-
1
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, et al. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457-468
-
(2002)
Mol Cell
, vol.10
, Issue.3
, pp. 457-468
-
-
Loewith, R.1
-
2
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, et al. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122-1128
-
(2004)
Nat Cell Biol
, vol.6
, Issue.11
, pp. 1122-1128
-
-
Jacinto, E.1
-
3
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296-1302
-
(2004)
Curr Biol
, vol.14
, Issue.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
-
4
-
-
32044465506
-
Signaling in growth and metabolism
-
TOR
-
Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471-484
-
(2006)
Cell
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
5
-
-
70350418625
-
MTOR signaling at a glance
-
Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(Pt 20): 3589-3594
-
(2009)
J Cell Sci
, vol.122
, Issue.PART 20
, pp. 3589-3594
-
-
Laplante, M.1
Sabatini, D.M.2
-
6
-
-
84874961313
-
Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
-
Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339(6125):1320-1323
-
(2013)
Science
, vol.339
, Issue.6125
, pp. 1320-1323
-
-
Robitaille, A.M.1
-
7
-
-
84874995247
-
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
-
Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339(6125): 1323-1328
-
(2013)
Science
, vol.339
, Issue.6125
, pp. 1323-1328
-
-
Ben-Sahra, I.1
Howell, J.J.2
Asara, J.M.3
Manning, B.D.4
-
8
-
-
84894523716
-
Making new contacts: The mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M, Hall MN (2014) Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155-162
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, Issue.3
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
9
-
-
82555166000
-
MTOR signaling in disease
-
Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23(6): 744-755
-
(2011)
Curr Opin Cell Biol
, vol.23
, Issue.6
, pp. 744-755
-
-
Dazert, E.1
Hall, M.N.2
-
10
-
-
84877927481
-
MTOR in aging, metabolism, and cancer
-
Cornu M, Albert V, Hall MN (2013) mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23(1):53-62
-
(2013)
Curr Opin Genet Dev
, vol.23
, Issue.1
, pp. 53-62
-
-
Cornu, M.1
Albert, V.2
Hall, M.N.3
-
11
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274-293
-
(2012)
Cell
, vol.149
, Issue.2
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
12
-
-
80155142474
-
Rapamycin passes the torch: A new generation of mTOR inhibitors
-
Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat Rev Drug Discov 10(11):868-880
-
(2011)
Nat Rev Drug Discov
, vol.10
, Issue.11
, pp. 868-880
-
-
Benjamin, D.1
Colombi, M.2
Moroni, C.3
Hall, M.N.4
-
13
-
-
84896692038
-
Rapamycin: One drug, many effects
-
Li J, Kim SG, Blenis J (2014) Rapamycin: One drug, many effects. Cell Metab 19(3): 373-379
-
(2014)
Cell Metab
, vol.19
, Issue.3
, pp. 373-379
-
-
Li, J.1
Kim, S.G.2
Blenis, J.3
-
14
-
-
66249107072
-
Effects of nocturnal light on (clock) gene expression in peripheral organs: A role for the autonomic innervation of the liver
-
Cailotto C, et al. (2009) Effects of nocturnal light on (clock) gene expression in peripheral organs: A role for the autonomic innervation of the liver. PLoS ONE 4(5): e5650
-
(2009)
PLoS ONE
, vol.4
, Issue.5
-
-
Cailotto, C.1
-
15
-
-
77951889295
-
The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
-
Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517-549
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 517-549
-
-
Dibner, C.1
Schibler, U.2
Albrecht, U.3
-
16
-
-
6344221991
-
The mammalian circadian timing system: From gene expression to physiology
-
Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U (2004) The mammalian circadian timing system: From gene expression to physiology. Chromosoma 113(3): 103-112
-
(2004)
Chromosoma
, vol.113
, Issue.3
, pp. 103-112
-
-
Gachon, F.1
Nagoshi, E.2
Brown, S.A.3
Ripperger, J.4
Schibler, U.5
-
17
-
-
0037125939
-
Rhythms of mammalian body temperature can sustain peripheral circadian clocks
-
Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12(18):1574-1583
-
(2002)
Curr Biol
, vol.12
, Issue.18
, pp. 1574-1583
-
-
Brown, S.A.1
Zumbrunn, G.2
Fleury-Olela, F.3
Preitner, N.4
Schibler, U.5
-
18
-
-
84858321758
-
Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators
-
Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26(6):567-580
-
(2012)
Genes Dev
, vol.26
, Issue.6
, pp. 567-580
-
-
Saini, C.1
Morf, J.2
Stratmann, M.3
Gos, P.4
Schibler, U.5
-
19
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola F, et al. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23): 2950-2961
-
(2000)
Genes Dev
, vol.14
, Issue.23
, pp. 2950-2961
-
-
Damiola, F.1
-
20
-
-
0035910387
-
Entrainment of the circadian clock in the liver by feeding
-
Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490-493
-
(2001)
Science
, vol.291
, Issue.5503
, pp. 490-493
-
-
Stokkan, K.A.1
Yamazaki, S.2
Tei, H.3
Sakaki, Y.4
Menaker, M.5
-
21
-
-
33745329809
-
The circadian PARdomain basic leucine zipper transcription factors DBP TEF, and HLF modulate basal and inducible xenobiotic detoxification
-
Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PARdomain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4(1):25-36
-
(2006)
Cell Metab
, vol.4
, Issue.1
, pp. 25-36
-
-
Gachon, F.1
Olela, F.F.2
Schaad, O.3
Descombes, P.4
Schibler, U.5
-
22
-
-
79952121986
-
The role of circadian timing system on drug metabolism and detoxification
-
Gachon F, Firsov D (2011) The role of circadian timing system on drug metabolism and detoxification. Expert Opin Drug Metab Toxicol 7(2):147-158
-
(2011)
Expert Opin Drug Metab Toxicol
, vol.7
, Issue.2
, pp. 147-158
-
-
Gachon, F.1
Firsov, D.2
-
23
-
-
84871655682
-
Dissociating fatty liver and diabetes
-
Sun Z, Lazar MA (2013) Dissociating fatty liver and diabetes. Trends Endocrinol Metab 24(1):4-12
-
(2013)
Trends Endocrinol Metab
, vol.24
, Issue.1
, pp. 4-12
-
-
Sun, Z.1
Lazar, M.A.2
-
24
-
-
75849136095
-
Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression
-
Vollmers C, et al. (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA 106(50):21453-21458
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.50
, pp. 21453-21458
-
-
Vollmers, C.1
-
25
-
-
79957906685
-
Circadian rhythms, sleep, and metabolism
-
Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121(6):2133-2141
-
(2011)
J Clin Invest
, vol.121
, Issue.6
, pp. 2133-2141
-
-
Huang, W.1
Ramsey, K.M.2
Marcheva, B.3
Bass, J.4
-
26
-
-
15044341917
-
Cellular oscillators: Rhythmic gene expression and metabolism
-
Schibler U, Naef F (2005) Cellular oscillators: Rhythmic gene expression and metabolism. Curr Opin Cell Biol 17(2):223-229
-
(2005)
Curr Opin Cell Biol
, vol.17
, Issue.2
, pp. 223-229
-
-
Schibler, U.1
Naef, F.2
-
27
-
-
84859459231
-
Coordination of the transcriptome and metabolome by the circadian clock
-
Eckel-Mahan KL, et al. (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA 109(14):5541-5546
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.14
, pp. 5541-5546
-
-
Eckel-Mahan, K.L.1
-
28
-
-
84893444129
-
Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides
-
Adamovich Y, et al. (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19(2):319-330
-
(2014)
Cell Metab
, vol.19
, Issue.2
, pp. 319-330
-
-
Adamovich, Y.1
-
29
-
-
77955420486
-
AKT and TOR signaling set the pace of the circadian pacemaker
-
Zheng X, Sehgal A (2010) AKT and TOR signaling set the pace of the circadian pacemaker. Curr Biol 20(13):1203-1208
-
(2010)
Curr Biol
, vol.20
, Issue.13
, pp. 1203-1208
-
-
Zheng, X.1
Sehgal, A.2
-
30
-
-
79953683670
-
Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus
-
Cao R, Anderson FE, Jung YJ, Dziema H, Obrietan K (2011) Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience 181:79-88
-
(2011)
Neuroscience
, vol.181
, pp. 79-88
-
-
Cao, R.1
Anderson, F.E.2
Jung, Y.J.3
Dziema, H.4
Obrietan, K.5
-
31
-
-
45649084209
-
Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock
-
Cao R, Lee B, Cho HY, Saklayen S, Obrietan K (2008) Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock. Mol Cell Neurosci 38(3): 312-324
-
(2008)
Mol Cell Neurosci
, vol.38
, Issue.3
, pp. 312-324
-
-
Cao, R.1
Lee, B.2
Cho, H.Y.3
Saklayen, S.4
Obrietan, K.5
-
32
-
-
84882626496
-
Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling
-
Cao R, et al. (2013) Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79(4):712-724
-
(2013)
Neuron
, vol.79
, Issue.4
, pp. 712-724
-
-
Cao, R.1
-
33
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M, et al. (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848-860
-
(2012)
Cell Metab
, vol.15
, Issue.6
, pp. 848-860
-
-
Hatori, M.1
-
34
-
-
84873872342
-
The circadian clock coordinates ribosome biogenesis
-
Jouffe C, et al. (2013) The circadian clock coordinates ribosome biogenesis. PLoS Biol 11(1):e1001455
-
(2013)
PLoS Biol
, vol.11
, Issue.1
-
-
Jouffe, C.1
-
35
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia KA, et al. (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326(5951):437-440
-
(2009)
Science
, vol.326
, Issue.5951
, pp. 437-440
-
-
Lamia, K.A.1
-
36
-
-
84893460020
-
BMAL1-dependent regulation of the mTOR signaling pathway delays aging
-
Khapre RV, et al. (2014) BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging (Albany, NY Online) 6(1):48-57
-
(2014)
Aging (Albany, NY Online)
, vol.6
, Issue.1
, pp. 48-57
-
-
Khapre, R.V.1
-
37
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317-328
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 317-328
-
-
Asher, G.1
-
38
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCKmediated chromatin remodeling and circadian control
-
Nakahata Y, et al. (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCKmediated chromatin remodeling and circadian control. Cell 134(2):329-340
-
(2008)
Cell
, vol.134
, Issue.2
, pp. 329-340
-
-
Nakahata, Y.1
-
39
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13(2):125-137
-
(2011)
Cell Metab
, vol.13
, Issue.2
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
40
-
-
84864309100
-
Clocks, metabolism, and the epigenome
-
Feng D, Lazar MA (2012) Clocks, metabolism, and the epigenome. Mol Cell 47(2): 158-167
-
(2012)
Mol Cell
, vol.47
, Issue.2
, pp. 158-167
-
-
Feng, D.1
Lazar, M.A.2
-
41
-
-
84872334045
-
Metabolism and the circadian clock converge
-
Eckel-Mahan K, Sassone-Corsi P (2013) Metabolism and the circadian clock converge. Physiol Rev 93(1):107-135
-
(2013)
Physiol Rev
, vol.93
, Issue.1
, pp. 107-135
-
-
Eckel-Mahan, K.1
Sassone-Corsi, P.2
-
42
-
-
0034697846
-
Identification of a novel FGF, FGF-21, preferentially expressed in the liver
-
Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492(1):203-206
-
(2000)
Biochim Biophys Acta
, vol.1492
, Issue.1
, pp. 203-206
-
-
Nishimura, T.1
Nakatake, Y.2
Konishi, M.3
Itoh, N.4
-
43
-
-
48249113959
-
Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators
-
Kornmann B, Schaad O, Reinke H, Saini C, Schibler U (2007) Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators. Cold Spring Harb Symp Quant Biol 72:319-330
-
(2007)
Cold Spring Harb Symp Quant Biol
, vol.72
, pp. 319-330
-
-
Kornmann, B.1
Schaad, O.2
Reinke, H.3
Saini, C.4
Schibler, U.5
-
44
-
-
53949110053
-
Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver
-
Oishi K, Uchida D, Ishida N (2008) Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Lett 582(25-26):3639-3642
-
(2008)
FEBS Lett
, vol.582
, Issue.25-26
, pp. 3639-3642
-
-
Oishi, K.1
Uchida, D.2
Ishida, N.3
-
45
-
-
78449244924
-
Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding
-
Tong X, et al. (2010) Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem 285(47):36401-36409
-
(2010)
J Biol Chem
, vol.285
, Issue.47
, pp. 36401-36409
-
-
Tong, X.1
-
46
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalphamediated induction of fibroblast growth factor 21
-
Inagaki T, et al. (2007) Endocrine regulation of the fasting response by PPARalphamediated induction of fibroblast growth factor 21. Cell Metab 5(6):415-425
-
(2007)
Cell Metab
, vol.5
, Issue.6
, pp. 415-425
-
-
Inagaki, T.1
-
47
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, et al. (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5(6):426-437
-
(2007)
Cell Metab
, vol.5
, Issue.6
, pp. 426-437
-
-
Badman, M.K.1
-
48
-
-
34447265235
-
PPARalpha is a key regulator of hepatic FGF21
-
Lundåsen T, et al. (2007) PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 360(2):437-440
-
(2007)
Biochem Biophys Res Commun
, vol.360
, Issue.2
, pp. 437-440
-
-
Lundåsen, T.1
-
49
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A, et al. (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9(4): 327-338
-
(2009)
Cell Metab
, vol.9
, Issue.4
, pp. 327-338
-
-
Purushotham, A.1
-
50
-
-
67649823642
-
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
Potthoff MJ, et al. (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 106(26):10853-10858
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.26
, pp. 10853-10858
-
-
Potthoff, M.J.1
-
51
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
Bookout AL, et al. (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19(9):1147-1152
-
(2013)
Nat Med
, vol.19
, Issue.9
, pp. 1147-1152
-
-
Bookout, A.L.1
-
52
-
-
84893849860
-
Interplay between FGF21 and insulin action in the liver regulates metabolism
-
Emanuelli B, et al. (2014) Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 124(2):515-527
-
(2014)
J Clin Invest
, vol.124
, Issue.2
, pp. 515-527
-
-
Emanuelli, B.1
-
53
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577-590
-
(2003)
Cell
, vol.115
, Issue.5
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
54
-
-
77952562382
-
Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
-
Choo AY, et al. (2010) Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38(4):487-499
-
(2010)
Mol Cell
, vol.38
, Issue.4
, pp. 487-499
-
-
Choo, A.Y.1
-
55
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Durán RV, et al. (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47(3): 349-358
-
(2012)
Mol Cell
, vol.47
, Issue.3
, pp. 349-358
-
-
Durán, R.V.1
-
56
-
-
84877720366
-
The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
-
Csibi A, et al. (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153(4):840-854
-
(2013)
Cell
, vol.153
, Issue.4
, pp. 840-854
-
-
Csibi, A.1
-
57
-
-
0025454459
-
Total parenteral nutrition, glutamine, and tumor growth
-
Fischer JE, Chance WT (1990) Total parenteral nutrition, glutamine, and tumor growth. JPEN J Parenter Enteral Nutr 14(Suppl 4):86S-89S
-
(1990)
JPEN J Parenter Enteral Nutr
, vol.14
, Issue.SUPPL. 4
-
-
Fischer, J.E.1
Chance, W.T.2
-
58
-
-
0027145124
-
Glutamine and cancer
-
Souba WW (1993) Glutamine and cancer. Ann Surg 218(6):715-728
-
(1993)
Ann Surg
, vol.218
, Issue.6
, pp. 715-728
-
-
Souba, W.W.1
-
59
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11-20
-
(2008)
Cell Metab
, vol.7
, Issue.1
, pp. 11-20
-
-
Deberardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
60
-
-
33646854721
-
TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase
-
Chong-Kopera H, et al. (2006) TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J Biol Chem 281(13):8313-8316
-
(2006)
J Biol Chem
, vol.281
, Issue.13
, pp. 8313-8316
-
-
Chong-Kopera, H.1
-
61
-
-
34250626014
-
A mouse model of tuberous sclerosis: Neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival
-
Meikle L, et al. (2007) A mouse model of tuberous sclerosis: Neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27(21):5546-5558
-
(2007)
J Neurosci
, vol.27
, Issue.21
, pp. 5546-5558
-
-
Meikle, L.1
-
62
-
-
4544220704
-
Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
-
Um SH, et al. (2004) Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200-205
-
(2004)
Nature
, vol.431
, Issue.7005
, pp. 200-205
-
-
Um, S.H.1
-
63
-
-
16844370268
-
Regulation of insulin signalling by hyperinsulinaemia: Role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway
-
Ueno M, et al. (2005) Regulation of insulin signalling by hyperinsulinaemia: Role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway. Diabetologia 48(3): 506-518
-
(2005)
Diabetologia
, vol.48
, Issue.3
, pp. 506-518
-
-
Ueno, M.1
-
64
-
-
4544343980
-
Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies
-
Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14(18):1650-1656
-
(2004)
Curr Biol
, vol.14
, Issue.18
, pp. 1650-1656
-
-
Shah, O.J.1
Wang, Z.2
Hunter, T.3
-
65
-
-
5644231992
-
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
-
Ozcan U, et al. (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457-461
-
(2004)
Science
, vol.306
, Issue.5695
, pp. 457-461
-
-
Ozcan, U.1
-
66
-
-
84860468095
-
Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling
-
Appenzeller-Herzog C, Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22(5):274-282
-
(2012)
Trends Cell Biol
, vol.22
, Issue.5
, pp. 274-282
-
-
Appenzeller-Herzog, C.1
Hall, M.N.2
-
67
-
-
79960960007
-
Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
-
Yecies JL, et al. (2011) Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 14(1):21-32
-
(2011)
Cell Metab
, vol.14
, Issue.1
, pp. 21-32
-
-
Yecies, J.L.1
-
68
-
-
78650848337
-
MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
-
Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM (2010) mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468(7327): 1100-1104
-
(2010)
Nature
, vol.468
, Issue.7327
, pp. 1100-1104
-
-
Sengupta, S.1
Peterson, T.R.2
Laplante, M.3
Oh, S.4
Sabatini, D.M.5
-
69
-
-
79953177846
-
Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
-
Kenerson HL, Yeh MM, Yeung RS (2011) Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 6(3):e18075
-
(2011)
PLoS ONE
, vol.6
, Issue.3
-
-
Kenerson, H.L.1
Yeh, M.M.2
Yeung, R.S.3
-
70
-
-
0037178787
-
The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner N, et al. (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251-260
-
(2002)
Cell
, vol.110
, Issue.2
, pp. 251-260
-
-
Preitner, N.1
-
71
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-α
-
Cho H, et al. (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-α. Nature 485(7396):123-127
-
(2012)
Nature
, vol.485
, Issue.7396
, pp. 123-127
-
-
Cho, H.1
-
72
-
-
77956627087
-
Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
Asher G, et al. (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142(6):943-953
-
(2010)
Cell
, vol.142
, Issue.6
, pp. 943-953
-
-
Asher, G.1
-
73
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, et al. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315-1319
-
(2011)
Science
, vol.331
, Issue.6022
, pp. 1315-1319
-
-
Feng, D.1
-
74
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon JC, et al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131-138
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 131-138
-
-
Yoon, J.C.1
-
75
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
-
Puigserver P, et al. (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423(6939):550-555
-
(2003)
Nature
, vol.423
, Issue.6939
, pp. 550-555
-
-
Puigserver, P.1
-
76
-
-
0242349197
-
Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis
-
Rhee J, et al. (2003) Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 100(7):4012-4017
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, Issue.7
, pp. 4012-4017
-
-
Rhee, J.1
-
77
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447(7143):477-481
-
(2007)
Nature
, vol.447
, Issue.7143
, pp. 477-481
-
-
Liu, C.1
Li, S.2
Liu, T.3
Borjigin, J.4
Lin, J.D.5
-
78
-
-
21144446106
-
PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
Leone TC, et al. (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3(4):e101
-
(2005)
PLoS Biol
, vol.3
, Issue.4
-
-
Leone, T.C.1
-
79
-
-
0033977890
-
The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
-
Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20(5):1868-1876
-
(2000)
Mol Cell Biol
, vol.20
, Issue.5
, pp. 1868-1876
-
-
Vega, R.B.1
Huss, J.M.2
Kelly, D.P.3
-
80
-
-
2442701392
-
PGC-1 promotes insulin resistance in liver through PPAR-alphadependent induction of TRB-3
-
Koo SH, et al. (2004) PGC-1 promotes insulin resistance in liver through PPAR-alphadependent induction of TRB-3. Nat Med 10(5):530-534
-
(2004)
Nat Med
, vol.10
, Issue.5
, pp. 530-534
-
-
Koo, S.H.1
-
81
-
-
84874664386
-
Fibroblast growth factor 21 is induced by endoplasmic reticulum stress
-
Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC (2013) Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 95(4):692-699
-
(2013)
Biochimie
, vol.95
, Issue.4
, pp. 692-699
-
-
Schaap, F.G.1
Kremer, A.E.2
Lamers, W.H.3
Jansen, P.L.4
Gaemers, I.C.5
-
82
-
-
84858311217
-
Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation
-
De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443(1): 165-171
-
(2012)
Biochem J
, vol.443
, Issue.1
, pp. 165-171
-
-
De Sousa-Coelho, A.L.1
Marrero, P.F.2
Haro, D.3
-
83
-
-
84872057896
-
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
-
Kim KH, et al. (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19(1):83-92
-
(2013)
Nat Med
, vol.19
, Issue.1
, pp. 83-92
-
-
Kim, K.H.1
-
84
-
-
78650174233
-
The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis
-
Kang YJ, Lu MK, Guan KL (2011) The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis. Cell Death Differ 18(1):133-144
-
(2011)
Cell Death Differ
, vol.18
, Issue.1
, pp. 133-144
-
-
Kang, Y.J.1
Lu, M.K.2
Guan, K.L.3
-
85
-
-
84876074055
-
Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress
-
Yang C, et al. (2013) Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol 13:67
-
(2013)
BMC Gastroenterol
, vol.13
, pp. 67
-
-
Yang, C.1
-
86
-
-
84872272443
-
Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
-
Kim SG, et al. (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49(1):172-185
-
(2013)
Mol Cell
, vol.49
, Issue.1
, pp. 172-185
-
-
Kim, S.G.1
-
87
-
-
84864878724
-
Modulation of glutamine metabolism by the PI(3)KPKB-FOXO network regulates autophagy
-
van der Vos KE, et al. (2012) Modulation of glutamine metabolism by the PI(3)KPKB-FOXO network regulates autophagy. Nat Cell Biol 14(8):829-837
-
(2012)
Nat Cell Biol
, vol.14
, Issue.8
, pp. 829-837
-
-
Van Der Vos, K.E.1
-
88
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger CF, et al. (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8(5): 411-424
-
(2008)
Cell Metab
, vol.8
, Issue.5
, pp. 411-424
-
-
Bentzinger, C.F.1
-
89
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham JT, et al. (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450(7170):736-740
-
(2007)
Nature
, vol.450
, Issue.7170
, pp. 736-740
-
-
Cunningham, J.T.1
-
90
-
-
76049093949
-
PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis
-
Estall JL, et al. (2009) PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis. Proc Natl Acad Sci USA 106(52): 22510-22515
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.52
, pp. 22510-22515
-
-
Estall, J.L.1
-
91
-
-
77952334180
-
Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha
-
Wang Y, Solt LA, Burris TP (2010) Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J Biol Chem 285(21): 15668-15673
-
(2010)
J Biol Chem
, vol.285
, Issue.21
, pp. 15668-15673
-
-
Wang, Y.1
Solt, L.A.2
Burris, T.P.3
-
92
-
-
84859090262
-
Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice
-
Menon S, et al. (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5(217):ra24.
-
(2012)
Sci Signal
, vol.5
, Issue.217
-
-
Menon, S.1
|