-
1
-
-
77956886751
-
Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom
-
Shertz C.A., et al. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 2010, 11:510.
-
(2010)
BMC Genomics
, vol.11
, pp. 510
-
-
Shertz, C.A.1
-
2
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
Heitman J., et al. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253:905-909.
-
(1991)
Science
, vol.253
, pp. 905-909
-
-
Heitman, J.1
-
3
-
-
84940653986
-
Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the Baker's yeast lineage
-
Marcet-Houben M., Gabaldon T. Beyond the whole-genome duplication: phylogenetic evidence for an ancient interspecies hybridization in the Baker's yeast lineage. PLoS Biol. 2015, 13:e1002220.
-
(2015)
PLoS Biol.
, vol.13
, pp. e1002220
-
-
Marcet-Houben, M.1
Gabaldon, T.2
-
4
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R., et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 2002, 10:457-468.
-
(2002)
Mol. Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
-
5
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K., et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110:177-189.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
-
6
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004, 6:1122-1128.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
-
7
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D.H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
-
8
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov D.D., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14:1296-1302.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
-
9
-
-
0029842109
-
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
-
Choi J., et al. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996, 273:239-242.
-
(1996)
Science
, vol.273
, pp. 239-242
-
-
Choi, J.1
-
10
-
-
13044309479
-
Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 A resolution
-
Liang J., et al. Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 A resolution. Acta Crystallogr. D Biol. Crystallogr. 1999, 55:736-744.
-
(1999)
Acta Crystallogr. D Biol. Crystallogr.
, vol.55
, pp. 736-744
-
-
Liang, J.1
-
11
-
-
77953091045
-
Structure of the human mTOR complex I and its implications for rapamycin inhibition
-
Yip C.K., et al. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 2010, 38:768-774.
-
(2010)
Mol. Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
-
12
-
-
84877761058
-
MTOR kinase structure, mechanism and regulation
-
Yang H., et al. mTOR kinase structure, mechanism and regulation. Nature 2013, 497:217-223.
-
(2013)
Nature
, vol.497
, pp. 217-223
-
-
Yang, H.1
-
13
-
-
84880709668
-
MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
-
Kang S.A., et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 2013, 341:1236566.
-
(2013)
Science
, vol.341
, pp. 1236566
-
-
Kang, S.A.1
-
14
-
-
84907993261
-
Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric mTOR inhibitors
-
Hassan B., et al. Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric mTOR inhibitors. Oncotarget 2014, 5:8544-8557.
-
(2014)
Oncotarget
, vol.5
, pp. 8544-8557
-
-
Hassan, B.1
-
15
-
-
84913556111
-
Delineating the mTOR kinase pathway using a dual TORC1/2 inhibitor AZD8055, in multiple myeloma
-
Cirstea D., et al. Delineating the mTOR kinase pathway using a dual TORC1/2 inhibitor AZD8055, in multiple myeloma. Mol. Cancer Ther. 2014, 13:2489-2500.
-
(2014)
Mol. Cancer Ther.
, vol.13
, pp. 2489-2500
-
-
Cirstea, D.1
-
16
-
-
84930363624
-
MTOR signaling in cellular and organismal energetics
-
Albert V., Hall M.N. mTOR signaling in cellular and organismal energetics. Curr. Opin. Cell Biol. 2015, 33:55-66.
-
(2015)
Curr. Opin. Cell Biol.
, vol.33
, pp. 55-66
-
-
Albert, V.1
Hall, M.N.2
-
17
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D.M. mTOR signaling in growth control and disease. Cell 2012, 149:274-293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
18
-
-
84937633778
-
Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2
-
Gaubitz C., et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell 2015, 58:977-988.
-
(2015)
Mol. Cell
, vol.58
, pp. 977-988
-
-
Gaubitz, C.1
-
19
-
-
34249813098
-
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae
-
Urban J., et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 2007, 26:663-674.
-
(2007)
Mol. Cell
, vol.26
, pp. 663-674
-
-
Urban, J.1
-
20
-
-
63749117393
-
TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain
-
Berchtold D., Walther T.C. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 2009, 20:1565-1575.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1565-1575
-
-
Berchtold, D.1
Walther, T.C.2
-
21
-
-
69749113579
-
The Vam6 GEF controls TORC1 by activating the EGO complex
-
Binda M., et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 2009, 35:563-573.
-
(2009)
Mol. Cell
, vol.35
, pp. 563-573
-
-
Binda, M.1
-
22
-
-
54249110478
-
TOR1 and TOR2 have distinct locations in live cells
-
Sturgill T.W., et al. TOR1 and TOR2 have distinct locations in live cells. Eukaryot. Cell 2008, 7:1819-1830.
-
(2008)
Eukaryot. Cell
, vol.7
, pp. 1819-1830
-
-
Sturgill, T.W.1
-
23
-
-
84884889883
-
SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation
-
Panchaud N., et al. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 2013, 12:2948-2952.
-
(2013)
Cell Cycle
, vol.12
, pp. 2948-2952
-
-
Panchaud, N.1
-
24
-
-
84875423993
-
Amino acid signalling upstream of mTOR
-
Jewell J.L., et al. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14:133-139.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 133-139
-
-
Jewell, J.L.1
-
25
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E., et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10:935-945.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 935-945
-
-
Kim, E.1
-
26
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
27
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y., et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
28
-
-
0034644525
-
TOR, a central controller of cell growth
-
Schmelzle T., Hall M.N. TOR, a central controller of cell growth. Cell 2000, 103:253-262.
-
(2000)
Cell
, vol.103
, pp. 253-262
-
-
Schmelzle, T.1
Hall, M.N.2
-
29
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189:1177-1201.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
30
-
-
69249240179
-
Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis
-
Huber A., et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 2009, 23:1929-1943.
-
(2009)
Genes Dev.
, vol.23
, pp. 1929-1943
-
-
Huber, A.1
-
31
-
-
27144510561
-
Translational regulation of GCN4 and the general amino acid control of yeast
-
Hinnebusch A.G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 2005, 59:407-450.
-
(2005)
Annu. Rev. Microbiol.
, vol.59
, pp. 407-450
-
-
Hinnebusch, A.G.1
-
32
-
-
70549086622
-
Growth control and ribosome biogenesis
-
Lempiainen H., Shore D. Growth control and ribosome biogenesis. Curr. Opin. Cell Biol. 2009, 21:855-863.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 855-863
-
-
Lempiainen, H.1
Shore, D.2
-
33
-
-
62549119989
-
Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling
-
Lempiainen H., et al. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol. Cell 2009, 33:704-716.
-
(2009)
Mol. Cell
, vol.33
, pp. 704-716
-
-
Lempiainen, H.1
-
34
-
-
0033049424
-
Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities
-
Khaleghpour K., et al. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol. Cell. Biol. 1999, 19:4302-4310.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 4302-4310
-
-
Khaleghpour, K.1
-
35
-
-
84891745585
-
Autophagy regulation by nutrient signaling
-
Russell R.C., et al. Autophagy regulation by nutrient signaling. Cell Res. 2014, 24:42-57.
-
(2014)
Cell Res.
, vol.24
, pp. 42-57
-
-
Russell, R.C.1
-
36
-
-
84929502727
-
How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy
-
Feng Y., et al. How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015, 25:354-363.
-
(2015)
Trends Cell Biol.
, vol.25
, pp. 354-363
-
-
Feng, Y.1
-
37
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010, 465:942-946.
-
(2010)
Nature
, vol.465
, pp. 942-946
-
-
Yu, L.1
-
38
-
-
79961113595
-
Bidirectional regulation between TORC1 and autophagy in Saccharomyces cerevisiae
-
Shin C.S., Huh W.K. Bidirectional regulation between TORC1 and autophagy in Saccharomyces cerevisiae. Autophagy 2011, 7:854-862.
-
(2011)
Autophagy
, vol.7
, pp. 854-862
-
-
Shin, C.S.1
Huh, W.K.2
-
39
-
-
33947369047
-
Permeases recycle amino acids resulting from autophagy
-
Yang Z., Klionsky D.J. Permeases recycle amino acids resulting from autophagy. Autophagy 2007, 3:149-150.
-
(2007)
Autophagy
, vol.3
, pp. 149-150
-
-
Yang, Z.1
Klionsky, D.J.2
-
40
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
Roczniak-Ferguson A., et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 2012, 5:ra42.
-
(2012)
Sci. Signal.
, vol.5
, pp. ra42
-
-
Roczniak-Ferguson, A.1
-
41
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C., et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012, 31:1095-1108.
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
-
42
-
-
84879604589
-
Coordination of organ growth: principles and outstanding questions from the world of insects
-
Andersen D.S., et al. Coordination of organ growth: principles and outstanding questions from the world of insects. Trends Cell Biol. 2013, 23:336-344.
-
(2013)
Trends Cell Biol.
, vol.23
, pp. 336-344
-
-
Andersen, D.S.1
-
43
-
-
0031882240
-
TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae
-
Helliwell S.B., et al. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 1998, 148:99-112.
-
(1998)
Genetics
, vol.148
, pp. 99-112
-
-
Helliwell, S.B.1
-
44
-
-
23344448223
-
Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization
-
Kamada Y., et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol. Cell. Biol. 2005, 25:7239-7248.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 7239-7248
-
-
Kamada, Y.1
-
45
-
-
0030479340
-
TOR2 is required for organization of the actin cytoskeleton in yeast
-
Schmidt A., et al. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:13780-13785.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 13780-13785
-
-
Schmidt, A.1
-
46
-
-
0037148529
-
The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast
-
deHart A.K., et al. The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast. J. Cell Biol. 2002, 156:241-248.
-
(2002)
J. Cell Biol.
, vol.156
, pp. 241-248
-
-
deHart, A.K.1
-
47
-
-
0345255690
-
Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway
-
deHart A.K., et al. Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol. Biol. Cell 2003, 14:4676-4684.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 4676-4684
-
-
deHart, A.K.1
-
48
-
-
33845609865
-
Mutual antagonism of target of rapamycin and calcineurin signaling
-
Mulet J.M., et al. Mutual antagonism of target of rapamycin and calcineurin signaling. J. Biol. Chem. 2006, 281:33000-33007.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 33000-33007
-
-
Mulet, J.M.1
-
49
-
-
84857131380
-
Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2
-
Niles B.J., et al. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1536-1541.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 1536-1541
-
-
Niles, B.J.1
-
50
-
-
0033602281
-
Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast
-
Casamayor A., et al. Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr. Biol. 1999, 9:186-197.
-
(1999)
Curr. Biol.
, vol.9
, pp. 186-197
-
-
Casamayor, A.1
-
51
-
-
72949093349
-
The nuts and bolts of AGC protein kinases
-
Pearce L.R., et al. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010, 11:9-22.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 9-22
-
-
Pearce, L.R.1
-
52
-
-
84899904022
-
Yeast lipid metabolism at a glance
-
Klug L., Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res. 2014, 14:369-388.
-
(2014)
FEMS Yeast Res.
, vol.14
, pp. 369-388
-
-
Klug, L.1
Daum, G.2
-
53
-
-
50049119791
-
Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast
-
Dickson R.C. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J. Lipid Res. 2008, 49:909-921.
-
(2008)
J. Lipid Res.
, vol.49
, pp. 909-921
-
-
Dickson, R.C.1
-
54
-
-
0034733910
-
Sphingosine-1-phosphate: signaling inside and out
-
Spiegel S., Milstien S. Sphingosine-1-phosphate: signaling inside and out. FEBS Lett. 2000, 476:55-57.
-
(2000)
FEBS Lett.
, vol.476
, pp. 55-57
-
-
Spiegel, S.1
Milstien, S.2
-
55
-
-
14444283860
-
Sphingolipids are potential heat stress signals in Saccharomyces
-
Dickson R.C., et al. Sphingolipids are potential heat stress signals in Saccharomyces. J. Biol. Chem. 1997, 272:30196-30200.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 30196-30200
-
-
Dickson, R.C.1
-
56
-
-
0032515061
-
+-sensitive csg2Delta mutant
-
+-sensitive csg2Delta mutant. J. Biol. Chem. 1998, 273:30688-30694.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 30688-30694
-
-
Beeler, T.1
-
57
-
-
0343130542
-
Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast
-
Sun Y., et al. Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol. Cell. Biol. 2000, 20:4411-4419.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 4411-4419
-
-
Sun, Y.1
-
58
-
-
77649121162
-
Orm family proteins mediate sphingolipid homeostasis
-
Breslow D.K., et al. Orm family proteins mediate sphingolipid homeostasis. Nature 2010, 463:1048-1053.
-
(2010)
Nature
, vol.463
, pp. 1048-1053
-
-
Breslow, D.K.1
-
59
-
-
84860501617
-
Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis
-
Berchtold D., et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 2012, 14:542-547.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 542-547
-
-
Berchtold, D.1
-
60
-
-
82755163564
-
Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae
-
Roelants F.M., et al. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19222-19227.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 19222-19227
-
-
Roelants, F.M.1
-
61
-
-
84862571264
-
Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways
-
Sun Y., et al. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Mol. Biol. Cell 2012, 23:2388-2398.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 2388-2398
-
-
Sun, Y.1
-
62
-
-
84931281895
-
Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways
-
Rispal D., et al. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J. Biol. Chem. 2015, 290:14963-14978.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 14963-14978
-
-
Rispal, D.1
-
63
-
-
38649105202
-
Regulation of ceramide biosynthesis by TOR complex 2
-
Aronova S., et al. Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab. 2008, 7:148-158.
-
(2008)
Cell Metab.
, vol.7
, pp. 148-158
-
-
Aronova, S.1
-
64
-
-
85001819551
-
TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids
-
Muir A., et al. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife 2014, 3:03779.
-
(2014)
Elife
, vol.3
, pp. 03779
-
-
Muir, A.1
-
65
-
-
84888433996
-
TORC1 inhibits GSK3-mediated Elo2 phosphorylation to regulate very long chain fatty acid synthesis and autophagy
-
Zimmermann C., et al. TORC1 inhibits GSK3-mediated Elo2 phosphorylation to regulate very long chain fatty acid synthesis and autophagy. Cell Rep. 2013, 5:1036-1046.
-
(2013)
Cell Rep.
, vol.5
, pp. 1036-1046
-
-
Zimmermann, C.1
-
66
-
-
84922231451
-
Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in Saccharomyces cerevisiae
-
Fresques T., et al. Regulation of ceramide synthase by casein kinase 2-dependent phosphorylation in Saccharomyces cerevisiae. J. Biol. Chem. 2015, 290:1395-1403.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 1395-1403
-
-
Fresques, T.1
-
67
-
-
84862554378
-
Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast
-
Liu M., et al. Regulation of sphingolipid synthesis through Orm1 and Orm2 in yeast. J. Cell Sci. 2012, 125:2428-2435.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 2428-2435
-
-
Liu, M.1
-
68
-
-
84875170467
-
TORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis
-
Shimobayashi M., et al. TORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis. Mol. Biol. Cell 2013, 24:870-881.
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 870-881
-
-
Shimobayashi, M.1
-
69
-
-
76249089412
-
A protein kinase network regulates the function of aminophospholipid flippases
-
Roelants F.M., et al. A protein kinase network regulates the function of aminophospholipid flippases. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:34-39.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 34-39
-
-
Roelants, F.M.1
-
70
-
-
44949237144
-
Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry
-
Nakano K., et al. Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. Mol. Biol. Cell 2008, 19:1783-1797.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1783-1797
-
-
Nakano, K.1
-
71
-
-
84862230494
-
Phospholipid flippases: building asymmetric membranes and transport vesicles
-
Sebastian T.T., et al. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim. Biophys. Acta 2012, 1821:1068-1077.
-
(2012)
Biochim. Biophys. Acta
, vol.1821
, pp. 1068-1077
-
-
Sebastian, T.T.1
-
72
-
-
84863419997
-
Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity
-
Das A., et al. Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nat. Cell Biol. 2012, 14:304-310.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 304-310
-
-
Das, A.1
-
73
-
-
84913582792
-
TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species
-
Niles B.J., Powers T. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol. Biol. Cell 2014, 25:3962-3972.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3962-3972
-
-
Niles, B.J.1
Powers, T.2
-
74
-
-
84920364409
-
Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry
-
Roelants F.M., et al. Protein kinase Gin4 negatively regulates flippase function and controls plasma membrane asymmetry. J. Cell Biol. 2015, 208:299-311.
-
(2015)
J. Cell Biol.
, vol.208
, pp. 299-311
-
-
Roelants, F.M.1
-
75
-
-
84868676090
-
Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress
-
Lee Y.J., et al. Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol. Cell. Biol. 2012, 32:4705-4717.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 4705-4717
-
-
Lee, Y.J.1
-
76
-
-
84940512387
-
Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress
-
Muir A., et al. Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress. Elife 2015, 4:09336.
-
(2015)
Elife
, vol.4
, pp. 09336
-
-
Muir, A.1
-
77
-
-
16344385976
-
The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2
-
Fadri M., et al. The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol. Biol. Cell 2005, 16:1883-1900.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1883-1900
-
-
Fadri, M.1
-
78
-
-
6344265083
-
Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton
-
Audhya A., et al. Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J. 2004, 23:3747-3757.
-
(2004)
EMBO J.
, vol.23
, pp. 3747-3757
-
-
Audhya, A.1
-
79
-
-
79551677684
-
Cells respond to mechanical stress by rapid disassembly of caveolae
-
Sinha B., et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011, 144:402-413.
-
(2011)
Cell
, vol.144
, pp. 402-413
-
-
Sinha, B.1
-
80
-
-
16444371939
-
Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo
-
Sedding D.G., et al. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ. Res. 2005, 96:635-642.
-
(2005)
Circ. Res.
, vol.96
, pp. 635-642
-
-
Sedding, D.G.1
-
81
-
-
84878796897
-
Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2
-
Humphrey S.J., et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab. 2013, 17:1009-1020.
-
(2013)
Cell Metab.
, vol.17
, pp. 1009-1020
-
-
Humphrey, S.J.1
-
82
-
-
84903437266
-
MTORC2 in the center of cancer metabolic reprogramming
-
Masui K., et al. mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol. Metab. 2014, 25:364-373.
-
(2014)
Trends Endocrinol. Metab.
, vol.25
, pp. 364-373
-
-
Masui, K.1
-
83
-
-
84890972420
-
Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae
-
Kliegman J.I., et al. Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep. 2013, 5:1725-1736.
-
(2013)
Cell Rep.
, vol.5
, pp. 1725-1736
-
-
Kliegman, J.I.1
-
84
-
-
84925873653
-
Nutrient-sensing mechanisms across evolution
-
Chantranupong L., et al. Nutrient-sensing mechanisms across evolution. Cell 2015, 161:67-83.
-
(2015)
Cell
, vol.161
, pp. 67-83
-
-
Chantranupong, L.1
-
85
-
-
84940891788
-
Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling
-
Powis K., et al. Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res. 2015, 25:1043-1059.
-
(2015)
Cell Res.
, vol.25
, pp. 1043-1059
-
-
Powis, K.1
-
86
-
-
84906971940
-
Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins
-
Stracka D., et al. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J. Biol. Chem. 2014, 289:25010-25020.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 25010-25020
-
-
Stracka, D.1
-
87
-
-
84870558775
-
Amino acid signaling in high definition
-
Gaubitz C., Loewith R. Amino acid signaling in high definition. Structure 2012, 20:1993-1994.
-
(2012)
Structure
, vol.20
, pp. 1993-1994
-
-
Gaubitz, C.1
Loewith, R.2
-
88
-
-
84922727084
-
Metabolism. Differential regulation of mTORC1 by leucine and glutamine
-
Jewell J.L., et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015, 347:194-198.
-
(2015)
Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
-
89
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L., et al. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012, 150:1196-1208.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
-
90
-
-
84922743269
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
Wang S., et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015, 347:188-194.
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
-
91
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
Rebsamen M., et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015, 519:477-481.
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
-
92
-
-
84932638310
-
Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9
-
Jung J., et al. Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol. Cell. Biol. 2015, 35:2479-2494.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 2479-2494
-
-
Jung, J.1
-
93
-
-
84878357685
-
A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
Bar-Peled L., et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013, 340:1100-1106.
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
-
94
-
-
84888200442
-
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1
-
Tsun Z.Y., et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol. Cell 2013, 52:495-505.
-
(2013)
Mol. Cell
, vol.52
, pp. 495-505
-
-
Tsun, Z.Y.1
-
95
-
-
84886871016
-
Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases
-
Petit C.S., et al. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases. J. Cell Biol. 2013, 202:1107-1122.
-
(2013)
J. Cell Biol.
, vol.202
, pp. 1107-1122
-
-
Petit, C.S.1
-
96
-
-
84943358458
-
Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2
-
Péli-Gulli M.P., et al. Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2. Cell Rep. 2015, 13:1-7.
-
(2015)
Cell Rep.
, vol.13
, pp. 1-7
-
-
Péli-Gulli, M.P.1
-
97
-
-
79958753944
-
Cell signaling, new mTOR targets Grb attention
-
Yea S.S., Fruman D.A. Cell signaling, new mTOR targets Grb attention. Science 2011, 332:1270-1271.
-
(2011)
Science
, vol.332
, pp. 1270-1271
-
-
Yea, S.S.1
Fruman, D.A.2
-
98
-
-
84937637420
-
Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent amino-acid-dependent mTORC1 hyperactivation by recruiting GATOR1
-
Jin G., et al. Skp2-mediated RagA ubiquitination elicits a negative feedback to prevent amino-acid-dependent mTORC1 hyperactivation by recruiting GATOR1. Mol. Cell 2015, 58:989-1000.
-
(2015)
Mol. Cell
, vol.58
, pp. 989-1000
-
-
Jin, G.1
-
99
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y., et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011, 332:1322-1326.
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
-
100
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu P.P., et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332:1317-1322.
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
|