-
1
-
-
74949133862
-
Myocardial fatty acid metabolism in health and disease
-
Lopaschuk, G.D., Ussher, J.R., Folmes, C.D., Jaswal, J.S. and Stanley, W.C. (2010) Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90, 207-258
-
(2010)
Physiol. Rev.
, vol.90
, pp. 207-258
-
-
Lopaschuk, G.D.1
Ussher, J.R.2
Folmes, C.D.3
Jaswal, J.S.4
Stanley, W.C.5
-
2
-
-
0017824474
-
Coenzyme A and carnitine distribution in normal and ischemic hearts
-
Idell-Wenger, J.A., Grotyohann, L.W. and Neely, J.R. (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J. Biol. Chem. 253, 4310-4318
-
(1978)
J. Biol. Chem.
, vol.253
, pp. 4310-4318
-
-
Idell-Wenger, J.A.1
Grotyohann, L.W.2
Neely, J.R.3
-
3
-
-
0015893630
-
Regulation of fatty acid utilization in isolated perfused rat hearts
-
Oram, J.F., Suzanne, B.L. and Neely, J.R. (1973) Regulation of fatty acid utilization in isolated perfused rat hearts. J. Biol. Chem. 248, 5299-5309
-
(1973)
J. Biol. Chem.
, vol.248
, pp. 5299-5309
-
-
Oram, J.F.1
Suzanne, B.L.2
Neely, J.R.3
-
4
-
-
1842389677
-
Relationship between carbohydrate metabolism and energy balance of heart muscle
-
Neely, J.R. and Morgan, H.E. (1974) Relationship between carbohydrate metabolism and energy balance of heart muscle. Annu. Rev. Physiol. 36, 413-459
-
(1974)
Annu. Rev. Physiol.
, vol.36
, pp. 413-459
-
-
Neely, J.R.1
Morgan, H.E.2
-
5
-
-
0013773447
-
Regulation of glucose uptake by muscles. 10. Effects of alloxan-diabetesstarvation, hypophysectomy and adrenalectomy, and of fatty acids, ketone bodies and pyruvate, on the glycerol output and concentrations of free fatty acids, long-chain fatty acyl-coenzyme A, glycerol phosphate and citrate-cycle intermediates in rat heart and diaphragm muscles
-
Garland, P.B. and Randle, P.J. (1964) Regulation of glucose uptake by muscles. 10. Effects of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy, and of fatty acids, ketone bodies and pyruvate, on the glycerol output and concentrations of free fatty acids, long-chain fatty acyl-coenzyme A, glycerol phosphate and citrate-cycle intermediates in rat heart and diaphragm muscles. Biochem. J. 93, 678-687
-
(1964)
J. Biochem
, vol.93
, pp. 678-687
-
-
Garland, P.B.1
Randle, P.J.2
-
6
-
-
50549202600
-
The glucose fatty-acid cycle: Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus
-
Randle, P.J., Garland, P.B., Hales, C.N. and Newsholme, E.A. (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281, 785-789
-
(1963)
Lancet
, vol.281
, pp. 785-789
-
-
Randle, P.J.1
Garland, P.B.2
Hales, C.N.3
Newsholme, E.A.4
-
7
-
-
0018182489
-
The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes
-
McGarry, J.D., Takabayashi, Y. and Foster, D.W. (1978) The role of malonyl-CoA in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J. Biol. Chem. 253, 8294-8300
-
(1978)
J. Biol. Chem.
, vol.253
, pp. 8294-8300
-
-
McGarry, J.D.1
Takabayashi, Y.2
Foster, D.W.3
-
8
-
-
0018864840
-
Regulation of hepatic fatty acid oxidation and ketone body production
-
McGarry, J.D. and Foster, D.W. (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49, 395-420
-
(1980)
Annu. Rev. Biochem.
, vol.49
, pp. 395-420
-
-
McGarry, J.D.1
Foster, D.W.2
-
9
-
-
0035497741
-
Assay of the concentration and 13C-isotopic enrichment of malonyl-coenzyme A by gas chromatography-mass spectrometry
-
Reszko, A.E., Kasumov, T., Comte, B., Pierce, B.A., David, F., Bederman, I.R., Deutsch, J., Des Rosiers, C. and Brunengraber, H. (2001) Assay of the concentration and 13C-isotopic enrichment of malonyl-coenzyme A by gas chromatography-mass spectrometry. Anal. Biochem. 298, 69-75
-
(2001)
Anal. Biochem.
, vol.298
, pp. 69-75
-
-
Reszko, A.E.1
Kasumov, T.2
Comte, B.3
Pierce, B.A.4
David, F.5
Bederman, I.R.6
Deutsch, J.7
Des Rosiers, C.8
Brunengraber, H.9
-
10
-
-
0029093341
-
High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase
-
Kudo, N., Barr, A.J., Barr, R.L., Desai, S. and Lopaschuk, G.D. (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270, 17513-17520
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17513-17520
-
-
Kudo, N.1
Barr, A.J.2
Barr, R.L.3
Desai, S.4
Lopaschuk, G.D.5
-
11
-
-
0032529121
-
Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle
-
Alam, N. and Saggerson, E.D. (1998) Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle. Biochem. J. 334, 233-241
-
(1998)
Biochem. J.
, vol.334
, pp. 233-241
-
-
Alam, N.1
Saggerson, E.D.2
-
12
-
-
0035970805
-
Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2
-
Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A. and Wakil, S.J. (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613-2616
-
(2001)
Science
, vol.291
, pp. 2613-2616
-
-
Abu-Elheiga, L.1
Matzuk, M.M.2
Abo-Hashema, K.A.3
Wakil, S.J.4
-
13
-
-
0027453493
-
Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart
-
Saddik, M., Gamble, J., Witters, L.A. and Lopaschuk, G.D. (1993) Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J. Biol. Chem. 268, 25836-25845
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 25836-25845
-
-
Saddik, M.1
Gamble, J.2
Witters, L.A.3
Lopaschuk, G.D.4
-
14
-
-
0032445521
-
Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation
-
Dyck, J.R., Barr, A.J., Barr, R.L., Kolattukudy, P.E. and Lopaschuk, G.D. (1998) Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am. J. Physiol. 275, H2122-H2129
-
(1998)
Am. J. Physiol.
, vol.275
-
-
Dyck, J.R.1
Barr, A.J.2
Barr, R.L.3
Kolattukudy, P.E.4
Lopaschuk, G.D.5
-
15
-
-
0027486343
-
Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation
-
Awan, M.M. and Saggerson, E.D. (1993) Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem. J. 295, 61-66
-
(1993)
Biochem. J.
, vol.295
, pp. 61-66
-
-
Awan, M.M.1
Saggerson, E.D.2
-
16
-
-
0032730676
-
Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation
-
Goodwin, G.W. and Taegtmeyer, H. (1999) Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am. J. Physiol. 277, E772-E777
-
(1999)
Am. J. Physiol.
, vol.277
-
-
Goodwin, G.W.1
Taegtmeyer, H.2
-
17
-
-
1642463992
-
Peroxisomal-proliferator-activated receptor activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: A key regulation of malonyl-CoA level
-
Lee, G.Y., Kim, N.H., Zhao, Z.S., Cha, B.S. and Kim, Y.S. (2004) Peroxisomal-proliferator-activated receptor activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. Biochem. J. 378, 983-990
-
(2004)
Biochem. J.
, vol.378
, pp. 983-990
-
-
Lee, G.Y.1
Kim, N.H.2
Zhao, Z.S.3
Cha, B.S.4
Kim, Y.S.5
-
18
-
-
31344467300
-
Malonyl-CoA decarboxylase is a major regulator of myocardial fatty acid oxidation
-
Cuthbert, K.D. and Dyck, J.R. (2005) Malonyl-CoA decarboxylase is a major regulator of myocardial fatty acid oxidation. Curr. Hypertens. Rep. 7, 407-411
-
(2005)
Curr. Hypertens. Rep.
, vol.7
, pp. 407-411
-
-
Cuthbert, K.D.1
Dyck, J.R.2
-
19
-
-
0000115351
-
5 AMP-activated protein kinase inhibition of acetyl CoA carboxylase can explain the high rates of fatty acid oxidation in reperfused ischemic hearts
-
Kudo, N.B., Barr, R. and Lopaschuk, G.D. (1995) 5 AMP-activated protein kinase inhibition of acetyl CoA carboxylase can explain the high rates of fatty acid oxidation in reperfused ischemic hearts. J. Biol. Chem. 270, 17511-17520
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17511-17520
-
-
Kudo, N.B.1
Barr, R.2
Lopaschuk, G.D.3
-
20
-
-
0037040203
-
A role for peroxisome proliferator-activated receptor (PPAR) in the control of cardiac malonyl-CoA levels: Reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPAR are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase
-
Campbell, F.M., Kozak, R., Wagner, A., Altarejos, J.Y., Dyck, J.R., Belke, D.D., Severson, D.L., Kelly, D.P. and Lopaschuk, G.D. (2002) A role for peroxisome proliferator-activated receptor (PPAR) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPAR are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J. Biol. Chem. 277, 4098-4103
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 4098-4103
-
-
Campbell, F.M.1
Kozak, R.2
Wagner, A.3
Altarejos, J.Y.4
Dyck, J.R.5
Belke, D.D.6
Severson, D.L.7
Kelly, D.P.8
Lopaschuk, G.D.9
-
21
-
-
0035008901
-
Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids
-
Young, M.E., Goodwin, G.W., Ying, J., Guthrie, P., Wilson, C.R., Laws, F.A. and Taegtmeyer, H. (2001) Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am. J. Physiol. Endocrinol. Metab. 280, E471-E479
-
(2001)
Am. J. Physiol. Endocrinol. Metab.
, vol.280
-
-
Young, M.E.1
Goodwin, G.W.2
Ying, J.3
Guthrie, P.4
Wilson, C.R.5
Laws, F.A.6
Taegtmeyer, H.7
-
22
-
-
33750211736
-
Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury
-
Dyck, J.R., Hopkins, T.A., Bonnet, S., Michelakis, E.D., Young, M.E., Watanabe, M., Kawase, Y., Jishage, K. and Lopaschuk, G.D. (2006) Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 114, 1721-1728
-
(2006)
Circulation
, vol.114
, pp. 1721-1728
-
-
Dyck, J.R.1
Hopkins, T.A.2
Bonnet, S.3
Michelakis, E.D.4
Young, M.E.5
Watanabe, M.6
Kawase, Y.7
Jishage, K.8
Lopaschuk, G.D.9
-
23
-
-
4444226906
-
Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation
-
Dyck, J.R., Cheng, J.F., Stanley, W.C., Barr, R., Chandler, M.P., Brown, S., Wallace, D., Arrhenius, T., Harmon, C., Yang, G. et al. (2004) Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ. Res. 94, e78-e84
-
(2004)
Circ. Res.
, vol.94
-
-
Dyck, J.R.1
Cheng, J.F.2
Stanley, W.C.3
Barr, R.4
Chandler, M.P.5
Brown, S.6
Wallace, D.7
Arrhenius, T.8
Harmon, C.9
Yang, G.10
-
24
-
-
0001025498
-
The distribution of carnitine, acetylcarnitine, and carnitine acetyltransferase in rat tissues
-
Marquis, N.R. and Fritz, I.B. (1965) The distribution of carnitine, acetylcarnitine, and carnitine acetyltransferase in rat tissues. J. Biol. Chem. 240, 2193-2196
-
(1965)
J. Biol. Chem.
, vol.240
, pp. 2193-2196
-
-
Marquis, N.R.1
Fritz, I.B.2
-
25
-
-
0016638771
-
In vitro acetylcholine biosynthesis in normal and failing guinea pig hearts
-
Roskoski, Jr, R., Schmid, P.G., Mayer, H.E. and Abboud, F.M. (1975) In vitro acetylcholine biosynthesis in normal and failing guinea pig hearts. Circ. Res. 36, 547-552
-
(1975)
Circ. Res.
, vol.36
, pp. 547-552
-
-
Roskoski Jr., R.1
Schmid, P.G.2
Mayer, H.E.3
Abboud, F.M.4
-
26
-
-
0028801235
-
PropionylL-carnitine improvement of hypertrophied rat heart function is associated with an increase in cardiac efficiency
-
Schonekess, B.O., Allard, M.F. and Lopaschuk, G.D. (1995) PropionylL-carnitine improvement of hypertrophied rat heart function is associated with an increase in cardiac efficiency. Eur. J. Pharmacol. 286, 155-166
-
(1995)
Eur. J. Pharmacol.
, vol.286
, pp. 155-166
-
-
Schonekess, B.O.1
Allard, M.F.2
Lopaschuk, G.D.3
-
27
-
-
0026728161
-
Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart
-
Broderick, T.L., Quinney, H.A. and Lopaschuk, G.D. (1992) Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J. Biol. Chem. 267, 3758-3763
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 3758-3763
-
-
Broderick, T.L.1
Quinney, H.A.2
Lopaschuk, G.D.3
-
28
-
-
0029124119
-
Propionyl l-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation
-
Schonekess, B.O., Allard, M.F. and Lopaschuk, G.D. (1995) Propionyl l-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ. Res. 77, 726-734
-
(1995)
Circ. Res.
, vol.77
, pp. 726-734
-
-
Schonekess, B.O.1
Allard, M.F.2
Lopaschuk, G.D.3
-
29
-
-
0027978916
-
Regulation of fatty acid oxidation in the mammalian heart in health and disease
-
Lopaschuk, G.D., Belke, D.D., Gamble, J., Itoi, T. and Schonekess, B.O. (1994) Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim. Biophys. Acta 1213, 263-276
-
(1994)
Biochim. Biophys. Acta
, vol.1213
, pp. 263-276
-
-
Lopaschuk, G.D.1
Belke, D.D.2
Gamble, J.3
Itoi, T.4
Schonekess, B.O.5
-
30
-
-
0032128015
-
Carnitine acetyltransferase is not a cytosolic enzyme in rat heart and therefore cannot function in the energy-linked regulation of cardiac fatty acid oxidation
-
Abbas, A.S., Wu, G. and Schulz, H. (1998) Carnitine acetyltransferase is not a cytosolic enzyme in rat heart and therefore cannot function in the energy-linked regulation of cardiac fatty acid oxidation. J. Mol. Cell. Cardiol. 30, 1305-1309
-
(1998)
J. Mol. Cell. Cardiol.
, vol.30
, pp. 1305-1309
-
-
Abbas, A.S.1
Wu, G.2
Schulz, H.3
-
31
-
-
84864996189
-
Mechanistic insights into the regulation of metabolic enzymes by acetylation
-
Xiong, Y. and Guan, K.L. (2012) Mechanistic insights into the regulation of metabolic enzymes by acetylation. J. Cell Biol. 198, 155-164
-
(2012)
J. Cell Biol.
, vol.198
, pp. 155-164
-
-
Xiong, Y.1
Guan, K.L.2
-
32
-
-
84870762786
-
Mitochondrial metabolism, sirtuins, and aging
-
Sack, M.N. and Finkel, T. (2012) Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb. Perspect. Biol. 10, 1101-13102
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.10
, pp. 1101-13102
-
-
Sack, M.N.1
Finkel, T.2
-
33
-
-
84897112785
-
Regulation of Akt signaling by sirtuins: Its implication in cardiac hypertrophy and aging
-
Pillai, V.B., Sundaresan, N.R. and Gupta, M.P. (2014) Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ. Res. 114, 368-378
-
(2014)
Circ. Res.
, vol.114
, pp. 368-378
-
-
Pillai, V.B.1
Sundaresan, N.R.2
Gupta, M.P.3
-
34
-
-
84871107379
-
Mitochondrial protein acylation and intermediary metabolism: Regulation by sirtuins and implications for metabolic disease
-
Newman, J.C., He, W. and Verdin, E. (2012) Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J. Biol. Chem. 287, 42436-42443
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42436-42443
-
-
Newman, J.C.1
He, W.2
Verdin, E.3
-
35
-
-
84867594869
-
Mitochondrial protein acetylation regulates metabolism
-
Anderson, K.A. and Hirschey, M.D. (2012) Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 52, 23-35
-
(2012)
Essays Biochem.
, vol.52
, pp. 23-35
-
-
Anderson, K.A.1
Hirschey, M.D.2
-
36
-
-
48249157846
-
Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation
-
Shaw, B.F., Schneider, G.F., Bilgicer, B., Kaufman, G.K., Neveu, J.M., Lane, W.S., Whitelegge, J.P. and Whitesides, G.M. (2008) Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation. Protein Sci. 17, 1446-1455
-
(2008)
Protein Sci.
, vol.17
, pp. 1446-1455
-
-
Shaw, B.F.1
Schneider, G.F.2
Bilgicer, B.3
Kaufman, G.K.4
Neveu, J.M.5
Lane, W.S.6
Whitelegge, J.P.7
Whitesides, G.M.8
-
37
-
-
77953289374
-
Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose
-
Tong, L. and Denu, J.M. (2010) Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim. Biophys. Acta 1804, 1617-1625
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 1617-1625
-
-
Tong, L.1
Denu, J.M.2
-
38
-
-
2942534101
-
Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+ -dependent Sir2 histone/protein deacetylases
-
Zhao, K., Harshaw, R., Chai, X. and Marmorstein, R. (2004) Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+ -dependent Sir2 histone/protein deacetylases. Proc. Natl. Acad. Sci. U. S.A. 101, 8563-8568
-
(2004)
Proc. Natl. Acad. Sci. U. S.A.
, vol.101
, pp. 8563-8568
-
-
Zhao, K.1
Harshaw, R.2
Chai, X.3
Marmorstein, R.4
-
39
-
-
84891860991
-
The many faces of sirtuins: Coupling of NAD metabolism, sirtuins and lifespan
-
Verdin, E. (2014) The many faces of sirtuins: coupling of NAD metabolism, sirtuins and lifespan. Nat. Med. 20, 25-27
-
(2014)
Nat. Med.
, vol.20
, pp. 25-27
-
-
Verdin, E.1
-
40
-
-
84896393257
-
The sirtuin class of histone deacetylases: Regulation and roles in lipid metabolism
-
Fiorino, E., Giudici, M., Ferrari, A., Mitro, N., Caruso, D., De Fabiani, E. and Crestani, M. (2014) The sirtuin class of histone deacetylases: regulation and roles in lipid metabolism. IUBMB Life 66, 89-99
-
(2014)
IUBMB Life
, vol.66
, pp. 89-99
-
-
Fiorino, E.1
Giudici, M.2
Ferrari, A.3
Mitro, N.4
Caruso, D.5
De Fabiani, E.6
Crestani, M.7
-
42
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye, R.A. (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793-798
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
43
-
-
26244436281
-
Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
-
Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. and Horikawa, I. (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623-4635
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4623-4635
-
-
Michishita, E.1
Park, J.Y.2
Burneskis, J.M.3
Barrett, J.C.4
Horikawa, I.5
-
44
-
-
79960141848
-
Mammalian sirtuins and energy metabolism
-
Li, X. and Kazgan, N. (2011) Mammalian sirtuins and energy metabolism. Int. J. Biol. Sci. 7, 575-587
-
(2011)
Int. J. Biol. Sci.
, vol.7
, pp. 575-587
-
-
Li, X.1
Kazgan, N.2
-
45
-
-
84859977895
-
Sirtuins mediate mammalian metabolic responses to nutrient availability
-
Chalkiadaki, A. and Guarente, L. (2012) Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat. Rev. Endocrinol. 8, 287-296
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 287-296
-
-
Chalkiadaki, A.1
Guarente, L.2
-
46
-
-
79957944140
-
Advances in characterization of human sirtuin isoforms: Chemistries, targets and therapeutic applications
-
Cen, Y., Youn, D.Y. and Sauve, A.A. (2011) Advances in characterization of human sirtuin isoforms: chemistries, targets and therapeutic applications. Curr. Med. Chem. 18, 1919-1935
-
(2011)
Curr. Med. Chem.
, vol.18
, pp. 1919-1935
-
-
Cen, Y.1
Youn, D.Y.2
Sauve, A.A.3
-
47
-
-
84896901019
-
Sirt2 deacetylase is a novel Akt binding partner critical for Akt activation by insulin
-
Ramakrishnan, G., Davaakhuu, G., Kaplun, L., Chung, W.C., Rana, A., Atfi, A., Miele, L. and Tzivion, G. (2014) Sirt2 deacetylase is a novel Akt binding partner critical for Akt activation by insulin. J. Biol. Chem. 289, 6054-6066
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 6054-6066
-
-
Ramakrishnan, G.1
Davaakhuu, G.2
Kaplun, L.3
Chung, W.C.4
Rana, A.5
Atfi, A.6
Miele, L.7
Tzivion, G.8
-
48
-
-
84897454074
-
Sirt2 induces C2C12 myoblasts proliferation by activation of the ERK1/2 pathway
-
Wu, G., Song, C., Lu, H., Jia, L., Yang, G., Shi, X. and Sun, S. (2014) Sirt2 induces C2C12 myoblasts proliferation by activation of the ERK1/2 pathway. Acta Biochim. Biophys. Sin. 46, 342-345
-
(2014)
Acta Biochim. Biophys. Sin.
, vol.46
, pp. 342-345
-
-
Wu, G.1
Song, C.2
Lu, H.3
Jia, L.4
Yang, G.5
Shi, X.6
Sun, S.7
-
49
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1 and SIRT1
-
Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M. and Puigserver, P. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1 and SIRT1. Nature 434, 113-118
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
50
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1
-
Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z. and Puigserver, P. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1. EMBO J. 26, 1913-1923
-
(2007)
EMBO J.
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
Rodgers, J.T.2
Bare, O.3
Lerin, C.4
Kim, S.H.5
Mostoslavsky, R.6
Alt, F.W.7
Wu, Z.8
Puigserver, P.9
-
51
-
-
84874817589
-
Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1 complex
-
Lim, J.H., Gerhart-Hines, Z., Dominy, J.E., Lee, Y., Kim, S., Tabata, M., Xiang, Y.K. and Puigserver, P. (2013) Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1 complex. J. Biol. Chem. 288, 7117-7126
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 7117-7126
-
-
Lim, J.H.1
Gerhart-Hines, Z.2
Dominy, J.E.3
Lee, Y.4
Kim, S.5
Tabata, M.6
Xiang, Y.K.7
Puigserver, P.8
-
52
-
-
18144411313
-
SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1
-
Nemoto, S., Fergusson, M.M. and Finkel, T. (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1. J. Biol. Chem. 280, 16456-16460
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 16456-16460
-
-
Nemoto, S.1
Fergusson, M.M.2
Finkel, T.3
-
53
-
-
64549127790
-
PGC-1, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
-
Canto, C. and Auwerx, J. (2009) PGC-1, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98-105
-
(2009)
Curr. Opin. Lipidol.
, vol.20
, pp. 98-105
-
-
Canto, C.1
Auwerx, J.2
-
54
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price, N.L., Gomes, A.P., Ling, A.J., Duarte, F.V., Martin-Montalvo, A., North, B.J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J.S. et al. (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690
-
(2012)
Cell Metab.
, vol.15
, pp. 675-690
-
-
Price, N.L.1
Gomes, A.P.2
Ling, A.J.3
Duarte, F.V.4
Martin-Montalvo, A.5
North, B.J.6
Agarwal, B.7
Ye, L.8
Ramadori, G.9
Teodoro, J.S.10
-
55
-
-
79957937929
-
Targeting fatty acid and carbohydrate oxidation: A novel therapeutic intervention in the ischemic and failing heart
-
Jaswal, J.S., Keung, W., Wang, W., Ussher, J.R. and Lopaschuk, G.D. (2011) Targeting fatty acid and carbohydrate oxidation: a novel therapeutic intervention in the ischemic and failing heart. Biochim. Biophys. Acta 1813, 1333-1350
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1333-1350
-
-
Jaswal, J.S.1
Keung, W.2
Wang, W.3
Ussher, J.R.4
Lopaschuk, G.D.5
-
56
-
-
78649852533
-
SIRT1 is regulated by a PPAR -SIRT1 negative feedback loop associated with senescence
-
Han, L., Zhou, R., Niu, J., McNutt, M.A., Wang, P. and Tong, T. (2010) SIRT1 is regulated by a PPAR -SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res. 38, 7458-7471
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 7458-7471
-
-
Han, L.1
Zhou, R.2
Niu, J.3
McNutt, M.A.4
Wang, P.5
Tong, T.6
-
57
-
-
3042681042
-
Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR
-
Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., Mcburney, M.W. and Guarente, L. (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR. Nature 429, 771-776
-
(2004)
Nature
, vol.429
, pp. 771-776
-
-
Picard, F.1
Kurtev, M.2
Chung, N.3
Topark-Ngarm, A.4
Senawong, T.5
Machado De Oliveira, R.6
Leid, M.7
McBurney, M.W.8
Guarente, L.9
-
58
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham, A., Schug, T.T., Xu, Q., Surapureddi, S., Guo, X. and Li, X. (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9, 327-338
-
(2009)
Cell Metab.
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
59
-
-
84876217035
-
Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
-
Rardin, M.J., Newman, J.C., Held, J.M., Cusack, M.P., Sorensen, D.J., Li, B., Schilling, B., Mooney, S.D., Kahn, C.R., Verdin, E. et al. (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. U.S.A. 110, 6601-6606
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 6601-6606
-
-
Rardin, M.J.1
Newman, J.C.2
Held, J.M.3
Cusack, M.P.4
Sorensen, D.J.5
Li, B.6
Schilling, B.7
Mooney, S.D.8
Kahn, C.R.9
Verdin, E.10
-
60
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks, A.S., Kon, N., Knight, C., Matsumoto, M., Gutierrez-Juarez, R., Rossetti, L., Gu, W. and Accili, D. (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8, 333-341
-
(2008)
Cell Metab.
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
Matsumoto, M.4
Gutierrez-Juarez, R.5
Rossetti, L.6
Gu, W.7
Accili, D.8
-
61
-
-
79960620082
-
The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy
-
Sundaresan, N.R., Pillai, V.B., Wolfgeher, D., Samant, S., Vasudevan, P., Parekh, V., Raghuraman, H., Cunningham, J.M., Gupta, M. and Gupta, M.P. (2011) The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci. Signal. 182, ra46
-
(2011)
Sci. Signal.
, vol.182
-
-
Sundaresan, N.R.1
Pillai, V.B.2
Wolfgeher, D.3
Samant, S.4
Vasudevan, P.5
Parekh, V.6
Raghuraman, H.7
Cunningham, J.M.8
Gupta, M.9
Gupta, M.P.10
-
62
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne, J.C., Lambert, P.D., Schenk, S., Carney, D.P., Smith, J.J., Gagne, D.J., Jin, L., Boss, O., Perni, R.B., Vu, C.B. et al. (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
-
63
-
-
84870880080
-
Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3
-
Sol, E.M., Wagner, S.A., Weinert, B.T., Kumar, A., Kim, H.S., Deng, C.X. and Choudhary, C. (2012) Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS ONE 7, e50545
-
(2012)
PLoS ONE
, vol.7
-
-
Sol, E.M.1
Wagner, S.A.2
Weinert, B.T.3
Kumar, A.4
Kim, H.S.5
Deng, C.X.6
Choudhary, C.7
-
64
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H. et al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000-1004
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
Xu, W.2
Jiang, W.3
Yu, W.4
Lin, Y.5
Zhang, T.6
Yao, J.7
Zhou, L.8
Zeng, Y.9
Li, H.10
-
65
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D.B., Grueter, C.A., Harris, C., Biddinger, S., Ilkayeva, O.R. et al. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121-125
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
Shimazu, T.2
Goetzman, E.3
Jing, E.4
Schwer, B.5
Lombard, D.B.6
Grueter, C.A.7
Harris, C.8
Biddinger, S.9
Ilkayeva, O.R.10
-
66
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey, M.D., Shimazu, T., Jing, E., Grueter, C.A., Collins, A.M., Aouizerat, B., Stancáková, A., Goetzman, E., Lam, M.M., Schwer, B. et al. (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 44, 177-190
-
(2011)
Mol. Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
Shimazu, T.2
Jing, E.3
Grueter, C.A.4
Collins, A.M.5
Aouizerat, B.6
Stancáková, A.7
Goetzman, E.8
Lam, M.M.9
Schwer, B.10
-
67
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
Hebert, A.S., Dittenhafer-Reed, K.E., Yu, W., Bailey, D.J., Selen, E.S., Boersma, M.D., Carson, J.J., Tonelli, M., Balloon, A.J., Higbee, A.J. et al. (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 49, 186-199
-
(2013)
Mol. Cell
, vol.49
, pp. 186-199
-
-
Hebert, A.S.1
Dittenhafer-Reed, K.E.2
Yu, W.3
Bailey, D.J.4
Selen, E.S.5
Boersma, M.D.6
Carson, J.J.7
Tonelli, M.8
Balloon, A.J.9
Higbee, A.J.10
-
68
-
-
84894263431
-
Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex
-
Fan, J., Shan, C., Kang, H.B., Elf, S., Xie, J., Tucker, M., Gu, T.L., Aguiar, M., Lonning, S., Chen, H. et al. (2014) Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol. Cell 53, 534-548
-
(2014)
Mol. Cell
, vol.53
, pp. 534-548
-
-
Fan, J.1
Shan, C.2
Kang, H.B.3
Elf, S.4
Xie, J.5
Tucker, M.6
Gu, T.L.7
Aguiar, M.8
Lonning, S.9
Chen, H.10
-
69
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
Jing, E., O'Neill, B.T., Rardin, M.J., Kleinridders, A., Ilkeyeva, O.R., Ussar, S., Bain, J.R., Lee, K.Y., Verdin, E.M., Newgard, C.B. et al. (2013) Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62, 3404-3417
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
O'neill, B.T.2
Rardin, M.J.3
Kleinridders, A.4
Ilkeyeva, O.R.5
Ussar, S.6
Bain, J.R.7
Lee, K.Y.8
Verdin, E.M.9
Newgard, C.B.10
-
70
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard, D.B., Alt, F.W., Cheng, H.L., Bunkenborg, J., Streeper, R.S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A. et al. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807-8814
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
Alt, F.W.2
Cheng, H.L.3
Bunkenborg, J.4
Streeper, R.S.5
Mostoslavsky, R.6
Kim, J.7
Yancopoulos, G.8
Valenzuela, D.9
Murphy, A.10
-
71
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C.F. and Steegborn, C. (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382, 790-801
-
(2008)
J. Mol. Biol.
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
Gertz, M.2
Papatheodorou, P.3
Kachholz, B.4
Becker, C.F.5
Steegborn, C.6
-
72
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
Cimen, H., Han, M.J., Yang, Y., Tong, Q., Koc, H. and Koc, E.C. (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49, 304-311
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
Han, M.J.2
Yang, Y.3
Tong, Q.4
Koc, H.5
Koc, E.C.6
-
73
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
Finley, L.W., Haas, W., Desquiret-Dumas, V., Wallace, D.C., Procaccio, V., Gygi, S.P. and Haigis, M.C. (2011) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS ONE 6, e23295
-
(2011)
PLoS ONE
, vol.6
-
-
Finley, L.W.1
Haas, W.2
Desquiret-Dumas, V.3
Wallace, D.C.4
Procaccio, V.5
Gygi, S.P.6
Haigis, M.C.7
-
74
-
-
84888329025
-
Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
-
Bharathi, S.S., Zhang, Y., Mohsen, A.W., Uppala, R., Balasubramani, M., Schreiber, E., Uechi, G., Beck, M.E., Rardin, M.J., Vockley, J. et al. (2013) Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 288, 33837-33847
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 33837-33847
-
-
Bharathi, S.S.1
Zhang, Y.2
Mohsen, A.W.3
Uppala, R.4
Balasubramani, M.5
Schreiber, E.6
Uechi, G.7
Beck, M.E.8
Rardin, M.J.9
Vockley, J.10
-
75
-
-
78650481257
-
Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation
-
Zhang, L., Ussher, J.R., Oka, T., Cadete, V.J., Wagg, C. and Lopaschuk, G.D. (2011) Cardiac diacylglycerol accumulation in high fat-fed mice is associated with impaired insulin-stimulated glucose oxidation. Cardiovasc. Res. 89, 148-156
-
(2011)
Cardiovasc. Res.
, vol.89
, pp. 148-156
-
-
Zhang, L.1
Ussher, J.R.2
Oka, T.3
Cadete, V.J.4
Wagg, C.5
Lopaschuk, G.D.6
-
76
-
-
84862778848
-
Activating cardiac E2F1 induces up-regulation of pyruvate dehydrogenase kinase 4 in mice on a short term of high fat feeding
-
Zhang, L., Mori, J., Wagg, C. and Lopaschuk, G.D. (2012) Activating cardiac E2F1 induces up-regulation of pyruvate dehydrogenase kinase 4 in mice on a short term of high fat feeding. FEBS Lett. 586, 996-1003
-
(2012)
FEBS Lett.
, vol.586
, pp. 996-1003
-
-
Zhang, L.1
Mori, J.2
Wagg, C.3
Lopaschuk, G.D.4
-
77
-
-
68049136011
-
Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet-induced obese mice lacking malonyl CoA decarboxylase
-
Ussher, J.R., Koves, T.R., Jaswal, J.S., Zhang, L., Ilkayeva, O., Dyck, J.R., Muoio, D.M. and Lopaschuk, G.D. (2009) Insulin-stimulated cardiac glucose oxidation is increased in high-fat diet-induced obese mice lacking malonyl CoA decarboxylase. Diabetes 58, 1766-1775
-
(2009)
Diabetes
, vol.58
, pp. 1766-1775
-
-
Ussher, J.R.1
Koves, T.R.2
Jaswal, J.S.3
Zhang, L.4
Ilkayeva, O.5
Dyck, J.R.6
Muoio, D.M.7
Lopaschuk, G.D.8
-
78
-
-
84874409527
-
Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice
-
Keung, W., Ussher, J.R., Jaswal, J.S., Raubenheimer, M., Lam, V.H., Wagg, C.S. and Lopaschuk, G.D. (2013) Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice. Diabetes 62, 711-720
-
(2013)
Diabetes
, vol.62
, pp. 711-720
-
-
Keung, W.1
Ussher, J.R.2
Jaswal, J.S.3
Raubenheimer, M.4
Lam, V.H.5
Wagg, C.S.6
Lopaschuk, G.D.7
-
79
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
Jing, E., Emanuelli, B., Hirschey, M.D., Boucher, J., Lee, K.Y., Lombard, D., Verdin, E.M. and Kahn, C.R. (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 108, 14608-14613
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14608-14613
-
-
Jing, E.1
Emanuelli, B.2
Hirschey, M.D.3
Boucher, J.4
Lee, K.Y.5
Lombard, D.6
Verdin, E.M.7
Kahn, C.R.8
-
80
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1 in skeletal muscle
-
Palacios, O.M., Carmona, J.J., Michan, S., Chen, K.Y., Manabe, Y., Ward, J.L., Goodyear, L.J. and Tong, Q. (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1 in skeletal muscle. Aging 1, 771-783
-
(2009)
Aging
, vol.1
, pp. 771-783
-
-
Palacios, O.M.1
Carmona, J.J.2
Michan, S.3
Chen, K.Y.4
Manabe, Y.5
Ward, J.L.6
Goodyear, L.J.7
Tong, Q.8
-
81
-
-
84902331962
-
Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation
-
Pougovkina, O., Te Brinke, H., Ofman, R., van Cruchten, A.G., Kulik, W., Wanders, R.J., Houten, S.M. and de Boer, V.C. (2014) Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum. Mol. Genet. 23, 3513-3522
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 3513-3522
-
-
Pougovkina, O.1
Te Brinke, H.2
Ofman, R.3
Van Cruchten, A.G.4
Kulik, W.5
Wanders, R.J.6
Houten, S.M.7
De Boer, V.C.8
-
82
-
-
77957762687
-
SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
-
Nasrin, N., Wu, X., Fortier, E., Feng, Y., Bare, O.C., Chen, S., Ren, X., Wu, Z., Streeper, R.S. and Bordone, L. (2010) SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem. 285, 31995-32002
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31995-32002
-
-
Nasrin, N.1
Wu, X.2
Fortier, E.3
Feng, Y.4
Bare, O.C.5
Chen, S.6
Ren, X.7
Wu, Z.8
Streeper, R.S.9
Bordone, L.10
-
83
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells
-
Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Karow, M., Blander, G. et al. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell 126, 941-954
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
Fahie, K.4
Christodoulou, D.C.5
Murphy, A.J.6
Valenzuela, D.M.7
Yancopoulos, G.D.8
Karow, M.9
Blander, G.10
-
84
-
-
84878891625
-
SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
-
Laurent, G., German, N.J., Saha, A.K., de Boer, V.C., Davies, M., Koves, T.R., Dephoure, N., Fischer, F., Boanca, G., Vaitheesvaran, B. et al. (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686-698
-
(2013)
Mol. Cell
, vol.50
, pp. 686-698
-
-
Laurent, G.1
German, N.J.2
Saha, A.K.3
De Boer, V.C.4
Davies, M.5
Koves, T.R.6
Dephoure, N.7
Fischer, F.8
Boanca, G.9
Vaitheesvaran, B.10
-
85
-
-
84886993387
-
SIRT4 represses peroxisome proliferator-activated receptor activity to suppress hepatic fat oxidation
-
Laurent, G., de Boer, V.C., Finley, L.W., Sweeney, M., Lu, H., Schug, T.T., Cen, Y., Jeong, S.M., Li, X., Sauve, A.A. et al. (2013) SIRT4 represses peroxisome proliferator-activated receptor activity to suppress hepatic fat oxidation. Mol. Cell. Biol. 33, 4552-4561
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 4552-4561
-
-
Laurent, G.1
De Boer, V.C.2
Finley, L.W.3
Sweeney, M.4
Lu, H.5
Schug, T.T.6
Cen, Y.7
Jeong, S.M.8
Li, X.9
Sauve, A.A.10
-
86
-
-
84878441741
-
ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: A critical role of PDK4
-
Mori, J., Alrob, O.A., Wagg, C.S., Harris, R.A., Lopaschuk, G.D. and Oudit, G.Y. (2013) ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304, H1103-H1113
-
(2013)
Am. J. Physiol. Heart Circ. Physiol.
, vol.304
-
-
Mori, J.1
Alrob, O.A.2
Wagg, C.S.3
Harris, R.A.4
Lopaschuk, G.D.5
Oudit, G.Y.6
-
87
-
-
57749170458
-
The many roles of histone deacetylases in development and physiology: Implications for disease and therapy
-
Haberland, M., Montgomery, R.L. and Olson, E.N. (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32-42
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 32-42
-
-
Haberland, M.1
Montgomery, R.L.2
Olson, E.N.3
-
88
-
-
24944496184
-
Role of histone and transcription factor acetylation in diabetes pathogenesis
-
Gray, S.G. and De Meyts, P. (2005) Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab. Res. Rev. 21, 416-433
-
(2005)
Diabetes Metab. Res. Rev.
, vol.21
, pp. 416-433
-
-
Gray, S.G.1
De Meyts, P.2
-
89
-
-
77951174682
-
Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: Potential biochemical mechanisms
-
de Kreutzenberg, S.V., Ceolotto, G., Papparella, I., Bortoluzzi, A., Semplicini, A., Dalla Man, C., Cobelli, C., Fadini, G.P. and Avogaro, A. (2010) Downregulation of the longevity-associated protein sirtuin 1 in insulin resistance and metabolic syndrome: potential biochemical mechanisms. Diabetes 59, 1006-1015
-
(2010)
Diabetes
, vol.59
, pp. 1006-1015
-
-
De Kreutzenberg, S.V.1
Ceolotto, G.2
Papparella, I.3
Bortoluzzi, A.4
Semplicini, A.5
Dalla Man, C.6
Cobelli, C.7
Fadini, G.P.8
Avogaro, A.9
-
90
-
-
34547101692
-
The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats
-
Deng, X.Q., Chen, L.L. and Li, N.X. (2007) The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int. 27, 708-715
-
(2007)
Liver Int.
, vol.27
, pp. 708-715
-
-
Deng, X.Q.1
Chen, L.L.2
Li, N.X.3
-
91
-
-
13844272212
-
Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation
-
Kaiser, C. and James, S.R. (2004) Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol. 2, 23
-
(2004)
BMC Biol.
, vol.2
, pp. 23
-
-
Kaiser, C.1
James, S.R.2
-
92
-
-
36348974168
-
The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation
-
Zhang, J. (2007) The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J. Biol. Chem. 282, 34356-34364
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34356-34364
-
-
Zhang, J.1
-
93
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick, A.A., Choudhury, M., Rahman, S.M., McCurdy, C.E., Friederich, M., Van Hove, J.L., Watson, P.A., Birdsey, N., Bao, J., Gius, D. et al. (2011) Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 433, 505-514
-
(2011)
Biochem. J.
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
Choudhury, M.2
Rahman, S.M.3
McCurdy, C.E.4
Friederich, M.5
Van Hove, J.L.6
Watson, P.A.7
Birdsey, N.8
Bao, J.9
Gius, D.10
-
94
-
-
84857136130
-
Non-histone lysine acetylated proteins in heart failure
-
Grillon, J.M., Johnson, K.R., Kotlo, K. and Danziger, R.S. (2012) Non-histone lysine acetylated proteins in heart failure. Biochim. Biophys. Acta 822, 607-614
-
(2012)
Biochim. Biophys. Acta
, vol.822
, pp. 607-614
-
-
Grillon, J.M.1
Johnson, K.R.2
Kotlo, K.3
Danziger, R.S.4
-
95
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A. and Gupta, M.P. (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119, 2758-2771
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
96
-
-
77449120223
-
Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
-
Pillai, V.B., Sundaresan, N.R., Kim, G., Gupta, M., Rajamohan, S.B., Pillai, J.B., Samant, S., Ravindra, P.V., Isbatan, A. and Gupta, M.P. (2010) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 285, 3133-3144
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3133-3144
-
-
Pillai, V.B.1
Sundaresan, N.R.2
Kim, G.3
Gupta, M.4
Rajamohan, S.B.5
Pillai, J.B.6
Samant, S.7
Ravindra, P.V.8
Isbatan, A.9
Gupta, M.P.10
-
97
-
-
84881348520
-
Mitochondrial complex i deficiency increases protein acetylation and accelerates heart failure
-
Karamanlidis, G., Lee, C.F., Garcia-Menendez, L., Kolwicz, S.C., Suthammarak, W., Gong, G., Sedensky, M.M., Morgan, P.G., Wang, W. and Tian, R. (2013) Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18, 239-250
-
(2013)
Cell Metab.
, vol.18
, pp. 239-250
-
-
Karamanlidis, G.1
Lee, C.F.2
Garcia-Menendez, L.3
Kolwicz, S.C.4
Suthammarak, W.5
Gong, G.6
Sedensky, M.M.7
Morgan, P.G.8
Wang, W.9
Tian, R.10
-
98
-
-
34249669270
-
Sirt1 regulates aging and resistance to oxidative stress in the heart
-
Alcendor, R.R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., Tian, B., Wagner, T., Vatner, S.F. and Sadoshima, J. (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 100, 1512-1521
-
(2007)
Circ. Res.
, vol.100
, pp. 1512-1521
-
-
Alcendor, R.R.1
Gao, S.2
Zhai, P.3
Zablocki, D.4
Holle, E.5
Yu, X.6
Tian, B.7
Wagner, T.8
Vatner, S.F.9
Sadoshima, J.10
-
99
-
-
80455128956
-
PPAR-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway
-
Oka, S., Alcendor, R., Zhai, P., Park, J.Y., Shao, D., Cho, J., Yamamoto, T., Tian, B. and Sadoshima, J. (2011) PPAR-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab. 14, 598-611
-
(2011)
Cell Metab.
, vol.14
, pp. 598-611
-
-
Oka, S.1
Alcendor, R.2
Zhai, P.3
Park, J.Y.4
Shao, D.5
Cho, J.6
Yamamoto, T.7
Tian, B.8
Sadoshima, J.9
|