and significantly increases recall responses. Eur J Immunol 2007;37:157-166.
    • (2007) Eur J Immunol , vol.37 , pp. 157-166
    • Ruby, C.E.1    Redmond, W.L.2    Haley, D.3    Weinberg, A.D.4
  • 53
    • 27144496045 scopus 로고    scopus 로고
    • CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms
    • Parry RV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543-9553.
    • (2005) Mol Cell Biol , vol.25 , pp. 9543-9553
    • Parry, R.V.1
  • 54
    • 0033662376 scopus 로고    scopus 로고
    • The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A
    • Chuang E, et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 2000;13:313-322.
    • (2000) Immunity , vol.13 , pp. 313-322
    • Chuang, E.1
  • 55
    • 73949088551 scopus 로고    scopus 로고
    • PD-L1 regulates the development, maintenance, and function of induced regulatory T cells
    • Francisco LM, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-3029.
    • (2009) J Exp Med , vol.206 , pp. 3015-3029
    • Francisco, L.M.1
  • 57
    • 26844490420 scopus 로고    scopus 로고
    • Sequence motifs in IL-4R alpha mediating cell-cycle progression of primary lymphocytes
    • Stephenson LM, Park DS, Mora AL, Goenka S, Boothby M. Sequence motifs in IL-4R alpha mediating cell-cycle progression of primary lymphocytes. J Immunol 2005;175:5178-5185.
    • (2005) J Immunol , vol.175 , pp. 5178-5185
    • Stephenson, L.M.1    Park, D.S.2    Mora, A.L.3    Goenka, S.4    Boothby, M.5
  • 58
    • 4544331713 scopus 로고    scopus 로고
    • Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells
    • Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA, Boussiotis VA. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 2004;200:659-669.
    • (2004) J Exp Med , vol.200 , pp. 659-669
    • Barata, J.T.1    Silva, A.2    Brandao, J.G.3    Nadler, L.M.4    Cardoso, A.A.5    Boussiotis, V.A.6
  • 59
    • 0037298561 scopus 로고    scopus 로고
    • Development and characterisation of tetracycline-regulated phosphoinositide 3-kinase mutants: assessing the role of multiple phosphoinositide 3-kinases in chemokine signaling
    • Curnock AP, Ward SG. Development and characterisation of tetracycline-regulated phosphoinositide 3-kinase mutants: assessing the role of multiple phosphoinositide 3-kinases in chemokine signaling. J Immunol Methods 2003;273:29-41.
    • (2003) J Immunol Methods , vol.273 , pp. 29-41
    • Curnock, A.P.1    Ward, S.G.2
  • 60
    • 0034635264 scopus 로고    scopus 로고
    • Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration
    • Sasaki T, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000;287:1040-1046.
    • (2000) Science , vol.287 , pp. 1040-1046
    • Sasaki, T.1
  • 61
    • 67649185215 scopus 로고    scopus 로고
    • The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR
    • Liu G, et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol 2009;10:769-777.
    • (2009) Nat Immunol , vol.10 , pp. 769-777
    • Liu, G.1
  • 62
    • 77958151145 scopus 로고    scopus 로고
    • The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells
    • Liu G, Yang K, Burns S, Shrestha S, Chi H. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 2010;11:1047-1056.
    • (2010) Nat Immunol , vol.11 , pp. 1047-1056
    • Liu, G.1    Yang, K.2    Burns, S.3    Shrestha, S.4    Chi, H.5
  • 63
    • 0028982917 scopus 로고
    • Interferon-alpha engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3′-kinase
    • Uddin S, Yenush L, Sun XJ, Sweet ME, White MF, Platanias LC. Interferon-alpha engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3′-kinase. J Biol Chem 1995;270:15938-15941.
    • (1995) J Biol Chem , vol.270 , pp. 15938-15941
    • Uddin, S.1    Yenush, L.2    Sun, X.J.3    Sweet, M.E.4    White, M.F.5    Platanias, L.C.6
  • 64
    • 0030043596 scopus 로고    scopus 로고
    • The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2
    • Platanias LC, Uddin S, Yetter A, Sun XJ, White MF. The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2. J Biol Chem 1996;271:278-282.
    • (1996) J Biol Chem , vol.271 , pp. 278-282
    • Platanias, L.C.1    Uddin, S.2    Yetter, A.3    Sun, X.J.4    White, M.F.5
  • 65
    • 0037645144 scopus 로고    scopus 로고
    • A PI-3 kinase-dependent, Stat1-independent signaling pathway regulates interferon-stimulated monocyte adhesion
    • Navarro A, Anand-Apte B, Tanabe Y, Feldman G, Larner AC. A PI-3 kinase-dependent, Stat1-independent signaling pathway regulates interferon-stimulated monocyte adhesion. J Leukoc Biol 2003;73:540-545.
    • (2003) J Leukoc Biol , vol.73 , pp. 540-545
    • Navarro, A.1    Anand-Apte, B.2    Tanabe, Y.3    Feldman, G.4    Larner, A.C.5
  • 66
    • 2342444310 scopus 로고    scopus 로고
    • Leptin receptor signaling and the regulation of mammalian physiology
    • Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Rec Prog Hormone Res 2004;59:287-304.
    • (2004) Rec Prog Hormone Res , vol.59 , pp. 287-304
    • Myers Jr, M.G.1
  • 67
    • 0030828823 scopus 로고    scopus 로고
    • Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways
    • Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring HU. Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 1997;40:1358-1362.
    • (1997) Diabetologia , vol.40 , pp. 1358-1362
    • Kellerer, M.1    Koch, M.2    Metzinger, E.3    Mushack, J.4    Capp, E.5    Haring, H.U.6
  • 68
    • 78650667165 scopus 로고    scopus 로고
    • Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway
    • Galgani M, et al. Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway. J Immunol 2010;185:7474-7479.
    • (2010) J Immunol , vol.185 , pp. 7474-7479
    • Galgani, M.1
  • 69
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010;40:310-322.
    • (2010) Mol Cell , vol.40 , pp. 310-322
    • Sengupta, S.1    Peterson, T.R.2    Sabatini, D.M.3
  • 70
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214-226.
    • (2008) Mol Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1
  • 71
    • 10044276783 scopus 로고    scopus 로고
    • Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
    • Brugarolas J, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004;18:2893-2904.
    • (2004) Genes Dev , vol.18 , pp. 2893-2904
    • Brugarolas, J.1
  • 72
    • 38349056675 scopus 로고    scopus 로고
    • Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
    • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008;22:239-251.
    • (2008) Genes Dev , vol.22 , pp. 239-251
    • DeYoung, M.P.1    Horak, P.2    Sofer, A.3    Sgroi, D.4    Ellisen, L.W.5
  • 73
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones RG, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 2005;18:283-293.
    • (2005) Mol Cell , vol.18 , pp. 283-293
    • Jones, R.G.1
  • 74
    • 34248194200 scopus 로고    scopus 로고
    • The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways
    • Feng Z, et al. The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007;67:3043-3053.
    • (2007) Cancer Res , vol.67 , pp. 3043-3053
    • Feng, Z.1
  • 75
    • 0036863624 scopus 로고    scopus 로고
    • REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species
    • Ellisen LW, et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 2002;10:995-1005.
    • (2002) Mol Cell , vol.10 , pp. 995-1005
    • Ellisen, L.W.1
  • 76
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science 1956;123:309-314.
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 77
    • 61849135453 scopus 로고    scopus 로고
    • Tumor suppressors and cell metabolism: a recipe for cancer growth
    • Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 2009;23:537-548.
    • (2009) Genes Dev , vol.23 , pp. 537-548
    • Jones, R.G.1    Thompson, C.B.2
  • 78
    • 79952749503 scopus 로고    scopus 로고
    • Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth
    • Sun Q, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA 2011;108:4129-4134.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 4129-4134
    • Sun, Q.1
  • 79
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Duvel K, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010;39:171-183.
    • (2010) Mol Cell , vol.39 , pp. 171-183
    • Duvel, K.1
  • 80
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang R, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011;35:871-882.
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.1
  • 81
    • 15444342958 scopus 로고    scopus 로고
    • 2 homeostasis by hypoxia-inducible factor 1 alpha
    • 2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998;12:149-162.
    • (1998) Genes Dev , vol.12 , pp. 149-162
    • Iyer, N.V.1
  • 82
    • 33644783003 scopus 로고    scopus 로고
    • Pentose phosphates in nucleoside interconversion and catabolism
    • Tozzi MG, Camici M, Mascia L, Sgarrella F, Ipata PL. Pentose phosphates in nucleoside interconversion and catabolism. FEBS J 2006;273:1089-1101.
    • (2006) FEBS J , vol.273 , pp. 1089-1101
    • Tozzi, M.G.1    Camici, M.2    Mascia, L.3    Sgarrella, F.4    Ipata, P.L.5
  • 83
    • 0037155888 scopus 로고    scopus 로고
    • Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner
    • Christie GR, Hajduch E, Hundal HS, Proud CG, Taylor PM. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner. J Biol Chem 2002;277:9952-9957.
    • (2002) J Biol Chem , vol.277 , pp. 9952-9957
    • Christie, G.R.1    Hajduch, E.2    Hundal, H.S.3    Proud, C.G.4    Taylor, P.M.5
  • 85
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008;320:1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 86
    • 59049100116 scopus 로고    scopus 로고
    • An amino acid shuffle activates mTORC1
    • Cohen A, Hall MN. An amino acid shuffle activates mTORC1. Cell 2009;136:399-400.
    • (2009) Cell , vol.136 , pp. 399-400
    • Cohen, A.1    Hall, M.N.2
  • 87
    • 59049087460 scopus 로고    scopus 로고
    • Bidirectional transport of amino acids regulates mTOR and autophagy
    • Nicklin P, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009;136:521-534.
    • (2009) Cell , vol.136 , pp. 521-534
    • Nicklin, P.1
  • 88
    • 35248820393 scopus 로고    scopus 로고
    • Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation
    • Sipula IJ, Brown NF, Perdomo G. Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation. Metab, Clin Exp 2006;55:1637-1644.
    • (2006) Metab, Clin Exp , vol.55 , pp. 1637-1644
    • Sipula, I.J.1    Brown, N.F.2    Perdomo, G.3
  • 89
    • 35248816945 scopus 로고    scopus 로고
    • The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes
    • Brown NF, Stefanovic-Racic M, Sipula IJ, Perdomo G. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metab, Clin Exp 2007;56:1500-1507.
    • (2007) Metab, Clin Exp , vol.56 , pp. 1500-1507
    • Brown, N.F.1    Stefanovic-Racic, M.2    Sipula, I.J.3    Perdomo, G.4
  • 90
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011;186:3299-3303.
    • (2011) J Immunol , vol.186 , pp. 3299-3303
    • Michalek, R.D.1
  • 91
    • 33748752151 scopus 로고    scopus 로고
    • The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity
    • Schieke SM, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006;281:27643-27652.
    • (2006) J Biol Chem , vol.281 , pp. 27643-27652
    • Schieke, S.M.1
  • 92
    • 36749081539 scopus 로고    scopus 로고
    • mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007;450:736-740.
    • (2007) Nature , vol.450 , pp. 736-740
    • Cunningham, J.T.1    Rodgers, J.T.2    Arlow, D.H.3    Vazquez, F.4    Mootha, V.K.5    Puigserver, P.6
  • 93
    • 33750363298 scopus 로고    scopus 로고
    • The roles of intracellular protein-degradation pathways in neurodegeneration
    • Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 2006;443:780-786.
    • (2006) Nature , vol.443 , pp. 780-786
    • Rubinsztein, D.C.1
  • 94
    • 36249025723 scopus 로고    scopus 로고
    • Autophagy: process and function
    • Mizushima N. Autophagy: process and function. Genes Dev 2007;21:2861-2873.
    • (2007) Genes Dev , vol.21 , pp. 2861-2873
    • Mizushima, N.1
  • 97
    • 0028899789 scopus 로고
    • Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes
    • Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995;270:2320-2326.
    • (1995) J Biol Chem , vol.270 , pp. 2320-2326
    • Blommaart, E.F.1    Luiken, J.J.2    Blommaart, P.J.3    van Woerkom, G.M.4    Meijer, A.J.5
  • 98
    • 80053387765 scopus 로고    scopus 로고
    • Impaired autophagy due to constitutive mTOR activation sensitizes TSC2-null cells to cell death under stress
    • Ng S, Wu YT, Chen B, Zhou J, Shen HM. Impaired autophagy due to constitutive mTOR activation sensitizes TSC2-null cells to cell death under stress. Autophagy 2011;7:1173-1186.
    • (2011) Autophagy , vol.7 , pp. 1173-1186
    • Ng, S.1    Wu, Y.T.2    Chen, B.3    Zhou, J.4    Shen, H.M.5
  • 99
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: lessons from yeast
    • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009;10:458-467.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 458-467
    • Nakatogawa, H.1    Suzuki, K.2    Kamada, Y.3    Ohsumi, Y.4
  • 100
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Jung CH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 2009;20:1992-2003.
    • (2009) Mol Biol Cell , vol.20 , pp. 1992-2003
    • Jung, C.H.1
  • 101
    • 66449083078 scopus 로고    scopus 로고
    • ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
    • Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009;284:12297-12305.
    • (2009) J Biol Chem , vol.284 , pp. 12297-12305
    • Ganley, I.G.1    Lam du, H.2    Wang, J.3    Ding, X.4    Chen, S.5    Jiang, X.6
  • 102
    • 34548482499 scopus 로고    scopus 로고
    • siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy
    • Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 2007;282:25464-25474.
    • (2007) J Biol Chem , vol.282 , pp. 25464-25474
    • Chan, E.Y.1    Kir, S.2    Tooze, S.A.3
  • 103
    • 35148828429 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1 (HIF-1) pathway
    • Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007;2007:cm8.
    • (2007) Sci STKE , vol.2007
    • Semenza, G.L.1
  • 104
    • 0033587146 scopus 로고    scopus 로고
    • The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
    • Maxwell PH, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399:271-275.
    • (1999) Nature , vol.399 , pp. 271-275
    • Maxwell, P.H.1
  • 105
    • 0035834409 scopus 로고    scopus 로고
    • A conserved family of prolyl-4-hydroxylases that modify HIF
    • Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001;294:1337-1340.
    • (2001) Science , vol.294 , pp. 1337-1340
    • Bruick, R.K.1    McKnight, S.L.2
  • 106
    • 0035027828 scopus 로고    scopus 로고
    • Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells
    • Seagroves TN, et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 2001;21:3436-3444.
    • (2001) Mol Cell Biol , vol.21 , pp. 3436-3444
    • Seagroves, T.N.1
  • 107
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
    • Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006;3:177-185.
    • (2006) Cell Metab , vol.3 , pp. 177-185
    • Kim, J.W.1    Tchernyshyov, I.2    Semenza, G.L.3    Dang, C.V.4
  • 108
    • 0036789574 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin
    • Hudson CC, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 2002;22:7004-7014.
    • (2002) Mol Cell Biol , vol.22 , pp. 7004-7014
    • Hudson, C.C.1
  • 109
    • 2942724235 scopus 로고    scopus 로고
    • mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways
    • Majumder PK, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004;10:594-601.
    • (2004) Nat Med , vol.10 , pp. 594-601
    • Majumder, P.K.1
  • 110
    • 20444429440 scopus 로고    scopus 로고
    • TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells
    • Nakamura H, et al. TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J Immunol 2005;174:7592-7599.
    • (2005) J Immunol , vol.174 , pp. 7592-7599
    • Nakamura, H.1
  • 111
    • 17844364429 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor (HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor I
    • Treins C, Giorgetti-Peraldi S, Murdaca J, Monthouel-Kartmann MN, Van Obberghen E. Regulation of hypoxia-inducible factor (HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor I. Mol Endocrinol 2005;19:1304-1317.
    • (2005) Mol Endocrinol , vol.19 , pp. 1304-1317
    • Treins, C.1    Giorgetti-Peraldi, S.2    Murdaca, J.3    Monthouel-Kartmann, M.N.4    Van Obberghen, E.5
  • 112
    • 45749117147 scopus 로고    scopus 로고
    • Regulation of hypoxia-inducible factor 1 by glucose availability under hypoxic conditions
    • Zhou J, et al. Regulation of hypoxia-inducible factor 1 by glucose availability under hypoxic conditions. Kobe J Med Sci 2007;53:283-296.
    • (2007) Kobe J Med Sci , vol.53 , pp. 283-296
    • Zhou, J.1
  • 113
    • 21744459535 scopus 로고    scopus 로고
    • Regulation of mTOR and cell growth in response to energy stress by REDD1
    • Sofer A, Lei K, Johannessen CM, Ellisen LW. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 2005;25:5834-5845.
    • (2005) Mol Cell Biol , vol.25 , pp. 5834-5845
    • Sofer, A.1    Lei, K.2    Johannessen, C.M.3    Ellisen, L.W.4
  • 114
    • 0033079597 scopus 로고    scopus 로고
    • Oncogenic alterations of metabolism
    • Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999;24:68-72.
    • (1999) Trends Biochem Sci , vol.24 , pp. 68-72
    • Dang, C.V.1    Semenza, G.L.2
  • 115
    • 34547580590 scopus 로고    scopus 로고
    • HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation
    • Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 2007;12:108-113.
    • (2007) Cancer Cell , vol.12 , pp. 108-113
    • Gordan, J.D.1    Thompson, C.B.2    Simon, M.C.3
  • 116
    • 1642430733 scopus 로고    scopus 로고
    • Myc pathways provoking cell suicide and cancer
    • Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene 2003;22:9007-9021.
    • (2003) Oncogene , vol.22 , pp. 9007-9021
    • Nilsson, J.A.1    Cleveland, J.L.2
  • 117
    • 13944252067 scopus 로고    scopus 로고
    • The life cycle of C-myc: from synthesis to degradation
    • Sears RC. The life cycle of C-myc: from synthesis to degradation. Cell Cycle 2004;3:1133-1137.
    • (2004) Cell Cycle , vol.3 , pp. 1133-1137
    • Sears, R.C.1
  • 118
    • 0032514376 scopus 로고    scopus 로고
    • Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway
    • West MJ, Stoneley M, Willis AE. Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene 1998;17:769-780.
    • (1998) Oncogene , vol.17 , pp. 769-780
    • West, M.J.1    Stoneley, M.2    Willis, A.E.3
  • 119
    • 67949107932 scopus 로고    scopus 로고
    • CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation
    • Murooka TT, Rahbar R, Fish EN. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation. Biochem Biophys Res Commun 2009;387:381-386.
    • (2009) Biochem Biophys Res Commun , vol.387 , pp. 381-386
    • Murooka, T.T.1    Rahbar, R.2    Fish, E.N.3
  • 120
    • 15744386891 scopus 로고    scopus 로고
    • Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway
    • Shi Y, Sharma A, Wu H, Lichtenstein A, Gera J. Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 2005;280:10964-10973.
    • (2005) J Biol Chem , vol.280 , pp. 10964-10973
    • Shi, Y.1    Sharma, A.2    Wu, H.3    Lichtenstein, A.4    Gera, J.5
  • 121
    • 33749822544 scopus 로고    scopus 로고
    • Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling
    • Marderosian M, et al. Tristetraprolin regulates Cyclin D1 and c-Myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene 2006;25:6277-6290.
    • (2006) Oncogene , vol.25 , pp. 6277-6290
    • Marderosian, M.1
  • 122
    • 53149153190 scopus 로고    scopus 로고
    • Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling
    • Jo OD, Martin J, Bernath A, Masri J, Lichtenstein A, Gera J. Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem 2008;283:23274-23287.
    • (2008) J Biol Chem , vol.283 , pp. 23274-23287
    • Jo, O.D.1    Martin, J.2    Bernath, A.3    Masri, J.4    Lichtenstein, A.5    Gera, J.6
  • 123
    • 78751535289 scopus 로고    scopus 로고
    • AP-1 regulates cyclin D1 and c-MYC transcription in an AKT-dependent manner in response to mTOR inhibition: role of AIP4/Itch-mediated JUNB degradation
    • Vartanian R, et al. AP-1 regulates cyclin D1 and c-MYC transcription in an AKT-dependent manner in response to mTOR inhibition: role of AIP4/Itch-mediated JUNB degradation. Mol Cancer Res 2011;9:115-130.
    • (2011) Mol Cancer Res , vol.9 , pp. 115-130
    • Vartanian, R.1
  • 124
    • 65949122722 scopus 로고    scopus 로고
    • Growth controls connect: interactions between c-myc and the tuberous sclerosis complex-mTOR pathway
    • Schmidt EV, Ravitz MJ, Chen L, Lynch M. Growth controls connect: interactions between c-myc and the tuberous sclerosis complex-mTOR pathway. Cell Cycle 2009;8:1344-1351.
    • (2009) Cell Cycle , vol.8 , pp. 1344-1351
    • Schmidt, E.V.1    Ravitz, M.J.2    Chen, L.3    Lynch, M.4
  • 125
    • 0031755688 scopus 로고    scopus 로고
    • Studies on the mechanism of resistance to rapamycin in human cancer cells
    • Hosoi H, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 1998;54:815-824.
    • (1998) Mol Pharmacol , vol.54 , pp. 815-824
    • Hosoi, H.1
  • 126
    • 33644652183 scopus 로고    scopus 로고
    • Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis
    • Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 2006;116:571-580.
    • (2006) J Clin Invest , vol.116 , pp. 571-580
    • Lefebvre, P.1    Chinetti, G.2    Fruchart, J.C.3    Staels, B.4
  • 127
    • 0030952937 scopus 로고    scopus 로고
    • Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta
    • Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci USA 1997;94:4312-4317.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 4312-4317
    • Forman, B.M.1    Chen, J.2    Evans, R.M.3
  • 128
    • 0006132932 scopus 로고    scopus 로고
    • Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma
    • Kliewer SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U A 1997;94:4318-4323.
    • (1997) Proc Natl Acad Sci U A , vol.94 , pp. 4318-4323
    • Kliewer, S.A.1
  • 129
    • 21444456038 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha interacts with high affinity and is conformationally responsive to endogenous ligands
    • Hostetler HA, Petrescu AD, Kier AB, Schroeder F. Peroxisome proliferator-activated receptor alpha interacts with high affinity and is conformationally responsive to endogenous ligands. J Biol Chem 2005;280:18667-18682.
    • (2005) J Biol Chem , vol.280 , pp. 18667-18682
    • Hostetler, H.A.1    Petrescu, A.D.2    Kier, A.B.3    Schroeder, F.4
  • 130
    • 0033105510 scopus 로고    scopus 로고
    • Molecular recognition of fatty acids by peroxisome proliferator-activated receptors
    • Xu HE, et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 1999;3:397-403.
    • (1999) Mol Cell , vol.3 , pp. 397-403
    • Xu, H.E.1
  • 131
    • 0032508696 scopus 로고    scopus 로고
    • Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha
    • Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 1998;273:23786-23792.
    • (1998) J Biol Chem , vol.273 , pp. 23786-23792
    • Brandt, J.M.1    Djouadi, F.2    Kelly, D.P.3
  • 132
    • 0028276397 scopus 로고
    • Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids
    • Rodriguez JC, Gil-Gomez G, Hegardt FG, Haro D. Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids. J Biol Chem 1994;269:18767-18772.
    • (1994) J Biol Chem , vol.269 , pp. 18767-18772
    • Rodriguez, J.C.1    Gil-Gomez, G.2    Hegardt, F.G.3    Haro, D.4
  • 133
    • 0032479423 scopus 로고    scopus 로고
    • Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner
    • Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem 1998;273:16710-16714.
    • (1998) J Biol Chem , vol.273 , pp. 16710-16714
    • Motojima, K.1    Passilly, P.2    Peters, J.M.3    Gonzalez, F.J.4    Latruffe, N.5
  • 134
    • 0032699670 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting
    • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999;103:1489-1498.
    • (1999) J Clin Invest , vol.103 , pp. 1489-1498
    • Kersten, S.1    Seydoux, J.2    Peters, J.M.3    Gonzalez, F.J.4    Desvergne, B.5    Wahli, W.6
  • 135
    • 0033520304 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway
    • Delerive P, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999;85:394-402.
    • (1999) Circ Res , vol.85 , pp. 394-402
    • Delerive, P.1
  • 136
    • 0034711185 scopus 로고    scopus 로고
    • Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators
    • Delerive P, Gervois P, Fruchart JC, Staels B. Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J Biol Chem 2000;275:36703-36707.
    • (2000) J Biol Chem , vol.275 , pp. 36703-36707
    • Delerive, P.1    Gervois, P.2    Fruchart, J.C.3    Staels, B.4
  • 137
    • 0033527569 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1
    • Delerive P, et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 1999;274:32048-32054.
    • (1999) J Biol Chem , vol.274 , pp. 32048-32054
    • Delerive, P.1
  • 138
    • 78650848337 scopus 로고    scopus 로고
    • mTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010;468:1100-1104.
    • (2010) Nature , vol.468 , pp. 1100-1104
    • Sengupta, S.1    Peterson, T.R.2    Laplante, M.3    Oh, S.4    Sabatini, D.M.5
  • 139
    • 0028641559 scopus 로고
    • Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor
    • Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994;79:1147-1156.
    • (1994) Cell , vol.79 , pp. 1147-1156
    • Tontonoz, P.1    Hu, E.2    Spiegelman, B.M.3
  • 140
    • 0032582349 scopus 로고    scopus 로고
    • PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter
    • Fajas L, Fruchart JC, Auwerx J. PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett 1998;438:55-60.
    • (1998) FEBS Lett , vol.438 , pp. 55-60
    • Fajas, L.1    Fruchart, J.C.2    Auwerx, J.3
  • 141
    • 0030297919 scopus 로고    scopus 로고
    • Adipogenesis and obesity: rounding out the big picture
    • Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell 1996;87:377-389.
    • (1996) Cell , vol.87 , pp. 377-389
    • Spiegelman, B.M.1    Flier, J.S.2
  • 142
    • 0033213631 scopus 로고    scopus 로고
    • PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro
    • Rosen ED, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999;4:611-617.
    • (1999) Mol Cell , vol.4 , pp. 611-617
    • Rosen, E.D.1
  • 143
    • 0028972025 scopus 로고
    • 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma
    • Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995;83:803-812.
    • (1995) Cell , vol.83 , pp. 803-812
    • Forman, B.M.1    Tontonoz, P.2    Chen, J.3    Brun, R.P.4    Spiegelman, B.M.5    Evans, R.M.6
  • 145
    • 7044234995 scopus 로고    scopus 로고
    • regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis
    • Kim JE, Chen J. regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004;53:2748-2756.
    • (2004) Diabetes , vol.53 , pp. 2748-2756
    • Kim, J.E.1    Chen, J.2
  • 146
    • 67650523945 scopus 로고    scopus 로고
    • Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
    • Zhang HH, et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS ONE 2009;4:e6189.
    • (2009) PLoS ONE , vol.4
    • Zhang, H.H.1
  • 147
    • 33847709027 scopus 로고    scopus 로고
    • SREBP in signal transduction: cholesterol metabolism and beyond
    • Bengoechea-Alonso MT, Ericsson J. SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 2007;19:215-222.
    • (2007) Curr Opin Cell Biol , vol.19 , pp. 215-222
    • Bengoechea-Alonso, M.T.1    Ericsson, J.2
  • 148
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann T, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008;8:224-236.
    • (2008) Cell Metab , vol.8 , pp. 224-236
    • Porstmann, T.1
  • 149
    • 84861043736 scopus 로고    scopus 로고
    • Connecting mTORC1 signaling to SREBP-1 activation
    • Bakan I, Laplante M. Connecting mTORC1 signaling to SREBP-1 activation. Curr Opin Lipidol 2012;23:226-234.
    • (2012) Curr Opin Lipidol , vol.23 , pp. 226-234
    • Bakan, I.1    Laplante, M.2
  • 150
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies JL, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011;14:21-32.
    • (2011) Cell Metab , vol.14 , pp. 21-32
    • Yecies, J.L.1
  • 151
    • 0034613175 scopus 로고    scopus 로고
    • Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene
    • Amemiya-Kudo M, et al. Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. J Biol Chem 2000;275:31078-31085.
    • (2000) J Biol Chem , vol.275 , pp. 31078-31085
    • Amemiya-Kudo, M.1
  • 152
    • 79961165137 scopus 로고    scopus 로고
    • mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson TR, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011;146:408-420.
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1
  • 153
    • 0034765725 scopus 로고    scopus 로고
    • Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus
    • De Boer RJ, Oprea M, Antia R, Murali-Krishna K, Ahmed R, Perelson AS. Recruitment times, proliferation, and apoptosis rates during the CD8(+) T-cell response to lymphocytic choriomeningitis virus. J Virol 2001;75:10663-10669.
    • (2001) J Virol , vol.75 , pp. 10663-10669
    • De Boer, R.J.1    Oprea, M.2    Antia, R.3    Murali-Krishna, K.4    Ahmed, R.5    Perelson, A.S.6
  • 154
    • 84855957129 scopus 로고    scopus 로고
    • How the TCR balances sensitivity and specificity for the recognition of self and pathogens
    • Morris GP, Allen PM. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol 2012;13:121-128.
    • (2012) Nat Immunol , vol.13 , pp. 121-128
    • Morris, G.P.1    Allen, P.M.2
  • 155
    • 34547208593 scopus 로고    scopus 로고
    • Notch-induced T cell development requires phosphoinositide-dependent kinase 1
    • Kelly AP, et al. Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J 2007;26:3441-3450.
    • (2007) EMBO J , vol.26 , pp. 3441-3450
    • Kelly, A.P.1
  • 156
    • 74249122511 scopus 로고    scopus 로고
    • LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells
    • Tamas P, et al. LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur J Immunol 2010;40:242-253.
    • (2010) Eur J Immunol , vol.40 , pp. 242-253
    • Tamas, P.1
  • 157
    • 24944444760 scopus 로고    scopus 로고
    • Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism
    • Ciofani M, Zuniga-Pflucker JC. Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 2005;6:881-888.
    • (2005) Nat Immunol , vol.6 , pp. 881-888
    • Ciofani, M.1    Zuniga-Pflucker, J.C.2
  • 158
    • 84861719535 scopus 로고    scopus 로고
    • Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia
    • Lee K, et al. Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia. J Exp Med 2012;209:713-728.
    • (2012) J Exp Med , vol.209 , pp. 713-728
    • Lee, K.1
  • 159
    • 80051997049 scopus 로고    scopus 로고
    • The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function
    • Yang K, Neale G, Green DR, He W, Chi H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 2011;12:888-897.
    • (2011) Nat Immunol , vol.12 , pp. 888-897
    • Yang, K.1    Neale, G.2    Green, D.R.3    He, W.4    Chi, H.5
  • 160
    • 80051617288 scopus 로고    scopus 로고
    • The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells
    • Wu Q, et al. The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells. J Immunol 2011;187:1106-1112.
    • (2011) J Immunol , vol.187 , pp. 1106-1112
    • Wu, Q.1
  • 161
    • 80054721266 scopus 로고    scopus 로고
    • Regulation of T-cell survival and mitochondrial homeostasis by TSC1
    • O'Brien TF, et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol 2011;41:3361-3370.
    • (2011) Eur J Immunol , vol.41 , pp. 3361-3370
    • O'Brien, T.F.1
  • 162
    • 64249123646 scopus 로고    scopus 로고
    • Autophagy is essential for mitochondrial clearance in mature T lymphocytes
    • Pua HH, Guo J, Komatsu M, He YW. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J Immunol 2009;182:4046-4055.
    • (2009) J Immunol , vol.182 , pp. 4046-4055
    • Pua, H.H.1    Guo, J.2    Komatsu, M.3    He, Y.W.4
  • 163
    • 33749531942 scopus 로고    scopus 로고
    • Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death
    • Li C, et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol 2006;177:5163-5168.
    • (2006) J Immunol , vol.177 , pp. 5163-5168
    • Li, C.1
  • 164
    • 33846461678 scopus 로고    scopus 로고
    • A critical role for the autophagy gene Atg5 in T cell survival and proliferation
    • Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 2007;204:25-31.
    • (2007) J Exp Med , vol.204 , pp. 25-31
    • Pua, H.H.1    Dzhagalov, I.2    Chuck, M.3    Mizushima, N.4    He, Y.W.5
  • 165
    • 79955540204 scopus 로고    scopus 로고
    • Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy
    • Jia W, He YW. Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 2011;186:5313-5322.
    • (2011) J Immunol , vol.186 , pp. 5313-5322
    • Jia, W.1    He, Y.W.2
  • 166
    • 79251534395 scopus 로고    scopus 로고
    • Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes
    • Jia W, Pua HH, Li QJ, He YW. Autophagy regulates endoplasmic reticulum homeostasis and calcium mobilization in T lymphocytes. J Immunol 2011;186:1564-1574.
    • (2011) J Immunol , vol.186 , pp. 1564-1574
    • Jia, W.1    Pua, H.H.2    Li, Q.J.3    He, Y.W.4
  • 167
  • 168
    • 79251500689 scopus 로고    scopus 로고
    • Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease
    • Gatza E, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med 2011;3:67ra68.
    • (2011) Sci Transl Med , vol.3
    • Gatza, E.1
  • 169
    • 0037100275 scopus 로고    scopus 로고
    • Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus
    • Gergely P Jr, Niland B, Gonchoroff N, Pullmann R Jr, Phillips PE, Perl A. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J Immunol 2002;169:1092-1101.
    • (2002) J Immunol , vol.169 , pp. 1092-1101
    • Gergely Jr, P.1    Niland, B.2    Gonchoroff, N.3    Pullmann Jr, R.4    Phillips, P.E.5    Perl, A.6
  • 170
    • 0036161789 scopus 로고    scopus 로고
    • Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus
    • Gergely P Jr, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 2002;46:175-190.
    • (2002) Arthritis Rheum , vol.46 , pp. 175-190
    • Gergely Jr, P.1
  • 172
    • 33847161302 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity
    • Dunn SE, et al. Peroxisome proliferator-activated receptor (PPAR)alpha expression in T cells mediates gender differences in development of T cell-mediated autoimmunity. J Exp Med 2007;204:321-330.
    • (2007) J Exp Med , vol.204 , pp. 321-330
    • Dunn, S.E.1
  • 173
    • 0034141545 scopus 로고    scopus 로고
    • The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses
    • Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L, Padula SJ. The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000;164:1364-1371.
    • (2000) J Immunol , vol.164 , pp. 1364-1371
    • Clark, R.B.1    Bishop-Bailey, D.2    Estrada-Hernandez, T.3    Hla, T.4    Puddington, L.5    Padula, S.J.6
  • 174
    • 2942618440 scopus 로고    scopus 로고
    • Repression of IFN-gamma expression by peroxisome proliferator-activated receptor gamma
    • Cunard R, Eto Y, Muljadi JT, Glass CK, Kelly CJ, Ricote M. Repression of IFN-gamma expression by peroxisome proliferator-activated receptor gamma. J Immunol 2004;172:7530-7536.
    • (2004) J Immunol , vol.172 , pp. 7530-7536
    • Cunard, R.1    Eto, Y.2    Muljadi, J.T.3    Glass, C.K.4    Kelly, C.J.5    Ricote, M.6
  • 175
    • 4444280899 scopus 로고    scopus 로고
    • Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease
    • Bassaganya-Riera J, et al. Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 2004;127:777-791.
    • (2004) Gastroenterology , vol.127 , pp. 777-791
    • Bassaganya-Riera, J.1
  • 176
    • 0032544790 scopus 로고    scopus 로고
    • Troglitazone prevents insulin dependent diabetes in the non-obese diabetic mouse
    • Beales PE, et al. Troglitazone prevents insulin dependent diabetes in the non-obese diabetic mouse. Eur J Pharmacol 1998;357:221-225.
    • (1998) Eur J Pharmacol , vol.357 , pp. 221-225
    • Beales, P.E.1
  • 177
    • 0036499074 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis
    • Diab A, et al. Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12, 14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 2002;168:2508-2515.
    • (2002) J Immunol , vol.168 , pp. 2508-2515
    • Diab, A.1
  • 178
    • 0036260784 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis
    • Feinstein DL, et al. Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 2002;51:694-702.
    • (2002) Ann Neurol , vol.51 , pp. 694-702
    • Feinstein, D.L.1
  • 179
    • 0141540467 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma ligands attenuate immunological symptoms of experimental allergic asthma
    • Mueller C, Weaver V, Vanden Heuvel JP, August A, Cantorna MT. Peroxisome proliferator-activated receptor gamma ligands attenuate immunological symptoms of experimental allergic asthma. Arch Biochem Biophys 2003;418:186-196.
    • (2003) Arch Biochem Biophys , vol.418 , pp. 186-196
    • Mueller, C.1    Weaver, V.2    Vanden Heuvel, J.P.3    August, A.4    Cantorna, M.T.5
  • 180
    • 80054747182 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma is required for CD4+ T cell-mediated lymphopenia-associated autoimmunity
    • Housley WJ, et al. Peroxisome proliferator-activated receptor gamma is required for CD4+ T cell-mediated lymphopenia-associated autoimmunity. J Immunol 2011;187:4161-4169.
    • (2011) J Immunol , vol.187 , pp. 4161-4169
    • Housley, W.J.1
  • 181
    • 58149160405 scopus 로고    scopus 로고
    • Enhanced interferon-gamma gene expression in T cells and reduced ovalbumin-dependent lung eosinophilia in hypoxia-inducible factor-1-alpha-deficient mice
    • Guo J, Lu W, Shimoda LA, Semenza GL, Georas SN. Enhanced interferon-gamma gene expression in T cells and reduced ovalbumin-dependent lung eosinophilia in hypoxia-inducible factor-1-alpha-deficient mice. Int Arch Allergy Immunol 2009;149:98-102.
    • (2009) Int Arch Allergy Immunol , vol.149 , pp. 98-102
    • Guo, J.1    Lu, W.2    Shimoda, L.A.3    Semenza, G.L.4    Georas, S.N.5
  • 182
    • 33749512970 scopus 로고    scopus 로고
    • Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes
    • Lukashev D, et al. Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 2006;177:4962-4965.
    • (2006) J Immunol , vol.177 , pp. 4962-4965
    • Lukashev, D.1
  • 183
    • 80052277906 scopus 로고    scopus 로고
    • Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
    • Dang EV, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011;146:772-784.
    • (2011) Cell , vol.146 , pp. 772-784
    • Dang, E.V.1
  • 184
    • 0022640843 scopus 로고
    • Two types of murine helper T cell clone I. Definition according to profiles of lymphokine activities and secreted proteins
    • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986;136:2348-2357.
    • (1986) J Immunol , vol.136 , pp. 2348-2357
    • Mosmann, T.R.1    Cherwinski, H.2    Bond, M.W.3    Giedlin, M.A.4    Coffman, R.L.5
  • 185
    • 0030810155 scopus 로고    scopus 로고
    • The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells
    • Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997;89:587-596.
    • (1997) Cell , vol.89 , pp. 587-596
    • Zheng, W.1    Flavell, R.A.2
  • 186
    • 79960369458 scopus 로고    scopus 로고
    • HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • Shi LZ, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011;208:1367-1376.
    • (2011) J Exp Med , vol.208 , pp. 1367-1376
    • Shi, L.Z.1
  • 187
    • 0142210174 scopus 로고    scopus 로고
    • Inhibition of interleukin-4 production in CD4+ T cells by peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands: involvement of physical association between PPAR-gamma and the nuclear factor of activated T cells transcription factor
    • Chung SW, Kang BY, Kim TS. Inhibition of interleukin-4 production in CD4+ T cells by peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands: involvement of physical association between PPAR-gamma and the nuclear factor of activated T cells transcription factor. Mol Pharmacol 2003;64:1169-1179.
    • (2003) Mol Pharmacol , vol.64 , pp. 1169-1179
    • Chung, S.W.1    Kang, B.Y.2    Kim, T.S.3
  • 189
    • 70350459594 scopus 로고    scopus 로고
    • The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity
    • Klotz L, et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 2009;206:2079-2089.
    • (2009) J Exp Med , vol.206 , pp. 2079-2089
    • Klotz, L.1
  • 190
    • 79551545978 scopus 로고    scopus 로고
    • Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation
    • Cui G, et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 2011;121:658-670.
    • (2011) J Clin Invest , vol.121 , pp. 658-670
    • Cui, G.1
  • 191
    • 65549145814 scopus 로고    scopus 로고
    • Control of regulatory T cell lineage commitment and maintenance
    • Josefowicz SZ, Rudensky A. Control of regulatory T cell lineage commitment and maintenance. Immunity 2009;30:616-625.
    • (2009) Immunity , vol.30 , pp. 616-625
    • Josefowicz, S.Z.1    Rudensky, A.2
  • 192
    • 78449296907 scopus 로고    scopus 로고
    • IL-35-mediated induction of a potent regulatory T cell population
    • Collison LW, et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 2010;11:1093-1101.
    • (2010) Nat Immunol , vol.11 , pp. 1093-1101
    • Collison, L.W.1
  • 193
    • 78650642538 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor alpha and gamma agonists together with TGF-beta convert human CD4+CD25- T cells into functional Foxp3+ regulatory T cells
    • Lei J, Hasegawa H, Matsumoto T, Yasukawa M. Peroxisome proliferator-activated receptor alpha and gamma agonists together with TGF-beta convert human CD4+CD25- T cells into functional Foxp3+ regulatory T cells. J Immunol 2010;185:7186-7198.
    • (2010) J Immunol , vol.185 , pp. 7186-7198
    • Lei, J.1    Hasegawa, H.2    Matsumoto, T.3    Yasukawa, M.4
  • 194
    • 33947615887 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma (PPARgamma) and immunoregulation: enhancement of regulatory T cells through PPARgamma-dependent and -independent mechanisms
    • Wohlfert EA, Nichols FC, Nevius E, Clark RB. Peroxisome proliferator-activated receptor gamma (PPARgamma) and immunoregulation: enhancement of regulatory T cells through PPARgamma-dependent and -independent mechanisms. J Immunol 2007;178:4129-4135.
    • (2007) J Immunol , vol.178 , pp. 4129-4135
    • Wohlfert, E.A.1    Nichols, F.C.2    Nevius, E.3    Clark, R.B.4
  • 195
    • 33847403883 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma is required for regulatory CD4+ T cell-mediated protection against colitis
    • Hontecillas R, Bassaganya-Riera J. Peroxisome proliferator-activated receptor gamma is required for regulatory CD4+ T cell-mediated protection against colitis. J Immunol 2007;178:2940-2949.
    • (2007) J Immunol , vol.178 , pp. 2940-2949
    • Hontecillas, R.1    Bassaganya-Riera, J.2
  • 196
    • 46949088630 scopus 로고    scopus 로고
    • De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR
    • Kang J, Huddleston SJ, Fraser JM, Khoruts A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol 2008;83:1230-1239.
    • (2008) J Leukoc Biol , vol.83 , pp. 1230-1239
    • Kang, J.1    Huddleston, S.J.2    Fraser, J.M.3    Khoruts, A.4
  • 197
    • 41149113441 scopus 로고    scopus 로고
    • The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells
    • Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 2008;205:565-574.
    • (2008) J Exp Med , vol.205 , pp. 565-574
    • Haxhinasto, S.1    Mathis, D.2    Benoist, C.3
  • 198
    • 38049177784 scopus 로고    scopus 로고
    • Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells
    • Zeiser R, et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 2008;111:453-462.
    • (2008) Blood , vol.111 , pp. 453-462
    • Zeiser, R.1
  • 199
    • 45549098562 scopus 로고    scopus 로고
    • T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
    • Sauer S, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA 2008;105:7797-7802.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 7797-7802
    • Sauer, S.1
  • 200
    • 78650188983 scopus 로고    scopus 로고
    • An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness
    • Procaccini C, et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 2010;33:929-941.
    • (2010) Immunity , vol.33 , pp. 929-941
    • Procaccini, C.1
  • 201
    • 79952931627 scopus 로고    scopus 로고
    • Integrated T-cell receptor and costimulatory signals determine TGF-beta-dependent differentiation and maintenance of Foxp3+ regulatory T cells
    • Gabrysova L, Christensen JR, Wu X, Kissenpfennig A, Malissen B, O'Garra A. Integrated T-cell receptor and costimulatory signals determine TGF-beta-dependent differentiation and maintenance of Foxp3+ regulatory T cells. Eur J Immunol 2011;41:1242-1248.
    • (2011) Eur J Immunol , vol.41 , pp. 1242-1248
    • Gabrysova, L.1    Christensen, J.R.2    Wu, X.3    Kissenpfennig, A.4    Malissen, B.5    O'Garra, A.6
  • 202
    • 78149248752 scopus 로고    scopus 로고
    • Duration of antigen receptor signaling determines T-cell tolerance or activation
    • Katzman SD, et al. Duration of antigen receptor signaling determines T-cell tolerance or activation. Proc Natl Acad Sci USA 2010;107:18085-18090.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 18085-18090
    • Katzman, S.D.1
  • 203
    • 77955391804 scopus 로고    scopus 로고
    • TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo
    • Gottschalk RA, Corse E, Allison JP. TCR ligand density and affinity determine peripheral induction of Foxp3 in vivo. J Exp Med 2010;207:1701-1711.
    • (2010) J Exp Med , vol.207 , pp. 1701-1711
    • Gottschalk, R.A.1    Corse, E.2    Allison, J.P.3
  • 204
    • 78049236422 scopus 로고    scopus 로고
    • Induction of T cell anergy: integration of environmental cues and infectious tolerance
    • Chappert P, Schwartz RH. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Curr Opin Immunol 2010;22:552-559.
    • (2010) Curr Opin Immunol , vol.22 , pp. 552-559
    • Chappert, P.1    Schwartz, R.H.2
  • 206
    • 33846909503 scopus 로고    scopus 로고
    • A role for mammalian target of rapamycin in regulating T cell activation versus anergy
    • Zheng Y, et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J Immunol 2007;178:2163-2170.
    • (2007) J Immunol , vol.178 , pp. 2163-2170
    • Zheng, Y.1
  • 207
    • 0035889885 scopus 로고    scopus 로고
    • Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness
    • Vanasek TL, Khoruts A, Zell T, Mueller DL. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J Immunol 2001;167:5636-5644.
    • (2001) J Immunol , vol.167 , pp. 5636-5644
    • Vanasek, T.L.1    Khoruts, A.2    Zell, T.3    Mueller, D.L.4
  • 208
    • 79954623272 scopus 로고    scopus 로고
    • A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity
    • Li Q, et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 2011;34:541-553.
    • (2011) Immunity , vol.34 , pp. 541-553
    • Li, Q.1
  • 209
    • 70349232418 scopus 로고    scopus 로고
    • Memory-like CD8+ T cells generated during homeostatic proliferation defer to antigen-experienced memory cells
    • Cheung KP, Yang E, Goldrath AW. Memory-like CD8+ T cells generated during homeostatic proliferation defer to antigen-experienced memory cells. J Immunol 2009;183:3364-3372.
    • (2009) J Immunol , vol.183 , pp. 3364-3372
    • Cheung, K.P.1    Yang, E.2    Goldrath, A.W.3
  • 210
    • 0034698828 scopus 로고    scopus 로고
    • Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells
    • Cho BK, Rao VP, Ge Q, Eisen HN, Chen J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 2000;192:549-556.
    • (2000) J Exp Med , vol.192 , pp. 549-556
    • Cho, B.K.1    Rao, V.P.2    Ge, Q.3    Eisen, H.N.4    Chen, J.5
  • 211
    • 0036076114 scopus 로고    scopus 로고
    • T cell homeostatic proliferation elicits effective antitumor autoimmunity
    • Dummer W, et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 2002;110:185-192.
    • (2002) J Clin Invest , vol.110 , pp. 185-192
    • Dummer, W.1
  • 212
    • 0041975925 scopus 로고    scopus 로고
    • Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution
    • Ma J, Urba WJ, Si L, Wang Y, Fox BA, Hu HM. Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution. Eur J Immunol 2003;33:2123-2132.
    • (2003) Eur J Immunol , vol.33 , pp. 2123-2132
    • Ma, J.1    Urba, W.J.2    Si, L.3    Wang, Y.4    Fox, B.A.5    Hu, H.M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.