-
2
-
-
84926670025
-
Environmental and metabolic sensors that control T cell biology
-
Ramsay G, Cantrell D. Environmental and metabolic sensors that control T cell biology. T Cell Biol (2015) 6:99. doi:10.3389/fimmu.2015.00099
-
(2015)
T Cell Biol
, vol.6
, pp. 99
-
-
Ramsay, G.1
Cantrell, D.2
-
3
-
-
84904057246
-
The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function
-
Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab (2014) 20(1):61-72. doi:10.1016/j.cmet.2014.05.004
-
(2014)
Cell Metab
, vol.20
, Issue.1
, pp. 61-72
-
-
Macintyre, A.N.1
Gerriets, V.A.2
Nichols, A.G.3
Michalek, R.D.4
Rudolph, M.C.5
Deoliveira, D.6
-
4
-
-
78649319060
-
Iron and immunity: immunological consequences of iron deficiency and overload
-
Cherayil BJ. Iron and immunity: immunological consequences of iron deficiency and overload. Arch Immunol Ther Exp (Warsz) (2010) 58(6):407-15. doi:10.1007/s00005-010-0095-9
-
(2010)
Arch Immunol Ther Exp (Warsz)
, vol.58
, Issue.6
, pp. 407-415
-
-
Cherayil, B.J.1
-
5
-
-
0024406211
-
Inhibition of lymphocyte activation with anti-transferrin receptor Mabs: a comparison of three reagents and further studies of their range of effects and mechanism of action
-
Kemp JD, Thorson JA, Gomez F, Smith KM, Cowdery JS, Ballas ZK. Inhibition of lymphocyte activation with anti-transferrin receptor Mabs: a comparison of three reagents and further studies of their range of effects and mechanism of action. Cell Immunol (1989) 122(1):218-30. doi:10.1016/0008-8749(89)90162-7
-
(1989)
Cell Immunol
, vol.122
, Issue.1
, pp. 218-230
-
-
Kemp, J.D.1
Thorson, J.A.2
Gomez, F.3
Smith, K.M.4
Cowdery, J.S.5
Ballas, Z.K.6
-
6
-
-
0035652018
-
The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost
-
Jason J, Archibald LK, Nwanyanwu OC, Bell M, Jensen RJ, Gunter E, et al. The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost. Clin Exp Immunol (2001) 126(3):466-73. doi:10.1046/j.1365-2249.2001.01707.x
-
(2001)
Clin Exp Immunol
, vol.126
, Issue.3
, pp. 466-473
-
-
Jason, J.1
Archibald, L.K.2
Nwanyanwu, O.C.3
Bell, M.4
Jensen, R.J.5
Gunter, E.6
-
7
-
-
84858766182
-
The blockade of immune checkpoints in cancer immunotherapy
-
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer (2012) 12(4):252-64. doi:10.1038/nrc3239
-
(2012)
Nat Rev Cancer
, vol.12
, Issue.4
, pp. 252-264
-
-
Pardoll, D.M.1
-
8
-
-
84862903106
-
Safety and activity of anti-PD-L1 antibody in patients with advanced cancer
-
Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med (2012) 366(26):2455-65. doi:10.1056/NEJMoa1200694
-
(2012)
N Engl J Med
, vol.366
, Issue.26
, pp. 2455-2465
-
-
Brahmer, J.R.1
Tykodi, S.S.2
Chow, L.Q.M.3
Hwu, W.-J.4
Topalian, S.L.5
Hwu, P.6
-
9
-
-
84862859820
-
Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
-
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med (2012) 366(26):2443-54. doi:10.1056/NEJMoa1200690
-
(2012)
N Engl J Med
, vol.366
, Issue.26
, pp. 2443-2454
-
-
Topalian, S.L.1
Hodi, F.S.2
Brahmer, J.R.3
Gettinger, S.N.4
Smith, D.C.5
McDermott, D.F.6
-
10
-
-
84961603856
-
Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer
-
Dai C, Lin F, Geng R, Ge X, Tang W, Chang J, et al. Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer. Oncotarget (2016) 7(9):10332-44. doi:10.18632/oncotarget.7243
-
(2016)
Oncotarget
, vol.7
, Issue.9
, pp. 10332-10344
-
-
Dai, C.1
Lin, F.2
Geng, R.3
Ge, X.4
Tang, W.5
Chang, J.6
-
11
-
-
82755186508
-
Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response
-
Noman MZ, Messai Y, Carré T, Akalay I, Méron M, Janji B, et al. Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response. Crit Rev Immunol (2011) 31(5):357-77. doi:10.1615/CritRevImmunol.v31.i5.10
-
(2011)
Crit Rev Immunol
, vol.31
, Issue.5
, pp. 357-377
-
-
Noman, M.Z.1
Messai, Y.2
Carré, T.3
Akalay, I.4
Méron, M.5
Janji, B.6
-
12
-
-
79960393113
-
Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells
-
Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L-P, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature (2011) 475(7355):226-30. doi:10.1038/nature10169
-
(2011)
Nature
, vol.475
, Issue.7355
, pp. 226-230
-
-
Facciabene, A.1
Peng, X.2
Hagemann, I.S.3
Balint, K.4
Barchetti, A.5
Wang, L.-P.6
-
13
-
-
34247527730
-
Hypoxia-inducible factors, stem cells, and cancer
-
Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell (2007) 129(3):465-72. doi:10.1016/j.cell.2007.04.019
-
(2007)
Cell
, vol.129
, Issue.3
, pp. 465-472
-
-
Keith, B.1
Simon, M.C.2
-
14
-
-
84864117497
-
Hypoxia promotes tumor growth in linking angiogenesis to immune escape
-
Chouaib S, Messai Y, Couve S, Escudier B, Hasmim M, Noman MZ. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front Immunol (2012) 3:21. doi:10.3389/fimmu.2012.00021
-
(2012)
Front Immunol
, vol.3
, pp. 21
-
-
Chouaib, S.1
Messai, Y.2
Couve, S.3
Escudier, B.4
Hasmim, M.5
Noman, M.Z.6
-
15
-
-
84865294745
-
Metabolic reprogramming and metabolic dependency in T cells
-
Wang R, Green DR. Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev (2012) 249(1):14-26. doi:10.1111/j.1600-065X.2012.01155.x
-
(2012)
Immunol Rev
, vol.249
, Issue.1
, pp. 14-26
-
-
Wang, R.1
Green, D.R.2
-
16
-
-
84949096958
-
T cell metabolic reprogramming and plasticity
-
Slack M, Wang T, Wang R. T cell metabolic reprogramming and plasticity. Mol Immunol (2015) 68(2 Pt C):507-12. doi:10.1016/j.molimm.2015.07.036
-
(2015)
Mol Immunol
, vol.68
, Issue.2
, pp. 507-512
-
-
Slack, M.1
Wang, T.2
Wang, R.3
-
17
-
-
84876758617
-
Metabolic pathways in immune cell activation and quiescence
-
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity (2013) 38(4):633-43. doi:10.1016/j.immuni.2013.04.005
-
(2013)
Immunity
, vol.38
, Issue.4
, pp. 633-643
-
-
Pearce, E.L.1
Pearce, E.J.2
-
18
-
-
84896076324
-
T cell receptor signaling can directly enhance the avidity of CD28 ligand binding
-
Sanchez-Lockhart M, Rojas AV, Fettis MM, Bauserman R, Higa TR, Miao H, et al. T cell receptor signaling can directly enhance the avidity of CD28 ligand binding. PLoS One (2014) 9(2):e89263. doi:10.1371/journal.pone.0089263
-
(2014)
PLoS One
, vol.9
, Issue.2
-
-
Sanchez-Lockhart, M.1
Rojas, A.V.2
Fettis, M.M.3
Bauserman, R.4
Higa, T.R.5
Miao, H.6
-
19
-
-
85017256847
-
CD28 co-stimulation in T-cell homeostasis: a recent perspective
-
Beyersdorf N, Kerkau T, Hünig T. CD28 co-stimulation in T-cell homeostasis: a recent perspective. Immunotargets Ther (2015) 4:111-22. doi:10.2147/ITT.S61647
-
(2015)
Immunotargets Ther
, vol.4
, pp. 111-122
-
-
Beyersdorf, N.1
Kerkau, T.2
Hünig, T.3
-
20
-
-
84885055994
-
Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function
-
Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest (2013) 123(10):4479-88. doi:10.1172/JCI69589
-
(2013)
J Clin Invest
, vol.123
, Issue.10
, pp. 4479-4488
-
-
Sukumar, M.1
Liu, J.2
Ji, Y.3
Subramanian, M.4
Crompton, J.G.5
Yu, Z.6
-
21
-
-
84949531241
-
Cellular metabolism modulation in T lymphocyte immunity
-
Liu H, Yang H, Chen X, Lu Y, Zhang Z, Wang J, et al. Cellular metabolism modulation in T lymphocyte immunity. Immunology (2014). doi:10.1111/imm.12321
-
(2014)
Immunology
-
-
Liu, H.1
Yang, H.2
Chen, X.3
Lu, Y.4
Zhang, Z.5
Wang, J.6
-
22
-
-
82755166890
-
Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
-
Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science (2011) 334(6060):1278-83. doi:10.1126/science.1211485
-
(2011)
Science
, vol.334
, Issue.6060
, pp. 1278-1283
-
-
Anastasiou, D.1
Poulogiannis, G.2
Asara, J.M.3
Boxer, M.B.4
Jiang, J.5
Shen, M.6
-
23
-
-
84947591002
-
T cell metabolism drives immunity
-
Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med (2015) 212(9):1345-60. doi:10.1084/jem.20151159
-
(2015)
J Exp Med
, vol.212
, Issue.9
, pp. 1345-1360
-
-
Buck, M.D.1
O'Sullivan, D.2
Pearce, E.L.3
-
24
-
-
84866562625
-
Metabolic checkpoints in activated T cells
-
Wang R, Green DR. Metabolic checkpoints in activated T cells. Nat Immunol (2012) 13(10):907-15. doi:10.1038/ni.2386
-
(2012)
Nat Immunol
, vol.13
, Issue.10
, pp. 907-915
-
-
Wang, R.1
Green, D.R.2
-
25
-
-
84863202384
-
Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity
-
Marelli-Berg FM, Fu H, Mauro C. Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity. Immunology (2012) 136(4):363-9. doi:10.1111/j.1365-2567.2012.03583.x
-
(2012)
Immunology
, vol.136
, Issue.4
, pp. 363-369
-
-
Marelli-Berg, F.M.1
Fu, H.2
Mauro, C.3
-
26
-
-
84964600705
-
Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation
-
Nguyen HD, Chatterjee S, Haarberg KM, Wu Y, Bastian D, Heinrichs J, et al. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest (2016) 126(4):1337-52. doi:10.1172/JCI82587
-
(2016)
J Clin Invest
, vol.126
, Issue.4
, pp. 1337-1352
-
-
Nguyen, H.D.1
Chatterjee, S.2
Haarberg, K.M.3
Wu, Y.4
Bastian, D.5
Heinrichs, J.6
-
27
-
-
84859140799
-
Metabolic pathways in T cell fate and function
-
Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol (2012) 33(4):168-73. doi:10.1016/j.it.2012.01.010
-
(2012)
Trends Immunol
, vol.33
, Issue.4
, pp. 168-173
-
-
Gerriets, V.A.1
Rathmell, J.C.2
-
28
-
-
76749098737
-
Overview of the immune response
-
Chaplin DD. Overview of the immune response. J Allergy Clin Immunol (2010) 125(2 Suppl 2):S3-23. doi:10.1016/j.jaci.2009.12.980
-
(2010)
J Allergy Clin Immunol
, vol.125
, Issue.2
, pp. S3-S23
-
-
Chaplin, D.D.1
-
29
-
-
84871332199
-
Cross-reactivity of T cells and its role in the immune system
-
Petrova G, Ferrante A, Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol (2012) 32(4):349-72. doi:10.1615/CritRevImmunol.v32.i4.50
-
(2012)
Crit Rev Immunol
, vol.32
, Issue.4
, pp. 349-372
-
-
Petrova, G.1
Ferrante, A.2
Gorski, J.3
-
30
-
-
70049113279
-
CD4+ regulatory T cells control Th17 responses in a Stat3-dependent manner
-
Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, et al. CD4+ regulatory T cells control Th17 responses in a Stat3-dependent manner. Science (2009) 326(5955):986-91. doi:10.1126/science.1172702
-
(2009)
Science
, vol.326
, Issue.5955
, pp. 986-991
-
-
Chaudhry, A.1
Rudra, D.2
Treuting, P.3
Samstein, R.M.4
Liang, Y.5
Kas, A.6
-
31
-
-
75749134098
-
Memory CD8+ T cell differentiation
-
Obar JJ, Lefrançois L. Memory CD8+ T cell differentiation. Ann N Y Acad Sci (2010) 1183:251-66. doi:10.1111/j.1749-6632.2009.05126.x
-
(2010)
Ann N Y Acad Sci
, vol.1183
, pp. 251-266
-
-
Obar, J.J.1
Lefrançois, L.2
-
32
-
-
77951692771
-
Plasticity in programming of effector and memory CD8 T-cell formation
-
Arens R, Schoenberger SP. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev (2010) 235(1):190-205. doi:10.1111/j.0105-2896.2010.00899.x
-
(2010)
Immunol Rev
, vol.235
, Issue.1
, pp. 190-205
-
-
Arens, R.1
Schoenberger, S.P.2
-
33
-
-
84874226167
-
mTOR and metabolic pathways in T cell quiescence and functional activation
-
Yang K, Chi H. mTOR and metabolic pathways in T cell quiescence and functional activation. Semin Immunol (2012) 24(6):421-8. doi:10.1016/j.smim.2012.12.004
-
(2012)
Semin Immunol
, vol.24
, Issue.6
, pp. 421-428
-
-
Yang, K.1
Chi, H.2
-
34
-
-
84935049461
-
TCR-signaling events in cellular metabolism and specialization
-
Chisolm DA, Weinmann AS. TCR-signaling events in cellular metabolism and specialization. Front Immunol (2015) 6:292. doi:10.3389/fimmu.2015.00292
-
(2015)
Front Immunol
, vol.6
, pp. 292
-
-
Chisolm, D.A.1
Weinmann, A.S.2
-
35
-
-
66949173728
-
mTOR differentially regulates effector and regulatory T cell lineage commitment
-
Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. mTOR differentially regulates effector and regulatory T cell lineage commitment. Immunity (2009) 30(6):832-44. doi:10.1016/j.immuni.2009.04.014
-
(2009)
Immunity
, vol.30
, Issue.6
, pp. 832-844
-
-
Delgoffe, G.M.1
Kole, T.P.2
Zheng, Y.3
Zarek, P.E.4
Matthews, K.L.5
Xiao, B.6
-
36
-
-
85010635732
-
Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation
-
Araujo L, Khim P, Mkhikian H, Mortales CL, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. Elife (2017) 6:e21330. doi:10.7554/eLife.21330
-
(2017)
Elife
, vol.6
-
-
Araujo, L.1
Khim, P.2
Mkhikian, H.3
Mortales, C.L.4
Demetriou, M.5
-
37
-
-
84881068658
-
The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science (2013) 341(6145):569-73. doi:10.1126/science.1241165
-
(2013)
Science
, vol.341
, Issue.6145
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
Michaud, M.4
Gallini, C.A.5
Bohlooly, Y.M.6
-
38
-
-
79953172571
-
Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
-
Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol (2011) 186(6):3299-303. doi:10.4049/jimmunol.1003613
-
(2011)
J Immunol
, vol.186
, Issue.6
, pp. 3299-3303
-
-
Michalek, R.D.1
Gerriets, V.A.2
Jacobs, S.R.3
Macintyre, A.N.4
MacIver, N.J.5
Mason, E.F.6
-
39
-
-
84873684726
-
Metabolic control of the Treg/Th17 axis
-
Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/Th17 axis. Immunol Rev (2013) 252(1):52-77. doi:10.1111/imr.12029
-
(2013)
Immunol Rev
, vol.252
, Issue.1
, pp. 52-77
-
-
Barbi, J.1
Pardoll, D.2
Pan, F.3
-
40
-
-
84941072886
-
Regulation of mammalian nucleotide metabolism and biosynthesis
-
Lane AN, Fan TW. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res (2015) 7:gkv047. doi:10.1093/nar/gkv047
-
(2015)
Nucleic Acids Res
, vol.7
-
-
Lane, A.N.1
Fan, T.W.2
-
41
-
-
85003874481
-
Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity
-
Arts RJ, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab (2016) 24(6):807-19. doi:10.1016/j.cmet.2016.10.008
-
(2016)
Cell Metab
, vol.24
, Issue.6
, pp. 807-819
-
-
Arts, R.J.1
Novakovic, B.2
Ter Horst, R.3
Carvalho, A.4
Bekkering, S.5
Lachmandas, E.6
-
42
-
-
79960369458
-
HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
-
Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med (2011) 208(7):1367-76. doi:10.1084/jem.20110278
-
(2011)
J Exp Med
, vol.208
, Issue.7
, pp. 1367-1376
-
-
Shi, L.Z.1
Wang, R.2
Huang, G.3
Vogel, P.4
Neale, G.5
Green, D.R.6
-
43
-
-
84874242919
-
Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
-
Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity (2013) 38(2):225-36. doi:10.1016/j.immuni.2012.10.020
-
(2013)
Immunity
, vol.38
, Issue.2
, pp. 225-236
-
-
Sena, L.A.1
Li, S.2
Jairaman, A.3
Prakriya, M.4
Ezponda, T.5
Hildeman, D.A.6
-
44
-
-
84922080059
-
De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
-
Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med (2014) 20(11):1327-33. doi:10.1038/nm.3704
-
(2014)
Nat Med
, vol.20
, Issue.11
, pp. 1327-1333
-
-
Berod, L.1
Friedrich, C.2
Nandan, A.3
Freitag, J.4
Hagemann, S.5
Harmrolfs, K.6
-
45
-
-
84883423963
-
CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
-
van der Windt GJ, O'Sullivan D, Everts B, Huang SC, Buck MD, Curtis JD, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci U S A (2013) 110(35):14336-41. doi:10.1073/pnas.1221740110
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.35
, pp. 14336-14341
-
-
van der Windt, G.J.1
O'Sullivan, D.2
Everts, B.3
Huang, S.C.4
Buck, M.D.5
Curtis, J.D.6
-
46
-
-
67650096912
-
Enhancing CD8 T cell memory by modulating fatty acid metabolism
-
Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang L-S, et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature (2009) 460(7251):103-7. doi:10.1038/nature08097
-
(2009)
Nature
, vol.460
, Issue.7251
, pp. 103-107
-
-
Pearce, E.L.1
Walsh, M.C.2
Cejas, P.J.3
Harms, G.M.4
Shen, H.5
Wang, L.-S.6
-
47
-
-
84856183120
-
Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
-
van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity (2012) 36(1):68-78. doi:10.1016/j.immuni.2011.12.007
-
(2012)
Immunity
, vol.36
, Issue.1
, pp. 68-78
-
-
van der Windt, G.J.1
Everts, B.2
Chang, C.H.3
Curtis, J.D.4
Freitas, T.C.5
Amiel, E.6
-
48
-
-
84875463042
-
Molecular mechanisms of T cell co-stimulation and co-inhibition
-
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol (2013) 13(4):227-42. doi:10.1038/nri3405
-
(2013)
Nat Rev Immunol
, vol.13
, Issue.4
, pp. 227-242
-
-
Chen, L.1
Flies, D.B.2
-
49
-
-
66949173728
-
The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
-
Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity (2009) 30(6):832-44. doi:10.1016/j.immuni.2009.04.014
-
(2009)
Immunity
, vol.30
, Issue.6
, pp. 832-844
-
-
Delgoffe, G.M.1
Kole, T.P.2
Zheng, Y.3
Zarek, P.E.4
Matthews, K.L.5
Xiao, B.6
-
50
-
-
84865301337
-
mTOR, metabolism, and the regulation of T-cell differentiation and function
-
Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev (2012) 249(1):43-58. doi:10.1111/j.1600-065X.2012.01152.x
-
(2012)
Immunol Rev
, vol.249
, Issue.1
, pp. 43-58
-
-
Waickman, A.T.1
Powell, J.D.2
-
51
-
-
84965185497
-
Asymmetric cell division during T cell development controls downstream fate
-
Pham K, Shimoni R, Charnley M, Ludford-Menting MJ, Hawkins ED, Ramsbottom K, et al. Asymmetric cell division during T cell development controls downstream fate. J Cell Biol (2015) 210(6):933-50. doi:10.1083/jcb.201502053
-
(2015)
J Cell Biol
, vol.210
, Issue.6
, pp. 933-950
-
-
Pham, K.1
Shimoni, R.2
Charnley, M.3
Ludford-Menting, M.J.4
Hawkins, E.D.5
Ramsbottom, K.6
-
52
-
-
84964527036
-
Metabolic maintenance of cell asymmetry following division in activated T lymphocytes
-
Verbist KC, Guy CS, Milasta S, Liedmann S, Kaminski MM, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature (2016) 532(7599):389-93. doi:10.1038/nature17442
-
(2016)
Nature
, vol.532
, Issue.7599
, pp. 389-393
-
-
Verbist, K.C.1
Guy, C.S.2
Milasta, S.3
Liedmann, S.4
Kaminski, M.M.5
Wang, R.6
-
53
-
-
84963525930
-
Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation
-
Pollizzi KN, Sun I-H, Patel CH, Lo Y-C, Oh M-H, Waickman AT, et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nat Immunol (2016) 17(6):704-11. doi:10.1038/ni.3438
-
(2016)
Nat Immunol
, vol.17
, Issue.6
, pp. 704-711
-
-
Pollizzi, K.N.1
Sun, I.-H.2
Patel, C.H.3
Lo, Y.-C.4
Oh, M.-H.5
Waickman, A.T.6
-
54
-
-
45549098562
-
T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
-
Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A (2008) 105(22):7797-802. doi:10.1073/pnas.0800928105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.22
, pp. 7797-7802
-
-
Sauer, S.1
Bruno, L.2
Hertweck, A.3
Finlay, D.4
Leleu, M.5
Spivakov, M.6
-
55
-
-
84902457455
-
T cell receptor-dependent activation of mTOR signaling in T cells is mediated by carma1 and MALT1, but not Bcl10
-
Hamilton KS, Phong B, Corey C, Cheng J, Gorentla B, Zhong X, et al. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by carma1 and MALT1, but not Bcl10. Sci Signal (2014) 7(329):ra55-55. doi:10.1126/scisignal.2005169
-
(2014)
Sci Signal
, vol.7
, Issue.329
-
-
Hamilton, K.S.1
Phong, B.2
Corey, C.3
Cheng, J.4
Gorentla, B.5
Zhong, X.6
-
56
-
-
84860237060
-
Regulation and function of mTOR signalling in T cell fate decisions
-
Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol (2012) 12(5):325-38. doi:10.1038/nri3198
-
(2012)
Nat Rev Immunol
, vol.12
, Issue.5
, pp. 325-338
-
-
Chi, H.1
-
57
-
-
84890137621
-
T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic programming
-
Yang K, Shrestha S, Zeng H, Karmaus PWF, Neale G, Vogel P, et al. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic programming. Immunity (2013) 39(6):1043-56. doi:10.1016/j.immuni.2013.09.015
-
(2013)
Immunity
, vol.39
, Issue.6
, pp. 1043-1056
-
-
Yang, K.1
Shrestha, S.2
Zeng, H.3
Karmaus, P.W.F.4
Neale, G.5
Vogel, P.6
-
58
-
-
84871861969
-
PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
-
Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med (2012) 209(13):2441-53. doi:10.1084/jem.20112607
-
(2012)
J Exp Med
, vol.209
, Issue.13
, pp. 2441-2453
-
-
Finlay, D.K.1
Rosenzweig, E.2
Sinclair, L.V.3
Feijoo-Carnero, C.4
Hukelmann, J.L.5
Rolf, J.6
-
59
-
-
54549089738
-
Hypoxia signalling through mTOR and the unfolded protein response in cancer
-
Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer (2008) 8(11):851-64. doi:10.1038/nrc2501
-
(2008)
Nat Rev Cancer
, vol.8
, Issue.11
, pp. 851-864
-
-
Wouters, B.G.1
Koritzinsky, M.2
-
60
-
-
84255199079
-
The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
-
Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity (2011) 35(6):871-82. doi:10.1016/j.immuni.2011.09.021
-
(2011)
Immunity
, vol.35
, Issue.6
, pp. 871-882
-
-
Wang, R.1
Dillon, C.P.2
Shi, L.Z.3
Milasta, S.4
Carter, R.5
Finkelstein, D.6
-
61
-
-
64749116346
-
c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature (2009) 458(7239):762-5. doi:10.1038/nature07823
-
(2009)
Nature
, vol.458
, Issue.7239
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
-
62
-
-
0028068606
-
Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1
-
Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem (1994) 269(38):23757-63.
-
(1994)
J Biol Chem
, vol.269
, Issue.38
, pp. 23757-23763
-
-
Semenza, G.L.1
Roth, P.H.2
Fang, H.M.3
Wang, G.L.4
-
63
-
-
0032476059
-
Hypoxia regulates beta-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element
-
Discher DJ, Bishopric NH, Wu X, Peterson CA, Webster KA. Hypoxia regulates beta-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element. J Biol Chem (1998) 273(40):26087-93. doi:10.1074/jbc.273.40.26087
-
(1998)
J Biol Chem
, vol.273
, Issue.40
, pp. 26087-26093
-
-
Discher, D.J.1
Bishopric, N.H.2
Wu, X.3
Peterson, C.A.4
Webster, K.A.5
-
64
-
-
73949087467
-
T-cell activation under hypoxic conditions enhances IFN-gamma secretion
-
Roman J, Rangasamy T, Guo J, Sugunan S, Meednu N, Packirisamy G, et al. T-cell activation under hypoxic conditions enhances IFN-gamma secretion. Am J Respir Cell Mol Biol (2010) 42(1):123-8. doi:10.1165/rcmb.2008-0139OC
-
(2010)
Am J Respir Cell Mol Biol
, vol.42
, Issue.1
, pp. 123-128
-
-
Roman, J.1
Rangasamy, T.2
Guo, J.3
Sugunan, S.4
Meednu, N.5
Packirisamy, G.6
-
65
-
-
80052277906
-
Control of TH17/Treg balance by hypoxia-inducible factor 1
-
Dang EV, Barbi J, Yang H-Y, Jinasena D, Yu H, Zheng Y, et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell (2011) 146(5):772-84. doi:10.1016/j.cell.2011.07.033
-
(2011)
Cell
, vol.146
, Issue.5
, pp. 772-784
-
-
Dang, E.V.1
Barbi, J.2
Yang, H.-Y.3
Jinasena, D.4
Yu, H.5
Zheng, Y.6
-
66
-
-
85017199230
-
Metabolic control of T cell fate decision: the HIF1a-glycolysis axis in the differentiation of TH17 and iTreg cells
-
Shi LZ, Wang R, Green D, Chi H. Metabolic control of T cell fate decision: the HIF1a-glycolysis axis in the differentiation of TH17 and iTreg cells. J Immunol (2012) 188(1 Suppl):17-163.
-
(2012)
J Immunol
, vol.188
, Issue.1
, pp. 17-163
-
-
Shi, L.Z.1
Wang, R.2
Green, D.3
Chi, H.4
-
67
-
-
84995554140
-
The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation
-
Gualdoni GA, Mayer KA, Göschl L, Boucheron N, Ellmeier W, Zlabinger GJ. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J (2016) 30(11):3800-9. doi:10.1096/fj.201600522R
-
(2016)
FASEB J
, vol.30
, Issue.11
, pp. 3800-3809
-
-
Gualdoni, G.A.1
Mayer, K.A.2
Göschl, L.3
Boucheron, N.4
Ellmeier, W.5
Zlabinger, G.J.6
-
68
-
-
84904641293
-
Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment
-
Mockler MB, Conroy MJ, Lysaght J. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front Oncol (2014) 4:107. doi:10.3389/fonc.2014.00107
-
(2014)
Front Oncol
, vol.4
, pp. 107
-
-
Mockler, M.B.1
Conroy, M.J.2
Lysaght, J.3
-
69
-
-
84952902890
-
Immunometabolism: cellular metabolism turns immune regulator
-
Loftus RM, Finlay DK. Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem (2016) 291(1):1-10. doi:10.1074/jbc.R115.693903
-
(2016)
J Biol Chem
, vol.291
, Issue.1
, pp. 1-10
-
-
Loftus, R.M.1
Finlay, D.K.2
-
70
-
-
84964267895
-
Fatty acid metabolism in the regulation of T cell function
-
Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol (2015) 36(2):81-91. doi:10.1016/j.it.2014.12.005
-
(2015)
Trends Immunol
, vol.36
, Issue.2
, pp. 81-91
-
-
Lochner, M.1
Berod, L.2
Sparwasser, T.3
-
71
-
-
84876434341
-
AMPK: a metabolic switch for CD8+ T-cell memory
-
Araki K, Ahmed R. AMPK: a metabolic switch for CD8+ T-cell memory. Eur J Immunol (2013) 43(4):878-81. doi:10.1002/eji.201343483
-
(2013)
Eur J Immunol
, vol.43
, Issue.4
, pp. 878-881
-
-
Araki, K.1
Ahmed, R.2
-
72
-
-
84876454059
-
AMPKa1: a glucose sensor that controls CD8 T-cell memory
-
Rolf J, Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. AMPKa1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol (2013) 43(4):889-96. doi:10.1002/eji.201243008
-
(2013)
Eur J Immunol
, vol.43
, Issue.4
, pp. 889-896
-
-
Rolf, J.1
Zarrouk, M.2
Finlay, D.K.3
Foretz, M.4
Viollet, B.5
Cantrell, D.A.6
-
73
-
-
84960926090
-
Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice
-
Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol (2016) 292:58-67. doi:10.1016/j.jneuroim.2016.01.014
-
(2016)
J Neuroimmunol
, vol.292
, pp. 58-67
-
-
Sun, Y.1
Tian, T.2
Gao, J.3
Liu, X.4
Hou, H.5
Cao, R.6
-
74
-
-
77951678634
-
The role of mTOR in memory CD8 T-cell differentiation
-
Araki K, Youngblood B, Ahmed R. The role of mTOR in memory CD8 T-cell differentiation. Immunol Rev (2010) 235(1):234-43. doi:10.1111/j.0105-2896.2010.00898.x
-
(2010)
Immunol Rev
, vol.235
, Issue.1
, pp. 234-243
-
-
Araki, K.1
Youngblood, B.2
Ahmed, R.3
-
75
-
-
84939612531
-
Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells
-
Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS One (2014) 9(9):e106710. doi:10.1371/journal.pone.0106710
-
(2014)
PLoS One
, vol.9
, Issue.9
-
-
Zarrouk, M.1
Finlay, D.K.2
Foretz, M.3
Viollet, B.4
Cantrell, D.A.5
-
76
-
-
77953785070
-
The metabolic life and times of a T-cell
-
Michalek RD, Rathmell JC. The metabolic life and times of a T-cell. Immunol Rev (2010) 236:190-202. doi:10.1111/j.1600-065X.2010.00911.x
-
(2010)
Immunol Rev
, vol.236
, pp. 190-202
-
-
Michalek, R.D.1
Rathmell, J.C.2
-
77
-
-
54249141095
-
Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival
-
Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol (2008) 84(4):949-57. doi:10.1189/jlb.0108024
-
(2008)
J Leukoc Biol
, vol.84
, Issue.4
, pp. 949-957
-
-
Maciver, N.J.1
Jacobs, S.R.2
Wieman, H.L.3
Wofford, J.A.4
Coloff, J.L.5
Rathmell, J.C.6
-
78
-
-
44449165597
-
Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
-
Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol (2008) 180(7):4476-86. doi:10.4049/jimmunol.180.7.4476
-
(2008)
J Immunol
, vol.180
, Issue.7
, pp. 4476-4486
-
-
Jacobs, S.R.1
Herman, C.E.2
Maciver, N.J.3
Wofford, J.A.4
Wieman, H.L.5
Hammen, J.J.6
-
79
-
-
0027960973
-
Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production
-
Greiner EF, Guppy M, Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem (1994) 269(50):31484-90.
-
(1994)
J Biol Chem
, vol.269
, Issue.50
, pp. 31484-31490
-
-
Greiner, E.F.1
Guppy, M.2
Brand, K.3
-
80
-
-
84875135352
-
The SLC2 (GLUT) family of membrane transporters
-
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med (2013) 34(0):121-38. doi:10.1016/j.mam.2012.07.001
-
(2013)
Mol Aspects Med
, vol.34
, pp. 121-138
-
-
Mueckler, M.1
Thorens, B.2
-
81
-
-
69949124867
-
Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells
-
Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol (2009) 92(3):329-33. doi:10.1016/j.radonc.2009.06.025
-
(2009)
Radiother Oncol
, vol.92
, Issue.3
, pp. 329-333
-
-
Feron, O.1
-
82
-
-
77955475969
-
Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
-
Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol (2010) 185(2):1037-44. doi:10.4049/jimmunol.0903586
-
(2010)
J Immunol
, vol.185
, Issue.2
, pp. 1037-1044
-
-
Carr, E.L.1
Kelman, A.2
Wu, G.S.3
Gopaul, R.4
Senkevitch, E.5
Aghvanyan, A.6
-
83
-
-
84865285455
-
Metabolic switching and fuel choice during T-cell differentiation and memory development
-
van der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev (2012) 249(1):27-42. doi:10.1111/j.1600-065X.2012.01150.x
-
(2012)
Immunol Rev
, vol.249
, Issue.1
, pp. 27-42
-
-
van der Windt, G.J.1
Pearce, E.L.2
-
84
-
-
0022196860
-
Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance
-
Newsholme EA, Crabtree B, Ardawi MS. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol (1985) 70(4):473-89. doi:10.1113/expphysiol.1985.sp002935
-
(1985)
Q J Exp Physiol
, vol.70
, Issue.4
, pp. 473-489
-
-
Newsholme, E.A.1
Crabtree, B.2
Ardawi, M.S.3
-
85
-
-
0032988358
-
Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease 1
-
Newsholme P, Curi R, Curi TCP, Murphy CJ, Garcia C, de Melo MP. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease 1. J Nutr Biochem (1999) 10(6):316-24. doi:10.1016/S0955-2863(99)00022-4
-
(1999)
J Nutr Biochem
, vol.10
, Issue.6
, pp. 316-324
-
-
Newsholme, P.1
Curi, R.2
Curi, T.C.P.3
Murphy, C.J.4
Garcia, C.5
de Melo, M.P.6
-
86
-
-
37449034854
-
Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A (2007) 104(49):19345-50. doi:10.1073/pnas.0709747104
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.49
, pp. 19345-19350
-
-
DeBerardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
Wehrli, S.6
-
87
-
-
84921309472
-
The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
-
Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity (2015) 42(1):41-54. doi:10.1016/j.immuni.2014.12.030
-
(2015)
Immunity
, vol.42
, Issue.1
, pp. 41-54
-
-
Blagih, J.1
Coulombe, F.2
Vincent, E.E.3
Dupuy, F.4
Galicia-Vázquez, G.5
Yurchenko, E.6
-
88
-
-
84865980463
-
l-glutamine is a key parameter in the immunosuppression phenomenon
-
Hammami I, Chen J, Bronte V, DeCrescenzo G, Jolicoeur M. l-glutamine is a key parameter in the immunosuppression phenomenon. Biochem Biophys Res Commun (2012) 425(4):724-9. doi:10.1016/j.bbrc.2012.07.139
-
(2012)
Biochem Biophys Res Commun
, vol.425
, Issue.4
, pp. 724-729
-
-
Hammami, I.1
Chen, J.2
Bronte, V.3
DeCrescenzo, G.4
Jolicoeur, M.5
-
89
-
-
73249121300
-
Kynurenine pathway metabolites in humans: disease and healthy states
-
Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res (2009) 2:1-19.
-
(2009)
Int J Tryptophan Res
, vol.2
, pp. 1-19
-
-
Chen, Y.1
Guillemin, G.J.2
-
90
-
-
0033519278
-
Inhibition of T cell proliferation by macrophage tryptophan catabolism
-
Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med (1999) 189(9):1363-72. doi:10.1084/jem.189.9.1363
-
(1999)
J Exp Med
, vol.189
, Issue.9
, pp. 1363-1372
-
-
Munn, D.H.1
Shafizadeh, E.2
Attwood, J.T.3
Bondarev, I.4
Pashine, A.5
Mellor, A.L.6
-
91
-
-
5044220930
-
Ido expression by dendritic cells: tolerance and tryptophan catabolism
-
Mellor AL, Munn DH. Ido expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol (2004) 4(10):762-74. doi:10.1038/nri1457
-
(2004)
Nat Rev Immunol
, vol.4
, Issue.10
, pp. 762-774
-
-
Mellor, A.L.1
Munn, D.H.2
-
92
-
-
84926652188
-
Tryptophan-degrading enzymes in tumoral immune resistance
-
van Baren N, Van den Eynde BJ. Tryptophan-degrading enzymes in tumoral immune resistance. Front Immunol (2015) 6:34. doi:10.3389/fimmu.2015.00034
-
(2015)
Front Immunol
, vol.6
, pp. 34
-
-
van Baren, N.1
Van den Eynde, B.J.2
-
93
-
-
0142137237
-
Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase
-
Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med (2003) 9(10):1269-74. doi:10.1038/nm934
-
(2003)
Nat Med
, vol.9
, Issue.10
, pp. 1269-1274
-
-
Uyttenhove, C.1
Pilotte, L.2
Théate, I.3
Stroobant, V.4
Colau, D.5
Parmentier, N.6
-
94
-
-
55949117914
-
Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase
-
Muller AJ, Sharma MD, Chandler PR, DuHadaway JB, Everhart ME, Johnson BA, et al. Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase. Proc Natl Acad Sci U S A (2008) 105(44):17073-8. doi:10.1073/pnas.0806173105
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.44
, pp. 17073-17078
-
-
Muller, A.J.1
Sharma, M.D.2
Chandler, P.R.3
DuHadaway, J.B.4
Everhart, M.E.5
Johnson, B.A.6
-
95
-
-
84992478733
-
l-arginine modulates T cell metabolism and enhances survival and anti-tumor activity
-
Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, et al. l-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell (2016) 167(3):829.e-42.e. doi:10.1016/j.cell.2016.09.031
-
(2016)
Cell
, vol.167
, Issue.3
, pp. 829.e-842.e
-
-
Geiger, R.1
Rieckmann, J.C.2
Wolf, T.3
Basso, C.4
Feng, Y.5
Fuhrer, T.6
-
96
-
-
84929654896
-
Targeting arginine metabolism pathway to treat arginine-dependent cancers
-
Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett (2015) 364(1):1-7. doi:10.1016/j.canlet.2015.04.020
-
(2015)
Cancer Lett
, vol.364
, Issue.1
, pp. 1-7
-
-
Qiu, F.1
Huang, J.2
Sui, M.3
-
97
-
-
0041845173
-
l-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes
-
Rodriguez PC, Zea AH, DeSalvo J, Culotta KS, Zabaleta J, Quiceno DG, et al. l-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol (2003) 171(3):1232-9. doi:10.4049/jimmunol.171.3.1232
-
(2003)
J Immunol
, vol.171
, Issue.3
, pp. 1232-1239
-
-
Rodriguez, P.C.1
Zea, A.H.2
DeSalvo, J.3
Culotta, K.S.4
Zabaleta, J.5
Quiceno, D.G.6
-
98
-
-
4143130091
-
Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses
-
Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res (2004) 64(16):5839-49. doi:10.1158/0008-5472.CAN-04-0465
-
(2004)
Cancer Res
, vol.64
, Issue.16
, pp. 5839-5849
-
-
Rodriguez, P.C.1
Quiceno, D.G.2
Zabaleta, J.3
Ortiz, B.4
Zea, A.H.5
Piazuelo, M.B.6
-
99
-
-
84929178247
-
Impaired T cell function in argininosuccinate synthetase deficiency
-
Tarasenko TN, Gomez-Rodriguez J, McGuire PJ. Impaired T cell function in argininosuccinate synthetase deficiency. J Leukoc Biol (2015) 97(2):273-8. doi:10.1189/jlb.1AB0714-365R
-
(2015)
J Leukoc Biol
, vol.97
, Issue.2
, pp. 273-278
-
-
Tarasenko, T.N.1
Gomez-Rodriguez, J.2
McGuire, P.J.3
-
100
-
-
84954410074
-
Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer
-
Li C, Zhang G, Zhao L, Ma Z, Chen H. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol (2016) 14(1):15. doi:10.1186/s12957-016-0769-9
-
(2016)
World J Surg Oncol
, vol.14
, Issue.1
, pp. 15
-
-
Li, C.1
Zhang, G.2
Zhao, L.3
Ma, Z.4
Chen, H.5
-
101
-
-
84867249149
-
Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review)
-
Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett (2012) 4(6):1151-7. doi:10.3892/ol.2012.928
-
(2012)
Oncol Lett
, vol.4
, Issue.6
, pp. 1151-1157
-
-
Zheng, J.1
-
102
-
-
79955398591
-
Otto Warburg's contributions to current concepts of cancer metabolism
-
Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer (2011) 11(5):325-37. doi:10.1038/nrc3038
-
(2011)
Nat Rev Cancer
, vol.11
, Issue.5
, pp. 325-337
-
-
Koppenol, W.H.1
Bounds, P.L.2
Dang, C.V.3
-
103
-
-
84937197675
-
Metabolic reprogramming in cancer: the art of balance
-
Yi M, Xiang B, Li X, Li G. [Metabolic reprogramming in cancer: the art of balance]. Zhong Nan Da Xue Xue Bao Yi Xue Ban (2013) 38(11):1177-87. doi:10.3969/j.issn.1672-7347.2013.11.016
-
(2013)
Zhong Nan Da Xue Xue Bao Yi Xue Ban
, vol.38
, Issue.11
, pp. 1177-1187
-
-
Yi, M.1
Xiang, B.2
Li, X.3
Li, G.4
-
104
-
-
84888414331
-
How does the metabolism of tumour cells differ from that of normal cells
-
Amoêdo ND, Valencia JP, Rodrigues MF, Galina A, Rumjanek FD. How does the metabolism of tumour cells differ from that of normal cells. Biosci Rep (2013) 33(6):e00080. doi:10.1042/BSR20130066
-
(2013)
Biosci Rep
, vol.33
, Issue.6
-
-
Amoêdo, N.D.1
Valencia, J.P.2
Rodrigues, M.F.3
Galina, A.4
Rumjanek, F.D.5
-
105
-
-
84983798027
-
Glycolysis inhibitors for anticancer therapy: a review of recent patents
-
Sheng H, Tang W. Glycolysis inhibitors for anticancer therapy: a review of recent patents. Recent Pat Anticancer Drug Discov (2016) 11(3):297-308. doi:10.2174/1574892811666160415160104
-
(2016)
Recent Pat Anticancer Drug Discov
, vol.11
, Issue.3
, pp. 297-308
-
-
Sheng, H.1
Tang, W.2
-
106
-
-
84964631713
-
The sweet trap in tumors: aerobic glycolysis and potential targets for therapy
-
Yu L, Chen X, Wang L, Chen S. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget (2016) 7(25):38908-26. doi:10.18632/oncotarget.7676
-
(2016)
Oncotarget
, vol.7
, Issue.25
, pp. 38908-38926
-
-
Yu, L.1
Chen, X.2
Wang, L.3
Chen, S.4
-
107
-
-
84868019043
-
Cancer cell metabolism: one hallmark, many faces
-
Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov (2012) 2(10):881-98. doi:10.1158/2159-8290.CD-12-0345
-
(2012)
Cancer Discov
, vol.2
, Issue.10
, pp. 881-898
-
-
Cantor, J.R.1
Sabatini, D.M.2
-
108
-
-
84876115558
-
Metabolic symbiosis in cancer: refocusing the Warburg lens
-
Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog (2013) 52(5):329-37. doi:10.1002/mc.21863
-
(2013)
Mol Carcinog
, vol.52
, Issue.5
, pp. 329-337
-
-
Nakajima, E.C.1
Van Houten, B.2
-
109
-
-
84937977372
-
Control of cancer formation by intrinsic genetic noise and microenvironmental cues
-
Brock A, Krause S, Ingber DE. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat Rev Cancer (2015) 15(8):499-509. doi:10.1038/nrc3959
-
(2015)
Nat Rev Cancer
, vol.15
, Issue.8
, pp. 499-509
-
-
Brock, A.1
Krause, S.2
Ingber, D.E.3
-
110
-
-
84896725683
-
Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity
-
Scott JG, Hjelmeland AB, Chinnaiyan P, Anderson AR, Basanta D. Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity. PLoS Comput Biol (2014) 10(1):e1003433. doi:10.1371/journal.pcbi.1003433
-
(2014)
PLoS Comput Biol
, vol.10
, Issue.1
-
-
Scott, J.G.1
Hjelmeland, A.B.2
Chinnaiyan, P.3
Anderson, A.R.4
Basanta, D.5
-
111
-
-
84930277289
-
Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K
-
Courtnay R, Ngo DC, Malik N, Ververis K, Tortorella SM, Karagiannis TC. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol Biol Rep (2015) 42(4):841-51. doi:10.1007/s11033-015-3858-x
-
(2015)
Mol Biol Rep
, vol.42
, Issue.4
, pp. 841-851
-
-
Courtnay, R.1
Ngo, D.C.2
Malik, N.3
Ververis, K.4
Tortorella, S.M.5
Karagiannis, T.C.6
-
112
-
-
79251517382
-
Regulation of cancer cell metabolism
-
Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer (2011) 11(2):85-95. doi:10.1038/nrc2981
-
(2011)
Nat Rev Cancer
, vol.11
, Issue.2
, pp. 85-95
-
-
Cairns, R.A.1
Harris, I.S.2
Mak, T.W.3
-
113
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (2009) 324(5930):1029-33. doi:10.1126/science.1160809
-
(2009)
Science
, vol.324
, Issue.5930
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
114
-
-
84959451365
-
The Warburg effect: how does it benefit cancer cells
-
Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci (2016) 41(3):211-8. doi:10.1016/j.tibs.2015.12.001
-
(2016)
Trends Biochem Sci
, vol.41
, Issue.3
, pp. 211-218
-
-
Liberti, M.V.1
Locasale, J.W.2
-
115
-
-
49449117608
-
Reactive oxygen species regulate hypoxia-inducible factor 1a differentially in cancer and ischemia
-
Qutub AA, Popel AS. Reactive oxygen species regulate hypoxia-inducible factor 1a differentially in cancer and ischemia. Mol Cell Biol (2008) 28(16):5106-19. doi:10.1128/MCB.00060-08
-
(2008)
Mol Cell Biol
, vol.28
, Issue.16
, pp. 5106-5119
-
-
Qutub, A.A.1
Popel, A.S.2
-
116
-
-
84937971596
-
Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism
-
Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol (2015) 89(8):1209-26. doi:10.1007/s00204-015-1520-y
-
(2015)
Arch Toxicol
, vol.89
, Issue.8
, pp. 1209-1226
-
-
Liemburg-Apers, D.C.1
Willems, P.H.2
Koopman, W.J.3
Grefte, S.4
-
117
-
-
84874118537
-
The Warburg effect: insights from the past decade
-
Upadhyay M, Samal J, Kandpal M, Singh OV, Vivekanandan P. The Warburg effect: insights from the past decade. Pharmacol Ther (2013) 137(3):318-30. doi:10.1016/j.pharmthera.2012.11.003
-
(2013)
Pharmacol Ther
, vol.137
, Issue.3
, pp. 318-330
-
-
Upadhyay, M.1
Samal, J.2
Kandpal, M.3
Singh, O.V.4
Vivekanandan, P.5
-
118
-
-
84988416810
-
Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy
-
Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer (2016) 16(10):635-49. doi:10.1038/nrc.2016.77
-
(2016)
Nat Rev Cancer
, vol.16
, Issue.10
, pp. 635-649
-
-
Hay, N.1
-
119
-
-
84940833346
-
Glucose addiction in cancer therapy: advances and drawbacks
-
Granja S, Pinheiro C, Reis RM, Martinho O, Baltazar F. Glucose addiction in cancer therapy: advances and drawbacks. Curr Drug Metab (2015) 16(3):221-42. doi:10.2174/1389200216666150602145145
-
(2015)
Curr Drug Metab
, vol.16
, Issue.3
, pp. 221-242
-
-
Granja, S.1
Pinheiro, C.2
Reis, R.M.3
Martinho, O.4
Baltazar, F.5
-
120
-
-
84905187426
-
Regulation of the pentose phosphate pathway in cancer
-
Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell (2014) 5(8):592-602. doi:10.1007/s13238-014-0082-8
-
(2014)
Protein Cell
, vol.5
, Issue.8
, pp. 592-602
-
-
Jiang, P.1
Du, W.2
Wu, M.3
-
121
-
-
84931055981
-
Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma
-
Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget (2015) 6(15):13371-86. doi:10.18632/oncotarget.3823
-
(2015)
Oncotarget
, vol.6
, Issue.15
, pp. 13371-13386
-
-
Lucarelli, G.1
Galleggiante, V.2
Rutigliano, M.3
Sanguedolce, F.4
Cagiano, S.5
Bufo, P.6
-
122
-
-
84923223260
-
The Warburg effect: evolving interpretations of an established concept
-
Chen X, Qian Y, Wu S. The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med (2015) 79:253-63. doi:10.1016/j.freeradbiomed.2014.08.027
-
(2015)
Free Radic Biol Med
, vol.79
, pp. 253-263
-
-
Chen, X.1
Qian, Y.2
Wu, S.3
-
123
-
-
77955281020
-
Glutamine addiction: a new therapeutic target in cancer
-
Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci (2010) 35(8):427-33. doi:10.1016/j.tibs.2010.05.003
-
(2010)
Trends Biochem Sci
, vol.35
, Issue.8
, pp. 427-433
-
-
Wise, D.R.1
Thompson, C.B.2
-
124
-
-
84927133194
-
Targeting mitochondria metabolism for cancer therapy
-
Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol (2015) 11(1):9-15. doi:10.1038/nchembio.1712
-
(2015)
Nat Chem Biol
, vol.11
, Issue.1
, pp. 9-15
-
-
Weinberg, S.E.1
Chandel, N.S.2
-
125
-
-
84856374900
-
Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism
-
Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, et al. Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A (2012) 109(4):1092-7. doi:10.1073/pnas.1112495109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.4
, pp. 1092-1097
-
-
Cassago, A.1
Ferreira, A.P.2
Ferreira, I.M.3
Fornezari, C.4
Gomes, E.R.5
Greene, K.S.6
-
126
-
-
84988947515
-
Mechanistic basis of glutaminase activation: a key enzyme that promotes glutamine metabolism in cancer cells
-
Li Y, Erickson JW, Stalnecker CA, Katt WP, Huang Q, Cerione RA, et al. Mechanistic basis of glutaminase activation: a key enzyme that promotes glutamine metabolism in cancer cells. J Biol Chem (2016) 291(40):20900-10. doi:10.1074/jbc.M116.720268
-
(2016)
J Biol Chem
, vol.291
, Issue.40
, pp. 20900-20910
-
-
Li, Y.1
Erickson, J.W.2
Stalnecker, C.A.3
Katt, W.P.4
Huang, Q.5
Cerione, R.A.6
-
127
-
-
85004001432
-
Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF
-
Matijevic Glavan T, Cipak Gasparovic A, Vérillaud B, Busson P, Pavelic J. Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Mol Carcinog (2016). doi:10.1002/mc.22584
-
(2016)
Mol Carcinog
-
-
Matijevic Glavan, T.1
Cipak Gasparovic, A.2
Vérillaud, B.3
Busson, P.4
Pavelic, J.5
-
128
-
-
37549032776
-
The interplay between MYC and HIF in cancer
-
Dang CV, Kim J, Gao P, Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer (2008) 8(1):51-6. doi:10.1038/nrc2274
-
(2008)
Nat Rev Cancer
, vol.8
, Issue.1
, pp. 51-56
-
-
Dang, C.V.1
Kim, J.2
Gao, P.3
Yustein, J.4
-
129
-
-
70350728803
-
MYC-induced cancer cell energy metabolism and therapeutic opportunities
-
Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res (2009) 15(21):6479-83. doi:10.1158/1078-0432.CCR-09-0889
-
(2009)
Clin Cancer Res
, vol.15
, Issue.21
, pp. 6479-6483
-
-
Dang, C.V.1
Le, A.2
Gao, P.3
-
130
-
-
84881056831
-
MYC, metabolism, cell growth, and tumorigenesis
-
Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med (2013) 3(8):a014217. doi:10.1101/cshperspect.a014217
-
(2013)
Cold Spring Harb Perspect Med
, vol.3
, Issue.8
-
-
Dang, C.V.1
-
131
-
-
84887147170
-
MYC activation is a hallmark of cancer initiation and maintenance
-
Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med (2014) 4(6):a014241. doi:10.1101/cshperspect.a014241
-
(2014)
Cold Spring Harb Perspect Med
, vol.4
, Issue.6
-
-
Gabay, M.1
Li, Y.2
Felsher, D.W.3
-
132
-
-
0037189542
-
Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis
-
Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem (2002) 277(26):23111-5. doi:10.1074/jbc.M202487200
-
(2002)
J Biol Chem
, vol.277
, Issue.26
, pp. 23111-23115
-
-
Lu, H.1
Forbes, R.A.2
Verma, A.3
-
133
-
-
84978695867
-
The ever-expanding role of HIF in tumour and stromal biology
-
LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol (2016) 18(4):356-65. doi:10.1038/ncb3330
-
(2016)
Nat Cell Biol
, vol.18
, Issue.4
, pp. 356-365
-
-
LaGory, E.L.1
Giaccia, A.J.2
-
134
-
-
84970919297
-
Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways
-
Masson N, Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab (2014) 2:3. doi:10.1186/2049-3002-2-3
-
(2014)
Cancer Metab
, vol.2
, pp. 3
-
-
Masson, N.1
Ratcliffe, P.J.2
-
135
-
-
84881027891
-
Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism
-
Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab (2013) 1:8. doi:10.1186/2049-3002-1-8
-
(2013)
Cancer Metab
, vol.1
, pp. 8
-
-
Ros, S.1
Schulze, A.2
-
136
-
-
84885585514
-
Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A
-
Lu H, Li X, Luo Z, Liu J, Fan Z. Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A. Mol Cancer Ther (2013) 12(10):2187-99. doi:10.1158/1535-7163.MCT-12-1245
-
(2013)
Mol Cancer Ther
, vol.12
, Issue.10
, pp. 2187-2199
-
-
Lu, H.1
Li, X.2
Luo, Z.3
Liu, J.4
Fan, Z.5
-
137
-
-
84995549384
-
Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress
-
Zhao X, Jiang P, Deng X, Li Z, Tian F, Guo F, et al. Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress. Am J Cancer Res (2016) 6(10):2289-98.
-
(2016)
Am J Cancer Res
, vol.6
, Issue.10
, pp. 2289-2298
-
-
Zhao, X.1
Jiang, P.2
Deng, X.3
Li, Z.4
Tian, F.5
Guo, F.6
-
138
-
-
84984667381
-
Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer
-
Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. Recent Results Cancer Res (2016) 207:39-72. doi:10.1007/978-3-319-42118-6_3
-
(2016)
Recent Results Cancer Res
, vol.207
, pp. 39-72
-
-
Lien, E.C.1
Lyssiotis, C.A.2
Cantley, L.C.3
-
139
-
-
84940055374
-
Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma
-
Makinoshima H, Takita M, Saruwatari K, Umemura S, Obata Y, Ishii G, et al. Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J Biol Chem (2015) 290(28):17495-504. doi:10.1074/jbc.M115.660498
-
(2015)
J Biol Chem
, vol.290
, Issue.28
, pp. 17495-17504
-
-
Makinoshima, H.1
Takita, M.2
Saruwatari, K.3
Umemura, S.4
Obata, Y.5
Ishii, G.6
-
140
-
-
84969872786
-
Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor
-
Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature (2016) 534(7606):272-6. doi:10.1038/nature17963
-
(2016)
Nature
, vol.534
, Issue.7606
, pp. 272-276
-
-
Rodrik-Outmezguine, V.S.1
Okaniwa, M.2
Yao, Z.3
Novotny, C.J.4
McWhirter, C.5
Banaji, A.6
-
141
-
-
84876880959
-
Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer
-
Agani F, Jiang BH. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets (2013) 13(3):245-51. doi:10.2174/1568009611313030003
-
(2013)
Curr Cancer Drug Targets
, vol.13
, Issue.3
, pp. 245-251
-
-
Agani, F.1
Jiang, B.H.2
-
143
-
-
84955278720
-
Suppression of T cell responses in the tumor microenvironment
-
Frey AB. Suppression of T cell responses in the tumor microenvironment. Vaccine (2015) 33(51):7393-400. doi:10.1016/j.vaccine.2015.08.096
-
(2015)
Vaccine
, vol.33
, Issue.51
, pp. 7393-7400
-
-
Frey, A.B.1
-
144
-
-
84925688346
-
PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
-
Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun (2015) 6:6692. doi:10.1038/ncomms7692
-
(2015)
Nat Commun
, vol.6
, pp. 6692
-
-
Patsoukis, N.1
Bardhan, K.2
Chatterjee, P.3
Sari, D.4
Liu, B.5
Bell, L.N.6
-
145
-
-
84926160709
-
Immune evasion in cancer: mechanistic basis and therapeutic strategies
-
Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol (2015) 35(Suppl):S185-98. doi:10.1016/j.semcancer.2015.03.004
-
(2015)
Semin Cancer Biol
, vol.35
, pp. S185-A198
-
-
Vinay, D.S.1
Ryan, E.P.2
Pawelec, G.3
Talib, W.H.4
Stagg, J.5
Elkord, E.6
-
146
-
-
34047220868
-
Cancer immunoediting from immune surveillance to immune escape
-
Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology (2007) 121(1):1-14. doi:10.1111/j.1365-2567.2007.02587.x
-
(2007)
Immunology
, vol.121
, Issue.1
, pp. 1-14
-
-
Kim, R.1
Emi, M.2
Tanabe, K.3
-
147
-
-
79953087601
-
Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment
-
Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J. Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol (2011) 23(2):286-92. doi:10.1016/j.coi.2010.11.013
-
(2011)
Curr Opin Immunol
, vol.23
, Issue.2
, pp. 286-292
-
-
Gajewski, T.F.1
Fuertes, M.2
Spaapen, R.3
Zheng, Y.4
Kline, J.5
-
148
-
-
79960672057
-
Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells
-
Bianchi G, Borgonovo G, Pistoia V, Raffaghello L. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol (2011) 26(7):941-51. doi:10.14670/HH-26.941
-
(2011)
Histol Histopathol
, vol.26
, Issue.7
, pp. 941-951
-
-
Bianchi, G.1
Borgonovo, G.2
Pistoia, V.3
Raffaghello, L.4
-
149
-
-
84994106550
-
Functional impairment of infiltrating T cells in human colorectal cancer
-
Taylor ES, McCall JL, Girardin A, Munro FM, Black MA, Kemp RA. Functional impairment of infiltrating T cells in human colorectal cancer. Oncoimmunology (2016) 5(11):e1234573. doi:10.1080/2162402X.2016.1234573
-
(2016)
Oncoimmunology
, vol.5
, Issue.11
-
-
Taylor, E.S.1
McCall, J.L.2
Girardin, A.3
Munro, F.M.4
Black, M.A.5
Kemp, R.A.6
-
150
-
-
84887444879
-
Microenvironmental regulation of tumor progression and metastasis
-
Quail D, Joyce J. Microenvironmental regulation of tumor progression and metastasis. Nat Med (2013) 19(11):1423-37. doi:10.1038/nm.3394
-
(2013)
Nat Med
, vol.19
, Issue.11
, pp. 1423-1437
-
-
Quail, D.1
Joyce, J.2
-
151
-
-
85017194520
-
Clinical significance of T cell metabolic reprogramming in cancer
-
Herbel C, Patsoukis N, Bardhan K, Seth P, Weaver JD, Boussiotis VA. Clinical significance of T cell metabolic reprogramming in cancer. Clin Transl Med (2016) 5:29. doi:10.1186/s40169-016-0110-9
-
(2016)
Clin Transl Med
, vol.5
, pp. 29
-
-
Herbel, C.1
Patsoukis, N.2
Bardhan, K.3
Seth, P.4
Weaver, J.D.5
Boussiotis, V.A.6
-
152
-
-
84941344937
-
Metabolic competition in the tumor microenvironment is a driver of cancer progression
-
Chang C-H, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell (2015) 162(6):1229-41. doi:10.1016/j.cell.2015.08.016
-
(2015)
Cell
, vol.162
, Issue.6
, pp. 1229-1241
-
-
Chang, C.-H.1
Qiu, J.2
O'Sullivan, D.3
Buck, M.D.4
Noguchi, T.5
Curtis, J.D.6
-
153
-
-
84962506335
-
Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression
-
Zhang Y, Ertl HCJ. Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression. Front Immunol (2016) 7:32. doi:10.3389/fimmu.2016.00032
-
(2016)
Front Immunol
, vol.7
, pp. 32
-
-
Zhang, Y.1
Ertl, H.C.J.2
-
154
-
-
85008455046
-
The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy
-
Nakaigawa N, Kondo K, Ueno D, Namura K, Makiyama K, Kobayashi K, et al. The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy. BMC Cancer (2017) 17(1):39. doi:10.1186/s12885-016-3044-0
-
(2017)
BMC Cancer
, vol.17
, Issue.1
, pp. 39
-
-
Nakaigawa, N.1
Kondo, K.2
Ueno, D.3
Namura, K.4
Makiyama, K.5
Kobayashi, K.6
-
155
-
-
84877059916
-
T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment
-
Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol (2013) 25(2):214-21. doi:10.1016/j.coi.2012.12.003
-
(2013)
Curr Opin Immunol
, vol.25
, Issue.2
, pp. 214-221
-
-
Crespo, J.1
Sun, H.2
Welling, T.H.3
Tian, Z.4
Zou, W.5
-
156
-
-
85016921823
-
Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting
-
Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel) (2016) 4(3):E28. doi:10.3390/vaccines4030028
-
(2016)
Vaccines (Basel)
, vol.4
, Issue.3
-
-
Chaudhary, B.1
Elkord, E.2
-
157
-
-
43349104148
-
Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner
-
Yaqub S, Henjum K, Mahic M, Jahnsen FL, Aandahl EM, Bjørnbeth BA, et al. Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother (2008) 57(6):813-21. doi:10.1007/s00262-007-0417-x
-
(2008)
Cancer Immunol Immunother
, vol.57
, Issue.6
, pp. 813-821
-
-
Yaqub, S.1
Henjum, K.2
Mahic, M.3
Jahnsen, F.L.4
Aandahl, E.M.5
Bjørnbeth, B.A.6
-
158
-
-
84902176332
-
Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer
-
Chaudhary B, Abd Al Samid M, al-Ramadi BK, Elkord E. Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer. Expert Opin Biol Ther (2014) 14(7):931-45. doi:10.1517/14712598.2014.900539
-
(2014)
Expert Opin Biol Ther
, vol.14
, Issue.7
, pp. 931-945
-
-
Chaudhary, B.1
Abd Al Samid, M.2
al-Ramadi, B.K.3
Elkord, E.4
-
159
-
-
63849333830
-
Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines
-
Ruter J, Barnett BG, Kryczek I, Brumlik MJ, Daniel BJ, Coukos G, et al. Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines. Front Biosci (Landmark Ed) (2009) 14:1761-70. doi:10.2741/3338
-
(2009)
Front Biosci (Landmark Ed)
, vol.14
, pp. 1761-1770
-
-
Ruter, J.1
Barnett, B.G.2
Kryczek, I.3
Brumlik, M.J.4
Daniel, B.J.5
Coukos, G.6
-
160
-
-
63849149937
-
LKB1 and AMPK control of mTOR signalling and growth
-
Shaw RJ. LKB1 and AMPK control of mTOR signalling and growth. Acta Physiol (Oxf) (2009) 196(1):65-80. doi:10.1111/j.1748-1716.2009.01972.x
-
(2009)
Acta Physiol (Oxf)
, vol.196
, Issue.1
, pp. 65-80
-
-
Shaw, R.J.1
-
161
-
-
84955114946
-
AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells
-
Chaube B, Bhat MK. AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells. Cell Death Dis (2016) 7(1):e2044. doi:10.1038/cddis.2015.404
-
(2016)
Cell Death Dis
, vol.7
, Issue.1
-
-
Chaube, B.1
Bhat, M.K.2
-
162
-
-
0035874949
-
Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer
-
Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res (2001) 61(12):4766-72.
-
(2001)
Cancer Res
, vol.61
, Issue.12
, pp. 4766-4772
-
-
Woo, E.Y.1
Chu, C.S.2
Goletz, T.J.3
Schlienger, K.4
Yeh, H.5
Coukos, G.6
-
163
-
-
84938747678
-
Myeloid-derived suppressor cells in major depression patients suppress T-cell responses through the production of reactive oxygen species
-
Wei J, Zhang M, Zhou J. Myeloid-derived suppressor cells in major depression patients suppress T-cell responses through the production of reactive oxygen species. Psychiatry Res (2015) 228(3):695-701. doi:10.1016/j.psychres.2015.06.002
-
(2015)
Psychiatry Res
, vol.228
, Issue.3
, pp. 695-701
-
-
Wei, J.1
Zhang, M.2
Zhou, J.3
-
164
-
-
84982126256
-
Reactive oxygen species regulate T cell immune response in the tumor microenvironment
-
Chen X, Song M, Zhang B, Zhang Y. Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longev (2016) 2016:1580967. doi:10.1155/2016/1580967
-
(2016)
Oxid Med Cell Longev
, vol.2016
-
-
Chen, X.1
Song, M.2
Zhang, B.3
Zhang, Y.4
-
165
-
-
0037033433
-
Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression
-
Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J Exp Med (2002) 195(1):59-70. doi:10.1084/jem.20010659
-
(2002)
J Exp Med
, vol.195
, Issue.1
, pp. 59-70
-
-
Devadas, S.1
Zaritskaya, L.2
Rhee, S.G.3
Oberley, L.4
Williams, M.S.5
-
166
-
-
84997706268
-
Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion
-
Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity (2016) 45(2):358-73. doi:10.1016/j.immuni.2016.07.008
-
(2016)
Immunity
, vol.45
, Issue.2
, pp. 358-373
-
-
Bengsch, B.1
Johnson, A.L.2
Kurachi, M.3
Odorizzi, P.M.4
Pauken, K.E.5
Attanasio, J.6
-
167
-
-
84927150740
-
Immune checkpoint blockade in cancer therapy
-
Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol (2015) 33(17):1974-82. doi:10.1200/JCO.2014.59.4358
-
(2015)
J Clin Oncol
, vol.33
, Issue.17
, pp. 1974-1982
-
-
Postow, M.A.1
Callahan, M.K.2
Wolchok, J.D.3
-
168
-
-
42649125225
-
PD-1 and its ligands in tolerance and immunity
-
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol (2008) 26(1):677-704. doi:10.1146/annurev.immunol.26.021607.090331
-
(2008)
Annu Rev Immunol
, vol.26
, Issue.1
, pp. 677-704
-
-
Keir, M.E.1
Butte, M.J.2
Freeman, G.J.3
Sharpe, A.H.4
-
169
-
-
84883863501
-
Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells
-
Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med (2013) 5(200):200ra116. doi:10.1126/scitranslmed.3006504
-
(2013)
Sci Transl Med
, vol.5
, Issue.200
-
-
Spranger, S.1
Spaapen, R.M.2
Zha, Y.3
Williams, J.4
Meng, Y.5
Ha, T.T.6
-
170
-
-
85008485842
-
Programmed death-1 inhibition of PI3K/AKT/mTOR signaling impairs sarcoidosis CD4+ T cell proliferation
-
Celada LJ, Rotsinger JE, Young A, Shaginurova G, Shelton D, Hawkins C, et al. Programmed death-1 inhibition of PI3K/AKT/mTOR signaling impairs sarcoidosis CD4+ T cell proliferation. Am J Respir Cell Mol Biol (2016) 56(1):74-82. doi:10.1165/rcmb.2016-0037OC
-
(2016)
Am J Respir Cell Mol Biol
, vol.56
, Issue.1
, pp. 74-82
-
-
Celada, L.J.1
Rotsinger, J.E.2
Young, A.3
Shaginurova, G.4
Shelton, D.5
Hawkins, C.6
-
171
-
-
84861157343
-
Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells
-
Waickman AT, Powell JD. Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells. J Immunol (2012) 188(10):4721-9. doi:10.4049/jimmunol.1103143
-
(2012)
J Immunol
, vol.188
, Issue.10
, pp. 4721-4729
-
-
Waickman, A.T.1
Powell, J.D.2
-
172
-
-
84958963164
-
Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer
-
Lastwika KJ, Wilson W, Li QK, Norris J, Xu H, Ghazarian SR, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res (2016) 76(2):227-38. doi:10.1158/0008-5472.CAN-14-3362
-
(2016)
Cancer Res
, vol.76
, Issue.2
, pp. 227-238
-
-
Lastwika, K.J.1
Wilson, W.2
Li, Q.K.3
Norris, J.4
Xu, H.5
Ghazarian, S.R.6
-
173
-
-
84973577137
-
Co-expression of PD-L1 and p-AKT is associated with poor prognosis in diffuse large B-cell lymphoma via PD-1/PD-L1 axis activating intracellular AKT/mTOR pathway in tumor cells
-
Dong L, Lv H, Li W, Song Z, Li L, Zhou S, et al. Co-expression of PD-L1 and p-AKT is associated with poor prognosis in diffuse large B-cell lymphoma via PD-1/PD-L1 axis activating intracellular AKT/mTOR pathway in tumor cells. Oncotarget (2016) 7(22):33350-62. doi:10.18632/oncotarget.9061
-
(2016)
Oncotarget
, vol.7
, Issue.22
, pp. 33350-33362
-
-
Dong, L.1
Lv, H.2
Li, W.3
Song, Z.4
Li, L.5
Zhou, S.6
-
174
-
-
0033029507
-
The role of CTLA-4 in the regulation of T cell immune responses
-
McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol (1999) 77(1):1-10. doi:10.1046/j.1440-1711.1999.00795.x
-
(1999)
Immunol Cell Biol
, vol.77
, Issue.1
, pp. 1-10
-
-
McCoy, K.D.1
Le Gros, G.2
-
175
-
-
0034823168
-
Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy
-
Wells AD, Walsh MC, Bluestone JA, Turka LA. Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest (2001) 108(6):895-903. doi:10.1172/JCI13220
-
(2001)
J Clin Invest
, vol.108
, Issue.6
, pp. 895-903
-
-
Wells, A.D.1
Walsh, M.C.2
Bluestone, J.A.3
Turka, L.A.4
-
176
-
-
84941711371
-
Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future
-
Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest (2015) 125(9):3384-91. doi:10.1172/JCI80011
-
(2015)
J Clin Invest
, vol.125
, Issue.9
, pp. 3384-3391
-
-
Chen, L.1
Han, X.2
-
177
-
-
84920921528
-
Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens
-
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature (2014) 515(7528):577-81. doi:10.1038/nature13988
-
(2014)
Nature
, vol.515
, Issue.7528
, pp. 577-581
-
-
Gubin, M.M.1
Zhang, X.2
Schuster, H.3
Caron, E.4
Ward, J.P.5
Noguchi, T.6
-
178
-
-
84856867834
-
Immunotherapy earns its spot in the ranks of cancer therapy
-
Pardoll D, Drake C. Immunotherapy earns its spot in the ranks of cancer therapy. J Exp Med (2012) 209(2):201-9. doi:10.1084/jem.20112275
-
(2012)
J Exp Med
, vol.209
, Issue.2
, pp. 201-209
-
-
Pardoll, D.1
Drake, C.2
-
179
-
-
84959140755
-
PD-1/PD-L1 blockade in cancer treatment: perspectives and issues
-
Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol (2016) 21(3):462-73. doi:10.1007/s10147-016-0959-z
-
(2016)
Int J Clin Oncol
, vol.21
, Issue.3
, pp. 462-473
-
-
Hamanishi, J.1
Mandai, M.2
Matsumura, N.3
Abiko, K.4
Baba, T.5
Konishi, I.6
-
180
-
-
84891708632
-
Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality
-
Saha A, Aoyama K, Taylor PA, Koehn BH, Veenstra RG, Panoskaltsis-Mortari A, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood (2013) 122(17):3062-73. doi:10.1182/blood-2013-05-500801
-
(2013)
Blood
, vol.122
, Issue.17
, pp. 3062-3073
-
-
Saha, A.1
Aoyama, K.2
Taylor, P.A.3
Koehn, B.H.4
Veenstra, R.G.5
Panoskaltsis-Mortari, A.6
-
181
-
-
33947259319
-
Immunosuppressive strategies that are mediated by tumor cells
-
Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol (2007) 25:267-96. doi:10.1146/annurev.immunol.25.022106.141609
-
(2007)
Annu Rev Immunol
, vol.25
, pp. 267-296
-
-
Rabinovich, G.A.1
Gabrilovich, D.2
Sotomayor, E.M.3
-
182
-
-
84928811618
-
Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation
-
Eleftheriadis T, Pissas G, Antoniadi G, Spanoulis A, Liakopoulos V, Stefanidis I. Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation. Int Immunol (2014) 26(12):673-84. doi:10.1093/intimm/dxu077
-
(2014)
Int Immunol
, vol.26
, Issue.12
, pp. 673-684
-
-
Eleftheriadis, T.1
Pissas, G.2
Antoniadi, G.3
Spanoulis, A.4
Liakopoulos, V.5
Stefanidis, I.6
-
183
-
-
0035113742
-
Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity
-
Chang CI, Liao JC, Kuo L. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res (2001) 61(3):1100-6.
-
(2001)
Cancer Res
, vol.61
, Issue.3
, pp. 1100-1106
-
-
Chang, C.I.1
Liao, J.C.2
Kuo, L.3
-
184
-
-
84868220730
-
Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion
-
Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res (2012) 72(21):5435-40. doi:10.1158/0008-5472.CAN-12-0569
-
(2012)
Cancer Res
, vol.72
, Issue.21
, pp. 5435-5440
-
-
Platten, M.1
Wick, W.2
Van den Eynde, B.J.3
-
185
-
-
16244408626
-
Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy
-
Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med (2005) 11(3):312-9. doi:10.1038/nm1196
-
(2005)
Nat Med
, vol.11
, Issue.3
, pp. 312-319
-
-
Muller, A.J.1
DuHadaway, J.B.2
Donover, P.S.3
Sutanto-Ward, E.4
Prendergast, G.C.5
-
186
-
-
33846689594
-
Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses
-
Hou D-Y, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res (2007) 67(2):792-801. doi:10.1158/0008-5472.CAN-06-2925
-
(2007)
Cancer Res
, vol.67
, Issue.2
, pp. 792-801
-
-
Hou, D.-Y.1
Muller, A.J.2
Sharma, M.D.3
DuHadaway, J.4
Banerjee, T.5
Johnson, M.6
-
187
-
-
84921398751
-
Trial watch: IDO inhibitors in cancer therapy
-
Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy EP, et al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology (2014) 3(10):e957994. doi:10.4161/21624011.2014.957994
-
(2014)
Oncoimmunology
, vol.3
, Issue.10
-
-
Vacchelli, E.1
Aranda, F.2
Eggermont, A.3
Sautès-Fridman, C.4
Tartour, E.5
Kennedy, E.P.6
-
188
-
-
84989172005
-
Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors
-
Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano (2016) 10(9):8956-63. doi:10.1021/acsnano.6b04989
-
(2016)
ACS Nano
, vol.10
, Issue.9
, pp. 8956-8963
-
-
Ye, Y.1
Wang, J.2
Hu, Q.3
Hochu, G.M.4
Xin, H.5
Wang, C.6
|