-
1
-
-
0042337449
-
Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets
-
Abu-Elheiga L,OhW, Kordari P, Wakil SJ. 2003. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. PNAS 100:10207-12
-
(2003)
PNAS
, vol.100
, pp. 10207-10212
-
-
Abu-Elheiga, L.1
Oh, W.2
Kordari, P.3
Wakil, S.J.4
-
2
-
-
33646140851
-
Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in Guinea pigs
-
Aggarwal D, Fernandez ML, Soliman GA. 2006. Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in Guinea pigs. Metabolism 55:794-802
-
(2006)
Metabolism
, vol.55
, pp. 794-802
-
-
Aggarwal, D.1
Fernandez, M.L.2
Soliman, G.A.3
-
3
-
-
84861043736
-
ConnectingmTORC1 signaling to SREBP-1 activation
-
Bakan I, Laplante M. 2012. ConnectingmTORC1 signaling to SREBP-1 activation. Curr. Opin. Lipidol. 23:226-34
-
(2012)
Curr. Opin. Lipidol
, vol.23
, pp. 226-234
-
-
Bakan, I.1
Laplante, M.2
-
5
-
-
84866431363
-
Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. 2012. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196-208
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
6
-
-
0034181368
-
Rapamycin inhibits human adipocyte differentiation in primary culture
-
Bell A, Grunder L, Sorisky A. 2000. Rapamycin inhibits human adipocyte differentiation in primary culture. Obes. Res. 8:249-54
-
(2000)
Obes. Res
, vol.8
, pp. 249-254
-
-
Bell, A.1
Grunder, L.2
Sorisky, A.3
-
7
-
-
65549140251
-
A phosphorylation cascade controls the degradation of active SREBP1
-
Bengoechea-AlonsoMT, Ericsson J. 2009. A phosphorylation cascade controls the degradation of active SREBP1. J. Biol. Chem. 284:5885-95
-
(2009)
J. Biol. Chem
, vol.284
, pp. 5885-5895
-
-
Bengoechea-Alonso, M.T.1
Ericsson, J.2
-
8
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, et al. 2008. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 8:411-24
-
(2008)
Cell Metab
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
Romanino, K.2
Cloetta, D.3
Lin, S.4
Mascarenhas, J.B.5
-
9
-
-
84877944410
-
A comparative perspective on lipid storage in animals
-
Birsoy K, Festuccia WT, Laplante M. 2013. A comparative perspective on lipid storage in animals. J. Cell Sci. 126:1541-52
-
(2013)
J. Cell Sci
, vol.126
, pp. 1541-1552
-
-
Birsoy, K.1
Festuccia, W.T.2
Laplante, M.3
-
10
-
-
0028360374
-
A mammalian protein targeted by G1-arresting rapamycin-receptor complex
-
Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, et al. 1994. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756-58
-
(1994)
Nature
, vol.369
, pp. 756-758
-
-
Brown, E.J.1
Albers, M.W.2
Shin, T.B.3
Ichikawa, K.4
Keith, C.T.5
-
11
-
-
35248816945
-
The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes
-
Brown NF, Stefanovic-Racic M, Sipula IJ, Perdomo G. 2007. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism 56:1500-7
-
(2007)
Metabolism
, vol.56
, pp. 1500-1507
-
-
Brown, N.F.1
Stefanovic-Racic, M.2
Sipula, I.J.3
Perdomo, G.4
-
12
-
-
77952893054
-
S6K1 plays a critical role in early adipocyte differentiation
-
Carnevalli LS, Masuda K, Frigerio F, Le Bacquer O, Um SH, et al. 2010. S6K1 plays a critical role in early adipocyte differentiation. Dev. Cell 18:763-74
-
(2010)
Dev. Cell
, vol.18
, pp. 763-774
-
-
Carnevalli, L.S.1
Masuda, K.2
Frigerio, F.3
Le Bacquer, O.4
Um, S.H.5
-
13
-
-
84855681355
-
Adipose tissue stem cells meet preadipocyte commitment: Going back to the future
-
Cawthorn WP, Scheller EL, MacDougald OA. 2012. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid Res. 53:227-46
-
(2012)
J. Lipid Res
, vol.53
, pp. 227-246
-
-
Cawthorn, W.P.1
Scheller, E.L.2
Macdougald, O.A.3
-
14
-
-
77951166692
-
Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage
-
Chakrabarti P,EnglishT, Shi J, Smas CM,Kandror KV. 2010. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 59:775-81
-
(2010)
Diabetes
, vol.59
, pp. 775-781
-
-
Chakrabarti, P.1
English, T.2
Shi, J.3
Smas, C.M.4
Kandror, K.V.5
-
15
-
-
84883548896
-
Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway
-
Chakrabarti P, Kim JY, SinghM, Shin YK, Kim J, et al. 2013. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol. Cell. Biol. 33:3659-66
-
(2013)
Mol. Cell. Biol
, vol.33
, pp. 3659-3666
-
-
Chakrabarti, P.1
Kim, J.Y.2
Singh, M.3
Shin, Y.K.4
Kim, J.5
-
16
-
-
66249088672
-
Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice
-
Chang GR, Chiu YS, Wu YY, Chen WY, Liao JW, et al. 2009. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J. Pharmacol. Sci. 109:496-503
-
(2009)
J. Pharmacol. Sci
, vol.109
, pp. 496-503
-
-
Chang, G.R.1
Chiu, Y.S.2
Wu, Y.Y.3
Chen, W.Y.4
Liao, J.W.5
-
17
-
-
68949215897
-
Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HlJmice
-
ChangGR, Wu YY, Chiu YS, ChenWY, Liao JW, et al. 2009. Long-term administration of rapamycin reduces adiposity, but impairs glucose tolerance in high-fat diet-fed KK/HlJmice. Basic Clin. Pharmacol. Toxicol. 105:188-98
-
(2009)
Basic Clin. Pharmacol. Toxicol
, vol.105
, pp. 188-198
-
-
Chang, G.R.1
Wu, Y.Y.2
Chiu, Y.S.3
Chen, W.Y.4
Liao, J.W.5
-
18
-
-
4043082005
-
Regulation of adipocyte differentiation and insulin action with rapamycin
-
Cho HJ, Park J, Lee HW, Lee YS, Kim JB. 2004. Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem. Biophys. Res. Commun. 321:942-48
-
(2004)
Biochem. Biophys. Res. Commun
, vol.321
, pp. 942-948
-
-
Cho, H.J.1
Park, J.2
Lee, H.W.3
Lee, Y.S.4
Kim, J.B.5
-
19
-
-
84905977025
-
Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21
-
Cornu M, Oppliger W, Albert V, Robitaille AM, Trapani F, et al. 2014. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21. PNAS 111:11592-99
-
(2014)
PNAS
, vol.111
, pp. 11592-11599
-
-
Cornu, M.1
Oppliger, W.2
Albert, V.3
Robitaille, A.M.4
Trapani, F.5
-
20
-
-
36749081539
-
MTORcontrols mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F,Mootha VK, Puigserver P. 2007.mTORcontrols mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450:736-40
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
21
-
-
67649867447
-
MTOR complex 2 in adipose tissue negatively controls whole-body growth
-
Cybulski N, Polak P, Auwerx J, Ruegg MA, Hall MN. 2009. mTOR complex 2 in adipose tissue negatively controls whole-body growth. PNAS 106:9902-7
-
(2009)
PNAS
, vol.106
, pp. 9902-9907
-
-
Cybulski, N.1
Polak, P.2
Auwerx, J.3
Ruegg, M.A.4
Hall, M.N.5
-
22
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
Dibble CC, Elis W, Menon S, Qin W, Klekota J, et al. 2012. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol. Cell 47:535-46
-
(2012)
Mol. Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
Qin, W.4
Klekota, J.5
-
23
-
-
33751117989
-
Insulin activates human sterolregulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs
-
Dif N, Euthine V, Gonnet E, Laville M, Vidal H, Lefai E. 2006. Insulin activates human sterolregulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem. J. 400:179-88
-
(2006)
Biochem. J
, vol.400
, pp. 179-188
-
-
Dif, N.1
Euthine, V.2
Gonnet, E.3
Laville, M.4
Vidal, H.5
Lefai, E.6
-
24
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, et al. 2010. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39:171-83
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Duvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
-
25
-
-
84922789990
-
Nutrient-sensing mechanisms and pathways
-
Efeyan A, Comb WC, Sabatini DM. 2015. Nutrient-sensing mechanisms and pathways. Nature 517:302-10
-
(2015)
Nature
, vol.517
, pp. 302-310
-
-
Efeyan, A.1
Comb, W.C.2
Sabatini, D.M.3
-
26
-
-
1242329177
-
Inhibition of insulin signaling and adipogenesis by rapamycin: Effect on phosphorylation of p70 S6 kinase versus eIF4E-BP1
-
El-Chaar D, Gagnon A, Sorisky A. 2004. Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase versus eIF4E-BP1. Int. J. Obes. Relat.Metab. Disord. 28:191-98
-
(2004)
Int. J. Obes. Relat.Metab. Disord
, vol.28
, pp. 191-198
-
-
El-Chaar, D.1
Gagnon, A.2
Sorisky, A.3
-
27
-
-
84899670376
-
Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide
-
Festuccia WT, Pouliot P, Bakan I, Sabatini DM, Laplante M. 2014. Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLOS ONE 9:e95432
-
(2014)
PLOS ONE
, vol.9
, pp. e95432
-
-
Festuccia, W.T.1
Pouliot, P.2
Bakan, I.3
Sabatini, D.M.4
Laplante, M.5
-
28
-
-
0032933626
-
ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose
-
Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, et al. 1999. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell. Biol. 19:3760-68
-
(1999)
Mol. Cell. Biol
, vol.19
, pp. 3760-3768
-
-
Foretz, M.1
Pacot, C.2
Dugail, I.3
Lemarchand, P.4
Guichard, C.5
-
29
-
-
33748471980
-
MSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
-
Frias MA, Thoreen CC, Jaffe JD, SchroderW, Sculley T, et al. 2006. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 16:1865-70
-
(2006)
Curr. Biol
, vol.16
, pp. 1865-1870
-
-
Frias, M.A.1
Thoreen, C.C.2
Jaffe, J.D.3
Schroder, W.4
Sculley, T.5
-
30
-
-
0034823939
-
Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion
-
Gagnon A, Lau S, Sorisky A. 2001. Rapamycin-sensitive phase of 3T3-L1 preadipocyte differentiation after clonal expansion. J. Cell. Physiol. 189:14-22
-
(2001)
J. Cell. Physiol
, vol.189
, pp. 14-22
-
-
Gagnon, A.1
Lau, S.2
Sorisky, A.3
-
31
-
-
58649114084
-
MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, et al. 2009. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15:148-59
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
Stevens, D.M.2
Saitoh, M.3
Kinkel, S.4
Crosby, K.5
-
32
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
-
Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, et al. 2006. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 11:859-71
-
(2006)
Dev. Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
Burds, A.A.4
Kalaany, N.Y.5
-
33
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, et al. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214-26
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
-
34
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
Hagiwara A, CornuM, CybulskiN, Polak P, Betz C, et al. 2012. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15:725-38
-
(2012)
Cell Metab
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
Cornu, M.2
Cybulski, N.3
Polak, P.4
Betz, C.5
-
35
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, et al. 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177-89
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
-
36
-
-
3342958797
-
The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins
-
Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, et al. 2004. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166:213-23
-
(2004)
J. Cell Biol
, vol.166
, pp. 213-223
-
-
Harrington, L.S.1
Findlay, G.M.2
Gray, A.3
Tolkacheva, T.4
Wigfield, S.5
-
37
-
-
77749254771
-
Lack of suppression of circulating free fatty acids and hypercholesterolemia during weight loss on a high-fat, low-carbohydrate diet
-
HernandezTL, Sutherland JP, Wolfe P, Allian-Sauer M, CapellWH,et al. 2010. Lack of suppression of circulating free fatty acids and hypercholesterolemia during weight loss on a high-fat, low-carbohydrate diet. Am. J. Clin. Nutr. 91:578-85
-
(2010)
Am. J. Clin. Nutr
, vol.91
, pp. 578-585
-
-
Hernandez, T.L.1
Sutherland, J.P.2
Wolfe, P.3
Allian-Sauer, M.4
Capell, W.H.5
-
38
-
-
0032568557
-
Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice
-
Horton JD, Bashmakov Y, Shimomura I, Shimano H. 1998. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. PNAS 95:5987-92
-
(1998)
PNAS
, vol.95
, pp. 5987-5992
-
-
Horton, J.D.1
Bashmakov, Y.2
Shimomura, I.3
Shimano, H.4
-
39
-
-
0036251153
-
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
-
Horton JD, Goldstein JL, BrownMS. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109:1125-31
-
(2002)
J. Clin. Invest
, vol.109
, pp. 1125-1131
-
-
Horton, J.D.1
Goldstein, J.L.2
Brown, M.S.3
-
40
-
-
77953218866
-
Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue
-
Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, et al. 2010. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59:1338-48
-
(2010)
Diabetes
, vol.59
, pp. 1338-1348
-
-
Houde, V.P.1
Brule, S.2
Festuccia, W.T.3
Blanchard, P.G.4
Bellmann, K.5
-
41
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, et al. 2011. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317-22
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
Zhang, Y.4
Ottina, K.A.5
-
42
-
-
84904433925
-
Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease
-
Hung CM, Calejman CM, Sanchez-Gurmaches J, Li H, Clish CB, et al. 2014. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 8:256-71
-
(2014)
Cell Rep
, vol.8
, pp. 256-271
-
-
Hung, C.M.1
Calejman, C.M.2
Sanchez-Gurmaches, J.3
Li, H.4
Clish, C.B.5
-
43
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K, Li Y, Xu T, Guan KL. 2003. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17:1829-34
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
44
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K, Li Y, Zhu T, Wu J, Guan KL. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4:648-57
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
45
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577-90
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
46
-
-
33749076673
-
SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
-
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, et al. 2006. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125-37
-
(2006)
Cell
, vol.127
, pp. 125-137
-
-
Jacinto, E.1
Facchinetti, V.2
Liu, D.3
Soto, N.4
Wei, S.5
-
47
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, et al. 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6:1122-28
-
(2004)
Nat. Cell Biol
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Ruegg, M.A.5
-
48
-
-
77953800576
-
Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
-
Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, et al. 2010. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J. Biol. Chem. 285:20109-16
-
(2010)
J. Biol. Chem
, vol.285
, pp. 20109-20116
-
-
Kaizuka, T.1
Hara, T.2
Oshiro, N.3
Kikkawa, U.4
Yonezawa, K.5
-
49
-
-
66449137379
-
GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice
-
Kammoun HL, Chabanon H, Hainault I, Luquet S,Magnan C, et al. 2009. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119:1201-15
-
(2009)
J. Clin. Invest
, vol.119
, pp. 1201-1215
-
-
Kammoun, H.L.1
Chabanon, H.2
Hainault, I.3
Luquet, S.4
Magnan, C.5
-
50
-
-
79953177846
-
Tuberous sclerosis complex-1 deficiency attenuates dietinduced hepatic lipid accumulation
-
Kenerson HL, Yeh MM, Yeung RS. 2011. Tuberous sclerosis complex-1 deficiency attenuates dietinduced hepatic lipid accumulation. PLOS ONE 6:e18075
-
(2011)
PLOS ONE
, vol.6
, pp. e18075
-
-
Kenerson, H.L.1
Yeh, M.M.2
Yeung, R.S.3
-
51
-
-
0035038782
-
Mechanisms of nutritional and hormonal regulation of lipogenesis
-
Kersten S. 2001. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2:282-86
-
(2001)
EMBO Rep
, vol.2
, pp. 282-286
-
-
Kersten, S.1
-
52
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, et al. 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-75
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
-
53
-
-
0037623417
-
GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor andmTOR
-
Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, et al. 2003. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor andmTOR. Mol. Cell 11:895-904
-
(2003)
Mol. Cell
, vol.11
, pp. 895-904
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
Latek, R.R.4
Guntur, K.V.5
-
54
-
-
48649085816
-
Regulation of TORC1 by RagGTPases in nutrient response
-
Kim E,Goraksha-Hicks P, Li L,Neufeld TP, Guan KL. 2008. Regulation of TORC1 by RagGTPases in nutrient response. Nat. Cell Biol. 10:935-45
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
55
-
-
0030007427
-
ADD1/SREBP1promotes adipocyte differentiation and gene expression linked to fatty acid metabolism
-
Kim JB, Spiegelman BM. 1996.ADD1/SREBP1promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10:1096-107
-
(1996)
Genes Dev
, vol.10
, pp. 1096-1107
-
-
Kim, J.B.1
Spiegelman, B.M.2
-
56
-
-
0032516081
-
ADD1/SREBP1 activates PPARγ through the production of endogenous ligand
-
Kim JB, Wright HM, Wright M, Spiegelman BM. 1998. ADD1/SREBP1 activates PPARγ through the production of endogenous ligand. PNAS 95:4333-37
-
(1998)
PNAS
, vol.95
, pp. 4333-4337
-
-
Kim, J.B.1
Wright, H.M.2
Wright, M.3
Spiegelman, B.M.4
-
57
-
-
7044234995
-
Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis
-
Kim JE, Chen J. 2004. Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53:2748-56
-
(2004)
Diabetes
, vol.53
, pp. 2748-2756
-
-
Kim, J.E.1
Chen, J.2
-
58
-
-
84862829663
-
S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver
-
Kim K, Pyo S, Um SH. 2012. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology 55:1727-37
-
(2012)
Hepatology
, vol.55
, pp. 1727-1737
-
-
Kim, K.1
Pyo, S.2
Um, S.H.3
-
59
-
-
0029908016
-
Expression of a constitutively activeAkt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation
-
Kohn AD, Summers SA,BirnbaumMJ, Roth RA. 1996. Expression of a constitutively activeAkt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271:31372-78
-
(1996)
J. Biol. Chem
, vol.271
, pp. 31372-31378
-
-
Kohn, A.D.1
Summers, S.A.2
Birnbaum, M.J.3
Roth, R.A.4
-
60
-
-
80051835640
-
Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1
-
Koyanagi M, Asahara S, Matsuda T, Hashimoto N, Shigeyama Y, et al. 2011. Ablation of TSC2 enhances insulin secretion by increasing the number of mitochondria through activation of mTORC1. PLOS ONE 6:e23238
-
(2011)
PLOS ONE
, vol.6
, pp. e23238
-
-
Koyanagi, M.1
Asahara, S.2
Matsuda, T.3
Hashimoto, N.4
Shigeyama, Y.5
-
61
-
-
37549000623
-
Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity
-
Kumar A, Harris TE, Keller SR, Choi KM, Magnuson MA, Lawrence JC Jr. 2008. Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity. Mol. Cell. Biol. 28:61-70
-
(2008)
Mol. Cell. Biol
, vol.28
, pp. 61-70
-
-
Kumar, A.1
Harris, T.E.2
Keller, S.R.3
Choi, K.M.4
Magnuson, M.A.5
Lawrence, J.C.6
-
62
-
-
77953200528
-
Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
-
Kumar A, Lawrence JC Jr, Jung DY, Ko HJ, Keller SR, et al. 2010. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 59:1397-406
-
(2010)
Diabetes
, vol.59
, pp. 1397-1406
-
-
Kumar, A.1
Lawrence, J.C.2
Jung, D.Y.3
Ko, H.J.4
Keller, S.R.5
-
63
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, et al. 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638-43
-
(2012)
Science
, vol.335
, pp. 1638-1643
-
-
Lamming, D.W.1
Ye, L.2
Katajisto, P.3
Goncalves, M.D.4
Saitoh, M.5
-
64
-
-
84864692282
-
DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity
-
Laplante M, Horvat S, Festuccia WT, Birsoy K, Prevorsek Z, et al. 2012. DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity. Cell Metab. 16:202-12
-
(2012)
Cell Metab
, vol.16
, pp. 202-212
-
-
Laplante, M.1
Horvat, S.2
Festuccia, W.T.3
Birsoy, K.4
Prevorsek, Z.5
-
65
-
-
70350418625
-
MTOR signaling at a glance
-
Laplante M, Sabatini DM. 2009. mTOR signaling at a glance. J. Cell Sci. 122:3589-94
-
(2009)
J. Cell Sci
, vol.122
, pp. 3589-3594
-
-
Laplante, M.1
Sabatini, D.M.2
-
66
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274-93
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
67
-
-
84877965001
-
Regulation ofmTORC1 and its impact on gene expression at a glance
-
Laplante M, Sabatini DM. 2013. Regulation ofmTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126:1713-19
-
(2013)
J. Cell Sci
, vol.126
, pp. 1713-1719
-
-
Laplante, M.1
Sabatini, D.M.2
-
68
-
-
0037312845
-
PPAR-γ activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: Mechanisms for modulation of postprandial lipemia and differential adipose accretion
-
Laplante M, Sell H, MacNaul KL, Richard D, Berger JP, Deshaies Y. 2003. PPAR-γ activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion. Diabetes 52:291-99
-
(2003)
Diabetes
, vol.52
, pp. 291-299
-
-
Laplante, M.1
Sell, H.2
Macnaul, K.L.3
Richard, D.4
Berger, J.P.5
Deshaies, Y.6
-
69
-
-
33846806078
-
Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2
-
Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, et al. 2007. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J. Clin. Invest. 117:387-96
-
(2007)
J. Clin. Invest
, vol.117
, pp. 387-396
-
-
Le Bacquer, O.1
Petroulakis, E.2
Paglialunga, S.3
Poulin, F.4
Richard, D.5
-
70
-
-
84902455406
-
BalancedmTORC1 activity in oligodendrocytes is required for accurate CNS myelination
-
Lebrun-Julien F, Bachmann L, Norrmen C, TrotzmullerM,Kofeler H, et al. 2014. BalancedmTORC1 activity in oligodendrocytes is required for accurate CNS myelination. J. Neurosci. 34:8432-48
-
(2014)
J. Neurosci
, vol.34
, pp. 8432-8448
-
-
Lebrun-Julien, F.1
Bachmann, L.2
Norrmen, C.3
Trotzmuller, M.4
Kofeler, H.5
-
71
-
-
84874399589
-
Lessons on conditional gene targeting in mouse adipose tissue
-
Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, et al. 2013. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 62:864-74
-
(2013)
Diabetes
, vol.62
, pp. 864-874
-
-
Lee, K.Y.1
Russell, S.J.2
Ussar, S.3
Boucher, J.4
Vernochet, C.5
-
72
-
-
77649264504
-
Bifurcation of insulin signaling pathway in rat liver: MTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis
-
Li S, Brown MS, Goldstein JL. 2010. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. PNAS 107:3441-46
-
(2010)
PNAS
, vol.107
, pp. 3441-3446
-
-
Li, S.1
Brown, M.S.2
Goldstein, J.L.3
-
73
-
-
80052031072
-
Role of S6K1 in regulation of SREBP1c expression in the liver
-
Li S, Ogawa W, Emi A, Hayashi K, Senga Y, et al. 2011. Role of S6K1 in regulation of SREBP1c expression in the liver. Biochem. Biophys. Res. Commun. 412:197-202
-
(2011)
Biochem. Biophys. Res. Commun
, vol.412
, pp. 197-202
-
-
Li, S.1
Ogawa, W.2
Emi, A.3
Hayashi, K.4
Senga, Y.5
-
74
-
-
0037453056
-
Triglyceride accumulation protects against fatty acid-induced lipotoxicity
-
Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, et al. 2003. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. PNAS 100:3077-82
-
(2003)
PNAS
, vol.100
, pp. 3077-3082
-
-
Listenberger, L.L.1
Han, X.2
Lewis, S.E.3
Cases, S.4
Farese, R.V.5
-
75
-
-
84865065336
-
The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice
-
LiuX, YuanH,Niu Y, NiuW, Fu L. 2012. The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice. Biochim. Biophys. Acta 1822:1716-26
-
(2012)
Biochim. Biophys. Acta
, vol.1822
, pp. 1716-1726
-
-
Liu, X.1
Yuan, H.2
Niu, Y.3
Niu, W.4
Fu, L.5
-
76
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. 2005. Rheb binds and regulates the mTOR kinase. Curr. Biol. 15:702-13
-
(2005)
Curr. Biol
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
77
-
-
84899413762
-
Short and long term in vivo effects of Cyclosporine A and Sirolimus on genes and proteins involved in lipid metabolism in Wistar rats
-
Lopes PC, Fuhrmann A, Sereno J, Espinoza DO, Pereira MJ, et al. 2014. Short and long term in vivo effects of Cyclosporine A and Sirolimus on genes and proteins involved in lipid metabolism in Wistar rats. Metabolism 63:702-15
-
(2014)
Metabolism
, vol.63
, pp. 702-715
-
-
Lopes, P.C.1
Fuhrmann, A.2
Sereno, J.3
Espinoza, D.O.4
Pereira, M.J.5
-
78
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
-
Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. 2005. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121:179-93
-
(2005)
Cell
, vol.121
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
79
-
-
0029891232
-
Expression of a constitutively activated form of protein kinase B (c-Akt) in 3T3-L1 preadipose cells causes spontaneous differentiation
-
Magun R, Burgering BM, Coffer PJ, Pardasani D, Lin Y, et al. 1996. Expression of a constitutively activated form of protein kinase B (c-Akt) in 3T3-L1 preadipose cells causes spontaneous differentiation. Endocrinology 137:3590-93
-
(1996)
Endocrinology
, vol.137
, pp. 3590-3593
-
-
Magun, R.1
Burgering, B.M.2
Coffer, P.J.3
Pardasani, D.4
Lin, Y.5
-
80
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
-
Manning BD,Tee AR, LogsdonMN,Blenis J,Cantley LC. 2002. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 10:151-62
-
(2002)
Mol. Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
81
-
-
76749118930
-
Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: Implications for metabolism research
-
Martens K, Bottelbergs A, Baes M. 2010. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 584:1054-58
-
(2010)
FEBS Lett
, vol.584
, pp. 1054-1058
-
-
Martens, K.1
Bottelbergs, A.2
Baes, M.3
-
82
-
-
0035873619
-
SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation
-
Matsuda M, Korn BS, Hammer RE, Moon YA, Komuro R, et al. 2001. SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 15:1206-16
-
(2001)
Genes Dev
, vol.15
, pp. 1206-1216
-
-
Matsuda, M.1
Korn, B.S.2
Hammer, R.E.3
Moon, Y.A.4
Komuro, R.5
-
83
-
-
66249090283
-
Role of the PI3-kinase/mTor pathway in the regulation of the stearoyl CoA desaturase (SCD1) gene expression by insulin in liver
-
MauvoisinD,Rocque G, Arfa O, Radenne A, Boissier P, MounierC. 2007. Role of the PI3-kinase/mTor pathway in the regulation of the stearoyl CoA desaturase (SCD1) gene expression by insulin in liver. J. Cell Commun. Signaling 1:113-25
-
(2007)
J. Cell Commun. Signaling
, vol.1
, pp. 113-125
-
-
Mauvoisin, D.1
Rocque, G.2
Arfa, O.3
Radenne, A.4
Boissier, P.5
Mounier, C.6
-
84
-
-
34748912615
-
Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
-
Menendez JA, Lupu R. 2007. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7:763-77
-
(2007)
Nat. Rev. Cancer
, vol.7
, pp. 763-777
-
-
Menendez, J.A.1
Lupu, R.2
-
85
-
-
17644404111
-
Phosphorylation of GATA2 by Akt increases adipose tissue differentiation and reduces adipose tissue-related inflammation: A novel pathway linking obesity to atherosclerosis
-
Menghini R, Marchetti V, Cardellini M, Hribal ML, Mauriello A, et al. 2005. Phosphorylation of GATA2 by Akt increases adipose tissue differentiation and reduces adipose tissue-related inflammation: a novel pathway linking obesity to atherosclerosis. Circulation 111:1946-53
-
(2005)
Circulation
, vol.111
, pp. 1946-1953
-
-
Menghini, R.1
Marchetti, V.2
Cardellini, M.3
Hribal, M.L.4
Mauriello, A.5
-
86
-
-
0037623473
-
Sirolimus changes lipid concentrations and lipoprotein metabolism in kidney transplant recipients
-
Morrisett JD, Abdel-FattahG,Kahan BD. 2003. Sirolimus changes lipid concentrations and lipoprotein metabolism in kidney transplant recipients. Transplant. Proc. 35:143-50S
-
(2003)
Transplant. Proc
, vol.35
, pp. 143-50S
-
-
Morrisett, J.D.1
Abdel-Fattah, G.2
Kahan, B.D.3
-
87
-
-
0037237279
-
The forkhead transcription factor Foxo1 regulates adipocyte differentiation
-
Nakae J,KitamuraT,KitamuraY,BiggsWH3rd, Arden KC, Accili D. 2003. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4:119-29
-
(2003)
Dev. Cell
, vol.4
, pp. 119-129
-
-
Nakae, J.1
Kitamura, T.2
Kitamura, Y.3
Biggs, W.H.4
Arden, K.C.5
Accili, D.6
-
88
-
-
66149190566
-
Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination
-
Narayanan SP, Flores AI, Wang F, Macklin WB. 2009. Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J. Neurosci. 29:6860-70
-
(2009)
J. Neurosci
, vol.29
, pp. 6860-6870
-
-
Narayanan, S.P.1
Flores, A.I.2
Wang, F.3
Macklin, W.B.4
-
89
-
-
26444575415
-
Amino acidsmediatemTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase
-
NobukuniT, JoaquinM, Roccio M, Dann SG,Kim SY, et al. 2005. Amino acidsmediatemTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. PNAS 102:14238-43
-
(2005)
PNAS
, vol.102
, pp. 14238-14243
-
-
Nobukuni, T.1
Joaquin, M.2
Roccio, M.3
Dann, S.G.4
Kim, S.Y.5
-
90
-
-
84919874614
-
MTORC1 controls PNS myelination along the mTORC1-RXRgamma-SREBP-lipid biosynthesis axis in Schwann cells
-
Norrmen C, Figlia G, Lebrun-Julien F, Pereira JA, Trotzmuller M, et al. 2014. mTORC1 controls PNS myelination along the mTORC1-RXRgamma-SREBP-lipid biosynthesis axis in Schwann cells. Cell Rep. 9:646-60
-
(2014)
Cell Rep
, vol.9
, pp. 646-660
-
-
Norrmen, C.1
Figlia, G.2
Lebrun-Julien, F.3
Pereira, J.A.4
Trotzmuller, M.5
-
91
-
-
84880542981
-
Akt/mTOR signalling in myelination
-
Norrmen C, Suter U. 2013. Akt/mTOR signalling in myelination. Biochem. Soc. Trans. 41:944-50
-
(2013)
Biochem. Soc. Trans
, vol.41
, pp. 944-950
-
-
Norrmen, C.1
Suter, U.2
-
92
-
-
0037143752
-
Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity
-
Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, et al. 2002. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. PNAS 99:11482-86
-
(2002)
PNAS
, vol.99
, pp. 11482-11486
-
-
Ntambi, J.M.1
Miyazaki, M.2
Stoehr, J.P.3
Lan, H.4
Kendziorski, C.M.5
-
93
-
-
84867067610
-
Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase
-
Owen JL, Zhang Y, Bae SH, Farooqi MS, Liang G, et al. 2012. Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. PNAS 109:16184-89
-
(2012)
PNAS
, vol.109
, pp. 16184-16189
-
-
Owen, J.L.1
Zhang, Y.2
Bae, S.H.3
Farooqi, M.S.4
Liang, G.5
-
94
-
-
40649104735
-
Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
-
Ozcan U, Ozcan L, Yilmaz E, Duvel K, Sahin M, et al. 2008. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 29:541-51
-
(2008)
Mol. Cell
, vol.29
, pp. 541-551
-
-
Ozcan, U.1
Ozcan, L.2
Yilmaz, E.3
Duvel, K.4
Sahin, M.5
-
95
-
-
34347210090
-
Identification of Protor as a novel Rictor-binding component of mTOR complex-2
-
Pearce LR, Huang X, Boudeau J, Pawlowski R,Wullschleger S, et al. 2007. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem. J. 405:513-22
-
(2007)
Biochem. J
, vol.405
, pp. 513-522
-
-
Pearce, L.R.1
Huang, X.2
Boudeau, J.3
Pawlowski, R.4
Wullschleger, S.5
-
96
-
-
79955546330
-
Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney
-
Pearce LR, Sommer EM, Sakamoto K, Wullschleger S, Alessi DR. 2011. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem. J. 436:169-79
-
(2011)
Biochem. J
, vol.436
, pp. 169-179
-
-
Pearce, L.R.1
Sommer, E.M.2
Sakamoto, K.3
Wullschleger, S.4
Alessi, D.R.5
-
97
-
-
0036310982
-
The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation
-
Peng T, Golub TR, Sabatini DM. 2002. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol. Cell. Biol. 22:5575-84
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 5575-5584
-
-
Peng, T.1
Golub, T.R.2
Sabatini, D.M.3
-
98
-
-
0038624395
-
Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2
-
Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J, et al. 2003. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev. 17:1352-65
-
(2003)
Genes Dev
, vol.17
, pp. 1352-1365
-
-
Peng, X.D.1
Xu, P.Z.2
Chen, M.L.3
Hahn-Windgassen, A.4
Skeen, J.5
-
99
-
-
84871359857
-
The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue
-
PereiraMJ, Palming J, Rizell M, AurelianoM, Carvalho E, et al. 2013. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue. Mol. Cell. Endocrinol. 365:260-69
-
(2013)
Mol. Cell. Endocrinol
, vol.365
, pp. 260-269
-
-
Pereira, M.J.1
Palming, J.2
Rizell, M.3
Aureliano, M.4
Carvalho, E.5
-
100
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed inmultiplemyeloma cells and required for their survival
-
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, et al. 2009. DEPTOR is an mTOR inhibitor frequently overexpressed inmultiplemyeloma cells and required for their survival. Cell 137:873-86
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
Sancak, Y.4
Kang, S.A.5
-
101
-
-
79961165137
-
MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, et al. 2011. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146:408-20
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
Carmack, A.E.4
Kang, S.A.5
-
102
-
-
54849431380
-
Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration
-
Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN. 2008. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 8:399-410
-
(2008)
Cell Metab
, vol.8
, pp. 399-410
-
-
Polak, P.1
Cybulski, N.2
Feige, J.N.3
Auwerx, J.4
Ruegg, M.A.5
Hall, M.N.6
-
103
-
-
50049116472
-
SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
-
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, et al. 2008. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8:224-36
-
(2008)
Cell Metab
, vol.8
, pp. 224-236
-
-
Porstmann, T.1
Santos, C.R.2
Griffiths, B.3
Cully, M.4
Wu, M.5
-
104
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
Potter CJ, Pedraza LG, Xu T. 2002. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol. 4:658-65
-
(2002)
Nat. Cell Biol
, vol.4
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
105
-
-
67049135868
-
The lipin family: Mutations and metabolism
-
Reue K. 2009. The lipin family: mutations and metabolism. Curr. Opin. Lipidol. 20:165-70
-
(2009)
Curr. Opin. Lipidol
, vol.20
, pp. 165-170
-
-
Reue, K.1
-
106
-
-
84862965401
-
Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function
-
Romanino K, Mazelin L, Albert V, Conjard-Duplany A, Lin S, et al. 2011. Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. PNAS 108:20808-13
-
(2011)
PNAS
, vol.108
, pp. 20808-20813
-
-
Romanino, K.1
Mazelin, L.2
Albert, V.3
Conjard-Duplany, A.4
Lin, S.5
-
108
-
-
84892727198
-
What we talk about when we talk about fat
-
Rosen ED, Spiegelman BM. 2014. What we talk about when we talk about fat. Cell 156:20-44
-
(2014)
Cell
, vol.156
, pp. 20-44
-
-
Rosen, E.D.1
Spiegelman, B.M.2
-
109
-
-
4544384577
-
Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
-
Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. 2004. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. PNAS 101:13489-94
-
(2004)
PNAS
, vol.101
, pp. 13489-13494
-
-
Roux, P.P.1
Ballif, B.A.2
Anjum, R.3
Gygi, S.P.4
Blenis, J.5
-
110
-
-
0028239893
-
RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs
-
Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. 1994. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35-43
-
(1994)
Cell
, vol.78
, pp. 35-43
-
-
Sabatini, D.M.1
Erdjument-Bromage, H.2
Lui, M.3
Tempst, P.4
Snyder, S.H.5
-
111
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290-303
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
112
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-501
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
-
113
-
-
33947264077
-
PRAS40 is an insulinregulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, et al. 2007. PRAS40 is an insulinregulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25:903-15
-
(2007)
Mol. Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
-
114
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, et al. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14:1296-302
-
(2004)
Curr. Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
Guertin, D.A.4
Latek, R.R.5
-
115
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, et al. 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22:159-68
-
(2006)
Mol. Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.H.4
Hsu, P.P.5
-
116
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. 2010. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468:1100-4
-
(2010)
Nature
, vol.468
, pp. 1100-1104
-
-
Sengupta, S.1
Peterson, T.R.2
Laplante, M.3
Oh, S.4
Sabatini, D.M.5
-
117
-
-
0032560615
-
Mutational analysis of structural features of rat hormonesensitive lipase
-
ShenWJ, Patel S,Natu V,Kraemer FB. 1998. Mutational analysis of structural features of rat hormonesensitive lipase. Biochemistry 37:8973-79
-
(1998)
Biochemistry
, vol.37
, pp. 8973-8979
-
-
Shen, W.J.1
Patel, S.2
Natu, V.3
Kraemer, F.B.4
-
118
-
-
79953033875
-
Cardiac raptor ablation impairs adaptive hypertrophy, altersmetabolic gene expression, and causes heart failure in mice
-
Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, et al. 2011. Cardiac raptor ablation impairs adaptive hypertrophy, altersmetabolic gene expression, and causes heart failure in mice. Circulation 123:1073-82
-
(2011)
Circulation
, vol.123
, pp. 1073-1082
-
-
Shende, P.1
Plaisance, I.2
Morandi, C.3
Pellieux, C.4
Berthonneche, C.5
-
119
-
-
0033598749
-
Insulin selectively increases SREBP-1cmRNA in the livers of rats with streptozotocin-induced diabetes
-
Shimomura I, Bashmakov Y, Ikemoto S, Horton JD, BrownMS, Goldstein JL. 1999. Insulin selectively increases SREBP-1cmRNA in the livers of rats with streptozotocin-induced diabetes. PNAS 96:13656-61
-
(1999)
PNAS
, vol.96
, pp. 13656-13661
-
-
Shimomura, I.1
Bashmakov, Y.2
Ikemoto, S.3
Horton, J.D.4
Brown, M.S.5
Goldstein, J.L.6
-
120
-
-
33748950810
-
Multiallelic disruption of the rictor gene in mice reveals thatmTORcomplex 2 is essential for fetal growth and viability
-
Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA. 2006. Multiallelic disruption of the rictor gene in mice reveals thatmTORcomplex 2 is essential for fetal growth and viability. Dev. Cell 11:583-89
-
(2006)
Dev. Cell
, vol.11
, pp. 583-589
-
-
Shiota, C.1
Woo, J.T.2
Lindner, J.3
Shelton, K.D.4
Magnuson, M.A.5
-
121
-
-
35248820393
-
Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation
-
Sipula IJ, Brown NF, Perdomo G. 2006. Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation. Metabolism 55:1637-44
-
(2006)
Metabolism
, vol.55
, pp. 1637-1644
-
-
Sipula, I.J.1
Brown, N.F.2
Perdomo, G.3
-
122
-
-
78651067054
-
MTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes
-
Soliman GA, Acosta-Jaquez HA, Fingar DC. 2010. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 45:1089-100
-
(2010)
Lipids
, vol.45
, pp. 1089-1100
-
-
Soliman, G.A.1
Acosta-Jaquez, H.A.2
Fingar, D.C.3
-
123
-
-
15244341972
-
Microarray gene expression analysis of the Fob3b obesityQTLidentifies positional candidate gene Sqle and perturbed cholesterol and glycolysis pathways
-
Stylianou IM, Clinton M, Keightley PD, Pritchard C, Tymowska-Lalanne Z, et al. 2005. Microarray gene expression analysis of the Fob3b obesityQTLidentifies positional candidate gene Sqle and perturbed cholesterol and glycolysis pathways. Physiol. Genomics 20:224-32
-
(2005)
Physiol. Genomics
, vol.20
, pp. 224-232
-
-
Stylianou, I.M.1
Clinton, M.2
Keightley, P.D.3
Pritchard, C.4
Tymowska-Lalanne, Z.5
-
124
-
-
23844530704
-
Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCFFbw7
-
Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, et al. 2005. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCFFbw7. Cell Metab. 1:379-91
-
(2005)
Cell Metab
, vol.1
, pp. 379-391
-
-
Sundqvist, A.1
Bengoechea-Alonso, M.T.2
Ye, X.3
Lukiyanchuk, V.4
Jin, J.5
-
125
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee AR, Manning BD,Roux PP, Cantley LC, Blenis J. 2003. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13:1259-68
-
(2003)
Curr. Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
126
-
-
43249124698
-
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
-
Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, et al. 2007. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLOS ONE 2:e1217
-
(2007)
PLOS ONE
, vol.2
, pp. e1217
-
-
Thedieck, K.1
Polak, P.2
Kim, M.L.3
Molle, K.D.4
Cohen, A.5
-
127
-
-
51449123610
-
Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice
-
Toh SY, Gong J, Du G, Li JZ, Yang S, et al. 2008. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLOS ONE 3:e2890
-
(2008)
PLOS ONE
, vol.3
, pp. e2890
-
-
Toh, S.Y.1
Gong, J.2
Du, G.3
Li, J.Z.4
Yang, S.5
-
128
-
-
50649097541
-
Fat and beyond: The diverse biology of PPAR
-
Tontonoz P, Spiegelman BM. 2008. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77:289-312
-
(2008)
Annu. Rev. Biochem
, vol.77
, pp. 289-312
-
-
Tontonoz, P.1
Spiegelman, B.M.2
-
129
-
-
4544220704
-
Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
-
Um SH, Frigerio F,Watanabe M, Picard F, Joaquin M, et al. 2004. Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200-5
-
(2004)
Nature
, vol.431
, pp. 200-205
-
-
Um, S.H.1
Frigerio, F.2
Watanabe, M.3
Picard, F.4
Joaquin, M.5
-
130
-
-
33847397874
-
Insulin signalling tomTORmediated by the Akt/PKB substrate PRAS40
-
VanderHaar E, Lee SI, Bandhakavi S, Griffin TJ,Kim DH. 2007. Insulin signalling tomTORmediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9:316-23
-
(2007)
Nat. Cell Biol
, vol.9
, pp. 316-323
-
-
Vanderhaar, E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
131
-
-
80053927531
-
Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c
-
Wan M, Leavens KF, Saleh D, Easton RM, Guertin DA, et al. 2011. Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c. Cell Metab. 14:516-27
-
(2011)
Cell Metab
, vol.14
, pp. 516-527
-
-
Wan, M.1
Leavens, K.F.2
Saleh, D.3
Easton, R.M.4
Guertin, D.A.5
-
132
-
-
80053083941
-
The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile
-
Wang BT, Ducker GS, Barczak AJ, Barbeau R, Erle DJ, Shokat KM. 2011. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. PNAS 108:15201-6
-
(2011)
PNAS
, vol.108
, pp. 15201-15206
-
-
Wang, B.T.1
Ducker, G.S.2
Barczak, A.J.3
Barbeau, R.4
Erle, D.J.5
Shokat, K.M.6
-
133
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L, Harris TE, Roth RA, Lawrence JC Jr. 2007. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 282:20036-44
-
(2007)
J. Biol. Chem
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence, J.C.4
-
134
-
-
84937568748
-
The AdipoChasermouse: Amodel tracking adipogenesis in vivo
-
Wang QA, Scherer PE. 2014. The AdipoChasermouse: amodel tracking adipogenesis in vivo. Adipocyte 3:146-50
-
(2014)
Adipocyte
, vol.3
, pp. 146-150
-
-
Wang, Q.A.1
Scherer, P.E.2
-
135
-
-
0035014266
-
Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways
-
Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, et al. 2001. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J. Clin. Invest. 107:1263-73
-
(2001)
J. Clin. Invest
, vol.107
, pp. 1263-1273
-
-
Werstuck, G.H.1
Lentz, S.R.2
Dayal, S.3
Hossain, G.S.4
Sood, S.K.5
-
136
-
-
0037453007
-
Liver-specific mRNA for Insig-2 downregulated by insulin: Implications for fatty acid synthesis
-
Yabe D, Komuro R, Liang G, Goldstein JL, Brown MS. 2003. Liver-specific mRNA for Insig-2 downregulated by insulin: implications for fatty acid synthesis. PNAS 100:3155-60
-
(2003)
PNAS
, vol.100
, pp. 3155-3160
-
-
Yabe, D.1
Komuro, R.2
Liang, G.3
Goldstein, J.L.4
Brown, M.S.5
-
137
-
-
0037205433
-
Absence of sterol regulatory elementbinding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lepob/Lepob mice
-
Yahagi N, Shimano H, Hasty AH, MatsuzakaT, Ide T, et al. 2002. Absence of sterol regulatory elementbinding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lepob/Lepob mice. J. Biol. Chem. 277:19353-57
-
(2002)
J. Biol. Chem
, vol.277
, pp. 19353-19357
-
-
Yahagi, N.1
Shimano, H.2
Hasty, A.H.3
Matsuzaka, T.4
Ide, T.5
-
138
-
-
0035923514
-
Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene
-
Yang J, Goldstein JL, Hammer RE, Moon YA, BrownMS, Horton JD. 2001. Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene. PNAS 98:13607-12
-
(2001)
PNAS
, vol.98
, pp. 13607-13612
-
-
Yang, J.1
Goldstein, J.L.2
Hammer, R.E.3
Moon, Y.A.4
Brown, M.S.5
Horton, J.D.6
-
139
-
-
84872574955
-
BSTA promotes mTORC2-mediated phosphorylation of Akt1 to suppress expression of FoxC2 and stimulate adipocyte differentiation
-
Yao Y, Suraokar M, Darnay BG, Hollier BG, Shaiken TE, et al. 2013. BSTA promotes mTORC2-mediated phosphorylation of Akt1 to suppress expression of FoxC2 and stimulate adipocyte differentiation. Sci. Signal. 6:ra2
-
(2013)
Sci. Signal
, vol.6
, pp. ra2
-
-
Yao, Y.1
Suraokar, M.2
Darnay, B.G.3
Hollier, B.G.4
Shaiken, T.E.5
-
140
-
-
84873056283
-
Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2
-
Ye L, Varamini B, Lamming DW, Sabatini DM, Baur JA. 2012. Rapamycin has a biphasic effect on insulin sensitivity in C2C12 myotubes due to sequential disruption of mTORC1 and mTORC2. Front. Genet. 3:177
-
(2012)
Front. Genet
, vol.3
, pp. 177
-
-
Ye, L.1
Varamini, B.2
Lamming, D.W.3
Sabatini, D.M.4
Baur, J.A.5
-
141
-
-
79960960007
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, et al. 2011. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14:21-32
-
(2011)
Cell Metab
, vol.14
, pp. 21-32
-
-
Yecies, J.L.1
Zhang, H.H.2
Menon, S.3
Liu, S.4
Yecies, D.5
-
142
-
-
0028885873
-
Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells
-
YehWC, Bierer BE, McKnight SL. 1995. Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. PNAS 92:11086-90
-
(1995)
PNAS
, vol.92
, pp. 11086-11090
-
-
Yeh, W.C.1
Bierer, B.E.2
McKnight, S.L.3
-
143
-
-
65549171104
-
Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles
-
Yellaturu CR, Deng X, Cagen LM, Wilcox HG, Mansbach CM 2nd, et al. 2009. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J. Biol. Chem. 284:7518-32
-
(2009)
J. Biol. Chem
, vol.284
, pp. 7518-7532
-
-
Yellaturu, C.R.1
Deng, X.2
Cagen, L.M.3
Wilcox, H.G.4
Mansbach, I.I.C.M.5
-
144
-
-
70450283986
-
Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP) SREBP-1c complex
-
Yellaturu CR, Deng X, Park EA, Raghow R, Elam MB. 2009. Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP) SREBP-1c complex. J. Biol. Chem. 284:31726-34
-
(2009)
J. Biol. Chem
, vol.284
, pp. 31726-31734
-
-
Yellaturu, C.R.1
Deng, X.2
Park, E.A.3
Raghow, R.4
Elam, M.B.5
-
145
-
-
84880906852
-
Mechanistic target of rapamycin controls homeostasis of adipogenesis
-
Yoon MS, Zhang C, Sun Y, Schoenherr CJ, Chen J. 2013. Mechanistic target of rapamycin controls homeostasis of adipogenesis. J. Lipid Res. 54:2166-73
-
(2013)
J. Lipid Res
, vol.54
, pp. 2166-2173
-
-
Yoon, M.S.1
Zhang, C.2
Sun, Y.3
Schoenherr, C.J.4
Chen, J.5
-
146
-
-
39949084497
-
Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells
-
Yu W, Chen Z, Zhang J, Zhang L, Ke H, et al. 2008. Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol. Cell. Biochem. 310:11-18
-
(2008)
Mol. Cell. Biochem
, vol.310
, pp. 11-18
-
-
Yu, W.1
Chen, Z.2
Zhang, J.3
Zhang, L.4
Ke, H.5
-
147
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, et al. 2011. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322-26
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
Yang, Q.4
Ma, X.M.5
-
148
-
-
84865503043
-
Identification of Akt-independent regulation of hepatic lipogenesis bymammalian target of rapamycin (mTOR) complex 2
-
Yuan M, Pino E, Wu L, Kacergis M, Soukas AA. 2012. Identification of Akt-independent regulation of hepatic lipogenesis bymammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem. 287:29579-88
-
(2012)
J. Biol. Chem
, vol.287
, pp. 29579-29588
-
-
Yuan, M.1
Pino, E.2
Wu, L.3
Kacergis, M.4
Soukas, A.A.5
-
149
-
-
84858020291
-
FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling
-
Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, et al. 2012. FAT SIGNALS-lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15:279-91
-
(2012)
Cell Metab
, vol.15
, pp. 279-291
-
-
Zechner, R.1
Zimmermann, R.2
Eichmann, T.O.3
Kohlwein, S.D.4
Haemmerle, G.5
-
150
-
-
67650523945
-
Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
-
Zhang HH, Huang J, Duvel K, Boback B, Wu S, et al. 2009. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLOS ONE 4:e6189
-
(2009)
PLOS ONE
, vol.4
, pp. e6189
-
-
Zhang, H.H.1
Huang, J.2
Duvel, K.3
Boback, B.4
Wu, S.5
-
151
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V, Stracka D, Oppliger W, Hall MN. 2011. Activation of mTORC2 by association with the ribosome. Cell 144:757-68
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
152
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase
-
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334:678-83
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
153
-
-
78650510609
-
MTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R, Efeyan A, Sabatini DM. 2011. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12:21-35
-
(2011)
Nat. Rev. Mol. Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
154
-
-
78651427865
-
Rheb1 is required for mTORC1 and myelination in postnatal brain development
-
Zou J, Zhou L, Du XX, Ji Y, Xu J, et al. 2011. Rheb1 is required for mTORC1 and myelination in postnatal brain development. Dev. Cell 20:97-108
-
(2011)
Dev. Cell
, vol.20
, pp. 97-108
-
-
Zou, J.1
Zhou, L.2
Du, X.X.3
Ji, Y.4
Xu, J.5
|