메뉴 건너뛰기




Volumn 197, Issue 10, 2016, Pages 4101-4109

GM-CSF induces inflammatory macrophages by regulating glycolysis and lipid metabolism

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A; DEOXYGLUCOSE; DEXTRAN SULFATE; FLUORODEOXYGLUCOSE F 18; GLUCOSE TRANSPORTER 1; GLUCOSE TRANSPORTER 3; GLUCOSE TRANSPORTER 4; GRANULOCYTE MACROPHAGE COLONY STIMULATING FACTOR; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; INTERLEUKIN 12P40; INTERLEUKIN 12P70; INTERLEUKIN 1BETA; INTERLEUKIN 6; LIPOPOLYSACCHARIDE; MEVALONIC ACID; MYC PROTEIN; TUMOR NECROSIS FACTOR; CYTOKINE; HYDROXYMETHYLGUTARYL-COA HYDROLASE; SLC2A1 PROTEIN, MOUSE; THIOL ESTER HYDROLASE;

EID: 84994452826     PISSN: 00221767     EISSN: 15506606     Source Type: Journal    
DOI: 10.4049/jimmunol.1600745     Document Type: Article
Times cited : (72)

References (44)
  • 1
    • 84876800337 scopus 로고    scopus 로고
    • Macrophage biology in development, homeostasis and disease
    • Wynn, T. A., A. Chawla, and J. W. Pollard. 2013. Macrophage biology in development, homeostasis and disease. Nature 496: 445-455.
    • (2013) Nature , vol.496 , pp. 445-455
    • Wynn, T.A.1    Chawla, A.2    Pollard, J.W.3
  • 2
    • 56749174940 scopus 로고    scopus 로고
    • Exploring the full spectrum of macrophage activation
    • Mosser, D. M., and J. P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8: 958-969.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 958-969
    • Mosser, D.M.1    Edwards, J.P.2
  • 4
    • 80355146399 scopus 로고    scopus 로고
    • Transcriptional regulation of macrophage polarization: Enabling diversity with identity
    • Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11: 750-761.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 750-761
    • Lawrence, T.1    Natoli, G.2
  • 5
    • 84876758617 scopus 로고    scopus 로고
    • Metabolic pathways in immune cell activation and quiescence
    • Pearce, E. L., and E. J. Pearce. 2013. Metabolic pathways in immune cell activation and quiescence. Immunity 38: 633-643.
    • (2013) Immunity , vol.38 , pp. 633-643
    • Pearce, E.L.1    Pearce, E.J.2
  • 8
    • 84859140799 scopus 로고    scopus 로고
    • Metabolic pathways in T cell fate and function
    • Gerriets, V. A., and J. C. Rathmell. 2012. Metabolic pathways in T cell fate and function. Trends Immunol. 33: 168-173.
    • (2012) Trends Immunol. , vol.33 , pp. 168-173
    • Gerriets, V.A.1    Rathmell, J.C.2
  • 9
    • 84865285455 scopus 로고    scopus 로고
    • Metabolic switching and fuel choice during T-cell differentiation and memory development
    • van der Windt, G. J., and E. L. Pearce. 2012. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249: 27-42.
    • (2012) Immunol. Rev. , vol.249 , pp. 27-42
    • Van Der Windt, G.J.1    Pearce, E.L.2
  • 14
    • 84919452312 scopus 로고    scopus 로고
    • Metabolic reprograming in macrophage polarization
    • Galván-Peña, S., and L. A. O'Neill. 2014. Metabolic reprograming in macrophage polarization. Front. Immunol. 5: 420.
    • (2014) Front. Immunol. , vol.5 , pp. 420
    • Galván-Peña, S.1    O'Neill, L.A.2
  • 15
    • 84859464555 scopus 로고    scopus 로고
    • Orchestration of metabolism by macrophages
    • Biswas, S. K., and A. Mantovani. 2012. Orchestration of metabolism by macrophages. Cell Metab. 15: 432-437.
    • (2012) Cell Metab. , vol.15 , pp. 432-437
    • Biswas, S.K.1    Mantovani, A.2
  • 16
    • 84942866021 scopus 로고    scopus 로고
    • Proteomic analysis reveals distinct metabolic differences between GM-CSF and M-CSF grown macrophages derived from murine bone marrow cells
    • Na, Y. R., J. H. Hong, M. Y. Lee, J. H. Jung, D. Jung, Y. W. Kim, D. Son, M. Choi, K. P. Kim, Jr., and S. H. Seok. 2015. Proteomic analysis reveals distinct metabolic differences between GM-CSF and M-CSF grown macrophages derived from murine bone marrow cells. Mol. Cell. Proteomics 14: 2722-2732.
    • (2015) Mol. Cell. Proteomics , vol.14 , pp. 2722-2732
    • Na, Y.R.1    Hong, J.H.2    Lee, M.Y.3    Jung, J.H.4    Jung, D.5    Kim, Y.W.6    Son, D.7    Choi, M.8    Kim, K.P.9    Seok, S.H.10
  • 17
    • 70349336496 scopus 로고    scopus 로고
    • The granulocyte-macrophage colonystimulating factor receptor: Linking its structure to cell signaling and its role in disease
    • Hercus, T. R., D. Thomas, M. A. Guthridge, P. G. Ekert, J. King-Scott, M. W. Parker, and A. F. Lopez. 2009. The granulocyte-macrophage colonystimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood 114: 1289-1298.
    • (2009) Blood , vol.114 , pp. 1289-1298
    • Hercus, T.R.1    Thomas, D.2    Guthridge, M.A.3    Ekert, P.G.4    King-Scott, J.5    Parker, M.W.6    Lopez, A.F.7
  • 18
    • 30344449182 scopus 로고    scopus 로고
    • Functions of granulocytemacrophage colony-stimulating factor
    • Fleetwood, A. J., A. D. Cook, and J. A. Hamilton. 2005. Functions of granulocytemacrophage colony-stimulating factor. Crit. Rev. Immunol. 25: 405-428.
    • (2005) Crit. Rev. Immunol. , vol.25 , pp. 405-428
    • Fleetwood, A.J.1    Cook, A.D.2    Hamilton, J.A.3
  • 19
    • 0025881348 scopus 로고
    • Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro
    • Nakata, K., K. S. Akagawa, M. Fukayama, Y. Hayashi, M. Kadokura, and T. Tokunaga. 1991. Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro. J. Immunol. 147: 1266-1272.
    • (1991) J. Immunol. , vol.147 , pp. 1266-1272
    • Nakata, K.1    Akagawa, K.S.2    Fukayama, M.3    Hayashi, Y.4    Kadokura, M.5    Tokunaga, T.6
  • 20
    • 46249090513 scopus 로고    scopus 로고
    • Colony-stimulating factors in inflammation and autoimmunity
    • Hamilton, J. A. 2008. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8: 533-544.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 533-544
    • Hamilton, J.A.1
  • 23
    • 34247124840 scopus 로고    scopus 로고
    • Granulocytemacrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: Implications for CSF blockade in inflammation
    • Fleetwood, A. J., T. Lawrence, J. A. Hamilton, and A. D. Cook. 2007. Granulocytemacrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178: 5245-5252.
    • (2007) J. Immunol. , vol.178 , pp. 5245-5252
    • Fleetwood, A.J.1    Lawrence, T.2    Hamilton, J.A.3    Cook, A.D.4
  • 28
    • 54349087788 scopus 로고    scopus 로고
    • Myc's broad reach
    • Eilers, M., and R. N. Eisenman. 2008. Myc's broad reach. Genes Dev. 22: 2755-2766.
    • (2008) Genes Dev. , vol.22 , pp. 2755-2766
    • Eilers, M.1    Eisenman, R.N.2
  • 29
    • 84874271196 scopus 로고    scopus 로고
    • MTOR, linking metabolism and immunity
    • Xu, X., L. Ye, K. Araki, and R. Ahmed. 2012. mTOR, linking metabolism and immunity. Semin. Immunol. 24: 429-435.
    • (2012) Semin. Immunol. , vol.24 , pp. 429-435
    • Xu, X.1    Ye, L.2    Araki, K.3    Ahmed, R.4
  • 30
    • 0035843962 scopus 로고    scopus 로고
    • Structural mechanism for statin inhibition of HMG-CoA reductase
    • Istvan, E. S., and J. Deisenhofer. 2001. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292: 1160-1164.
    • (2001) Science , vol.292 , pp. 1160-1164
    • Istvan, E.S.1    Deisenhofer, J.2
  • 31
    • 84906706657 scopus 로고    scopus 로고
    • Gadolinium chloride improves the course of TNBS and DSS-induced colitis through protecting against colonic mucosal inflammation
    • Du, C., P. Wang, Y. Yu, F. Chen, J. Liu, and Y. Li. 2014. Gadolinium chloride improves the course of TNBS and DSS-induced colitis through protecting against colonic mucosal inflammation. Sci. Rep. 4: 6096.
    • (2014) Sci. Rep. , vol.4 , pp. 6096
    • Du, C.1    Wang, P.2    Yu, Y.3    Chen, F.4    Liu, J.5    Li, Y.6
  • 32
    • 84870770105 scopus 로고    scopus 로고
    • Systemic macrophage depletion inhibits Helicobacter bilis-induced proinflammatory cytokine-mediated typhlocolitis and impairs bacterial colonization dynamics in a BALB/c Rag2-/-mouse model of inflammatory bowel disease
    • Muthupalani, S., Z. Ge, Y. Feng, B. Rickman, M. Mobley, A. McCabe, N. Van Rooijen, and J. G. Fox. 2012. Systemic macrophage depletion inhibits Helicobacter bilis-induced proinflammatory cytokine-mediated typhlocolitis and impairs bacterial colonization dynamics in a BALB/c Rag2-/-mouse model of inflammatory bowel disease. Infect. Immun. 80: 4388-4397.
    • (2012) Infect. Immun. , vol.80 , pp. 4388-4397
    • Muthupalani, S.1    Ge, Z.2    Feng, Y.3    Rickman, B.4    Mobley, M.5    McCabe, A.6    Van Rooijen, N.7    Fox, J.G.8
  • 33
    • 34547580590 scopus 로고    scopus 로고
    • HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation
    • Gordan, J. D., C. B. Thompson, andM. C. Simon. 2007. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12: 108-113.
    • (2007) Cancer Cell , vol.12 , pp. 108-113
    • Gordan, J.D.1    Thompson, C.B.2    Simon, M.C.3
  • 34
    • 76249110471 scopus 로고    scopus 로고
    • Rethinking the Warburg effect with Myc micromanaging glutamine metabolism
    • Dang, C. V. 2010. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 70: 859-862.
    • (2010) Cancer Res. , vol.70 , pp. 859-862
    • Dang, C.V.1
  • 36
    • 36049008500 scopus 로고    scopus 로고
    • Macrophage NADPH oxidase activation, impaired cholesterol fluxes, and increased cholesterol biosynthesis in diabetic mice: A stimulatory role for D-glucose
    • Hayek, T., M. Kaplan, R. Kerry, and M. Aviram. 2007. Macrophage NADPH oxidase activation, impaired cholesterol fluxes, and increased cholesterol biosynthesis in diabetic mice: a stimulatory role for D-glucose. Atherosclerosis 195: 277-286.
    • (2007) Atherosclerosis , vol.195 , pp. 277-286
    • Hayek, T.1    Kaplan, M.2    Kerry, R.3    Aviram, M.4
  • 37
    • 58149354540 scopus 로고    scopus 로고
    • High glucose concentration increases macrophage cholesterol biosynthesis in diabetes through activation of the sterol regulatory element binding protein 1 (SREBP1): Inhibitory effect of insulin
    • Kaplan, M., R. Kerry, M. Aviram, and T. Hayek. 2008. High glucose concentration increases macrophage cholesterol biosynthesis in diabetes through activation of the sterol regulatory element binding protein 1 (SREBP1): inhibitory effect of insulin. J. Cardiovasc. Pharmacol. 52: 324-332.
    • (2008) J. Cardiovasc. Pharmacol. , vol.52 , pp. 324-332
    • Kaplan, M.1    Kerry, R.2    Aviram, M.3    Hayek, T.4
  • 38
    • 0037044831 scopus 로고    scopus 로고
    • Glucosedependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin
    • O'Rourke, L., L. M. Gronning, S. J. Yeaman, and P. R. Shepherd. 2002. Glucosedependent regulation of cholesterol ester metabolism in macrophages by insulin and leptin. J. Biol. Chem. 277: 42557-42562.
    • (2002) J. Biol. Chem. , vol.277 , pp. 42557-42562
    • O'Rourke, L.1    Gronning, L.M.2    Yeaman, S.J.3    Shepherd, P.R.4
  • 39
    • 26244464326 scopus 로고    scopus 로고
    • PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP
    • Porstmann, T., B. Griffiths, Y. L. Chung, O. Delpuech, J. R. Griffiths, J. Downward, and A. Schulze. 2005. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24: 6465-6481.
    • (2005) Oncogene , vol.24 , pp. 6465-6481
    • Porstmann, T.1    Griffiths, B.2    Chung, Y.L.3    Delpuech, O.4    Griffiths, J.R.5    Downward, J.6    Schulze, A.7
  • 40
    • 0031438501 scopus 로고    scopus 로고
    • Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages
    • Pahan, K., F. G. Sheikh, A. M. Namboodiri, and I. Singh. 1997. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest. 100: 2671-2679.
    • (1997) J. Clin. Invest. , vol.100 , pp. 2671-2679
    • Pahan, K.1    Sheikh, F.G.2    Namboodiri, A.M.3    Singh, I.4
  • 43
    • 79955632319 scopus 로고    scopus 로고
    • Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a
    • Im, S. S., L. Yousef, C. Blaschitz, J. Z. Liu, R. A. Edwards, S. G. Young, M. Raffatellu, and T. F. Osborne. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13: 540-549.
    • (2011) Cell Metab. , vol.13 , pp. 540-549
    • Im, S.S.1    Yousef, L.2    Blaschitz, C.3    Liu, J.Z.4    Edwards, R.A.5    Young, S.G.6    Raffatellu, M.7    Osborne, T.F.8
  • 44
    • 0029898894 scopus 로고    scopus 로고
    • Protein prenylation: Molecular mechanisms and functional consequences
    • Zhang, F. L., and P. J. Casey. 1996. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65: 241-269.
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 241-269
    • Zhang, F.L.1    Casey, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.