메뉴 건너뛰기




Volumn 8, Issue MAR, 2017, Pages

Impact of metabolism on T-cell differentiation and function and cross talk with tumor microenvironment

Author keywords

Cancer; Hypoxia; Immune system; T lymphocytes; Tumor cell metabolism; Tumor microenvironment

Indexed keywords

ADENOSINE TRIPHOSPHATE; AMINO ACID TRANSPORTER; ARGININE; ARGININOSUCCINIC ACID; CD28 ANTIGEN; CYTOTOXIC T LYMPHOCYTE ANTIGEN 4; GAMMA INTERFERON; GLUCOSE; GLUCOSE TRANSPORTER 2; GLUCOSE TRANSPORTER 3; GLUTAMINASE; GLUTAMINE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; HYPOXIA INDUCIBLE FACTOR 1ALPHA; INDOLEAMINE 2,3 DIOXYGENASE INHIBITOR; INTERLEUKIN 10; INTERLEUKIN 2 RECEPTOR ALPHA; MAMMALIAN TARGET OF RAPAMYCIN; MESSENGER RNA; MONOCYTE CHEMOTACTIC PROTEIN 1; MONOCYTE CHEMOTACTIC PROTEIN 5; MYC PROTEIN; PROGRAMMED DEATH 1 LIGAND 1; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; T LYMPHOCYTE RECEPTOR; TRANSFORMING GROWTH FACTOR BETA; TRYPTOPHAN; VASCULOTROPIN;

EID: 85017233046     PISSN: None     EISSN: 16643224     Source Type: Journal    
DOI: 10.3389/fimmu.2017.00270     Document Type: Review
Times cited : (104)

References (188)
  • 1
    • 84875494365 scopus 로고    scopus 로고
    • Metabolic regulation of T lymphocytes
    • MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol (2013) 31:259-83. doi:10.1146/annurev-immunol-032712-095956
    • (2013) Annu Rev Immunol , vol.31 , pp. 259-283
    • MacIver, N.J.1    Michalek, R.D.2    Rathmell, J.C.3
  • 2
    • 84926670025 scopus 로고    scopus 로고
    • Environmental and metabolic sensors that control T cell biology
    • Ramsay G, Cantrell D. Environmental and metabolic sensors that control T cell biology. T Cell Biol (2015) 6:99. doi:10.3389/fimmu.2015.00099
    • (2015) T Cell Biol , vol.6 , pp. 99
    • Ramsay, G.1    Cantrell, D.2
  • 3
    • 84904057246 scopus 로고    scopus 로고
    • The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function
    • Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab (2014) 20(1):61-72. doi:10.1016/j.cmet.2014.05.004
    • (2014) Cell Metab , vol.20 , Issue.1 , pp. 61-72
    • Macintyre, A.N.1    Gerriets, V.A.2    Nichols, A.G.3    Michalek, R.D.4    Rudolph, M.C.5    Deoliveira, D.6
  • 4
    • 78649319060 scopus 로고    scopus 로고
    • Iron and immunity: immunological consequences of iron deficiency and overload
    • Cherayil BJ. Iron and immunity: immunological consequences of iron deficiency and overload. Arch Immunol Ther Exp (Warsz) (2010) 58(6):407-15. doi:10.1007/s00005-010-0095-9
    • (2010) Arch Immunol Ther Exp (Warsz) , vol.58 , Issue.6 , pp. 407-415
    • Cherayil, B.J.1
  • 5
    • 0024406211 scopus 로고
    • Inhibition of lymphocyte activation with anti-transferrin receptor Mabs: a comparison of three reagents and further studies of their range of effects and mechanism of action
    • Kemp JD, Thorson JA, Gomez F, Smith KM, Cowdery JS, Ballas ZK. Inhibition of lymphocyte activation with anti-transferrin receptor Mabs: a comparison of three reagents and further studies of their range of effects and mechanism of action. Cell Immunol (1989) 122(1):218-30. doi:10.1016/0008-8749(89)90162-7
    • (1989) Cell Immunol , vol.122 , Issue.1 , pp. 218-230
    • Kemp, J.D.1    Thorson, J.A.2    Gomez, F.3    Smith, K.M.4    Cowdery, J.S.5    Ballas, Z.K.6
  • 6
    • 0035652018 scopus 로고    scopus 로고
    • The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost
    • Jason J, Archibald LK, Nwanyanwu OC, Bell M, Jensen RJ, Gunter E, et al. The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost. Clin Exp Immunol (2001) 126(3):466-73. doi:10.1046/j.1365-2249.2001.01707.x
    • (2001) Clin Exp Immunol , vol.126 , Issue.3 , pp. 466-473
    • Jason, J.1    Archibald, L.K.2    Nwanyanwu, O.C.3    Bell, M.4    Jensen, R.J.5    Gunter, E.6
  • 7
    • 84858766182 scopus 로고    scopus 로고
    • The blockade of immune checkpoints in cancer immunotherapy
    • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer (2012) 12(4):252-64. doi:10.1038/nrc3239
    • (2012) Nat Rev Cancer , vol.12 , Issue.4 , pp. 252-264
    • Pardoll, D.M.1
  • 8
    • 84862903106 scopus 로고    scopus 로고
    • Safety and activity of anti-PD-L1 antibody in patients with advanced cancer
    • Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med (2012) 366(26):2455-65. doi:10.1056/NEJMoa1200694
    • (2012) N Engl J Med , vol.366 , Issue.26 , pp. 2455-2465
    • Brahmer, J.R.1    Tykodi, S.S.2    Chow, L.Q.M.3    Hwu, W.-J.4    Topalian, S.L.5    Hwu, P.6
  • 10
    • 84961603856 scopus 로고    scopus 로고
    • Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer
    • Dai C, Lin F, Geng R, Ge X, Tang W, Chang J, et al. Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer. Oncotarget (2016) 7(9):10332-44. doi:10.18632/oncotarget.7243
    • (2016) Oncotarget , vol.7 , Issue.9 , pp. 10332-10344
    • Dai, C.1    Lin, F.2    Geng, R.3    Ge, X.4    Tang, W.5    Chang, J.6
  • 11
    • 82755186508 scopus 로고    scopus 로고
    • Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response
    • Noman MZ, Messai Y, Carré T, Akalay I, Méron M, Janji B, et al. Microenvironmental hypoxia orchestrating the cell stroma cross talk, tumor progression and antitumor response. Crit Rev Immunol (2011) 31(5):357-77. doi:10.1615/CritRevImmunol.v31.i5.10
    • (2011) Crit Rev Immunol , vol.31 , Issue.5 , pp. 357-377
    • Noman, M.Z.1    Messai, Y.2    Carré, T.3    Akalay, I.4    Méron, M.5    Janji, B.6
  • 12
    • 79960393113 scopus 로고    scopus 로고
    • Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells
    • Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L-P, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature (2011) 475(7355):226-30. doi:10.1038/nature10169
    • (2011) Nature , vol.475 , Issue.7355 , pp. 226-230
    • Facciabene, A.1    Peng, X.2    Hagemann, I.S.3    Balint, K.4    Barchetti, A.5    Wang, L.-P.6
  • 13
    • 34247527730 scopus 로고    scopus 로고
    • Hypoxia-inducible factors, stem cells, and cancer
    • Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell (2007) 129(3):465-72. doi:10.1016/j.cell.2007.04.019
    • (2007) Cell , vol.129 , Issue.3 , pp. 465-472
    • Keith, B.1    Simon, M.C.2
  • 14
  • 15
    • 84865294745 scopus 로고    scopus 로고
    • Metabolic reprogramming and metabolic dependency in T cells
    • Wang R, Green DR. Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev (2012) 249(1):14-26. doi:10.1111/j.1600-065X.2012.01155.x
    • (2012) Immunol Rev , vol.249 , Issue.1 , pp. 14-26
    • Wang, R.1    Green, D.R.2
  • 16
    • 84949096958 scopus 로고    scopus 로고
    • T cell metabolic reprogramming and plasticity
    • Slack M, Wang T, Wang R. T cell metabolic reprogramming and plasticity. Mol Immunol (2015) 68(2 Pt C):507-12. doi:10.1016/j.molimm.2015.07.036
    • (2015) Mol Immunol , vol.68 , Issue.2 , pp. 507-512
    • Slack, M.1    Wang, T.2    Wang, R.3
  • 17
    • 84876758617 scopus 로고    scopus 로고
    • Metabolic pathways in immune cell activation and quiescence
    • Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity (2013) 38(4):633-43. doi:10.1016/j.immuni.2013.04.005
    • (2013) Immunity , vol.38 , Issue.4 , pp. 633-643
    • Pearce, E.L.1    Pearce, E.J.2
  • 18
    • 84896076324 scopus 로고    scopus 로고
    • T cell receptor signaling can directly enhance the avidity of CD28 ligand binding
    • Sanchez-Lockhart M, Rojas AV, Fettis MM, Bauserman R, Higa TR, Miao H, et al. T cell receptor signaling can directly enhance the avidity of CD28 ligand binding. PLoS One (2014) 9(2):e89263. doi:10.1371/journal.pone.0089263
    • (2014) PLoS One , vol.9 , Issue.2
    • Sanchez-Lockhart, M.1    Rojas, A.V.2    Fettis, M.M.3    Bauserman, R.4    Higa, T.R.5    Miao, H.6
  • 19
    • 85017256847 scopus 로고    scopus 로고
    • CD28 co-stimulation in T-cell homeostasis: a recent perspective
    • Beyersdorf N, Kerkau T, Hünig T. CD28 co-stimulation in T-cell homeostasis: a recent perspective. Immunotargets Ther (2015) 4:111-22. doi:10.2147/ITT.S61647
    • (2015) Immunotargets Ther , vol.4 , pp. 111-122
    • Beyersdorf, N.1    Kerkau, T.2    Hünig, T.3
  • 20
    • 84885055994 scopus 로고    scopus 로고
    • Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function
    • Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest (2013) 123(10):4479-88. doi:10.1172/JCI69589
    • (2013) J Clin Invest , vol.123 , Issue.10 , pp. 4479-4488
    • Sukumar, M.1    Liu, J.2    Ji, Y.3    Subramanian, M.4    Crompton, J.G.5    Yu, Z.6
  • 21
    • 84949531241 scopus 로고    scopus 로고
    • Cellular metabolism modulation in T lymphocyte immunity
    • Liu H, Yang H, Chen X, Lu Y, Zhang Z, Wang J, et al. Cellular metabolism modulation in T lymphocyte immunity. Immunology (2014). doi:10.1111/imm.12321
    • (2014) Immunology
    • Liu, H.1    Yang, H.2    Chen, X.3    Lu, Y.4    Zhang, Z.5    Wang, J.6
  • 22
    • 82755166890 scopus 로고    scopus 로고
    • Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
    • Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang J, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science (2011) 334(6060):1278-83. doi:10.1126/science.1211485
    • (2011) Science , vol.334 , Issue.6060 , pp. 1278-1283
    • Anastasiou, D.1    Poulogiannis, G.2    Asara, J.M.3    Boxer, M.B.4    Jiang, J.5    Shen, M.6
  • 23
    • 84947591002 scopus 로고    scopus 로고
    • T cell metabolism drives immunity
    • Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med (2015) 212(9):1345-60. doi:10.1084/jem.20151159
    • (2015) J Exp Med , vol.212 , Issue.9 , pp. 1345-1360
    • Buck, M.D.1    O'Sullivan, D.2    Pearce, E.L.3
  • 24
    • 84866562625 scopus 로고    scopus 로고
    • Metabolic checkpoints in activated T cells
    • Wang R, Green DR. Metabolic checkpoints in activated T cells. Nat Immunol (2012) 13(10):907-15. doi:10.1038/ni.2386
    • (2012) Nat Immunol , vol.13 , Issue.10 , pp. 907-915
    • Wang, R.1    Green, D.R.2
  • 25
    • 84863202384 scopus 로고    scopus 로고
    • Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity
    • Marelli-Berg FM, Fu H, Mauro C. Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity. Immunology (2012) 136(4):363-9. doi:10.1111/j.1365-2567.2012.03583.x
    • (2012) Immunology , vol.136 , Issue.4 , pp. 363-369
    • Marelli-Berg, F.M.1    Fu, H.2    Mauro, C.3
  • 26
    • 84964600705 scopus 로고    scopus 로고
    • Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation
    • Nguyen HD, Chatterjee S, Haarberg KM, Wu Y, Bastian D, Heinrichs J, et al. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Invest (2016) 126(4):1337-52. doi:10.1172/JCI82587
    • (2016) J Clin Invest , vol.126 , Issue.4 , pp. 1337-1352
    • Nguyen, H.D.1    Chatterjee, S.2    Haarberg, K.M.3    Wu, Y.4    Bastian, D.5    Heinrichs, J.6
  • 27
    • 84859140799 scopus 로고    scopus 로고
    • Metabolic pathways in T cell fate and function
    • Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol (2012) 33(4):168-73. doi:10.1016/j.it.2012.01.010
    • (2012) Trends Immunol , vol.33 , Issue.4 , pp. 168-173
    • Gerriets, V.A.1    Rathmell, J.C.2
  • 28
    • 76749098737 scopus 로고    scopus 로고
    • Overview of the immune response
    • Chaplin DD. Overview of the immune response. J Allergy Clin Immunol (2010) 125(2 Suppl 2):S3-23. doi:10.1016/j.jaci.2009.12.980
    • (2010) J Allergy Clin Immunol , vol.125 , Issue.2 , pp. S3-S23
    • Chaplin, D.D.1
  • 29
    • 84871332199 scopus 로고    scopus 로고
    • Cross-reactivity of T cells and its role in the immune system
    • Petrova G, Ferrante A, Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol (2012) 32(4):349-72. doi:10.1615/CritRevImmunol.v32.i4.50
    • (2012) Crit Rev Immunol , vol.32 , Issue.4 , pp. 349-372
    • Petrova, G.1    Ferrante, A.2    Gorski, J.3
  • 30
    • 70049113279 scopus 로고    scopus 로고
    • CD4+ regulatory T cells control Th17 responses in a Stat3-dependent manner
    • Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, et al. CD4+ regulatory T cells control Th17 responses in a Stat3-dependent manner. Science (2009) 326(5955):986-91. doi:10.1126/science.1172702
    • (2009) Science , vol.326 , Issue.5955 , pp. 986-991
    • Chaudhry, A.1    Rudra, D.2    Treuting, P.3    Samstein, R.M.4    Liang, Y.5    Kas, A.6
  • 31
    • 75749134098 scopus 로고    scopus 로고
    • Memory CD8+ T cell differentiation
    • Obar JJ, Lefrançois L. Memory CD8+ T cell differentiation. Ann N Y Acad Sci (2010) 1183:251-66. doi:10.1111/j.1749-6632.2009.05126.x
    • (2010) Ann N Y Acad Sci , vol.1183 , pp. 251-266
    • Obar, J.J.1    Lefrançois, L.2
  • 32
    • 77951692771 scopus 로고    scopus 로고
    • Plasticity in programming of effector and memory CD8 T-cell formation
    • Arens R, Schoenberger SP. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev (2010) 235(1):190-205. doi:10.1111/j.0105-2896.2010.00899.x
    • (2010) Immunol Rev , vol.235 , Issue.1 , pp. 190-205
    • Arens, R.1    Schoenberger, S.P.2
  • 33
    • 84874226167 scopus 로고    scopus 로고
    • mTOR and metabolic pathways in T cell quiescence and functional activation
    • Yang K, Chi H. mTOR and metabolic pathways in T cell quiescence and functional activation. Semin Immunol (2012) 24(6):421-8. doi:10.1016/j.smim.2012.12.004
    • (2012) Semin Immunol , vol.24 , Issue.6 , pp. 421-428
    • Yang, K.1    Chi, H.2
  • 34
    • 84935049461 scopus 로고    scopus 로고
    • TCR-signaling events in cellular metabolism and specialization
    • Chisolm DA, Weinmann AS. TCR-signaling events in cellular metabolism and specialization. Front Immunol (2015) 6:292. doi:10.3389/fimmu.2015.00292
    • (2015) Front Immunol , vol.6 , pp. 292
    • Chisolm, D.A.1    Weinmann, A.S.2
  • 35
    • 66949173728 scopus 로고    scopus 로고
    • mTOR differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. mTOR differentially regulates effector and regulatory T cell lineage commitment. Immunity (2009) 30(6):832-44. doi:10.1016/j.immuni.2009.04.014
    • (2009) Immunity , vol.30 , Issue.6 , pp. 832-844
    • Delgoffe, G.M.1    Kole, T.P.2    Zheng, Y.3    Zarek, P.E.4    Matthews, K.L.5    Xiao, B.6
  • 36
    • 85010635732 scopus 로고    scopus 로고
    • Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation
    • Araujo L, Khim P, Mkhikian H, Mortales CL, Demetriou M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. Elife (2017) 6:e21330. doi:10.7554/eLife.21330
    • (2017) Elife , vol.6
    • Araujo, L.1    Khim, P.2    Mkhikian, H.3    Mortales, C.L.4    Demetriou, M.5
  • 37
    • 84881068658 scopus 로고    scopus 로고
    • The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis
    • Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science (2013) 341(6145):569-73. doi:10.1126/science.1241165
    • (2013) Science , vol.341 , Issue.6145 , pp. 569-573
    • Smith, P.M.1    Howitt, M.R.2    Panikov, N.3    Michaud, M.4    Gallini, C.A.5    Bohlooly, Y.M.6
  • 38
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol (2011) 186(6):3299-303. doi:10.4049/jimmunol.1003613
    • (2011) J Immunol , vol.186 , Issue.6 , pp. 3299-3303
    • Michalek, R.D.1    Gerriets, V.A.2    Jacobs, S.R.3    Macintyre, A.N.4    MacIver, N.J.5    Mason, E.F.6
  • 39
    • 84873684726 scopus 로고    scopus 로고
    • Metabolic control of the Treg/Th17 axis
    • Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/Th17 axis. Immunol Rev (2013) 252(1):52-77. doi:10.1111/imr.12029
    • (2013) Immunol Rev , vol.252 , Issue.1 , pp. 52-77
    • Barbi, J.1    Pardoll, D.2    Pan, F.3
  • 40
    • 84941072886 scopus 로고    scopus 로고
    • Regulation of mammalian nucleotide metabolism and biosynthesis
    • Lane AN, Fan TW. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res (2015) 7:gkv047. doi:10.1093/nar/gkv047
    • (2015) Nucleic Acids Res , vol.7
    • Lane, A.N.1    Fan, T.W.2
  • 41
    • 85003874481 scopus 로고    scopus 로고
    • Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity
    • Arts RJ, Novakovic B, Ter Horst R, Carvalho A, Bekkering S, Lachmandas E, et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab (2016) 24(6):807-19. doi:10.1016/j.cmet.2016.10.008
    • (2016) Cell Metab , vol.24 , Issue.6 , pp. 807-819
    • Arts, R.J.1    Novakovic, B.2    Ter Horst, R.3    Carvalho, A.4    Bekkering, S.5    Lachmandas, E.6
  • 42
    • 79960369458 scopus 로고    scopus 로고
    • HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1a-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med (2011) 208(7):1367-76. doi:10.1084/jem.20110278
    • (2011) J Exp Med , vol.208 , Issue.7 , pp. 1367-1376
    • Shi, L.Z.1    Wang, R.2    Huang, G.3    Vogel, P.4    Neale, G.5    Green, D.R.6
  • 43
    • 84874242919 scopus 로고    scopus 로고
    • Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling
    • Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity (2013) 38(2):225-36. doi:10.1016/j.immuni.2012.10.020
    • (2013) Immunity , vol.38 , Issue.2 , pp. 225-236
    • Sena, L.A.1    Li, S.2    Jairaman, A.3    Prakriya, M.4    Ezponda, T.5    Hildeman, D.A.6
  • 44
    • 84922080059 scopus 로고    scopus 로고
    • De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells
    • Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med (2014) 20(11):1327-33. doi:10.1038/nm.3704
    • (2014) Nat Med , vol.20 , Issue.11 , pp. 1327-1333
    • Berod, L.1    Friedrich, C.2    Nandan, A.3    Freitag, J.4    Hagemann, S.5    Harmrolfs, K.6
  • 45
    • 84883423963 scopus 로고    scopus 로고
    • CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
    • van der Windt GJ, O'Sullivan D, Everts B, Huang SC, Buck MD, Curtis JD, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc Natl Acad Sci U S A (2013) 110(35):14336-41. doi:10.1073/pnas.1221740110
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.35 , pp. 14336-14341
    • van der Windt, G.J.1    O'Sullivan, D.2    Everts, B.3    Huang, S.C.4    Buck, M.D.5    Curtis, J.D.6
  • 46
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T cell memory by modulating fatty acid metabolism
    • Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang L-S, et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature (2009) 460(7251):103-7. doi:10.1038/nature08097
    • (2009) Nature , vol.460 , Issue.7251 , pp. 103-107
    • Pearce, E.L.1    Walsh, M.C.2    Cejas, P.J.3    Harms, G.M.4    Shen, H.5    Wang, L.-S.6
  • 47
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
    • van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity (2012) 36(1):68-78. doi:10.1016/j.immuni.2011.12.007
    • (2012) Immunity , vol.36 , Issue.1 , pp. 68-78
    • van der Windt, G.J.1    Everts, B.2    Chang, C.H.3    Curtis, J.D.4    Freitas, T.C.5    Amiel, E.6
  • 48
    • 84875463042 scopus 로고    scopus 로고
    • Molecular mechanisms of T cell co-stimulation and co-inhibition
    • Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol (2013) 13(4):227-42. doi:10.1038/nri3405
    • (2013) Nat Rev Immunol , vol.13 , Issue.4 , pp. 227-242
    • Chen, L.1    Flies, D.B.2
  • 49
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity (2009) 30(6):832-44. doi:10.1016/j.immuni.2009.04.014
    • (2009) Immunity , vol.30 , Issue.6 , pp. 832-844
    • Delgoffe, G.M.1    Kole, T.P.2    Zheng, Y.3    Zarek, P.E.4    Matthews, K.L.5    Xiao, B.6
  • 50
    • 84865301337 scopus 로고    scopus 로고
    • mTOR, metabolism, and the regulation of T-cell differentiation and function
    • Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev (2012) 249(1):43-58. doi:10.1111/j.1600-065X.2012.01152.x
    • (2012) Immunol Rev , vol.249 , Issue.1 , pp. 43-58
    • Waickman, A.T.1    Powell, J.D.2
  • 52
    • 84964527036 scopus 로고    scopus 로고
    • Metabolic maintenance of cell asymmetry following division in activated T lymphocytes
    • Verbist KC, Guy CS, Milasta S, Liedmann S, Kaminski MM, Wang R, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature (2016) 532(7599):389-93. doi:10.1038/nature17442
    • (2016) Nature , vol.532 , Issue.7599 , pp. 389-393
    • Verbist, K.C.1    Guy, C.S.2    Milasta, S.3    Liedmann, S.4    Kaminski, M.M.5    Wang, R.6
  • 53
    • 84963525930 scopus 로고    scopus 로고
    • Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation
    • Pollizzi KN, Sun I-H, Patel CH, Lo Y-C, Oh M-H, Waickman AT, et al. Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nat Immunol (2016) 17(6):704-11. doi:10.1038/ni.3438
    • (2016) Nat Immunol , vol.17 , Issue.6 , pp. 704-711
    • Pollizzi, K.N.1    Sun, I.-H.2    Patel, C.H.3    Lo, Y.-C.4    Oh, M.-H.5    Waickman, A.T.6
  • 54
    • 45549098562 scopus 로고    scopus 로고
    • T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
    • Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A (2008) 105(22):7797-802. doi:10.1073/pnas.0800928105
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.22 , pp. 7797-7802
    • Sauer, S.1    Bruno, L.2    Hertweck, A.3    Finlay, D.4    Leleu, M.5    Spivakov, M.6
  • 55
    • 84902457455 scopus 로고    scopus 로고
    • T cell receptor-dependent activation of mTOR signaling in T cells is mediated by carma1 and MALT1, but not Bcl10
    • Hamilton KS, Phong B, Corey C, Cheng J, Gorentla B, Zhong X, et al. T cell receptor-dependent activation of mTOR signaling in T cells is mediated by carma1 and MALT1, but not Bcl10. Sci Signal (2014) 7(329):ra55-55. doi:10.1126/scisignal.2005169
    • (2014) Sci Signal , vol.7 , Issue.329
    • Hamilton, K.S.1    Phong, B.2    Corey, C.3    Cheng, J.4    Gorentla, B.5    Zhong, X.6
  • 56
    • 84860237060 scopus 로고    scopus 로고
    • Regulation and function of mTOR signalling in T cell fate decisions
    • Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol (2012) 12(5):325-38. doi:10.1038/nri3198
    • (2012) Nat Rev Immunol , vol.12 , Issue.5 , pp. 325-338
    • Chi, H.1
  • 57
    • 84890137621 scopus 로고    scopus 로고
    • T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic programming
    • Yang K, Shrestha S, Zeng H, Karmaus PWF, Neale G, Vogel P, et al. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic programming. Immunity (2013) 39(6):1043-56. doi:10.1016/j.immuni.2013.09.015
    • (2013) Immunity , vol.39 , Issue.6 , pp. 1043-1056
    • Yang, K.1    Shrestha, S.2    Zeng, H.3    Karmaus, P.W.F.4    Neale, G.5    Vogel, P.6
  • 58
    • 84871861969 scopus 로고    scopus 로고
    • PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
    • Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med (2012) 209(13):2441-53. doi:10.1084/jem.20112607
    • (2012) J Exp Med , vol.209 , Issue.13 , pp. 2441-2453
    • Finlay, D.K.1    Rosenzweig, E.2    Sinclair, L.V.3    Feijoo-Carnero, C.4    Hukelmann, J.L.5    Rolf, J.6
  • 59
    • 54549089738 scopus 로고    scopus 로고
    • Hypoxia signalling through mTOR and the unfolded protein response in cancer
    • Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer (2008) 8(11):851-64. doi:10.1038/nrc2501
    • (2008) Nat Rev Cancer , vol.8 , Issue.11 , pp. 851-864
    • Wouters, B.G.1    Koritzinsky, M.2
  • 60
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity (2011) 35(6):871-82. doi:10.1016/j.immuni.2011.09.021
    • (2011) Immunity , vol.35 , Issue.6 , pp. 871-882
    • Wang, R.1    Dillon, C.P.2    Shi, L.Z.3    Milasta, S.4    Carter, R.5    Finkelstein, D.6
  • 61
    • 64749116346 scopus 로고    scopus 로고
    • c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
    • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature (2009) 458(7239):762-5. doi:10.1038/nature07823
    • (2009) Nature , vol.458 , Issue.7239 , pp. 762-765
    • Gao, P.1    Tchernyshyov, I.2    Chang, T.C.3    Lee, Y.S.4    Kita, K.5    Ochi, T.6
  • 62
    • 0028068606 scopus 로고
    • Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1
    • Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem (1994) 269(38):23757-63.
    • (1994) J Biol Chem , vol.269 , Issue.38 , pp. 23757-23763
    • Semenza, G.L.1    Roth, P.H.2    Fang, H.M.3    Wang, G.L.4
  • 63
    • 0032476059 scopus 로고    scopus 로고
    • Hypoxia regulates beta-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element
    • Discher DJ, Bishopric NH, Wu X, Peterson CA, Webster KA. Hypoxia regulates beta-enolase and pyruvate kinase-M promoters by modulating Sp1/Sp3 binding to a conserved GC element. J Biol Chem (1998) 273(40):26087-93. doi:10.1074/jbc.273.40.26087
    • (1998) J Biol Chem , vol.273 , Issue.40 , pp. 26087-26093
    • Discher, D.J.1    Bishopric, N.H.2    Wu, X.3    Peterson, C.A.4    Webster, K.A.5
  • 65
    • 80052277906 scopus 로고    scopus 로고
    • Control of TH17/Treg balance by hypoxia-inducible factor 1
    • Dang EV, Barbi J, Yang H-Y, Jinasena D, Yu H, Zheng Y, et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell (2011) 146(5):772-84. doi:10.1016/j.cell.2011.07.033
    • (2011) Cell , vol.146 , Issue.5 , pp. 772-784
    • Dang, E.V.1    Barbi, J.2    Yang, H.-Y.3    Jinasena, D.4    Yu, H.5    Zheng, Y.6
  • 66
    • 85017199230 scopus 로고    scopus 로고
    • Metabolic control of T cell fate decision: the HIF1a-glycolysis axis in the differentiation of TH17 and iTreg cells
    • Shi LZ, Wang R, Green D, Chi H. Metabolic control of T cell fate decision: the HIF1a-glycolysis axis in the differentiation of TH17 and iTreg cells. J Immunol (2012) 188(1 Suppl):17-163.
    • (2012) J Immunol , vol.188 , Issue.1 , pp. 17-163
    • Shi, L.Z.1    Wang, R.2    Green, D.3    Chi, H.4
  • 67
    • 84995554140 scopus 로고    scopus 로고
    • The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation
    • Gualdoni GA, Mayer KA, Göschl L, Boucheron N, Ellmeier W, Zlabinger GJ. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J (2016) 30(11):3800-9. doi:10.1096/fj.201600522R
    • (2016) FASEB J , vol.30 , Issue.11 , pp. 3800-3809
    • Gualdoni, G.A.1    Mayer, K.A.2    Göschl, L.3    Boucheron, N.4    Ellmeier, W.5    Zlabinger, G.J.6
  • 68
    • 84904641293 scopus 로고    scopus 로고
    • Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment
    • Mockler MB, Conroy MJ, Lysaght J. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front Oncol (2014) 4:107. doi:10.3389/fonc.2014.00107
    • (2014) Front Oncol , vol.4 , pp. 107
    • Mockler, M.B.1    Conroy, M.J.2    Lysaght, J.3
  • 69
    • 84952902890 scopus 로고    scopus 로고
    • Immunometabolism: cellular metabolism turns immune regulator
    • Loftus RM, Finlay DK. Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem (2016) 291(1):1-10. doi:10.1074/jbc.R115.693903
    • (2016) J Biol Chem , vol.291 , Issue.1 , pp. 1-10
    • Loftus, R.M.1    Finlay, D.K.2
  • 70
    • 84964267895 scopus 로고    scopus 로고
    • Fatty acid metabolism in the regulation of T cell function
    • Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol (2015) 36(2):81-91. doi:10.1016/j.it.2014.12.005
    • (2015) Trends Immunol , vol.36 , Issue.2 , pp. 81-91
    • Lochner, M.1    Berod, L.2    Sparwasser, T.3
  • 71
    • 84876434341 scopus 로고    scopus 로고
    • AMPK: a metabolic switch for CD8+ T-cell memory
    • Araki K, Ahmed R. AMPK: a metabolic switch for CD8+ T-cell memory. Eur J Immunol (2013) 43(4):878-81. doi:10.1002/eji.201343483
    • (2013) Eur J Immunol , vol.43 , Issue.4 , pp. 878-881
    • Araki, K.1    Ahmed, R.2
  • 73
    • 84960926090 scopus 로고    scopus 로고
    • Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice
    • Sun Y, Tian T, Gao J, Liu X, Hou H, Cao R, et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J Neuroimmunol (2016) 292:58-67. doi:10.1016/j.jneuroim.2016.01.014
    • (2016) J Neuroimmunol , vol.292 , pp. 58-67
    • Sun, Y.1    Tian, T.2    Gao, J.3    Liu, X.4    Hou, H.5    Cao, R.6
  • 74
    • 77951678634 scopus 로고    scopus 로고
    • The role of mTOR in memory CD8 T-cell differentiation
    • Araki K, Youngblood B, Ahmed R. The role of mTOR in memory CD8 T-cell differentiation. Immunol Rev (2010) 235(1):234-43. doi:10.1111/j.0105-2896.2010.00898.x
    • (2010) Immunol Rev , vol.235 , Issue.1 , pp. 234-243
    • Araki, K.1    Youngblood, B.2    Ahmed, R.3
  • 75
    • 84939612531 scopus 로고    scopus 로고
    • Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells
    • Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA. Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS One (2014) 9(9):e106710. doi:10.1371/journal.pone.0106710
    • (2014) PLoS One , vol.9 , Issue.9
    • Zarrouk, M.1    Finlay, D.K.2    Foretz, M.3    Viollet, B.4    Cantrell, D.A.5
  • 76
    • 77953785070 scopus 로고    scopus 로고
    • The metabolic life and times of a T-cell
    • Michalek RD, Rathmell JC. The metabolic life and times of a T-cell. Immunol Rev (2010) 236:190-202. doi:10.1111/j.1600-065X.2010.00911.x
    • (2010) Immunol Rev , vol.236 , pp. 190-202
    • Michalek, R.D.1    Rathmell, J.C.2
  • 77
    • 54249141095 scopus 로고    scopus 로고
    • Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival
    • Maciver NJ, Jacobs SR, Wieman HL, Wofford JA, Coloff JL, Rathmell JC. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J Leukoc Biol (2008) 84(4):949-57. doi:10.1189/jlb.0108024
    • (2008) J Leukoc Biol , vol.84 , Issue.4 , pp. 949-957
    • Maciver, N.J.1    Jacobs, S.R.2    Wieman, H.L.3    Wofford, J.A.4    Coloff, J.L.5    Rathmell, J.C.6
  • 78
    • 44449165597 scopus 로고    scopus 로고
    • Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
    • Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol (2008) 180(7):4476-86. doi:10.4049/jimmunol.180.7.4476
    • (2008) J Immunol , vol.180 , Issue.7 , pp. 4476-4486
    • Jacobs, S.R.1    Herman, C.E.2    Maciver, N.J.3    Wofford, J.A.4    Wieman, H.L.5    Hammen, J.J.6
  • 79
    • 0027960973 scopus 로고
    • Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production
    • Greiner EF, Guppy M, Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem (1994) 269(50):31484-90.
    • (1994) J Biol Chem , vol.269 , Issue.50 , pp. 31484-31490
    • Greiner, E.F.1    Guppy, M.2    Brand, K.3
  • 80
    • 84875135352 scopus 로고    scopus 로고
    • The SLC2 (GLUT) family of membrane transporters
    • Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med (2013) 34(0):121-38. doi:10.1016/j.mam.2012.07.001
    • (2013) Mol Aspects Med , vol.34 , pp. 121-138
    • Mueckler, M.1    Thorens, B.2
  • 81
    • 69949124867 scopus 로고    scopus 로고
    • Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells
    • Feron O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol (2009) 92(3):329-33. doi:10.1016/j.radonc.2009.06.025
    • (2009) Radiother Oncol , vol.92 , Issue.3 , pp. 329-333
    • Feron, O.1
  • 82
    • 77955475969 scopus 로고    scopus 로고
    • Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
    • Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol (2010) 185(2):1037-44. doi:10.4049/jimmunol.0903586
    • (2010) J Immunol , vol.185 , Issue.2 , pp. 1037-1044
    • Carr, E.L.1    Kelman, A.2    Wu, G.S.3    Gopaul, R.4    Senkevitch, E.5    Aghvanyan, A.6
  • 83
    • 84865285455 scopus 로고    scopus 로고
    • Metabolic switching and fuel choice during T-cell differentiation and memory development
    • van der Windt GJ, Pearce EL. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol Rev (2012) 249(1):27-42. doi:10.1111/j.1600-065X.2012.01150.x
    • (2012) Immunol Rev , vol.249 , Issue.1 , pp. 27-42
    • van der Windt, G.J.1    Pearce, E.L.2
  • 84
    • 0022196860 scopus 로고
    • Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance
    • Newsholme EA, Crabtree B, Ardawi MS. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol (1985) 70(4):473-89. doi:10.1113/expphysiol.1985.sp002935
    • (1985) Q J Exp Physiol , vol.70 , Issue.4 , pp. 473-489
    • Newsholme, E.A.1    Crabtree, B.2    Ardawi, M.S.3
  • 85
    • 0032988358 scopus 로고    scopus 로고
    • Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease 1
    • Newsholme P, Curi R, Curi TCP, Murphy CJ, Garcia C, de Melo MP. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease 1. J Nutr Biochem (1999) 10(6):316-24. doi:10.1016/S0955-2863(99)00022-4
    • (1999) J Nutr Biochem , vol.10 , Issue.6 , pp. 316-324
    • Newsholme, P.1    Curi, R.2    Curi, T.C.P.3    Murphy, C.J.4    Garcia, C.5    de Melo, M.P.6
  • 86
    • 37449034854 scopus 로고    scopus 로고
    • Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A (2007) 104(49):19345-50. doi:10.1073/pnas.0709747104
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.49 , pp. 19345-19350
    • DeBerardinis, R.J.1    Mancuso, A.2    Daikhin, E.3    Nissim, I.4    Yudkoff, M.5    Wehrli, S.6
  • 87
    • 84921309472 scopus 로고    scopus 로고
    • The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo
    • Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity (2015) 42(1):41-54. doi:10.1016/j.immuni.2014.12.030
    • (2015) Immunity , vol.42 , Issue.1 , pp. 41-54
    • Blagih, J.1    Coulombe, F.2    Vincent, E.E.3    Dupuy, F.4    Galicia-Vázquez, G.5    Yurchenko, E.6
  • 89
    • 73249121300 scopus 로고    scopus 로고
    • Kynurenine pathway metabolites in humans: disease and healthy states
    • Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res (2009) 2:1-19.
    • (2009) Int J Tryptophan Res , vol.2 , pp. 1-19
    • Chen, Y.1    Guillemin, G.J.2
  • 90
    • 0033519278 scopus 로고    scopus 로고
    • Inhibition of T cell proliferation by macrophage tryptophan catabolism
    • Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med (1999) 189(9):1363-72. doi:10.1084/jem.189.9.1363
    • (1999) J Exp Med , vol.189 , Issue.9 , pp. 1363-1372
    • Munn, D.H.1    Shafizadeh, E.2    Attwood, J.T.3    Bondarev, I.4    Pashine, A.5    Mellor, A.L.6
  • 91
    • 5044220930 scopus 로고    scopus 로고
    • Ido expression by dendritic cells: tolerance and tryptophan catabolism
    • Mellor AL, Munn DH. Ido expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol (2004) 4(10):762-74. doi:10.1038/nri1457
    • (2004) Nat Rev Immunol , vol.4 , Issue.10 , pp. 762-774
    • Mellor, A.L.1    Munn, D.H.2
  • 92
    • 84926652188 scopus 로고    scopus 로고
    • Tryptophan-degrading enzymes in tumoral immune resistance
    • van Baren N, Van den Eynde BJ. Tryptophan-degrading enzymes in tumoral immune resistance. Front Immunol (2015) 6:34. doi:10.3389/fimmu.2015.00034
    • (2015) Front Immunol , vol.6 , pp. 34
    • van Baren, N.1    Van den Eynde, B.J.2
  • 93
    • 0142137237 scopus 로고    scopus 로고
    • Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase
    • Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med (2003) 9(10):1269-74. doi:10.1038/nm934
    • (2003) Nat Med , vol.9 , Issue.10 , pp. 1269-1274
    • Uyttenhove, C.1    Pilotte, L.2    Théate, I.3    Stroobant, V.4    Colau, D.5    Parmentier, N.6
  • 94
    • 55949117914 scopus 로고    scopus 로고
    • Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase
    • Muller AJ, Sharma MD, Chandler PR, DuHadaway JB, Everhart ME, Johnson BA, et al. Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase. Proc Natl Acad Sci U S A (2008) 105(44):17073-8. doi:10.1073/pnas.0806173105
    • (2008) Proc Natl Acad Sci U S A , vol.105 , Issue.44 , pp. 17073-17078
    • Muller, A.J.1    Sharma, M.D.2    Chandler, P.R.3    DuHadaway, J.B.4    Everhart, M.E.5    Johnson, B.A.6
  • 95
    • 84992478733 scopus 로고    scopus 로고
    • l-arginine modulates T cell metabolism and enhances survival and anti-tumor activity
    • Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, et al. l-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell (2016) 167(3):829.e-42.e. doi:10.1016/j.cell.2016.09.031
    • (2016) Cell , vol.167 , Issue.3 , pp. 829.e-842.e
    • Geiger, R.1    Rieckmann, J.C.2    Wolf, T.3    Basso, C.4    Feng, Y.5    Fuhrer, T.6
  • 96
    • 84929654896 scopus 로고    scopus 로고
    • Targeting arginine metabolism pathway to treat arginine-dependent cancers
    • Qiu F, Huang J, Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett (2015) 364(1):1-7. doi:10.1016/j.canlet.2015.04.020
    • (2015) Cancer Lett , vol.364 , Issue.1 , pp. 1-7
    • Qiu, F.1    Huang, J.2    Sui, M.3
  • 97
    • 0041845173 scopus 로고    scopus 로고
    • l-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes
    • Rodriguez PC, Zea AH, DeSalvo J, Culotta KS, Zabaleta J, Quiceno DG, et al. l-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol (2003) 171(3):1232-9. doi:10.4049/jimmunol.171.3.1232
    • (2003) J Immunol , vol.171 , Issue.3 , pp. 1232-1239
    • Rodriguez, P.C.1    Zea, A.H.2    DeSalvo, J.3    Culotta, K.S.4    Zabaleta, J.5    Quiceno, D.G.6
  • 98
    • 4143130091 scopus 로고    scopus 로고
    • Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses
    • Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res (2004) 64(16):5839-49. doi:10.1158/0008-5472.CAN-04-0465
    • (2004) Cancer Res , vol.64 , Issue.16 , pp. 5839-5849
    • Rodriguez, P.C.1    Quiceno, D.G.2    Zabaleta, J.3    Ortiz, B.4    Zea, A.H.5    Piazuelo, M.B.6
  • 99
    • 84929178247 scopus 로고    scopus 로고
    • Impaired T cell function in argininosuccinate synthetase deficiency
    • Tarasenko TN, Gomez-Rodriguez J, McGuire PJ. Impaired T cell function in argininosuccinate synthetase deficiency. J Leukoc Biol (2015) 97(2):273-8. doi:10.1189/jlb.1AB0714-365R
    • (2015) J Leukoc Biol , vol.97 , Issue.2 , pp. 273-278
    • Tarasenko, T.N.1    Gomez-Rodriguez, J.2    McGuire, P.J.3
  • 100
    • 84954410074 scopus 로고    scopus 로고
    • Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer
    • Li C, Zhang G, Zhao L, Ma Z, Chen H. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol (2016) 14(1):15. doi:10.1186/s12957-016-0769-9
    • (2016) World J Surg Oncol , vol.14 , Issue.1 , pp. 15
    • Li, C.1    Zhang, G.2    Zhao, L.3    Ma, Z.4    Chen, H.5
  • 101
    • 84867249149 scopus 로고    scopus 로고
    • Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review)
    • Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett (2012) 4(6):1151-7. doi:10.3892/ol.2012.928
    • (2012) Oncol Lett , vol.4 , Issue.6 , pp. 1151-1157
    • Zheng, J.1
  • 102
    • 79955398591 scopus 로고    scopus 로고
    • Otto Warburg's contributions to current concepts of cancer metabolism
    • Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer (2011) 11(5):325-37. doi:10.1038/nrc3038
    • (2011) Nat Rev Cancer , vol.11 , Issue.5 , pp. 325-337
    • Koppenol, W.H.1    Bounds, P.L.2    Dang, C.V.3
  • 103
    • 84937197675 scopus 로고    scopus 로고
    • Metabolic reprogramming in cancer: the art of balance
    • Yi M, Xiang B, Li X, Li G. [Metabolic reprogramming in cancer: the art of balance]. Zhong Nan Da Xue Xue Bao Yi Xue Ban (2013) 38(11):1177-87. doi:10.3969/j.issn.1672-7347.2013.11.016
    • (2013) Zhong Nan Da Xue Xue Bao Yi Xue Ban , vol.38 , Issue.11 , pp. 1177-1187
    • Yi, M.1    Xiang, B.2    Li, X.3    Li, G.4
  • 104
    • 84888414331 scopus 로고    scopus 로고
    • How does the metabolism of tumour cells differ from that of normal cells
    • Amoêdo ND, Valencia JP, Rodrigues MF, Galina A, Rumjanek FD. How does the metabolism of tumour cells differ from that of normal cells. Biosci Rep (2013) 33(6):e00080. doi:10.1042/BSR20130066
    • (2013) Biosci Rep , vol.33 , Issue.6
    • Amoêdo, N.D.1    Valencia, J.P.2    Rodrigues, M.F.3    Galina, A.4    Rumjanek, F.D.5
  • 105
    • 84983798027 scopus 로고    scopus 로고
    • Glycolysis inhibitors for anticancer therapy: a review of recent patents
    • Sheng H, Tang W. Glycolysis inhibitors for anticancer therapy: a review of recent patents. Recent Pat Anticancer Drug Discov (2016) 11(3):297-308. doi:10.2174/1574892811666160415160104
    • (2016) Recent Pat Anticancer Drug Discov , vol.11 , Issue.3 , pp. 297-308
    • Sheng, H.1    Tang, W.2
  • 106
    • 84964631713 scopus 로고    scopus 로고
    • The sweet trap in tumors: aerobic glycolysis and potential targets for therapy
    • Yu L, Chen X, Wang L, Chen S. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget (2016) 7(25):38908-26. doi:10.18632/oncotarget.7676
    • (2016) Oncotarget , vol.7 , Issue.25 , pp. 38908-38926
    • Yu, L.1    Chen, X.2    Wang, L.3    Chen, S.4
  • 107
    • 84868019043 scopus 로고    scopus 로고
    • Cancer cell metabolism: one hallmark, many faces
    • Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov (2012) 2(10):881-98. doi:10.1158/2159-8290.CD-12-0345
    • (2012) Cancer Discov , vol.2 , Issue.10 , pp. 881-898
    • Cantor, J.R.1    Sabatini, D.M.2
  • 108
    • 84876115558 scopus 로고    scopus 로고
    • Metabolic symbiosis in cancer: refocusing the Warburg lens
    • Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog (2013) 52(5):329-37. doi:10.1002/mc.21863
    • (2013) Mol Carcinog , vol.52 , Issue.5 , pp. 329-337
    • Nakajima, E.C.1    Van Houten, B.2
  • 109
    • 84937977372 scopus 로고    scopus 로고
    • Control of cancer formation by intrinsic genetic noise and microenvironmental cues
    • Brock A, Krause S, Ingber DE. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat Rev Cancer (2015) 15(8):499-509. doi:10.1038/nrc3959
    • (2015) Nat Rev Cancer , vol.15 , Issue.8 , pp. 499-509
    • Brock, A.1    Krause, S.2    Ingber, D.E.3
  • 110
    • 84896725683 scopus 로고    scopus 로고
    • Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity
    • Scott JG, Hjelmeland AB, Chinnaiyan P, Anderson AR, Basanta D. Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity. PLoS Comput Biol (2014) 10(1):e1003433. doi:10.1371/journal.pcbi.1003433
    • (2014) PLoS Comput Biol , vol.10 , Issue.1
    • Scott, J.G.1    Hjelmeland, A.B.2    Chinnaiyan, P.3    Anderson, A.R.4    Basanta, D.5
  • 112
    • 79251517382 scopus 로고    scopus 로고
    • Regulation of cancer cell metabolism
    • Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer (2011) 11(2):85-95. doi:10.1038/nrc2981
    • (2011) Nat Rev Cancer , vol.11 , Issue.2 , pp. 85-95
    • Cairns, R.A.1    Harris, I.S.2    Mak, T.W.3
  • 113
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (2009) 324(5930):1029-33. doi:10.1126/science.1160809
    • (2009) Science , vol.324 , Issue.5930 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 114
    • 84959451365 scopus 로고    scopus 로고
    • The Warburg effect: how does it benefit cancer cells
    • Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci (2016) 41(3):211-8. doi:10.1016/j.tibs.2015.12.001
    • (2016) Trends Biochem Sci , vol.41 , Issue.3 , pp. 211-218
    • Liberti, M.V.1    Locasale, J.W.2
  • 115
    • 49449117608 scopus 로고    scopus 로고
    • Reactive oxygen species regulate hypoxia-inducible factor 1a differentially in cancer and ischemia
    • Qutub AA, Popel AS. Reactive oxygen species regulate hypoxia-inducible factor 1a differentially in cancer and ischemia. Mol Cell Biol (2008) 28(16):5106-19. doi:10.1128/MCB.00060-08
    • (2008) Mol Cell Biol , vol.28 , Issue.16 , pp. 5106-5119
    • Qutub, A.A.1    Popel, A.S.2
  • 116
    • 84937971596 scopus 로고    scopus 로고
    • Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism
    • Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Arch Toxicol (2015) 89(8):1209-26. doi:10.1007/s00204-015-1520-y
    • (2015) Arch Toxicol , vol.89 , Issue.8 , pp. 1209-1226
    • Liemburg-Apers, D.C.1    Willems, P.H.2    Koopman, W.J.3    Grefte, S.4
  • 117
  • 118
    • 84988416810 scopus 로고    scopus 로고
    • Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy
    • Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer (2016) 16(10):635-49. doi:10.1038/nrc.2016.77
    • (2016) Nat Rev Cancer , vol.16 , Issue.10 , pp. 635-649
    • Hay, N.1
  • 119
    • 84940833346 scopus 로고    scopus 로고
    • Glucose addiction in cancer therapy: advances and drawbacks
    • Granja S, Pinheiro C, Reis RM, Martinho O, Baltazar F. Glucose addiction in cancer therapy: advances and drawbacks. Curr Drug Metab (2015) 16(3):221-42. doi:10.2174/1389200216666150602145145
    • (2015) Curr Drug Metab , vol.16 , Issue.3 , pp. 221-242
    • Granja, S.1    Pinheiro, C.2    Reis, R.M.3    Martinho, O.4    Baltazar, F.5
  • 120
    • 84905187426 scopus 로고    scopus 로고
    • Regulation of the pentose phosphate pathway in cancer
    • Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell (2014) 5(8):592-602. doi:10.1007/s13238-014-0082-8
    • (2014) Protein Cell , vol.5 , Issue.8 , pp. 592-602
    • Jiang, P.1    Du, W.2    Wu, M.3
  • 121
    • 84931055981 scopus 로고    scopus 로고
    • Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma
    • Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, et al. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget (2015) 6(15):13371-86. doi:10.18632/oncotarget.3823
    • (2015) Oncotarget , vol.6 , Issue.15 , pp. 13371-13386
    • Lucarelli, G.1    Galleggiante, V.2    Rutigliano, M.3    Sanguedolce, F.4    Cagiano, S.5    Bufo, P.6
  • 122
    • 84923223260 scopus 로고    scopus 로고
    • The Warburg effect: evolving interpretations of an established concept
    • Chen X, Qian Y, Wu S. The Warburg effect: evolving interpretations of an established concept. Free Radic Biol Med (2015) 79:253-63. doi:10.1016/j.freeradbiomed.2014.08.027
    • (2015) Free Radic Biol Med , vol.79 , pp. 253-263
    • Chen, X.1    Qian, Y.2    Wu, S.3
  • 123
    • 77955281020 scopus 로고    scopus 로고
    • Glutamine addiction: a new therapeutic target in cancer
    • Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci (2010) 35(8):427-33. doi:10.1016/j.tibs.2010.05.003
    • (2010) Trends Biochem Sci , vol.35 , Issue.8 , pp. 427-433
    • Wise, D.R.1    Thompson, C.B.2
  • 124
    • 84927133194 scopus 로고    scopus 로고
    • Targeting mitochondria metabolism for cancer therapy
    • Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol (2015) 11(1):9-15. doi:10.1038/nchembio.1712
    • (2015) Nat Chem Biol , vol.11 , Issue.1 , pp. 9-15
    • Weinberg, S.E.1    Chandel, N.S.2
  • 125
    • 84856374900 scopus 로고    scopus 로고
    • Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism
    • Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, et al. Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A (2012) 109(4):1092-7. doi:10.1073/pnas.1112495109
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.4 , pp. 1092-1097
    • Cassago, A.1    Ferreira, A.P.2    Ferreira, I.M.3    Fornezari, C.4    Gomes, E.R.5    Greene, K.S.6
  • 126
    • 84988947515 scopus 로고    scopus 로고
    • Mechanistic basis of glutaminase activation: a key enzyme that promotes glutamine metabolism in cancer cells
    • Li Y, Erickson JW, Stalnecker CA, Katt WP, Huang Q, Cerione RA, et al. Mechanistic basis of glutaminase activation: a key enzyme that promotes glutamine metabolism in cancer cells. J Biol Chem (2016) 291(40):20900-10. doi:10.1074/jbc.M116.720268
    • (2016) J Biol Chem , vol.291 , Issue.40 , pp. 20900-20910
    • Li, Y.1    Erickson, J.W.2    Stalnecker, C.A.3    Katt, W.P.4    Huang, Q.5    Cerione, R.A.6
  • 127
    • 85004001432 scopus 로고    scopus 로고
    • Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF
    • Matijevic Glavan T, Cipak Gasparovic A, Vérillaud B, Busson P, Pavelic J. Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Mol Carcinog (2016). doi:10.1002/mc.22584
    • (2016) Mol Carcinog
    • Matijevic Glavan, T.1    Cipak Gasparovic, A.2    Vérillaud, B.3    Busson, P.4    Pavelic, J.5
  • 128
    • 37549032776 scopus 로고    scopus 로고
    • The interplay between MYC and HIF in cancer
    • Dang CV, Kim J, Gao P, Yustein J. The interplay between MYC and HIF in cancer. Nat Rev Cancer (2008) 8(1):51-6. doi:10.1038/nrc2274
    • (2008) Nat Rev Cancer , vol.8 , Issue.1 , pp. 51-56
    • Dang, C.V.1    Kim, J.2    Gao, P.3    Yustein, J.4
  • 129
    • 70350728803 scopus 로고    scopus 로고
    • MYC-induced cancer cell energy metabolism and therapeutic opportunities
    • Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res (2009) 15(21):6479-83. doi:10.1158/1078-0432.CCR-09-0889
    • (2009) Clin Cancer Res , vol.15 , Issue.21 , pp. 6479-6483
    • Dang, C.V.1    Le, A.2    Gao, P.3
  • 130
    • 84881056831 scopus 로고    scopus 로고
    • MYC, metabolism, cell growth, and tumorigenesis
    • Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med (2013) 3(8):a014217. doi:10.1101/cshperspect.a014217
    • (2013) Cold Spring Harb Perspect Med , vol.3 , Issue.8
    • Dang, C.V.1
  • 131
    • 84887147170 scopus 로고    scopus 로고
    • MYC activation is a hallmark of cancer initiation and maintenance
    • Gabay M, Li Y, Felsher DW. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med (2014) 4(6):a014241. doi:10.1101/cshperspect.a014241
    • (2014) Cold Spring Harb Perspect Med , vol.4 , Issue.6
    • Gabay, M.1    Li, Y.2    Felsher, D.W.3
  • 132
    • 0037189542 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis
    • Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem (2002) 277(26):23111-5. doi:10.1074/jbc.M202487200
    • (2002) J Biol Chem , vol.277 , Issue.26 , pp. 23111-23115
    • Lu, H.1    Forbes, R.A.2    Verma, A.3
  • 133
    • 84978695867 scopus 로고    scopus 로고
    • The ever-expanding role of HIF in tumour and stromal biology
    • LaGory EL, Giaccia AJ. The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol (2016) 18(4):356-65. doi:10.1038/ncb3330
    • (2016) Nat Cell Biol , vol.18 , Issue.4 , pp. 356-365
    • LaGory, E.L.1    Giaccia, A.J.2
  • 134
    • 84970919297 scopus 로고    scopus 로고
    • Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways
    • Masson N, Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab (2014) 2:3. doi:10.1186/2049-3002-2-3
    • (2014) Cancer Metab , vol.2 , pp. 3
    • Masson, N.1    Ratcliffe, P.J.2
  • 135
    • 84881027891 scopus 로고    scopus 로고
    • Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism
    • Ros S, Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab (2013) 1:8. doi:10.1186/2049-3002-1-8
    • (2013) Cancer Metab , vol.1 , pp. 8
    • Ros, S.1    Schulze, A.2
  • 136
    • 84885585514 scopus 로고    scopus 로고
    • Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A
    • Lu H, Li X, Luo Z, Liu J, Fan Z. Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A. Mol Cancer Ther (2013) 12(10):2187-99. doi:10.1158/1535-7163.MCT-12-1245
    • (2013) Mol Cancer Ther , vol.12 , Issue.10 , pp. 2187-2199
    • Lu, H.1    Li, X.2    Luo, Z.3    Liu, J.4    Fan, Z.5
  • 137
    • 84995549384 scopus 로고    scopus 로고
    • Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress
    • Zhao X, Jiang P, Deng X, Li Z, Tian F, Guo F, et al. Inhibition of mTORC1 signaling sensitizes hepatocellular carcinoma cells to glycolytic stress. Am J Cancer Res (2016) 6(10):2289-98.
    • (2016) Am J Cancer Res , vol.6 , Issue.10 , pp. 2289-2298
    • Zhao, X.1    Jiang, P.2    Deng, X.3    Li, Z.4    Tian, F.5    Guo, F.6
  • 138
    • 84984667381 scopus 로고    scopus 로고
    • Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer
    • Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. Recent Results Cancer Res (2016) 207:39-72. doi:10.1007/978-3-319-42118-6_3
    • (2016) Recent Results Cancer Res , vol.207 , pp. 39-72
    • Lien, E.C.1    Lyssiotis, C.A.2    Cantley, L.C.3
  • 139
    • 84940055374 scopus 로고    scopus 로고
    • Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma
    • Makinoshima H, Takita M, Saruwatari K, Umemura S, Obata Y, Ishii G, et al. Signaling through the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) axis is responsible for aerobic glycolysis mediated by glucose transporter in epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. J Biol Chem (2015) 290(28):17495-504. doi:10.1074/jbc.M115.660498
    • (2015) J Biol Chem , vol.290 , Issue.28 , pp. 17495-17504
    • Makinoshima, H.1    Takita, M.2    Saruwatari, K.3    Umemura, S.4    Obata, Y.5    Ishii, G.6
  • 140
    • 84969872786 scopus 로고    scopus 로고
    • Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor
    • Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature (2016) 534(7606):272-6. doi:10.1038/nature17963
    • (2016) Nature , vol.534 , Issue.7606 , pp. 272-276
    • Rodrik-Outmezguine, V.S.1    Okaniwa, M.2    Yao, Z.3    Novotny, C.J.4    McWhirter, C.5    Banaji, A.6
  • 141
    • 84876880959 scopus 로고    scopus 로고
    • Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer
    • Agani F, Jiang BH. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr Cancer Drug Targets (2013) 13(3):245-51. doi:10.2174/1568009611313030003
    • (2013) Curr Cancer Drug Targets , vol.13 , Issue.3 , pp. 245-251
    • Agani, F.1    Jiang, B.H.2
  • 143
    • 84955278720 scopus 로고    scopus 로고
    • Suppression of T cell responses in the tumor microenvironment
    • Frey AB. Suppression of T cell responses in the tumor microenvironment. Vaccine (2015) 33(51):7393-400. doi:10.1016/j.vaccine.2015.08.096
    • (2015) Vaccine , vol.33 , Issue.51 , pp. 7393-7400
    • Frey, A.B.1
  • 144
    • 84925688346 scopus 로고    scopus 로고
    • PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation
    • Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun (2015) 6:6692. doi:10.1038/ncomms7692
    • (2015) Nat Commun , vol.6 , pp. 6692
    • Patsoukis, N.1    Bardhan, K.2    Chatterjee, P.3    Sari, D.4    Liu, B.5    Bell, L.N.6
  • 145
    • 84926160709 scopus 로고    scopus 로고
    • Immune evasion in cancer: mechanistic basis and therapeutic strategies
    • Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol (2015) 35(Suppl):S185-98. doi:10.1016/j.semcancer.2015.03.004
    • (2015) Semin Cancer Biol , vol.35 , pp. S185-A198
    • Vinay, D.S.1    Ryan, E.P.2    Pawelec, G.3    Talib, W.H.4    Stagg, J.5    Elkord, E.6
  • 146
    • 34047220868 scopus 로고    scopus 로고
    • Cancer immunoediting from immune surveillance to immune escape
    • Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology (2007) 121(1):1-14. doi:10.1111/j.1365-2567.2007.02587.x
    • (2007) Immunology , vol.121 , Issue.1 , pp. 1-14
    • Kim, R.1    Emi, M.2    Tanabe, K.3
  • 147
    • 79953087601 scopus 로고    scopus 로고
    • Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment
    • Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J. Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol (2011) 23(2):286-92. doi:10.1016/j.coi.2010.11.013
    • (2011) Curr Opin Immunol , vol.23 , Issue.2 , pp. 286-292
    • Gajewski, T.F.1    Fuertes, M.2    Spaapen, R.3    Zheng, Y.4    Kline, J.5
  • 148
    • 79960672057 scopus 로고    scopus 로고
    • Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells
    • Bianchi G, Borgonovo G, Pistoia V, Raffaghello L. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol (2011) 26(7):941-51. doi:10.14670/HH-26.941
    • (2011) Histol Histopathol , vol.26 , Issue.7 , pp. 941-951
    • Bianchi, G.1    Borgonovo, G.2    Pistoia, V.3    Raffaghello, L.4
  • 149
  • 150
    • 84887444879 scopus 로고    scopus 로고
    • Microenvironmental regulation of tumor progression and metastasis
    • Quail D, Joyce J. Microenvironmental regulation of tumor progression and metastasis. Nat Med (2013) 19(11):1423-37. doi:10.1038/nm.3394
    • (2013) Nat Med , vol.19 , Issue.11 , pp. 1423-1437
    • Quail, D.1    Joyce, J.2
  • 152
    • 84941344937 scopus 로고    scopus 로고
    • Metabolic competition in the tumor microenvironment is a driver of cancer progression
    • Chang C-H, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell (2015) 162(6):1229-41. doi:10.1016/j.cell.2015.08.016
    • (2015) Cell , vol.162 , Issue.6 , pp. 1229-1241
    • Chang, C.-H.1    Qiu, J.2    O'Sullivan, D.3    Buck, M.D.4    Noguchi, T.5    Curtis, J.D.6
  • 153
    • 84962506335 scopus 로고    scopus 로고
    • Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression
    • Zhang Y, Ertl HCJ. Starved and asphyxiated: how can CD8(+) T cells within a tumor microenvironment prevent tumor progression. Front Immunol (2016) 7:32. doi:10.3389/fimmu.2016.00032
    • (2016) Front Immunol , vol.7 , pp. 32
    • Zhang, Y.1    Ertl, H.C.J.2
  • 154
    • 85008455046 scopus 로고    scopus 로고
    • The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy
    • Nakaigawa N, Kondo K, Ueno D, Namura K, Makiyama K, Kobayashi K, et al. The acceleration of glucose accumulation in renal cell carcinoma assessed by FDG PET/CT demonstrated acquisition of resistance to tyrosine kinase inhibitor therapy. BMC Cancer (2017) 17(1):39. doi:10.1186/s12885-016-3044-0
    • (2017) BMC Cancer , vol.17 , Issue.1 , pp. 39
    • Nakaigawa, N.1    Kondo, K.2    Ueno, D.3    Namura, K.4    Makiyama, K.5    Kobayashi, K.6
  • 155
    • 84877059916 scopus 로고    scopus 로고
    • T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment
    • Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol (2013) 25(2):214-21. doi:10.1016/j.coi.2012.12.003
    • (2013) Curr Opin Immunol , vol.25 , Issue.2 , pp. 214-221
    • Crespo, J.1    Sun, H.2    Welling, T.H.3    Tian, Z.4    Zou, W.5
  • 156
    • 85016921823 scopus 로고    scopus 로고
    • Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting
    • Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel) (2016) 4(3):E28. doi:10.3390/vaccines4030028
    • (2016) Vaccines (Basel) , vol.4 , Issue.3
    • Chaudhary, B.1    Elkord, E.2
  • 157
    • 43349104148 scopus 로고    scopus 로고
    • Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner
    • Yaqub S, Henjum K, Mahic M, Jahnsen FL, Aandahl EM, Bjørnbeth BA, et al. Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother (2008) 57(6):813-21. doi:10.1007/s00262-007-0417-x
    • (2008) Cancer Immunol Immunother , vol.57 , Issue.6 , pp. 813-821
    • Yaqub, S.1    Henjum, K.2    Mahic, M.3    Jahnsen, F.L.4    Aandahl, E.M.5    Bjørnbeth, B.A.6
  • 158
    • 84902176332 scopus 로고    scopus 로고
    • Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer
    • Chaudhary B, Abd Al Samid M, al-Ramadi BK, Elkord E. Phenotypic alterations, clinical impact and therapeutic potential of regulatory T cells in cancer. Expert Opin Biol Ther (2014) 14(7):931-45. doi:10.1517/14712598.2014.900539
    • (2014) Expert Opin Biol Ther , vol.14 , Issue.7 , pp. 931-945
    • Chaudhary, B.1    Abd Al Samid, M.2    al-Ramadi, B.K.3    Elkord, E.4
  • 159
    • 63849333830 scopus 로고    scopus 로고
    • Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines
    • Ruter J, Barnett BG, Kryczek I, Brumlik MJ, Daniel BJ, Coukos G, et al. Altering regulatory T cell function in cancer immunotherapy: a novel means to boost the efficacy of cancer vaccines. Front Biosci (Landmark Ed) (2009) 14:1761-70. doi:10.2741/3338
    • (2009) Front Biosci (Landmark Ed) , vol.14 , pp. 1761-1770
    • Ruter, J.1    Barnett, B.G.2    Kryczek, I.3    Brumlik, M.J.4    Daniel, B.J.5    Coukos, G.6
  • 160
    • 63849149937 scopus 로고    scopus 로고
    • LKB1 and AMPK control of mTOR signalling and growth
    • Shaw RJ. LKB1 and AMPK control of mTOR signalling and growth. Acta Physiol (Oxf) (2009) 196(1):65-80. doi:10.1111/j.1748-1716.2009.01972.x
    • (2009) Acta Physiol (Oxf) , vol.196 , Issue.1 , pp. 65-80
    • Shaw, R.J.1
  • 161
    • 84955114946 scopus 로고    scopus 로고
    • AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells
    • Chaube B, Bhat MK. AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells. Cell Death Dis (2016) 7(1):e2044. doi:10.1038/cddis.2015.404
    • (2016) Cell Death Dis , vol.7 , Issue.1
    • Chaube, B.1    Bhat, M.K.2
  • 162
    • 0035874949 scopus 로고    scopus 로고
    • Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer
    • Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res (2001) 61(12):4766-72.
    • (2001) Cancer Res , vol.61 , Issue.12 , pp. 4766-4772
    • Woo, E.Y.1    Chu, C.S.2    Goletz, T.J.3    Schlienger, K.4    Yeh, H.5    Coukos, G.6
  • 163
    • 84938747678 scopus 로고    scopus 로고
    • Myeloid-derived suppressor cells in major depression patients suppress T-cell responses through the production of reactive oxygen species
    • Wei J, Zhang M, Zhou J. Myeloid-derived suppressor cells in major depression patients suppress T-cell responses through the production of reactive oxygen species. Psychiatry Res (2015) 228(3):695-701. doi:10.1016/j.psychres.2015.06.002
    • (2015) Psychiatry Res , vol.228 , Issue.3 , pp. 695-701
    • Wei, J.1    Zhang, M.2    Zhou, J.3
  • 164
    • 84982126256 scopus 로고    scopus 로고
    • Reactive oxygen species regulate T cell immune response in the tumor microenvironment
    • Chen X, Song M, Zhang B, Zhang Y. Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longev (2016) 2016:1580967. doi:10.1155/2016/1580967
    • (2016) Oxid Med Cell Longev , vol.2016
    • Chen, X.1    Song, M.2    Zhang, B.3    Zhang, Y.4
  • 165
    • 0037033433 scopus 로고    scopus 로고
    • Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression
    • Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J Exp Med (2002) 195(1):59-70. doi:10.1084/jem.20010659
    • (2002) J Exp Med , vol.195 , Issue.1 , pp. 59-70
    • Devadas, S.1    Zaritskaya, L.2    Rhee, S.G.3    Oberley, L.4    Williams, M.S.5
  • 166
    • 84997706268 scopus 로고    scopus 로고
    • Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion
    • Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity (2016) 45(2):358-73. doi:10.1016/j.immuni.2016.07.008
    • (2016) Immunity , vol.45 , Issue.2 , pp. 358-373
    • Bengsch, B.1    Johnson, A.L.2    Kurachi, M.3    Odorizzi, P.M.4    Pauken, K.E.5    Attanasio, J.6
  • 167
    • 84927150740 scopus 로고    scopus 로고
    • Immune checkpoint blockade in cancer therapy
    • Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol (2015) 33(17):1974-82. doi:10.1200/JCO.2014.59.4358
    • (2015) J Clin Oncol , vol.33 , Issue.17 , pp. 1974-1982
    • Postow, M.A.1    Callahan, M.K.2    Wolchok, J.D.3
  • 168
    • 42649125225 scopus 로고    scopus 로고
    • PD-1 and its ligands in tolerance and immunity
    • Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol (2008) 26(1):677-704. doi:10.1146/annurev.immunol.26.021607.090331
    • (2008) Annu Rev Immunol , vol.26 , Issue.1 , pp. 677-704
    • Keir, M.E.1    Butte, M.J.2    Freeman, G.J.3    Sharpe, A.H.4
  • 169
    • 84883863501 scopus 로고    scopus 로고
    • Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells
    • Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med (2013) 5(200):200ra116. doi:10.1126/scitranslmed.3006504
    • (2013) Sci Transl Med , vol.5 , Issue.200
    • Spranger, S.1    Spaapen, R.M.2    Zha, Y.3    Williams, J.4    Meng, Y.5    Ha, T.T.6
  • 170
    • 85008485842 scopus 로고    scopus 로고
    • Programmed death-1 inhibition of PI3K/AKT/mTOR signaling impairs sarcoidosis CD4+ T cell proliferation
    • Celada LJ, Rotsinger JE, Young A, Shaginurova G, Shelton D, Hawkins C, et al. Programmed death-1 inhibition of PI3K/AKT/mTOR signaling impairs sarcoidosis CD4+ T cell proliferation. Am J Respir Cell Mol Biol (2016) 56(1):74-82. doi:10.1165/rcmb.2016-0037OC
    • (2016) Am J Respir Cell Mol Biol , vol.56 , Issue.1 , pp. 74-82
    • Celada, L.J.1    Rotsinger, J.E.2    Young, A.3    Shaginurova, G.4    Shelton, D.5    Hawkins, C.6
  • 171
    • 84861157343 scopus 로고    scopus 로고
    • Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells
    • Waickman AT, Powell JD. Mammalian target of rapamycin integrates diverse inputs to guide the outcome of antigen recognition in T cells. J Immunol (2012) 188(10):4721-9. doi:10.4049/jimmunol.1103143
    • (2012) J Immunol , vol.188 , Issue.10 , pp. 4721-4729
    • Waickman, A.T.1    Powell, J.D.2
  • 172
    • 84958963164 scopus 로고    scopus 로고
    • Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer
    • Lastwika KJ, Wilson W, Li QK, Norris J, Xu H, Ghazarian SR, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res (2016) 76(2):227-38. doi:10.1158/0008-5472.CAN-14-3362
    • (2016) Cancer Res , vol.76 , Issue.2 , pp. 227-238
    • Lastwika, K.J.1    Wilson, W.2    Li, Q.K.3    Norris, J.4    Xu, H.5    Ghazarian, S.R.6
  • 173
    • 84973577137 scopus 로고    scopus 로고
    • Co-expression of PD-L1 and p-AKT is associated with poor prognosis in diffuse large B-cell lymphoma via PD-1/PD-L1 axis activating intracellular AKT/mTOR pathway in tumor cells
    • Dong L, Lv H, Li W, Song Z, Li L, Zhou S, et al. Co-expression of PD-L1 and p-AKT is associated with poor prognosis in diffuse large B-cell lymphoma via PD-1/PD-L1 axis activating intracellular AKT/mTOR pathway in tumor cells. Oncotarget (2016) 7(22):33350-62. doi:10.18632/oncotarget.9061
    • (2016) Oncotarget , vol.7 , Issue.22 , pp. 33350-33362
    • Dong, L.1    Lv, H.2    Li, W.3    Song, Z.4    Li, L.5    Zhou, S.6
  • 174
    • 0033029507 scopus 로고    scopus 로고
    • The role of CTLA-4 in the regulation of T cell immune responses
    • McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol (1999) 77(1):1-10. doi:10.1046/j.1440-1711.1999.00795.x
    • (1999) Immunol Cell Biol , vol.77 , Issue.1 , pp. 1-10
    • McCoy, K.D.1    Le Gros, G.2
  • 175
    • 0034823168 scopus 로고    scopus 로고
    • Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy
    • Wells AD, Walsh MC, Bluestone JA, Turka LA. Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest (2001) 108(6):895-903. doi:10.1172/JCI13220
    • (2001) J Clin Invest , vol.108 , Issue.6 , pp. 895-903
    • Wells, A.D.1    Walsh, M.C.2    Bluestone, J.A.3    Turka, L.A.4
  • 176
    • 84941711371 scopus 로고    scopus 로고
    • Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future
    • Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest (2015) 125(9):3384-91. doi:10.1172/JCI80011
    • (2015) J Clin Invest , vol.125 , Issue.9 , pp. 3384-3391
    • Chen, L.1    Han, X.2
  • 177
    • 84920921528 scopus 로고    scopus 로고
    • Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens
    • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature (2014) 515(7528):577-81. doi:10.1038/nature13988
    • (2014) Nature , vol.515 , Issue.7528 , pp. 577-581
    • Gubin, M.M.1    Zhang, X.2    Schuster, H.3    Caron, E.4    Ward, J.P.5    Noguchi, T.6
  • 178
    • 84856867834 scopus 로고    scopus 로고
    • Immunotherapy earns its spot in the ranks of cancer therapy
    • Pardoll D, Drake C. Immunotherapy earns its spot in the ranks of cancer therapy. J Exp Med (2012) 209(2):201-9. doi:10.1084/jem.20112275
    • (2012) J Exp Med , vol.209 , Issue.2 , pp. 201-209
    • Pardoll, D.1    Drake, C.2
  • 179
    • 84959140755 scopus 로고    scopus 로고
    • PD-1/PD-L1 blockade in cancer treatment: perspectives and issues
    • Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol (2016) 21(3):462-73. doi:10.1007/s10147-016-0959-z
    • (2016) Int J Clin Oncol , vol.21 , Issue.3 , pp. 462-473
    • Hamanishi, J.1    Mandai, M.2    Matsumura, N.3    Abiko, K.4    Baba, T.5    Konishi, I.6
  • 180
    • 84891708632 scopus 로고    scopus 로고
    • Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality
    • Saha A, Aoyama K, Taylor PA, Koehn BH, Veenstra RG, Panoskaltsis-Mortari A, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood (2013) 122(17):3062-73. doi:10.1182/blood-2013-05-500801
    • (2013) Blood , vol.122 , Issue.17 , pp. 3062-3073
    • Saha, A.1    Aoyama, K.2    Taylor, P.A.3    Koehn, B.H.4    Veenstra, R.G.5    Panoskaltsis-Mortari, A.6
  • 181
    • 33947259319 scopus 로고    scopus 로고
    • Immunosuppressive strategies that are mediated by tumor cells
    • Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol (2007) 25:267-96. doi:10.1146/annurev.immunol.25.022106.141609
    • (2007) Annu Rev Immunol , vol.25 , pp. 267-296
    • Rabinovich, G.A.1    Gabrilovich, D.2    Sotomayor, E.M.3
  • 182
    • 84928811618 scopus 로고    scopus 로고
    • Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation
    • Eleftheriadis T, Pissas G, Antoniadi G, Spanoulis A, Liakopoulos V, Stefanidis I. Indoleamine 2,3-dioxygenase increases p53 levels in alloreactive human T cells, and both indoleamine 2,3-dioxygenase and p53 suppress glucose uptake, glycolysis and proliferation. Int Immunol (2014) 26(12):673-84. doi:10.1093/intimm/dxu077
    • (2014) Int Immunol , vol.26 , Issue.12 , pp. 673-684
    • Eleftheriadis, T.1    Pissas, G.2    Antoniadi, G.3    Spanoulis, A.4    Liakopoulos, V.5    Stefanidis, I.6
  • 183
    • 0035113742 scopus 로고    scopus 로고
    • Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity
    • Chang CI, Liao JC, Kuo L. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res (2001) 61(3):1100-6.
    • (2001) Cancer Res , vol.61 , Issue.3 , pp. 1100-1106
    • Chang, C.I.1    Liao, J.C.2    Kuo, L.3
  • 184
    • 84868220730 scopus 로고    scopus 로고
    • Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion
    • Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res (2012) 72(21):5435-40. doi:10.1158/0008-5472.CAN-12-0569
    • (2012) Cancer Res , vol.72 , Issue.21 , pp. 5435-5440
    • Platten, M.1    Wick, W.2    Van den Eynde, B.J.3
  • 185
    • 16244408626 scopus 로고    scopus 로고
    • Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy
    • Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med (2005) 11(3):312-9. doi:10.1038/nm1196
    • (2005) Nat Med , vol.11 , Issue.3 , pp. 312-319
    • Muller, A.J.1    DuHadaway, J.B.2    Donover, P.S.3    Sutanto-Ward, E.4    Prendergast, G.C.5
  • 186
    • 33846689594 scopus 로고    scopus 로고
    • Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses
    • Hou D-Y, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res (2007) 67(2):792-801. doi:10.1158/0008-5472.CAN-06-2925
    • (2007) Cancer Res , vol.67 , Issue.2 , pp. 792-801
    • Hou, D.-Y.1    Muller, A.J.2    Sharma, M.D.3    DuHadaway, J.4    Banerjee, T.5    Johnson, M.6
  • 188
    • 84989172005 scopus 로고    scopus 로고
    • Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors
    • Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C, et al. Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano (2016) 10(9):8956-63. doi:10.1021/acsnano.6b04989
    • (2016) ACS Nano , vol.10 , Issue.9 , pp. 8956-8963
    • Ye, Y.1    Wang, J.2    Hu, Q.3    Hochu, G.M.4    Xin, H.5    Wang, C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.