메뉴 건너뛰기




Volumn 26, Issue 2, 2016, Pages 148-159

TOR Complexes and the Maintenance of Cellular Homeostasis

Author keywords

Eisosome; Growth; Homeostasis; Membrane tension; Osmotic control; Sphingolipid; Target Of Rapamycin (TOR)

Indexed keywords

CERAMIDE; GLYCEROL; LIPID; PROTEIN KINASE; PROTEIN SERINE THREONINE KINASE; RAPAMYCIN; SPHINGOLIPID; TARGET OF RAPAMYCIN COMPLEX; TARGET OF RAPAMYCIN COMPLEX 1; TARGET OF RAPAMYCIN COMPLEX 2; TARGET OF RAPAMYCIN KINASE; UNCLASSIFIED DRUG; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MULTIPROTEIN COMPLEX; TOR COMPLEX 2;

EID: 84957587533     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.10.003     Document Type: Review
Times cited : (148)

References (100)
  • 1
    • 77956886751 scopus 로고    scopus 로고
    • Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom
    • Shertz C.A., et al. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 2010, 11:510.
    • (2010) BMC Genomics , vol.11 , pp. 510
    • Shertz, C.A.1
  • 2
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • Heitman J., et al. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253:905-909.
    • (1991) Science , vol.253 , pp. 905-909
    • Heitman, J.1
  • 3
    • 84940653986 scopus 로고    scopus 로고
    • Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the Baker's yeast lineage
    • Marcet-Houben M., Gabaldon T. Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the Baker's yeast lineage. PLoS Biol. 2015, 13:e1002220.
    • (2015) PLoS Biol. , vol.13 , pp. e1002220
    • Marcet-Houben, M.1    Gabaldon, T.2
  • 4
    • 0036753494 scopus 로고    scopus 로고
    • Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
    • Loewith R., et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 2002, 10:457-468.
    • (2002) Mol. Cell , vol.10 , pp. 457-468
    • Loewith, R.1
  • 5
    • 0037178781 scopus 로고    scopus 로고
    • Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    • Hara K., et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110:177-189.
    • (2002) Cell , vol.110 , pp. 177-189
    • Hara, K.1
  • 6
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004, 6:1122-1128.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 1122-1128
    • Jacinto, E.1
  • 7
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim D.H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.H.1
  • 8
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov D.D., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14:1296-1302.
    • (2004) Curr. Biol. , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 9
    • 0029842109 scopus 로고    scopus 로고
    • Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
    • Choi J., et al. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996, 273:239-242.
    • (1996) Science , vol.273 , pp. 239-242
    • Choi, J.1
  • 10
    • 13044309479 scopus 로고    scopus 로고
    • Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 A resolution
    • Liang J., et al. Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 A resolution. Acta Crystallogr. D Biol. Crystallogr. 1999, 55:736-744.
    • (1999) Acta Crystallogr. D Biol. Crystallogr. , vol.55 , pp. 736-744
    • Liang, J.1
  • 11
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human mTOR complex I and its implications for rapamycin inhibition
    • Yip C.K., et al. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 2010, 38:768-774.
    • (2010) Mol. Cell , vol.38 , pp. 768-774
    • Yip, C.K.1
  • 12
    • 84877761058 scopus 로고    scopus 로고
    • MTOR kinase structure, mechanism and regulation
    • Yang H., et al. mTOR kinase structure, mechanism and regulation. Nature 2013, 497:217-223.
    • (2013) Nature , vol.497 , pp. 217-223
    • Yang, H.1
  • 13
    • 84880709668 scopus 로고    scopus 로고
    • MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
    • Kang S.A., et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 2013, 341:1236566.
    • (2013) Science , vol.341 , pp. 1236566
    • Kang, S.A.1
  • 14
    • 84907993261 scopus 로고    scopus 로고
    • Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric mTOR inhibitors
    • Hassan B., et al. Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric mTOR inhibitors. Oncotarget 2014, 5:8544-8557.
    • (2014) Oncotarget , vol.5 , pp. 8544-8557
    • Hassan, B.1
  • 15
    • 84913556111 scopus 로고    scopus 로고
    • Delineating the mTOR kinase pathway using a dual TORC1/2 inhibitor AZD8055, in multiple myeloma
    • Cirstea D., et al. Delineating the mTOR kinase pathway using a dual TORC1/2 inhibitor AZD8055, in multiple myeloma. Mol. Cancer Ther. 2014, 13:2489-2500.
    • (2014) Mol. Cancer Ther. , vol.13 , pp. 2489-2500
    • Cirstea, D.1
  • 16
    • 84930363624 scopus 로고    scopus 로고
    • MTOR signaling in cellular and organismal energetics
    • Albert V., Hall M.N. mTOR signaling in cellular and organismal energetics. Curr. Opin. Cell Biol. 2015, 33:55-66.
    • (2015) Curr. Opin. Cell Biol. , vol.33 , pp. 55-66
    • Albert, V.1    Hall, M.N.2
  • 17
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 18
    • 84937633778 scopus 로고    scopus 로고
    • Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2
    • Gaubitz C., et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell 2015, 58:977-988.
    • (2015) Mol. Cell , vol.58 , pp. 977-988
    • Gaubitz, C.1
  • 19
    • 34249813098 scopus 로고    scopus 로고
    • Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
    • Urban J., et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 2007, 26:663-674.
    • (2007) Mol. Cell , vol.26 , pp. 663-674
    • Urban, J.1
  • 20
    • 63749117393 scopus 로고    scopus 로고
    • TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain
    • Berchtold D., Walther T.C. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 2009, 20:1565-1575.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1565-1575
    • Berchtold, D.1    Walther, T.C.2
  • 21
    • 69749113579 scopus 로고    scopus 로고
    • The Vam6 GEF controls TORC1 by activating the EGO complex
    • Binda M., et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 2009, 35:563-573.
    • (2009) Mol. Cell , vol.35 , pp. 563-573
    • Binda, M.1
  • 22
    • 54249110478 scopus 로고    scopus 로고
    • TOR1 and TOR2 have distinct locations in live cells
    • Sturgill T.W., et al. TOR1 and TOR2 have distinct locations in live cells. Eukaryot. Cell 2008, 7:1819-1830.
    • (2008) Eukaryot. Cell , vol.7 , pp. 1819-1830
    • Sturgill, T.W.1
  • 23
    • 84884889883 scopus 로고    scopus 로고
    • SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation
    • Panchaud N., et al. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 2013, 12:2948-2952.
    • (2013) Cell Cycle , vol.12 , pp. 2948-2952
    • Panchaud, N.1
  • 24
    • 84875423993 scopus 로고    scopus 로고
    • Amino acid signalling upstream of mTOR
    • Jewell J.L., et al. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14:133-139.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 133-139
    • Jewell, J.L.1
  • 25
    • 48649085816 scopus 로고    scopus 로고
    • Regulation of TORC1 by Rag GTPases in nutrient response
    • Kim E., et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10:935-945.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 935-945
    • Kim, E.1
  • 26
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 27
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y., et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1
  • 28
    • 0034644525 scopus 로고    scopus 로고
    • TOR, a central controller of cell growth
    • Schmelzle T., Hall M.N. TOR, a central controller of cell growth. Cell 2000, 103:253-262.
    • (2000) Cell , vol.103 , pp. 253-262
    • Schmelzle, T.1    Hall, M.N.2
  • 29
    • 83455177213 scopus 로고    scopus 로고
    • Target of rapamycin (TOR) in nutrient signaling and growth control
    • Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189:1177-1201.
    • (2011) Genetics , vol.189 , pp. 1177-1201
    • Loewith, R.1    Hall, M.N.2
  • 30
    • 69249240179 scopus 로고    scopus 로고
    • Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis
    • Huber A., et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 2009, 23:1929-1943.
    • (2009) Genes Dev. , vol.23 , pp. 1929-1943
    • Huber, A.1
  • 31
    • 27144510561 scopus 로고    scopus 로고
    • Translational regulation of GCN4 and the general amino acid control of yeast
    • Hinnebusch A.G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 2005, 59:407-450.
    • (2005) Annu. Rev. Microbiol. , vol.59 , pp. 407-450
    • Hinnebusch, A.G.1
  • 32
    • 70549086622 scopus 로고    scopus 로고
    • Growth control and ribosome biogenesis
    • Lempiainen H., Shore D. Growth control and ribosome biogenesis. Curr. Opin. Cell Biol. 2009, 21:855-863.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 855-863
    • Lempiainen, H.1    Shore, D.2
  • 33
    • 62549119989 scopus 로고    scopus 로고
    • Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling
    • Lempiainen H., et al. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol. Cell 2009, 33:704-716.
    • (2009) Mol. Cell , vol.33 , pp. 704-716
    • Lempiainen, H.1
  • 34
    • 0033049424 scopus 로고    scopus 로고
    • Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities
    • Khaleghpour K., et al. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol. Cell. Biol. 1999, 19:4302-4310.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4302-4310
    • Khaleghpour, K.1
  • 35
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell R.C., et al. Autophagy regulation by nutrient signaling. Cell Res. 2014, 24:42-57.
    • (2014) Cell Res. , vol.24 , pp. 42-57
    • Russell, R.C.1
  • 36
    • 84929502727 scopus 로고    scopus 로고
    • How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy
    • Feng Y., et al. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015, 25:354-363.
    • (2015) Trends Cell Biol. , vol.25 , pp. 354-363
    • Feng, Y.1
  • 37
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465:942-946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1
  • 38
    • 79961113595 scopus 로고    scopus 로고
    • Bidirectional regulation between TORC1 and autophagy in Saccharomyces cerevisiae
    • Shin C.S., Huh W.K. Bidirectional regulation between TORC1 and autophagy in Saccharomyces cerevisiae. Autophagy 2011, 7:854-862.
    • (2011) Autophagy , vol.7 , pp. 854-862
    • Shin, C.S.1    Huh, W.K.2
  • 39
    • 33947369047 scopus 로고    scopus 로고
    • Permeases recycle amino acids resulting from autophagy
    • Yang Z., Klionsky D.J. Permeases recycle amino acids resulting from autophagy. Autophagy 2007, 3:149-150.
    • (2007) Autophagy , vol.3 , pp. 149-150
    • Yang, Z.1    Klionsky, D.J.2
  • 40
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • Roczniak-Ferguson A., et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5:ra42.
    • (2012) Sci. Signal. , vol.5 , pp. ra42
    • Roczniak-Ferguson, A.1
  • 41
    • 84857997408 scopus 로고    scopus 로고
    • A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
    • Settembre C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31:1095-1108.
    • (2012) EMBO J. , vol.31 , pp. 1095-1108
    • Settembre, C.1
  • 42
    • 84879604589 scopus 로고    scopus 로고
    • Coordination of organ growth: principles and outstanding questions from the world of insects
    • Andersen D.S., et al. Coordination of organ growth: principles and outstanding questions from the world of insects. Trends Cell Biol. 2013, 23:336-344.
    • (2013) Trends Cell Biol. , vol.23 , pp. 336-344
    • Andersen, D.S.1
  • 43
    • 0031882240 scopus 로고    scopus 로고
    • TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae
    • Helliwell S.B., et al. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 1998, 148:99-112.
    • (1998) Genetics , vol.148 , pp. 99-112
    • Helliwell, S.B.1
  • 44
    • 23344448223 scopus 로고    scopus 로고
    • Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization
    • Kamada Y., et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol. Cell. Biol. 2005, 25:7239-7248.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 7239-7248
    • Kamada, Y.1
  • 45
    • 0030479340 scopus 로고    scopus 로고
    • TOR2 is required for organization of the actin cytoskeleton in yeast
    • Schmidt A., et al. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:13780-13785.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 13780-13785
    • Schmidt, A.1
  • 46
    • 0037148529 scopus 로고    scopus 로고
    • The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast
    • deHart A.K., et al. The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast. J. Cell Biol. 2002, 156:241-248.
    • (2002) J. Cell Biol. , vol.156 , pp. 241-248
    • deHart, A.K.1
  • 47
    • 0345255690 scopus 로고    scopus 로고
    • Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway
    • deHart A.K., et al. Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol. Biol. Cell 2003, 14:4676-4684.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 4676-4684
    • deHart, A.K.1
  • 48
    • 33845609865 scopus 로고    scopus 로고
    • Mutual antagonism of target of rapamycin and calcineurin signaling
    • Mulet J.M., et al. Mutual antagonism of target of rapamycin and calcineurin signaling. J. Biol. Chem. 2006, 281:33000-33007.
    • (2006) J. Biol. Chem. , vol.281 , pp. 33000-33007
    • Mulet, J.M.1
  • 49
    • 84857131380 scopus 로고    scopus 로고
    • Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2
    • Niles B.J., et al. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1536-1541.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1536-1541
    • Niles, B.J.1
  • 50
    • 0033602281 scopus 로고    scopus 로고
    • Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast
    • Casamayor A., et al. Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr. Biol. 1999, 9:186-197.
    • (1999) Curr. Biol. , vol.9 , pp. 186-197
    • Casamayor, A.1
  • 51
    • 72949093349 scopus 로고    scopus 로고
    • The nuts and bolts of AGC protein kinases
    • Pearce L.R., et al. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010, 11:9-22.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 9-22
    • Pearce, L.R.1
  • 52
    • 84899904022 scopus 로고    scopus 로고
    • Yeast lipid metabolism at a glance
    • Klug L., Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res. 2014, 14:369-388.
    • (2014) FEMS Yeast Res. , vol.14 , pp. 369-388
    • Klug, L.1    Daum, G.2
  • 53
    • 50049119791 scopus 로고    scopus 로고
    • Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast
    • Dickson R.C. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J. Lipid Res. 2008, 49:909-921.
    • (2008) J. Lipid Res. , vol.49 , pp. 909-921
    • Dickson, R.C.1
  • 54
    • 0034733910 scopus 로고    scopus 로고
    • Sphingosine-1-phosphate: signaling inside and out
    • Spiegel S., Milstien S. Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 2000, 476:55-57.
    • (2000) FEBS Lett. , vol.476 , pp. 55-57
    • Spiegel, S.1    Milstien, S.2
  • 55
    • 14444283860 scopus 로고    scopus 로고
    • Sphingolipids are potential heat stress signals in Saccharomyces
    • Dickson R.C., et al. Sphingolipids are potential heat stress signals in Saccharomyces. J. Biol. Chem. 1997, 272:30196-30200.
    • (1997) J. Biol. Chem. , vol.272 , pp. 30196-30200
    • Dickson, R.C.1
  • 56
    • 0032515061 scopus 로고    scopus 로고
    • +-sensitive csg2Delta mutant
    • +-sensitive csg2Delta mutant. J. Biol. Chem. 1998, 273:30688-30694.
    • (1998) J. Biol. Chem. , vol.273 , pp. 30688-30694
    • Beeler, T.1
  • 57
    • 0343130542 scopus 로고    scopus 로고
    • Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast
    • Sun Y., et al. Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol. Cell. Biol. 2000, 20:4411-4419.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 4411-4419
    • Sun, Y.1
  • 58
    • 77649121162 scopus 로고    scopus 로고
    • Orm family proteins mediate sphingolipid homeostasis
    • Breslow D.K., et al. Orm family proteins mediate sphingolipid homeostasis. Nature 2010, 463:1048-1053.
    • (2010) Nature , vol.463 , pp. 1048-1053
    • Breslow, D.K.1
  • 59
    • 84860501617 scopus 로고    scopus 로고
    • Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis
    • Berchtold D., et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 2012, 14:542-547.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 542-547
    • Berchtold, D.1
  • 60
    • 82755163564 scopus 로고    scopus 로고
    • Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae
    • Roelants F.M., et al. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19222-19227.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 19222-19227
    • Roelants, F.M.1
  • 61
    • 84862571264 scopus 로고    scopus 로고
    • Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways
    • Sun Y., et al. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Mol. Biol. Cell 2012, 23:2388-2398.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 2388-2398
    • Sun, Y.1
  • 62
    • 84931281895 scopus 로고    scopus 로고
    • Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways
    • Rispal D., et al. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J. Biol. Chem. 2015, 290:14963-14978.
    • (2015) J. Biol. Chem. , vol.290 , pp. 14963-14978
    • Rispal, D.1
  • 63
    • 38649105202 scopus 로고    scopus 로고
    • Regulation of ceramide biosynthesis by TOR complex 2
    • Aronova S., et al. Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab. 2008, 7:148-158.
    • (2008) Cell Metab. , vol.7 , pp. 148-158
    • Aronova, S.1
  • 64
    • 85001819551 scopus 로고    scopus 로고
    • TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids
    • Muir A., et al. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife 2014, 3:03779.
    • (2014) Elife , vol.3 , pp. 03779
    • Muir, A.1
  • 65
    • 84888433996 scopus 로고    scopus 로고
    • TORC1 inhibits GSK3-mediated Elo2 phosphorylation to regulate very long chain fatty acid synthesis and autophagy
    • Zimmermann C., et al. TORC1 inhibits GSK3-mediated Elo2 phosphorylation to regulate very long chain fatty acid synthesis and autophagy. Cell Rep. 2013, 5:1036-1046.
    • (2013) Cell Rep. , vol.5 , pp. 1036-1046
    • Zimmermann, C.1
  • 66
    • 84922231451 scopus 로고    scopus 로고
    • Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in Saccharomyces cerevisiae
    • Fresques T., et al. Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in Saccharomyces cerevisiae. J. Biol. Chem. 2015, 290:1395-1403.
    • (2015) J. Biol. Chem. , vol.290 , pp. 1395-1403
    • Fresques, T.1
  • 67
    • 84862554378 scopus 로고    scopus 로고
    • Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast
    • Liu M., et al. Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast. J. Cell Sci. 2012, 125:2428-2435.
    • (2012) J. Cell Sci. , vol.125 , pp. 2428-2435
    • Liu, M.1
  • 68
    • 84875170467 scopus 로고    scopus 로고
    • TORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis
    • Shimobayashi M., et al. TORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis. Mol. Biol. Cell 2013, 24:870-881.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 870-881
    • Shimobayashi, M.1
  • 69
    • 76249089412 scopus 로고    scopus 로고
    • A protein kinase network regulates the function of aminophospholipid flippases
    • Roelants F.M., et al. A protein kinase network regulates the function of aminophospholipid flippases. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:34-39.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 34-39
    • Roelants, F.M.1
  • 70
    • 44949237144 scopus 로고    scopus 로고
    • Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry
    • Nakano K., et al. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. Mol. Biol. Cell 2008, 19:1783-1797.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1783-1797
    • Nakano, K.1
  • 71
    • 84862230494 scopus 로고    scopus 로고
    • Phospholipid flippases: building asymmetric membranes and transport vesicles
    • Sebastian T.T., et al. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim. Biophys. Acta 2012, 1821:1068-1077.
    • (2012) Biochim. Biophys. Acta , vol.1821 , pp. 1068-1077
    • Sebastian, T.T.1
  • 72
    • 84863419997 scopus 로고    scopus 로고
    • Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity
    • Das A., et al. Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nat. Cell Biol. 2012, 14:304-310.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 304-310
    • Das, A.1
  • 73
    • 84913582792 scopus 로고    scopus 로고
    • TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species
    • Niles B.J., Powers T. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol. Biol. Cell 2014, 25:3962-3972.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 3962-3972
    • Niles, B.J.1    Powers, T.2
  • 74
    • 84920364409 scopus 로고    scopus 로고
    • Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry
    • Roelants F.M., et al. Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry. J. Cell Biol. 2015, 208:299-311.
    • (2015) J. Cell Biol. , vol.208 , pp. 299-311
    • Roelants, F.M.1
  • 75
    • 84868676090 scopus 로고    scopus 로고
    • Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress
    • Lee Y.J., et al. Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol. Cell. Biol. 2012, 32:4705-4717.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 4705-4717
    • Lee, Y.J.1
  • 76
    • 84940512387 scopus 로고    scopus 로고
    • Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress
    • Muir A., et al. Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress. Elife 2015, 4:09336.
    • (2015) Elife , vol.4 , pp. 09336
    • Muir, A.1
  • 77
    • 16344385976 scopus 로고    scopus 로고
    • The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2
    • Fadri M., et al. The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol. Biol. Cell 2005, 16:1883-1900.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1883-1900
    • Fadri, M.1
  • 78
    • 6344265083 scopus 로고    scopus 로고
    • Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton
    • Audhya A., et al. Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J. 2004, 23:3747-3757.
    • (2004) EMBO J. , vol.23 , pp. 3747-3757
    • Audhya, A.1
  • 79
    • 79551677684 scopus 로고    scopus 로고
    • Cells respond to mechanical stress by rapid disassembly of caveolae
    • Sinha B., et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011, 144:402-413.
    • (2011) Cell , vol.144 , pp. 402-413
    • Sinha, B.1
  • 80
    • 16444371939 scopus 로고    scopus 로고
    • Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo
    • Sedding D.G., et al. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ. Res. 2005, 96:635-642.
    • (2005) Circ. Res. , vol.96 , pp. 635-642
    • Sedding, D.G.1
  • 81
    • 84878796897 scopus 로고    scopus 로고
    • Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2
    • Humphrey S.J., et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab. 2013, 17:1009-1020.
    • (2013) Cell Metab. , vol.17 , pp. 1009-1020
    • Humphrey, S.J.1
  • 82
    • 84903437266 scopus 로고    scopus 로고
    • MTORC2 in the center of cancer metabolic reprogramming
    • Masui K., et al. mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol. Metab. 2014, 25:364-373.
    • (2014) Trends Endocrinol. Metab. , vol.25 , pp. 364-373
    • Masui, K.1
  • 83
    • 84890972420 scopus 로고    scopus 로고
    • Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae
    • Kliegman J.I., et al. Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep. 2013, 5:1725-1736.
    • (2013) Cell Rep. , vol.5 , pp. 1725-1736
    • Kliegman, J.I.1
  • 84
    • 84925873653 scopus 로고    scopus 로고
    • Nutrient-sensing mechanisms across evolution
    • Chantranupong L., et al. Nutrient-sensing mechanisms across evolution. Cell 2015, 161:67-83.
    • (2015) Cell , vol.161 , pp. 67-83
    • Chantranupong, L.1
  • 85
    • 84940891788 scopus 로고    scopus 로고
    • Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling
    • Powis K., et al. Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res. 2015, 25:1043-1059.
    • (2015) Cell Res. , vol.25 , pp. 1043-1059
    • Powis, K.1
  • 86
    • 84906971940 scopus 로고    scopus 로고
    • Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins
    • Stracka D., et al. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J. Biol. Chem. 2014, 289:25010-25020.
    • (2014) J. Biol. Chem. , vol.289 , pp. 25010-25020
    • Stracka, D.1
  • 87
    • 84870558775 scopus 로고    scopus 로고
    • Amino acid signaling in high definition
    • Gaubitz C., Loewith R. Amino acid signaling in high definition. Structure 2012, 20:1993-1994.
    • (2012) Structure , vol.20 , pp. 1993-1994
    • Gaubitz, C.1    Loewith, R.2
  • 88
    • 84922727084 scopus 로고    scopus 로고
    • Metabolism. Differential regulation of mTORC1 by leucine and glutamine
    • Jewell J.L., et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015, 347:194-198.
    • (2015) Science , vol.347 , pp. 194-198
    • Jewell, J.L.1
  • 89
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L., et al. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1
  • 90
    • 84922743269 scopus 로고    scopus 로고
    • Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
    • Wang S., et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015, 347:188-194.
    • (2015) Science , vol.347 , pp. 188-194
    • Wang, S.1
  • 91
    • 84925777835 scopus 로고    scopus 로고
    • SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
    • Rebsamen M., et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015, 519:477-481.
    • (2015) Nature , vol.519 , pp. 477-481
    • Rebsamen, M.1
  • 92
    • 84932638310 scopus 로고    scopus 로고
    • Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9
    • Jung J., et al. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 2015, 35:2479-2494.
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 2479-2494
    • Jung, J.1
  • 93
    • 84878357685 scopus 로고    scopus 로고
    • A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled L., et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340:1100-1106.
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1
  • 94
    • 84888200442 scopus 로고    scopus 로고
    • The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
    • Tsun Z.Y., et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 2013, 52:495-505.
    • (2013) Mol. Cell , vol.52 , pp. 495-505
    • Tsun, Z.Y.1
  • 95
    • 84886871016 scopus 로고    scopus 로고
    • Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
    • Petit C.S., et al. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 2013, 202:1107-1122.
    • (2013) J. Cell Biol. , vol.202 , pp. 1107-1122
    • Petit, C.S.1
  • 96
    • 84943358458 scopus 로고    scopus 로고
    • Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2
    • Péli-Gulli M.P., et al. Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2. Cell Rep. 2015, 13:1-7.
    • (2015) Cell Rep. , vol.13 , pp. 1-7
    • Péli-Gulli, M.P.1
  • 97
    • 79958753944 scopus 로고    scopus 로고
    • Cell signaling, new mTOR targets Grb attention
    • Yea S.S., Fruman D.A. Cell signaling, new mTOR targets Grb attention. Science 2011, 332:1270-1271.
    • (2011) Science , vol.332 , pp. 1270-1271
    • Yea, S.S.1    Fruman, D.A.2
  • 98
    • 84937637420 scopus 로고    scopus 로고
    • Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent amino-acid-dependent mTORC1 hyperactivation by recruiting GATOR1
    • Jin G., et al. Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent amino-acid-dependent mTORC1 hyperactivation by recruiting GATOR1. Mol. Cell 2015, 58:989-1000.
    • (2015) Mol. Cell , vol.58 , pp. 989-1000
    • Jin, G.1
  • 99
    • 79958696336 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • Yu Y., et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011, 332:1322-1326.
    • (2011) Science , vol.332 , pp. 1322-1326
    • Yu, Y.1
  • 100
    • 79958696694 scopus 로고    scopus 로고
    • The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
    • Hsu P.P., et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332:1317-1322.
    • (2011) Science , vol.332 , pp. 1317-1322
    • Hsu, P.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.