-
2
-
-
0034614637
-
The hallmarks of cancer
-
Hanahan D, Weinberg R. The hallmarks of cancer. Cell. 2000;100:57-70.
-
(2000)
Cell
, vol.100
, pp. 57-70
-
-
Hanahan, D.1
Weinberg, R.2
-
3
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg R. Hallmarks of cancer: the next generation. Cell. 2011;44:646-74.
-
(2011)
Cell
, vol.44
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.2
-
4
-
-
84924369505
-
Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells
-
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 2015;21:392-402.
-
(2015)
Cell Metab
, vol.21
, pp. 392-402
-
-
Moussaieff, A.1
Rouleau, M.2
Kitsberg, D.3
Cohen, M.4
Levy, G.5
Barasch, D.6
-
5
-
-
84868347607
-
Metabolic plasticity in stem cell homeostasis and differentiation
-
Folmes C, Dzeja P, Nelson T, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. 2012;11:596-606.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 596-606
-
-
Folmes, C.1
Dzeja, P.2
Nelson, T.3
Terzic, A.4
-
7
-
-
0001221508
-
On respiratory impairment in cancer cells
-
Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269-70.
-
(1956)
Science
, vol.124
, pp. 269-270
-
-
Warburg, O.1
-
8
-
-
84920616812
-
PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis
-
LeBleu V, O'Connell J, Gonzalez Herrera K, Wikman H, Pantel K, Haigis M, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16:992-1003.
-
(2014)
Nat Cell Biol
, vol.16
, pp. 992-1003
-
-
LeBleu, V.1
O'Connell, J.2
Gonzalez Herrera, K.3
Wikman, H.4
Pantel, K.5
Haigis, M.6
-
9
-
-
84869438139
-
Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance
-
Salem A, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti M. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle. 2012;11:4174-80.
-
(2012)
Cell Cycle
, vol.11
, pp. 4174-4180
-
-
Salem, A.1
Whitaker-Menezes, D.2
Howell, A.3
Sotgia, F.4
Lisanti, M.5
-
10
-
-
84899925866
-
Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis
-
Slavov N, Budnik B, Schwab D, Airoldi E, van Oudenaarden A. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis. Cell Rep. 2014;7:705-14.
-
(2014)
Cell Rep
, vol.7
, pp. 705-714
-
-
Slavov, N.1
Budnik, B.2
Schwab, D.3
Airoldi, E.4
Oudenaarden, A.5
-
12
-
-
40749163248
-
The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
-
Christofk H, Vander Heiden M, Harris M, Ramanathan A, Gerszten R, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230-3.
-
(2008)
Nature
, vol.452
, pp. 230-233
-
-
Christofk, H.1
Vander Heiden, M.2
Harris, M.3
Ramanathan, A.4
Gerszten, R.5
Wei, R.6
-
13
-
-
44449149325
-
Energy metabolism transition in multi-cellular human tumor spheroids
-
Rodríguez-Enríquez S, Gallardo-Pérez J, Avilés-Salas A, Marín-Hernández A, Carreño-Fuentes L, Maldonado-Lagunas V, et al. Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol. 2008;216:189-97.
-
(2008)
J Cell Physiol
, vol.216
, pp. 189-197
-
-
Rodríguez-Enríquez, S.1
Gallardo-Pérez, J.2
Avilés-Salas, A.3
Marín-Hernández, A.4
Carreño-Fuentes, L.5
Maldonado-Lagunas, V.6
-
14
-
-
0014499070
-
The adenosine triphosphate inhibition of the pyruvate kinase reaction and its dependence on the total magnesium ion concentration
-
Holmsen H, Storm E. The adenosine triphosphate inhibition of the pyruvate kinase reaction and its dependence on the total magnesium ion concentration. Biochem J. 1969;112:303-16.
-
(1969)
Biochem J
, vol.112
, pp. 303-316
-
-
Holmsen, H.1
Storm, E.2
-
15
-
-
0022390662
-
Isoenzymes of phosphofructokinase in the rat. Demonstration of the three non-identical subunits by biochemical, immunochemical and kinetic studies
-
Vora S, Oskam R, Staal G. Isoenzymes of phosphofructokinase in the rat. Demonstration of the three non-identical subunits by biochemical, immunochemical and kinetic studies. Biochem J. 1985;229:333-41.
-
(1985)
Biochem J
, vol.229
, pp. 333-341
-
-
Vora, S.1
Oskam, R.2
Staal, G.3
-
16
-
-
84907994949
-
AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease
-
Grahame Hardie D. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med. 2014;276:543-59.
-
(2014)
J Intern Med
, vol.276
, pp. 543-559
-
-
Grahame Hardie, D.1
-
17
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
Woods A, Johnstone S, Dickerson K, Leiper F, Fryer L, Neumann D, et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol. 2003;13:2004-8.
-
(2003)
Curr Biol
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.2
Dickerson, K.3
Leiper, F.4
Fryer, L.5
Neumann, D.6
-
18
-
-
84892963416
-
Targeting the LKB1 tumor suppressor
-
Zhao R, Xu Z. Targeting the LKB1 tumor suppressor. Curr Drug Targets. 2014;15:32-52.
-
(2014)
Curr Drug Targets
, vol.15
, pp. 32-52
-
-
Zhao, R.1
Xu, Z.2
-
19
-
-
84894359469
-
Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α
-
Faubert B, Vincent E, Griss T, Samborska B, Izreig S, Svensson R, et al. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc Natl Acad Sci U S A. 2014;111:2554-9.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 2554-2559
-
-
Faubert, B.1
Vincent, E.2
Griss, T.3
Samborska, B.4
Izreig, S.5
Svensson, R.6
-
20
-
-
84873584845
-
LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
-
Shackelford D, Abt E, Gerken L, Vasquez D, Seki A, Leblanc M, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell. 2013;23:143-58.
-
(2013)
Cancer Cell
, vol.23
, pp. 143-158
-
-
Shackelford, D.1
Abt, E.2
Gerken, L.3
Vasquez, D.4
Seki, A.5
Leblanc, M.6
-
21
-
-
84929703353
-
Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib
-
Ishijima N, Kanki K, Shimizu H, Shiota G. Activation of AMP-activated protein kinase by retinoic acid sensitizes hepatocellular carcinoma cells to apoptosis induced by sorafenib. Cancer Sci. 2015;106(5):567-75. doi: 10.1111/cas[Epub ahead of print].
-
(2015)
Cancer Sci
, vol.106
, Issue.5
, pp. 567-575
-
-
Ishijima, N.1
Kanki, K.2
Shimizu, H.3
Shiota, G.4
-
22
-
-
84922523802
-
Hispidulin enhances the anti-tumor effects of temozolomide in glioblastoma by activating AMPK
-
Wang Y, Liu W, He X, Fei Z. Hispidulin enhances the anti-tumor effects of temozolomide in glioblastoma by activating AMPK. Cell Biochem Biophys. 2015;71:701-6.
-
(2015)
Cell Biochem Biophys
, vol.71
, pp. 701-706
-
-
Wang, Y.1
Liu, W.2
He, X.3
Fei, Z.4
-
23
-
-
40749099894
-
Pyruvate kinase M2 is a phosphotyrosine-binding protein
-
Christofk H, Vander Heiden M, Wu N, Asara J, Cantley L. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008;452:181-6.
-
(2008)
Nature
, vol.452
, pp. 181-186
-
-
Christofk, H.1
Vander Heiden, M.2
Wu, N.3
Asara, J.4
Cantley, L.5
-
24
-
-
84867140008
-
Emerging roles of PKM2 in cell metabolism and cancer progression
-
Luo WSG. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab. 2012;23:560-6.
-
(2012)
Trends Endocrinol Metab
, vol.23
, pp. 560-566
-
-
Luo, W.S.G.1
-
25
-
-
84866842363
-
Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
-
Anastasiou D, Yu Y, Israelsen W, Jiang J, Boxer M, Hong B, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8:839-47.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 839-847
-
-
Anastasiou, D.1
Yu, Y.2
Israelsen, W.3
Jiang, J.4
Boxer, M.5
Hong, B.6
-
26
-
-
84882285322
-
Pharmacologic activation of PKM2 slows lung tumor xenograft growth
-
Parnell K, Foulks J, Nix R, Clifford A, Bullough J, Luo B, et al. Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol Cancer Ther. 2013;12:1453-60.
-
(2013)
Mol Cancer Ther
, vol.12
, pp. 1453-1460
-
-
Parnell, K.1
Foulks, J.2
Nix, R.3
Clifford, A.4
Bullough, J.5
Luo, B.6
-
27
-
-
33744783432
-
Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
-
Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425-34.
-
(2006)
Cancer Cell
, vol.9
, pp. 425-434
-
-
Fantin, V.R.1
St-Pierre, J.2
Leder, P.3
-
28
-
-
0030921103
-
c-Myc transactivation of LDH-A: implications for tumor metabolism and growth
-
Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A. 1997;94:6658-63.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 6658-6663
-
-
Shim, H.1
Dolde, C.2
Lewis, B.C.3
Wu, C.S.4
Dang, G.5
Jungmann, R.A.6
-
29
-
-
84904962375
-
LDH5 overexpression is associated with poor survival in patients with solid tumors: a meta-analysis
-
Yao Y, Wang H, Li B. LDH5 overexpression is associated with poor survival in patients with solid tumors: a meta-analysis. Tumour Biol. 2014;35:6973-81.
-
(2014)
Tumour Biol
, vol.35
, pp. 6973-6981
-
-
Yao, Y.1
Wang, H.2
Li, B.3
-
30
-
-
77950643062
-
Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials
-
Granchi C, Bertini S, Macchia M, Minutolo F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr Med Chem. 2010;17:672-97.
-
(2010)
Curr Med Chem
, vol.17
, pp. 672-697
-
-
Granchi, C.1
Bertini, S.2
Macchia, M.3
Minutolo, F.4
-
31
-
-
64749116346
-
c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang T, Lee Y, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762-5.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.3
Lee, Y.4
Kita, K.5
Ochi, T.6
-
32
-
-
84875731196
-
Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets
-
Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol. 2013;15:172-88.
-
(2013)
Neuro Oncol
, vol.15
, pp. 172-188
-
-
Miranda-Goncalves, V.1
Honavar, M.2
Pinheiro, C.3
Martinho, O.4
Pires, M.M.5
Pinheiro, C.6
-
33
-
-
84907828807
-
Monocarboxylate transporters as targets and mediators in cancer therapy response
-
Baltazar F, Pinheiro C, Morais-Santos F, Azevedo-Silva J, Queiros O, Preto A, et al. Monocarboxylate transporters as targets and mediators in cancer therapy response. Histol Histopathol. 2014;29:1511-24.
-
(2014)
Histol Histopathol
, vol.29
, pp. 1511-1524
-
-
Baltazar, F.1
Pinheiro, C.2
Morais-Santos, F.3
Azevedo-Silva, J.4
Queiros, O.5
Preto, A.6
-
34
-
-
0021792065
-
The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells
-
Newsholme E, Crabtree B, Ardawi M. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep. 1985;5:393-400.
-
(1985)
Biosci Rep
, vol.5
, pp. 393-400
-
-
Newsholme, E.1
Crabtree, B.2
Ardawi, M.3
-
35
-
-
37449034854
-
Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis R, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007;104:19345-50.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19345-19350
-
-
DeBerardinis, R.1
Mancuso, A.2
Daikhin, E.3
Nissim, I.4
Yudkoff, M.5
Wehrli, S.6
-
36
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise D, DeBerardinis R, Mancuso A, Sayed N, Zhang X, Pfeiffer H, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008;105:18782-7.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 18782-18787
-
-
Wise, D.1
DeBerardinis, R.2
Mancuso, A.3
Sayed, N.4
Zhang, X.5
Pfeiffer, H.6
-
37
-
-
84906938117
-
Mitochondrial NADP(+)-dependent isocitrate dehydrogenase knockdown inhibits tumorigenicity of melanoma cells
-
Kim S, Yoo Y, Lee J, Park J. Mitochondrial NADP(+)-dependent isocitrate dehydrogenase knockdown inhibits tumorigenicity of melanoma cells. Biochem Biophys Res Commun. 2014;451:246-51.
-
(2014)
Biochem Biophys Res Commun
, vol.451
, pp. 246-251
-
-
Kim, S.1
Yoo, Y.2
Lee, J.3
Park, J.4
-
38
-
-
84906536735
-
Cancer-associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and d-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia
-
Reitman Z, Duncan C, Poteet E, Winters A, Yan L, Gooden D, et al. Cancer-associated isocitrate dehydrogenase 1 (IDH1) R132H mutation and d-2-hydroxyglutarate stimulate glutamine metabolism under hypoxia. J Biol Chem. 2014;289:23318-28.
-
(2014)
J Biol Chem
, vol.289
, pp. 23318-23328
-
-
Reitman, Z.1
Duncan, C.2
Poteet, E.3
Winters, A.4
Yan, L.5
Gooden, D.6
-
39
-
-
84876889621
-
What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer
-
Losman J, Kaelin WJ. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 2013;27:836-52.
-
(2013)
Genes Dev
, vol.27
, pp. 836-852
-
-
Losman, J.1
Kaelin, W.J.2
-
40
-
-
84907033777
-
Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer
-
Saha S, Parachoniak C, Ghanta K, Fitamant J, Ross K, Najem M, et al. Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature. 2014;513:110-4.
-
(2014)
Nature
, vol.513
, pp. 110-114
-
-
Saha, S.1
Parachoniak, C.2
Ghanta, K.3
Fitamant, J.4
Ross, K.5
Najem, M.6
-
41
-
-
84877620952
-
Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation
-
Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E, et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013;340:622-6.
-
(2013)
Science
, vol.340
, pp. 622-626
-
-
Wang, F.1
Travins, J.2
DeLaBarre, B.3
Penard-Lacronique, V.4
Schalm, S.5
Hansen, E.6
-
42
-
-
84899089555
-
Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations
-
Emadi A, Jun S, Tsukamoto T, Fathi A, Minden M, Dang C. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp Hematol. 2014;42:247-51.
-
(2014)
Exp Hematol
, vol.42
, pp. 247-251
-
-
Emadi, A.1
Jun, S.2
Tsukamoto, T.3
Fathi, A.4
Minden, M.5
Dang, C.6
-
43
-
-
78549283855
-
Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1
-
Seltzer M, Bennett B, Joshi A, Gao P, Thomas A, Ferraris D, et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010;70:8981-7.
-
(2010)
Cancer Res
, vol.70
, pp. 8981-8987
-
-
Seltzer, M.1
Bennett, B.2
Joshi, A.3
Gao, P.4
Thomas, A.5
Ferraris, D.6
-
44
-
-
0033179760
-
BCL-2 family members and the mitochondria in apoptosis
-
Gross A, McDonnell J, Korsmeyer S. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899-911.
-
(1999)
Genes Dev
, vol.13
, pp. 1899-1911
-
-
Gross, A.1
McDonnell, J.2
Korsmeyer, S.3
-
45
-
-
84890909335
-
Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy
-
Czabotar P, Lessene G, Strasser A, Adams J. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49-63.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 49-63
-
-
Czabotar, P.1
Lessene, G.2
Strasser, A.3
Adams, J.4
-
46
-
-
0029858891
-
Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death
-
Reed J, Zha H, Aime-Sempe C, Takayama S, Wang H. Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol. 1996;406:99-112.
-
(1996)
Adv Exp Med Biol
, vol.406
, pp. 99-112
-
-
Reed, J.1
Zha, H.2
Aime-Sempe, C.3
Takayama, S.4
Wang, H.5
-
47
-
-
0032146987
-
Bcl-2-family proteins: the role of the BH3 domain in apoptosis
-
Kelekar A, Thompson C. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 1998;8:324-30.
-
(1998)
Trends Cell Biol
, vol.8
, pp. 324-330
-
-
Kelekar, A.1
Thompson, C.2
-
48
-
-
77956095537
-
Mitochondria and cell death: outer membrane permeabilization and beyond
-
Tait S, Green D. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010;11:621-32.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 621-632
-
-
Tait, S.1
Green, D.2
-
50
-
-
68249106060
-
BH3-only proteins in apoptosis and beyond: an overview
-
Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene. 2008;27 Suppl 1:S2-19.
-
(2008)
Oncogene
, vol.27
, pp. S2-19
-
-
Lomonosova, E.1
Chinnadurai, G.2
-
51
-
-
68149112387
-
Mimicking the BH3 domain to kill cancer cells
-
Ni Chonghaile T, Letai A. Mimicking the BH3 domain to kill cancer cells. Oncogene. 2008;27 Suppl 1:S149-57.
-
(2008)
Oncogene
, vol.27
, pp. S149-S157
-
-
Ni Chonghaile, T.1
Letai, A.2
-
52
-
-
20444486559
-
An inhibitor of Bcl-2 family proteins induces regression of solid tumours
-
Oltersdorf T, Elmore S, Shoemaker A, Armstrong R, Augeri D, Belli B, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677-81.
-
(2005)
Nature
, vol.435
, pp. 677-681
-
-
Oltersdorf, T.1
Elmore, S.2
Shoemaker, A.3
Armstrong, R.4
Augeri, D.5
Belli, B.6
-
54
-
-
0041357164
-
BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis
-
Danial N, Gramm C, Scorrano L, Zhang C, Krauss S, Ranger A, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature. 2003;424:952-6.
-
(2003)
Nature
, vol.424
, pp. 952-956
-
-
Danial, N.1
Gramm, C.2
Scorrano, L.3
Zhang, C.4
Krauss, S.5
Ranger, A.6
-
55
-
-
84920029560
-
RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis
-
Winter P, Sarosiek K, Lin K, Meggendorfer M, Schnittger S, Letai A, et al. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis. Sci Signal. 2014;7:ra122.
-
(2014)
Sci Signal
, vol.7
, pp. ra122
-
-
Winter, P.1
Sarosiek, K.2
Lin, K.3
Meggendorfer, M.4
Schnittger, S.5
Letai, A.6
-
56
-
-
84964698673
-
Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells
-
Sastry K, Al-Muftah M, Li P, Al-Kowari M, Wang E, Ismail Chouchane A, et al. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells. Cell Death Differ. 2014;21:1936-49.
-
(2014)
Cell Death Differ
, vol.21
, pp. 1936-1949
-
-
Sastry, K.1
Al-Muftah, M.2
Li, P.3
Al-Kowari, M.4
Wang, E.5
Ismail Chouchane, A.6
-
57
-
-
82955212778
-
Gefitinib induces apoptosis in human glioma cells by targeting Bad phosphorylation
-
Chang C, Shen C, Su H, Chen C. Gefitinib induces apoptosis in human glioma cells by targeting Bad phosphorylation. J Neurooncol. 2011;105:507-22.
-
(2011)
J Neurooncol
, vol.105
, pp. 507-522
-
-
Chang, C.1
Shen, C.2
Su, H.3
Chen, C.4
-
58
-
-
78649973189
-
The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose
-
Lowman X, McDonnell M, Kosloske A, Odumade O, Jenness C, Karim C, et al. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol Cell. 2010;40:823-33.
-
(2010)
Mol Cell
, vol.40
, pp. 823-833
-
-
Lowman, X.1
McDonnell, M.2
Kosloske, A.3
Odumade, O.4
Jenness, C.5
Karim, C.6
-
59
-
-
84885360915
-
The role of Cdk5 in neuroendocrine thyroid cancer
-
Pozo K, Castro-Rivera E, Tan C, Plattner F, Schwach G, Siegl V, et al. The role of Cdk5 in neuroendocrine thyroid cancer. Cancer Cell. 2013;24:499-511.
-
(2013)
Cancer Cell
, vol.24
, pp. 499-511
-
-
Pozo, K.1
Castro-Rivera, E.2
Tan, C.3
Plattner, F.4
Schwach, G.5
Siegl, V.6
-
60
-
-
34047251311
-
Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells
-
Lin H, Chen M, Chiu C, Song Y, Lin S. Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells. J Biol Chem. 2007;282:2776-84.
-
(2007)
J Biol Chem
, vol.282
, pp. 2776-2784
-
-
Lin, H.1
Chen, M.2
Chiu, C.3
Song, Y.4
Lin, S.5
|