메뉴 건너뛰기




Volumn 17, Issue 6, 2016, Pages 704-711

Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID TRANSPORTER; CD8 ANTIGEN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; T LYMPHOCYTE RECEPTOR; LYMPHOCYTE ANTIGEN RECEPTOR; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MULTIPROTEIN COMPLEX; TARGET OF RAPAMYCIN KINASE;

EID: 84963525930     PISSN: 15292908     EISSN: 15292916     Source Type: Journal    
DOI: 10.1038/ni.3438     Document Type: Article
Times cited : (180)

References (39)
  • 1
    • 4344648897 scopus 로고    scopus 로고
    • Dare to be different: Asymmetric cell division in Drosophila C elegans and vertebrates
    • Betschinger J, & Knoblich J.A. Dare to be different: asymmetric cell division in Drosophila C. elegans and vertebrates. Curr. Biol. 14, R674-R685 (2004).
    • (2004) Curr. Biol , vol.14 , pp. R674-R685
    • Betschinger, J.1    Knoblich, J.A.2
  • 2
    • 33947730608 scopus 로고    scopus 로고
    • Asymmetric T lymphocyte division in the initiation of adaptive immune responses
    • Chang J.T, et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science. 315, 1687-1691 (2007).
    • (2007) Science , vol.315 , pp. 1687-1691
    • Chang, J.T.1
  • 3
    • 79954906546 scopus 로고    scopus 로고
    • Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division
    • Chang J.T, et al. Asymmetric proteasome segregation as a mechanism for unequal partitioning of the transcription factor T-bet during T lymphocyte division. Immunity. 34, 492-504 (2011).
    • (2011) Immunity , vol.34 , pp. 492-504
    • Chang, J.T.1
  • 4
    • 84897059078 scopus 로고    scopus 로고
    • Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses
    • Arsenio J, et al. Early specification of CD8+ T lymphocyte fates during adaptive immunity revealed by single-cell gene-expression analyses. Nat. Immunol. 15, 365-372 (2014).
    • (2014) Nat. Immunol , vol.15 , pp. 365-372
    • Arsenio, J.1
  • 5
    • 77956201049 scopus 로고    scopus 로고
    • Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms
    • Oliaro J, et al. Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms. J. Immunol. 185, 367-375 (2010).
    • (2010) J. Immunol , vol.185 , pp. 367-375
    • Oliaro, J.1
  • 6
    • 84949057974 scopus 로고    scopus 로고
    • Asymmetric PI3K signaling driving developmental and regenerative cell fate bifurcation
    • Lin W.H, et al. Asymmetric PI3K signaling driving developmental and regenerative cell fate bifurcation. Cell Rep. 13, 2203-2218 (2015).
    • (2015) Cell Rep , vol.13 , pp. 2203-2218
    • Lin, W.H.1
  • 7
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe G.M, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 30, 832-844 (2009).
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1
  • 8
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe G.M, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295-303 (2011).
    • (2011) Nat. Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 9
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 32, 743-753 (2010).
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1
  • 10
    • 84899094151 scopus 로고    scopus 로고
    • The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex
    • Heikamp E.B, et al. The AGC kinase SGK1 regulates TH1 and TH2 differentiation downstream of the mTORC2 complex. Nat. Immunol. 15, 457-464 (2014).
    • (2014) Nat. Immunol , vol.15 , pp. 457-464
    • Heikamp, E.B.1
  • 11
    • 84890137621 scopus 로고    scopus 로고
    • T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
    • Yang K, et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity. 39, 1043-1056 (2013).
    • (2013) Immunity , vol.39 , pp. 1043-1056
    • Yang, K.1
  • 12
    • 84928790557 scopus 로고    scopus 로고
    • Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition
    • Pollizzi K.N, Waickman A.T, Patel C.H, Sun I.H, & Powell J.D. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition. PLoS One. 10, e0121710 (2015).
    • (2015) PLoS One , vol.10 , pp. e0121710
    • Pollizzi, K.N.1    Waickman, A.T.2    Patel, C.H.3    Sun, I.H.4    Powell, J.D.5
  • 13
    • 67650074206 scopus 로고    scopus 로고
    • MTOR regulates memory CD8 T-cell differentiation
    • Araki K, et al. mTOR regulates memory CD8 T-cell differentiation. Nature. 460, 108-112 (2009).
    • (2009) Nature , vol.460 , pp. 108-112
    • Araki, K.1
  • 14
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T-cell memory by modulating fatty acid metabolism
    • Pearce E.L, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 460, 103-107 (2009).
    • (2009) Nature , vol.460 , pp. 103-107
    • Pearce, E.L.1
  • 15
    • 74649085700 scopus 로고    scopus 로고
    • The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
    • Rao R.R, Li Q, Odunsi K, & Shrikant P.A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity. 32, 67-78 (2010).
    • (2010) Immunity , vol.32 , pp. 67-78
    • Rao, R.R.1    Li, Q.2    Odunsi, K.3    Shrikant, P.A.4
  • 16
    • 84929008302 scopus 로고    scopus 로고
    • MTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation
    • Pollizzi K.N, et al. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J. Clin. Invest. 125, 2090-2108 (2015).
    • (2015) J. Clin. Invest , vol.125 , pp. 2090-2108
    • Pollizzi, K.N.1
  • 17
    • 84871861969 scopus 로고    scopus 로고
    • PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
    • Finlay D.K, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441-2453 (2012).
    • (2012) J. Exp. Med , vol.209 , pp. 2441-2453
    • Finlay, D.K.1
  • 19
    • 84903277871 scopus 로고    scopus 로고
    • Integrating canonical and metabolic signalling programmes in the regulation of T cell responses
    • Pollizzi K.N, & Powell J.D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 14, 435-446 (2014).
    • (2014) Nat. Rev. Immunol , vol.14 , pp. 435-446
    • Pollizzi, K.N.1    Powell, J.D.2
  • 20
    • 84919872308 scopus 로고    scopus 로고
    • Regulation of T cells by mTOR: The known knowns and the known unknowns
    • Pollizzi K.N, & Powell J.D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13-20 (2015).
    • (2015) Trends Immunol , vol.36 , pp. 13-20
    • Pollizzi, K.N.1    Powell, J.D.2
  • 21
    • 84954535686 scopus 로고    scopus 로고
    • Regulation of asymmetric division by atypical protein kinase C influences early specification of CD8+ T lymphocyte fates
    • Metz P.J, et al. Regulation of asymmetric division by atypical protein kinase C influences early specification of CD8+ T lymphocyte fates. Sci. Rep. 6, 19182 (2016).
    • (2016) Sci. Rep , vol.6 , pp. 19182
    • Metz, P.J.1
  • 22
    • 30044440799 scopus 로고    scopus 로고
    • Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin
    • Intlekofer A.M, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236-1244 (2005).
    • (2005) Nat. Immunol , vol.6 , pp. 1236-1244
    • Intlekofer, A.M.1
  • 23
    • 84867814099 scopus 로고    scopus 로고
    • T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology
    • King C.G, et al. T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology. Immunity. 37, 709-720 (2012).
    • (2012) Immunity , vol.37 , pp. 709-720
    • King, C.G.1
  • 24
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
    • van der Windt G.J, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 36, 68-78 (2012).
    • (2012) Immunity , vol.36 , pp. 68-78
    • Van Der Windt, G.J.1
  • 25
    • 84883423963 scopus 로고    scopus 로고
    • CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability
    • van der Windt G.J, et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA. 110, 14336-14341 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 14336-14341
    • Van Der Windt, G.J.1
  • 26
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang R, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 35, 871-882 (2011).
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.1
  • 27
    • 1642535431 scopus 로고    scopus 로고
    • AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression
    • Gera J.F, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem. 279, 2737-2746 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 2737-2746
    • Gera, J.F.1
  • 28
    • 0032514376 scopus 로고    scopus 로고
    • Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway
    • West M.J, Stoneley M, & Willis A.E. Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway. Oncogene. 17, 769-780 (1998).
    • (1998) Oncogene , vol.17 , pp. 769-780
    • West, M.J.1    Stoneley, M.2    Willis, A.E.3
  • 29
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 141, 290-303 (2010).
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1
  • 30
    • 80555143078 scopus 로고    scopus 로고
    • MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Zoncu R, et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 334, 678-683 (2011).
    • (2011) Science , vol.334 , pp. 678-683
    • Zoncu, R.1
  • 31
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L, Schweitzer L.D, Zoncu R, & Sabatini D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 150, 1196-1208 (2012).
    • (2012) Cell , vol.150 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 32
    • 84876514626 scopus 로고    scopus 로고
    • Control of amino-Acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
    • Sinclair L.V, et al. Control of amino-Acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500-508 (2013).
    • (2013) Nat. Immunol , vol.14 , pp. 500-508
    • Sinclair, L.V.1
  • 33
    • 0032484216 scopus 로고    scopus 로고
    • Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L A candidate gene for lysinuric protein intolerance
    • Torrents D, et al. Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J. Biol. Chem. 273, 32437-32445 (1998).
    • (1998) J. Biol. Chem , vol.273 , pp. 32437-32445
    • Torrents, D.1
  • 34
    • 0037931124 scopus 로고    scopus 로고
    • CD98 and intracellular adhesion molecule i regulate the activity of amino acid transporter LAT-2 in polarized intestinal epithelia
    • Liu X, Charrier L, Gewirtz A, Sitaraman S, & Merlin D. CD98 and intracellular adhesion molecule I regulate the activity of amino acid transporter LAT-2 in polarized intestinal epithelia. J. Biol. Chem. 278, 23672-23677 (2003).
    • (2003) J. Biol. Chem , vol.278 , pp. 23672-23677
    • Liu, X.1    Charrier, L.2    Gewirtz, A.3    Sitaraman, S.4    Merlin, D.5
  • 35
    • 84878831880 scopus 로고    scopus 로고
    • Posttranscriptional control of T cell effector function by aerobic glycolysis
    • Chang C.H, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 153, 1239-1251 (2013).
    • (2013) Cell , vol.153 , pp. 1239-1251
    • Chang, C.H.1
  • 36
    • 84885055994 scopus 로고    scopus 로고
    • Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function
    • Sukumar M, et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479-4488 (2013).
    • (2013) J. Clin. Invest , vol.123 , pp. 4479-4488
    • Sukumar, M.1
  • 37
    • 58849126149 scopus 로고    scopus 로고
    • Secondary replicative function of CD8+ T cells that had developed an effector phenotype
    • Bannard O, Kraman M, & Fearon D.T. Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science. 323, 505-509 (2009).
    • (2009) Science , vol.323 , pp. 505-509
    • Bannard, O.1    Kraman, M.2    Fearon, D.T.3
  • 38
    • 0037340417 scopus 로고    scopus 로고
    • Lineage relationship and protective immunity of memory CD8 T cell subsets
    • Wherry E.J, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225-234 (2003).
    • (2003) Nat. Immunol , vol.4 , pp. 225-234
    • Wherry, E.J.1
  • 39
    • 84867896903 scopus 로고    scopus 로고
    • Transcriptional control of effector and memory CD8+ T cell differentiation
    • Kaech S.M, & Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749-761 (2012).
    • (2012) Nat. Rev. Immunol , vol.12 , pp. 749-761
    • Kaech, S.M.1    Cui, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.