-
1
-
-
0001740285
-
The metabolism of carcinoma cells
-
Warburg O. The metabolism of carcinoma cells. J. Cancer Res. 1925, 9:148-163.
-
(1925)
J. Cancer Res.
, vol.9
, pp. 148-163
-
-
Warburg, O.1
-
2
-
-
0000459772
-
Ueber den stoffwechsel der tumoren
-
Warburg O., et al. Ueber den stoffwechsel der tumoren. Biochem. Zeitschrift 1924, 152:319-344.
-
(1924)
Biochem. Zeitschrift
, vol.152
, pp. 319-344
-
-
Warburg, O.1
-
3
-
-
85006768050
-
The metabolism of tumors in the body
-
Warburg O., et al. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8:519-530.
-
(1927)
J. Gen. Physiol.
, vol.8
, pp. 519-530
-
-
Warburg, O.1
-
4
-
-
0000089325
-
Observations on the carbohydrate metabolism of tumours
-
Crabtree H.G. Observations on the carbohydrate metabolism of tumours. Biochem. J. 1929, 23:536.
-
(1929)
Biochem. J.
, vol.23
, pp. 536
-
-
Crabtree, H.G.1
-
5
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956, 123:309-314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
6
-
-
0015251175
-
Bioenergetics and the problem of tumor growth: an understanding of the mechanism of the generation and control of biological energy may shed light on the problem of tumor growth
-
Racker E. Bioenergetics and the problem of tumor growth: an understanding of the mechanism of the generation and control of biological energy may shed light on the problem of tumor growth. Am. Sci. 1972, 60:56-63.
-
(1972)
Am. Sci.
, vol.60
, pp. 56-63
-
-
Racker, E.1
-
7
-
-
0021949960
-
Stimulation of glycolysis and amino acid uptake in NRK-49F cells by transforming growth factor beta and epidermal growth factor
-
Boerner P., et al. Stimulation of glycolysis and amino acid uptake in NRK-49F cells by transforming growth factor beta and epidermal growth factor. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:1350-1353.
-
(1985)
Proc. Natl. Acad. Sci. U.S.A.
, vol.82
, pp. 1350-1353
-
-
Boerner, P.1
-
8
-
-
0023158728
-
Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes
-
Flier J.S., et al. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 1987, 235:1492-1495.
-
(1987)
Science
, vol.235
, pp. 1492-1495
-
-
Flier, J.S.1
-
9
-
-
0023132221
-
Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription
-
Birnbaum M.J., et al. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 1987, 235:1495-1498.
-
(1987)
Science
, vol.235
, pp. 1495-1498
-
-
Birnbaum, M.J.1
-
10
-
-
0023682108
-
Growth factors rapidly induce expression of the glucose transporter gene
-
Hiraki Y., et al. Growth factors rapidly induce expression of the glucose transporter gene. J. Biol. Chem. 1988, 263:13655-13662.
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 13655-13662
-
-
Hiraki, Y.1
-
11
-
-
33744783432
-
Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
-
Fantin V.R., et al. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006, 9:425-434.
-
(2006)
Cancer Cell
, vol.9
, pp. 425-434
-
-
Fantin, V.R.1
-
12
-
-
0032539534
-
A unique glucose-dependent apoptotic pathway induced by c-Myc
-
Shim H., et al. A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:1511-1516.
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 1511-1516
-
-
Shim, H.1
-
13
-
-
84938232611
-
An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
-
Birsoy K., et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 2015, 162:540-551.
-
(2015)
Cell
, vol.162
, pp. 540-551
-
-
Birsoy, K.1
-
14
-
-
84937475615
-
Broad anti-tumor activity of a small molecule that selectively targets the Warburg Effect and lipogenesis
-
Flaveny C.A., et al. Broad anti-tumor activity of a small molecule that selectively targets the Warburg Effect and lipogenesis. Cancer Cell 2015, 28:42-56.
-
(2015)
Cancer Cell
, vol.28
, pp. 42-56
-
-
Flaveny, C.A.1
-
15
-
-
84938234308
-
Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
-
Sullivan L.B., et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 2015, 162:552-563.
-
(2015)
Cell
, vol.162
, pp. 552-563
-
-
Sullivan, L.B.1
-
16
-
-
84911861458
-
Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function
-
Viale A., et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014, 514:628-632.
-
(2014)
Nature
, vol.514
, pp. 628-632
-
-
Viale, A.1
-
17
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden M.G., et al. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
18
-
-
80053922625
-
Metabolic flux and the regulation of mammalian cell growth
-
Locasale J.W., Cantley L.C. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 2011, 14:443-451.
-
(2011)
Cell Metab.
, vol.14
, pp. 443-451
-
-
Locasale, J.W.1
Cantley, L.C.2
-
19
-
-
84919412891
-
Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
-
Shestov A.A., et al. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Elife 2014, 3:e03342.
-
(2014)
Elife
, vol.3
, pp. e03342
-
-
Shestov, A.A.1
-
20
-
-
0035917865
-
Cooperation and competition in the evolution of ATP-producing pathways
-
Pfeiffer T., et al. Cooperation and competition in the evolution of ATP-producing pathways. Science 2001, 292:504-507.
-
(2001)
Science
, vol.292
, pp. 504-507
-
-
Pfeiffer, T.1
-
21
-
-
84899925866
-
Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis
-
Slavov N., et al. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis. Cell Rep. 2014, 7:705-714.
-
(2014)
Cell Rep.
, vol.7
, pp. 705-714
-
-
Slavov, N.1
-
22
-
-
84941344937
-
Metabolic competition in the tumor microenvironment is a driver of cancer progression
-
Chang C-H., et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015, 162:1229-1241.
-
(2015)
Cell
, vol.162
, pp. 1229-1241
-
-
Chang, C.-H.1
-
23
-
-
84941366350
-
Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses
-
Ho P-C., et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 2015, 162:1217-1228.
-
(2015)
Cell
, vol.162
, pp. 1217-1228
-
-
Ho, P.-C.1
-
24
-
-
85069238534
-
Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane
-
Epstein T., et al. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab. 2014, 2:7.
-
(2014)
Cancer Metab.
, vol.2
, pp. 7
-
-
Epstein, T.1
-
25
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
Lunt S.Y., Vander Heiden M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27:441-464.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
26
-
-
78649711427
-
The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
-
Levine A.J., Puzio-Kuter A.M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010, 330:1340-1344.
-
(2010)
Science
, vol.330
, pp. 1340-1344
-
-
Levine, A.J.1
Puzio-Kuter, A.M.2
-
27
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
28
-
-
84860512005
-
Links between metabolism and cancer
-
Dang C.V. Links between metabolism and cancer. Genes Dev. 2012, 26:877-890.
-
(2012)
Genes Dev.
, vol.26
, pp. 877-890
-
-
Dang, C.V.1
-
29
-
-
79955398591
-
Otto Warburg's contributions to current concepts of cancer metabolism
-
Koppenol W.H., et al. Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011, 11:325-337.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 325-337
-
-
Koppenol, W.H.1
-
30
-
-
79251517382
-
Regulation of cancer cell metabolism
-
Cairns R.A., et al. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11:85-95.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 85-95
-
-
Cairns, R.A.1
-
31
-
-
84881557242
-
Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
-
Patra K.C., et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 2013, 24:213-228.
-
(2013)
Cancer Cell
, vol.24
, pp. 213-228
-
-
Patra, K.C.1
-
32
-
-
84925969707
-
Metabolic pathways promoting cancer cell survival and growth
-
Boroughs L.K., DeBerardinis R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 2015, 17:351-359.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 351-359
-
-
Boroughs, L.K.1
DeBerardinis, R.J.2
-
33
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
-
Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21:297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
34
-
-
84928795829
-
A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates
-
Hermsen R., et al. A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates. Mol. Syst. Biol. 2015, 11:801.
-
(2015)
Mol. Syst. Biol.
, vol.11
, pp. 801
-
-
Hermsen, R.1
-
35
-
-
84923658662
-
Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria
-
Hui S., et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 2015, 11:784.
-
(2015)
Mol. Syst. Biol.
, vol.11
, pp. 784
-
-
Hui, S.1
-
36
-
-
79953661070
-
Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect
-
Shlomi T., et al. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput. Biol. 2011, 7:e1002018.
-
(2011)
PLoS Comput. Biol.
, vol.7
, pp. e1002018
-
-
Shlomi, T.1
-
37
-
-
77951803596
-
Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited
-
Vazquez A., et al. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst. Biol. 2010, 4:58.
-
(2010)
BMC Syst. Biol.
, vol.4
, pp. 58
-
-
Vazquez, A.1
-
38
-
-
73149109962
-
Shifts in growth strategies reflect tradeoffs in cellular economics
-
Molenaar D., et al. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 2009, 5:323.
-
(2009)
Mol. Syst. Biol.
, vol.5
, pp. 323
-
-
Molenaar, D.1
-
39
-
-
84858796367
-
A two-way street: reciprocal regulation of metabolism and signalling
-
Wellen K.E., Thompson C.B. A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 2012, 13:270-276.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 270-276
-
-
Wellen, K.E.1
Thompson, C.B.2
-
40
-
-
84875465199
-
Cancer metabolism: fatty acid oxidation in the limelight
-
Carracedo A., et al. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 2013, 13:227-232.
-
(2013)
Nat. Rev. Cancer
, vol.13
, pp. 227-232
-
-
Carracedo, A.1
-
41
-
-
84922022722
-
Organization of enzyme concentration across the metabolic network in cancer cells
-
Madhukar N.S., et al. Organization of enzyme concentration across the metabolic network in cancer cells. PLoS ONE 2015, 10:e0117131.
-
(2015)
PLoS ONE
, vol.10
, pp. e0117131
-
-
Madhukar, N.S.1
-
42
-
-
84874886049
-
Acidity generated by the tumor microenvironment drives local invasion
-
Estrella V., et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013, 73:1524-1535.
-
(2013)
Cancer Res.
, vol.73
, pp. 1524-1535
-
-
Estrella, V.1
-
43
-
-
0029751950
-
A reaction-diffusion model of cancer invasion
-
Gatenby R.A., Gawlinski E.T. A reaction-diffusion model of cancer invasion. Cancer Res. 1996, 56:5745-5753.
-
(1996)
Cancer Res.
, vol.56
, pp. 5745-5753
-
-
Gatenby, R.A.1
Gawlinski, E.T.2
-
44
-
-
84907223092
-
Functional polarization of tumour-associated macrophages by tumour-derived lactic acid
-
Colegio O.R., et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014, 513:559-563.
-
(2014)
Nature
, vol.513
, pp. 559-563
-
-
Colegio, O.R.1
-
45
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H., et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012, 149:656-670.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
-
46
-
-
84946887722
-
The genetic evolution of melanoma from precursor lesions
-
Shain A.H., et al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med 2015, 373:1926-1936.
-
(2015)
N. Engl. J. Med
, vol.373
, pp. 1926-1936
-
-
Shain, A.H.1
-
47
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation
-
Wellen K.E., et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009, 324:1076-1080.
-
(2009)
Science
, vol.324
, pp. 1076-1080
-
-
Wellen, K.E.1
-
48
-
-
78649391422
-
Cellular metabolic stress: considering how cells respond to nutrient excess
-
Wellen K.E., Thompson C.B. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 2010, 40:323-332.
-
(2010)
Mol. Cell
, vol.40
, pp. 323-332
-
-
Wellen, K.E.1
Thompson, C.B.2
-
49
-
-
82755165163
-
Warburg effect and redox balance
-
Hamanaka R.B., Chandel N.S. Warburg effect and redox balance. Science 2011, 334:1219-1220.
-
(2011)
Science
, vol.334
, pp. 1219-1220
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
50
-
-
84878831880
-
Posttranscriptional control of T cell effector function by aerobic glycolysis
-
Chang C-H., et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013, 153:1239-1251.
-
(2013)
Cell
, vol.153
, pp. 1239-1251
-
-
Chang, C.-H.1
-
51
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
Sena L.A., Chandel N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48:158-167.
-
(2012)
Mol. Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
52
-
-
84867142346
-
The consequences of enhanced cell-autonomous glucose metabolism
-
Locasale J.W. The consequences of enhanced cell-autonomous glucose metabolism. Trends Endocrinol. Metab. 2012, 23:545-551.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 545-551
-
-
Locasale, J.W.1
-
53
-
-
84878679199
-
A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence
-
Kaplon J., et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498:109-112.
-
(2013)
Nature
, vol.498
, pp. 109-112
-
-
Kaplon, J.1
-
54
-
-
84912139448
-
Characterization of the usage of the serine metabolic network in human cancer
-
Mehrmohamadi M., et al. Characterization of the usage of the serine metabolic network in human cancer. Cell Rep. 2014, 9:1507-1519.
-
(2014)
Cell Rep.
, vol.9
, pp. 1507-1519
-
-
Mehrmohamadi, M.1
-
55
-
-
84902332213
-
Quantitative flux analysis reveals folate-dependent NADPH production
-
Fan J., et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 2014, 510:298-302.
-
(2014)
Nature
, vol.510
, pp. 298-302
-
-
Fan, J.1
-
56
-
-
84863534997
-
Metabolic regulation of epigenetics
-
Lu C., Thompson C.B. Metabolic regulation of epigenetics. Cell Metab. 2012, 16:9-17.
-
(2012)
Cell Metab.
, vol.16
, pp. 9-17
-
-
Lu, C.1
Thompson, C.B.2
-
57
-
-
85013861713
-
The rate of glycolysis quantitatively mediates specific histone acetylation sites
-
Cluntun A.A., et al. The rate of glycolysis quantitatively mediates specific histone acetylation sites. Cancer Metab. 2015, 3:1-12.
-
(2015)
Cancer Metab.
, vol.3
, pp. 1-12
-
-
Cluntun, A.A.1
-
58
-
-
84924272203
-
Glycolytic metabolism influences global chromatin structure
-
Liu X-S., et al. Glycolytic metabolism influences global chromatin structure. Oncotarget 2015, 6:4214.
-
(2015)
Oncotarget
, vol.6
, pp. 4214
-
-
Liu, X.-S.1
-
59
-
-
84876898716
-
Quantitative dynamics of the link between cellular metabolism and histone acetylation
-
Evertts A.G., et al. Quantitative dynamics of the link between cellular metabolism and histone acetylation. J. Biol. Chem. 2013, 288:12142-12151.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 12142-12151
-
-
Evertts, A.G.1
-
60
-
-
79955960768
-
Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
-
Cai L., et al. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 2011, 42:426-437.
-
(2011)
Mol. Cell
, vol.42
, pp. 426-437
-
-
Cai, L.1
-
61
-
-
79960060305
-
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
-
DeNicola G.M., et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011, 475:106-109.
-
(2011)
Nature
, vol.475
, pp. 106-109
-
-
DeNicola, G.M.1
-
62
-
-
84947583295
-
Overflow metabolism in Escherichia coli results from efficient proteome allocation
-
Basan M., et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 2015, 528:99-104.
-
(2015)
Nature
, vol.528
, pp. 99-104
-
-
Basan, M.1
|