-
1
-
-
84876800337
-
Macrophage biology in development, homeostasis and disease
-
Wynn, T. A., A. Chawla, and J. W. Pollard. 2013. Macrophage biology in development, homeostasis and disease. Nature 496: 445-455.
-
(2013)
Nature
, vol.496
, pp. 445-455
-
-
Wynn, T.A.1
Chawla, A.2
Pollard, J.W.3
-
2
-
-
56749174940
-
Exploring the full spectrum of macrophage activation
-
Mosser, D. M., and J. P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8: 958-969.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 958-969
-
-
Mosser, D.M.1
Edwards, J.P.2
-
3
-
-
84904394690
-
Macrophage activation and polarization: Nomenclature and experimental guidelines
-
Murray, P. J., J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy, S. Goerdt, S. Gordon, J. A. Hamilton, L. B. Ivashkiv, T. Lawrence, et al. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41: 14-20.
-
(2014)
Immunity
, vol.41
, pp. 14-20
-
-
Murray, P.J.1
Allen, J.E.2
Biswas, S.K.3
Fisher, E.A.4
Gilroy, D.W.5
Goerdt, S.6
Gordon, S.7
Hamilton, J.A.8
Ivashkiv, L.B.9
Lawrence, T.10
-
4
-
-
80355146399
-
Transcriptional regulation of macrophage polarization: Enabling diversity with identity
-
Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11: 750-761.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 750-761
-
-
Lawrence, T.1
Natoli, G.2
-
5
-
-
84876758617
-
Metabolic pathways in immune cell activation and quiescence
-
Pearce, E. L., and E. J. Pearce. 2013. Metabolic pathways in immune cell activation and quiescence. Immunity 38: 633-643.
-
(2013)
Immunity
, vol.38
, pp. 633-643
-
-
Pearce, E.L.1
Pearce, E.J.2
-
6
-
-
67650074206
-
MTOR regulates memory CD8 T-cell differentiation
-
Araki, K., A. P. Turner, V. O. Shaffer, S. Gangappa, S. A. Keller, M. F. Bachmann, C. P. Larsen, and R. Ahmed. 2009. mTOR regulates memory CD8 T-cell differentiation. Nature 460: 108-112.
-
(2009)
Nature
, vol.460
, pp. 108-112
-
-
Araki, K.1
Turner, A.P.2
Shaffer, V.O.3
Gangappa, S.4
Keller, S.A.5
Bachmann, M.F.6
Larsen, C.P.7
Ahmed, R.8
-
7
-
-
0036069699
-
The CD28 signaling pathway regulates glucose metabolism
-
Frauwirth, K. A., J. L. Riley, M. H. Harris, R. V. Parry, J. C. Rathmell, D. R. Plas, R. L. Elstrom, C. H. June, and C. B. Thompson. 2002. The CD28 signaling pathway regulates glucose metabolism. Immunity 16: 769-777.
-
(2002)
Immunity
, vol.16
, pp. 769-777
-
-
Frauwirth, K.A.1
Riley, J.L.2
Harris, M.H.3
Parry, R.V.4
Rathmell, J.C.5
Plas, D.R.6
Elstrom, R.L.7
June, C.H.8
Thompson, C.B.9
-
8
-
-
84859140799
-
Metabolic pathways in T cell fate and function
-
Gerriets, V. A., and J. C. Rathmell. 2012. Metabolic pathways in T cell fate and function. Trends Immunol. 33: 168-173.
-
(2012)
Trends Immunol.
, vol.33
, pp. 168-173
-
-
Gerriets, V.A.1
Rathmell, J.C.2
-
9
-
-
84865285455
-
Metabolic switching and fuel choice during T-cell differentiation and memory development
-
van der Windt, G. J., and E. L. Pearce. 2012. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249: 27-42.
-
(2012)
Immunol. Rev.
, vol.249
, pp. 27-42
-
-
Van Der Windt, G.J.1
Pearce, E.L.2
-
10
-
-
84896654124
-
TLR-driven early glycolytic reprogramming via the kinases TBK1-IKK supports the anabolic demands of dendritic cell activation
-
Everts, B., E. Amiel, S. C. Huang, A. M. Smith, C. H. Chang, W. Y. Lam, V. Redmann, T. C. Freitas, J. Blagih, G. J. van der Windt, et al. 2014. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKK supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15: 323-332.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 323-332
-
-
Everts, B.1
Amiel, E.2
Huang, S.C.3
Smith, A.M.4
Chang, C.H.5
Lam, W.Y.6
Redmann, V.7
Freitas, T.C.8
Blagih, J.9
Vander Windt, G.J.10
-
11
-
-
84865197492
-
Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells
-
Everts, B., E. Amiel, G. J. van derWindt, T. C. Freitas, R. Chott, K. E. Yarasheski, E. L. Pearce, and E. J. Pearce. 2012. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120: 1422-1431.
-
(2012)
Blood
, vol.120
, pp. 1422-1431
-
-
Everts, B.1
Amiel, E.2
Van Derwindt, G.J.3
Freitas, T.C.4
Chott, R.5
Yarasheski, K.E.6
Pearce, E.L.7
Pearce, E.J.8
-
12
-
-
44449117540
-
Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharideinduced dendritic cell activation and function
-
Jantsch, J., D. Chakravortty, N. Turza, A. T. Prechtel, B. Buchholz, R. G. Gerlach, M. Volke, J. Gläsner, C. Warnecke, M. S. Wiesener, et al. 2008. Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharideinduced dendritic cell activation and function. J. Immunol. 180: 4697-4705.
-
(2008)
J. Immunol.
, vol.180
, pp. 4697-4705
-
-
Jantsch, J.1
Chakravortty, D.2
Turza, N.3
Prechtel, A.T.4
Buchholz, B.5
Gerlach, R.G.6
Volke, M.7
Gläsner, J.8
Warnecke, C.9
Wiesener, M.S.10
-
13
-
-
77954735369
-
Tolllike receptor-induced changes in glycolytic metabolism regulate dendritic cell activation
-
Krawczyk, C. M., T. Holowka, J. Sun, J. Blagih, E. Amiel, R. J. DeBerardinis, J. R. Cross, E. Jung, C. B. Thompson, R. G. Jones, and E. J. Pearce. 2010. Tolllike receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115: 4742-4749.
-
(2010)
Blood
, vol.115
, pp. 4742-4749
-
-
Krawczyk, C.M.1
Holowka, T.2
Sun, J.3
Blagih, J.4
Amiel, E.5
DeBerardinis, R.J.6
Cross, J.R.7
Jung, E.8
Thompson, C.B.9
Jones, R.G.10
Pearce, E.J.11
-
14
-
-
84919452312
-
Metabolic reprograming in macrophage polarization
-
Galván-Peña, S., and L. A. O'Neill. 2014. Metabolic reprograming in macrophage polarization. Front. Immunol. 5: 420.
-
(2014)
Front. Immunol.
, vol.5
, pp. 420
-
-
Galván-Peña, S.1
O'Neill, L.A.2
-
15
-
-
84859464555
-
Orchestration of metabolism by macrophages
-
Biswas, S. K., and A. Mantovani. 2012. Orchestration of metabolism by macrophages. Cell Metab. 15: 432-437.
-
(2012)
Cell Metab.
, vol.15
, pp. 432-437
-
-
Biswas, S.K.1
Mantovani, A.2
-
16
-
-
84942866021
-
Proteomic analysis reveals distinct metabolic differences between GM-CSF and M-CSF grown macrophages derived from murine bone marrow cells
-
Na, Y. R., J. H. Hong, M. Y. Lee, J. H. Jung, D. Jung, Y. W. Kim, D. Son, M. Choi, K. P. Kim, Jr., and S. H. Seok. 2015. Proteomic analysis reveals distinct metabolic differences between GM-CSF and M-CSF grown macrophages derived from murine bone marrow cells. Mol. Cell. Proteomics 14: 2722-2732.
-
(2015)
Mol. Cell. Proteomics
, vol.14
, pp. 2722-2732
-
-
Na, Y.R.1
Hong, J.H.2
Lee, M.Y.3
Jung, J.H.4
Jung, D.5
Kim, Y.W.6
Son, D.7
Choi, M.8
Kim, K.P.9
Seok, S.H.10
-
17
-
-
70349336496
-
The granulocyte-macrophage colonystimulating factor receptor: Linking its structure to cell signaling and its role in disease
-
Hercus, T. R., D. Thomas, M. A. Guthridge, P. G. Ekert, J. King-Scott, M. W. Parker, and A. F. Lopez. 2009. The granulocyte-macrophage colonystimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114: 1289-1298.
-
(2009)
Blood
, vol.114
, pp. 1289-1298
-
-
Hercus, T.R.1
Thomas, D.2
Guthridge, M.A.3
Ekert, P.G.4
King-Scott, J.5
Parker, M.W.6
Lopez, A.F.7
-
18
-
-
30344449182
-
Functions of granulocytemacrophage colony-stimulating factor
-
Fleetwood, A. J., A. D. Cook, and J. A. Hamilton. 2005. Functions of granulocytemacrophage colony-stimulating factor. Crit. Rev. Immunol. 25: 405-428.
-
(2005)
Crit. Rev. Immunol.
, vol.25
, pp. 405-428
-
-
Fleetwood, A.J.1
Cook, A.D.2
Hamilton, J.A.3
-
19
-
-
0025881348
-
Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro
-
Nakata, K., K. S. Akagawa, M. Fukayama, Y. Hayashi, M. Kadokura, and T. Tokunaga. 1991. Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro. J. Immunol. 147: 1266-1272.
-
(1991)
J. Immunol.
, vol.147
, pp. 1266-1272
-
-
Nakata, K.1
Akagawa, K.S.2
Fukayama, M.3
Hayashi, Y.4
Kadokura, M.5
Tokunaga, T.6
-
20
-
-
46249090513
-
Colony-stimulating factors in inflammation and autoimmunity
-
Hamilton, J. A. 2008. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8: 533-544.
-
(2008)
Nat. Rev. Immunol.
, vol.8
, pp. 533-544
-
-
Hamilton, J.A.1
-
21
-
-
84862016400
-
The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism
-
Haschemi, A., P. Kosma, L. Gille, C. R. Evans, C. F. Burant, P. Starkl, B. Knapp, R. Haas, J. A. Schmid, C. Jandl, et al. 2012. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 15: 813-826.
-
(2012)
Cell Metab.
, vol.15
, pp. 813-826
-
-
Haschemi, A.1
Kosma, P.2
Gille, L.3
Evans, C.R.4
Burant, C.F.5
Starkl, P.6
Knapp, B.7
Haas, R.8
Schmid, J.A.9
Jandl, C.10
-
22
-
-
51249119001
-
Molecular imaging of murine intestinal inflammation with 2-deoxy-2-[18F]fluoro-D-glucose and positron emission tomography
-
Brewer, S., M. McPherson, D. Fujiwara, O. Turovskaya, D. Ziring, L. Chen, H. Takedatsu, S. R. Targan, B. Wei, and J. Braun. 2008. Molecular imaging of murine intestinal inflammation with 2-deoxy-2-[18F]fluoro-D-glucose and positron emission tomography. Gastroenterology 135: 744-755.
-
(2008)
Gastroenterology
, vol.135
, pp. 744-755
-
-
Brewer, S.1
McPherson, M.2
Fujiwara, D.3
Turovskaya, O.4
Ziring, D.5
Chen, L.6
Takedatsu, H.7
Targan, S.R.8
Wei, B.9
Braun, J.10
-
23
-
-
34247124840
-
Granulocytemacrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: Implications for CSF blockade in inflammation
-
Fleetwood, A. J., T. Lawrence, J. A. Hamilton, and A. D. Cook. 2007. Granulocytemacrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178: 5245-5252.
-
(2007)
J. Immunol.
, vol.178
, pp. 5245-5252
-
-
Fleetwood, A.J.1
Lawrence, T.2
Hamilton, J.A.3
Cook, A.D.4
-
24
-
-
84862104611
-
Defining GM-CSF-and macrophage-CSF-dependent macrophage responses by in vitro models
-
Lacey, D. C., A. Achuthan, A. J. Fleetwood, H. Dinh, J. Roiniotis, G. M. Scholz, M. W. Chang, S. K. Beckman, A. D. Cook, and J. A. Hamilton. 2012. Defining GM-CSF-and macrophage-CSF-dependent macrophage responses by in vitro models. J. Immunol. 188: 5752-5765.
-
(2012)
J. Immunol.
, vol.188
, pp. 5752-5765
-
-
Lacey, D.C.1
Achuthan, A.2
Fleetwood, A.J.3
Dinh, H.4
Roiniotis, J.5
Scholz, G.M.6
Chang, M.W.7
Beckman, S.K.8
Cook, A.D.9
Hamilton, J.A.10
-
25
-
-
84896269174
-
Metabolic reprogramming of macrophages: Glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype
-
Freemerman, A. J., A. R. Johnson, G. N. Sacks, J. J. Milner, E. L. Kirk, M. A. Troester, A. N. Macintyre, P. Goraksha-Hicks, J. C. Rathmell, and L. Makowski. 2014. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289: 7884-7896.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 7884-7896
-
-
Freemerman, A.J.1
Johnson, A.R.2
Sacks, G.N.3
Milner, J.J.4
Kirk, E.L.5
Troester, M.A.6
Macintyre, A.N.7
Goraksha-Hicks, P.8
Rathmell, J.C.9
Makowski, L.10
-
26
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang, R., C. P. Dillon, L. Z. Shi, S. Milasta, R. Carter, D. Finkelstein, L. L. McCormick, P. Fitzgerald, H. Chi, J. Munger, and D. R. Green. 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35: 871-882.
-
(2011)
Immunity
, vol.35
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
Milasta, S.4
Carter, R.5
Finkelstein, D.6
McCormick, L.L.7
Fitzgerald, P.8
Chi, H.9
Munger, J.10
Green, D.R.11
-
27
-
-
33748171960
-
The c-Myc target gene network
-
Dang, C. V., K. A. O'Donnell, K. I. Zeller, T. Nguyen, R. C. Osthus, and F. Li. 2006. The c-Myc target gene network. Semin. Cancer Biol. 16: 253-264.
-
(2006)
Semin. Cancer Biol.
, vol.16
, pp. 253-264
-
-
Dang, C.V.1
O'Donnell, K.A.2
Zeller, K.I.3
Nguyen, T.4
Osthus, R.C.5
Li, F.6
-
28
-
-
54349087788
-
Myc's broad reach
-
Eilers, M., and R. N. Eisenman. 2008. Myc's broad reach. Genes Dev. 22: 2755-2766.
-
(2008)
Genes Dev.
, vol.22
, pp. 2755-2766
-
-
Eilers, M.1
Eisenman, R.N.2
-
29
-
-
84874271196
-
MTOR, linking metabolism and immunity
-
Xu, X., L. Ye, K. Araki, and R. Ahmed. 2012. mTOR, linking metabolism and immunity. Semin. Immunol. 24: 429-435.
-
(2012)
Semin. Immunol.
, vol.24
, pp. 429-435
-
-
Xu, X.1
Ye, L.2
Araki, K.3
Ahmed, R.4
-
30
-
-
0035843962
-
Structural mechanism for statin inhibition of HMG-CoA reductase
-
Istvan, E. S., and J. Deisenhofer. 2001. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292: 1160-1164.
-
(2001)
Science
, vol.292
, pp. 1160-1164
-
-
Istvan, E.S.1
Deisenhofer, J.2
-
31
-
-
84906706657
-
Gadolinium chloride improves the course of TNBS and DSS-induced colitis through protecting against colonic mucosal inflammation
-
Du, C., P. Wang, Y. Yu, F. Chen, J. Liu, and Y. Li. 2014. Gadolinium chloride improves the course of TNBS and DSS-induced colitis through protecting against colonic mucosal inflammation. Sci. Rep. 4: 6096.
-
(2014)
Sci. Rep.
, vol.4
, pp. 6096
-
-
Du, C.1
Wang, P.2
Yu, Y.3
Chen, F.4
Liu, J.5
Li, Y.6
-
32
-
-
84870770105
-
Systemic macrophage depletion inhibits Helicobacter bilis-induced proinflammatory cytokine-mediated typhlocolitis and impairs bacterial colonization dynamics in a BALB/c Rag2-/-mouse model of inflammatory bowel disease
-
Muthupalani, S., Z. Ge, Y. Feng, B. Rickman, M. Mobley, A. McCabe, N. Van Rooijen, and J. G. Fox. 2012. Systemic macrophage depletion inhibits Helicobacter bilis-induced proinflammatory cytokine-mediated typhlocolitis and impairs bacterial colonization dynamics in a BALB/c Rag2-/-mouse model of inflammatory bowel disease. Infect. Immun. 80: 4388-4397.
-
(2012)
Infect. Immun.
, vol.80
, pp. 4388-4397
-
-
Muthupalani, S.1
Ge, Z.2
Feng, Y.3
Rickman, B.4
Mobley, M.5
McCabe, A.6
Van Rooijen, N.7
Fox, J.G.8
-
33
-
-
34547580590
-
HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation
-
Gordan, J. D., C. B. Thompson, andM. C. Simon. 2007. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12: 108-113.
-
(2007)
Cancer Cell
, vol.12
, pp. 108-113
-
-
Gordan, J.D.1
Thompson, C.B.2
Simon, M.C.3
-
34
-
-
76249110471
-
Rethinking the Warburg effect with Myc micromanaging glutamine metabolism
-
Dang, C. V. 2010. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 70: 859-862.
-
(2010)
Cancer Res.
, vol.70
, pp. 859-862
-
-
Dang, C.V.1
-
35
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1b through HIF-1a
-
Tannahill, G. M., A. M. Curtis, J. Adamik, E. M. Palsson-McDermott, A. F. McGettrick, G. Goel, C. Frezza, N. J. Bernard, B. Kelly, N. H. Foley, et al. 2013. Succinate is an inflammatory signal that induces IL-1b through HIF-1a. Nature 496: 238-242.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
Palsson-McDermott, E.M.4
McGettrick, A.F.5
Goel, G.6
Frezza, C.7
Bernard, N.J.8
Kelly, B.9
Foley, N.H.10
-
36
-
-
36049008500
-
Macrophage NADPH oxidase activation, impaired cholesterol fluxes, and increased cholesterol biosynthesis in diabetic mice: A stimulatory role for D-glucose
-
Hayek, T., M. Kaplan, R. Kerry, and M. Aviram. 2007. Macrophage NADPH oxidase activation, impaired cholesterol fluxes, and increased cholesterol biosynthesis in diabetic mice: a stimulatory role for D-glucose. Atherosclerosis 195: 277-286.
-
(2007)
Atherosclerosis
, vol.195
, pp. 277-286
-
-
Hayek, T.1
Kaplan, M.2
Kerry, R.3
Aviram, M.4
-
37
-
-
58149354540
-
High glucose concentration increases macrophage cholesterol biosynthesis in diabetes through activation of the sterol regulatory element binding protein 1 (SREBP1): Inhibitory effect of insulin
-
Kaplan, M., R. Kerry, M. Aviram, and T. Hayek. 2008. High glucose concentration increases macrophage cholesterol biosynthesis in diabetes through activation of the sterol regulatory element binding protein 1 (SREBP1): inhibitory effect of insulin. J. Cardiovasc. Pharmacol. 52: 324-332.
-
(2008)
J. Cardiovasc. Pharmacol.
, vol.52
, pp. 324-332
-
-
Kaplan, M.1
Kerry, R.2
Aviram, M.3
Hayek, T.4
-
38
-
-
0037044831
-
Glucosedependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin
-
O'Rourke, L., L. M. Gronning, S. J. Yeaman, and P. R. Shepherd. 2002. Glucosedependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin. J. Biol. Chem. 277: 42557-42562.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 42557-42562
-
-
O'Rourke, L.1
Gronning, L.M.2
Yeaman, S.J.3
Shepherd, P.R.4
-
39
-
-
26244464326
-
PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP
-
Porstmann, T., B. Griffiths, Y. L. Chung, O. Delpuech, J. R. Griffiths, J. Downward, and A. Schulze. 2005. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24: 6465-6481.
-
(2005)
Oncogene
, vol.24
, pp. 6465-6481
-
-
Porstmann, T.1
Griffiths, B.2
Chung, Y.L.3
Delpuech, O.4
Griffiths, J.R.5
Downward, J.6
Schulze, A.7
-
40
-
-
0031438501
-
Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages
-
Pahan, K., F. G. Sheikh, A. M. Namboodiri, and I. Singh. 1997. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest. 100: 2671-2679.
-
(1997)
J. Clin. Invest.
, vol.100
, pp. 2671-2679
-
-
Pahan, K.1
Sheikh, F.G.2
Namboodiri, A.M.3
Singh, I.4
-
41
-
-
0037451121
-
Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin
-
Aktas, O., S. Waiczies, A. Smorodchenko, J. Dorr, B. Seeger, T. Prozorovski, S. Sallach, M. Endres, S. Brocke, R. Nitsch, and F. Zipp. 2003. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J. Exp. Med. 197: 725-733.
-
(2003)
J. Exp. Med.
, vol.197
, pp. 725-733
-
-
Aktas, O.1
Waiczies, S.2
Smorodchenko, A.3
Dorr, J.4
Seeger, B.5
Prozorovski, T.6
Sallach, S.7
Endres, M.8
Brocke, S.9
Nitsch, R.10
Zipp, F.11
-
42
-
-
0037038402
-
The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease
-
Youssef, S., O. Stüve, J. C. Patarroyo, P. J. Ruiz, J. L. Radosevich, E. M. Hur, M. Bravo, D. J. Mitchell, R. A. Sobel, L. Steinman, and S. S. Zamvil. 2002. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420: 78-84.
-
(2002)
Nature
, vol.420
, pp. 78-84
-
-
Youssef, S.1
Stüve, O.2
Patarroyo, J.C.3
Ruiz, P.J.4
Radosevich, J.L.5
Hur, E.M.6
Bravo, M.7
Mitchell, D.J.8
Sobel, R.A.9
Steinman, L.10
Zamvil, S.S.11
-
43
-
-
79955632319
-
Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a
-
Im, S. S., L. Yousef, C. Blaschitz, J. Z. Liu, R. A. Edwards, S. G. Young, M. Raffatellu, and T. F. Osborne. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13: 540-549.
-
(2011)
Cell Metab.
, vol.13
, pp. 540-549
-
-
Im, S.S.1
Yousef, L.2
Blaschitz, C.3
Liu, J.Z.4
Edwards, R.A.5
Young, S.G.6
Raffatellu, M.7
Osborne, T.F.8
-
44
-
-
0029898894
-
Protein prenylation: Molecular mechanisms and functional consequences
-
Zhang, F. L., and P. J. Casey. 1996. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65: 241-269.
-
(1996)
Annu. Rev. Biochem.
, vol.65
, pp. 241-269
-
-
Zhang, F.L.1
Casey, P.J.2
|