메뉴 건너뛰기




Volumn 111, Issue 32, 2014, Pages 11592-11599

Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

Author keywords

Behavior; Hepatocellular carcinoma; Metabolic stress; TSC

Indexed keywords

CRYPTOCHROME 1; CRYPTOCHROME 2; FIBROBLAST GROWTH FACTOR 21; GLUCOSE; GLUCOSE 6 PHOSPHATASE; GLUTAMINE; INITIATION FACTOR 2ALPHA; LEPTIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MESSENGER RNA; PER1 PROTEIN; PER2 PROTEIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PROTEIN KINASE B; RAPAMYCIN; RETINOID RELATED ORPHAN RECEPTOR ALPHA; RETINOID RELATED ORPHAN RECEPTOR GAMMA; THYROXINE; TRIACYLGLYCEROL;

EID: 84905977025     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1412047111     Document Type: Article
Times cited : (130)

References (92)
  • 1
    • 0036753494 scopus 로고    scopus 로고
    • Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
    • Loewith R, et al. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457-468
    • (2002) Mol Cell , vol.10 , Issue.3 , pp. 457-468
    • Loewith, R.1
  • 2
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E, et al. (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122-1128
    • (2004) Nat Cell Biol , vol.6 , Issue.11 , pp. 1122-1128
    • Jacinto, E.1
  • 3
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov DD, et al. (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296-1302
    • (2004) Curr Biol , vol.14 , Issue.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 4
    • 32044465506 scopus 로고    scopus 로고
    • Signaling in growth and metabolism
    • TOR
    • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471-484
    • (2006) Cell , vol.124 , Issue.3 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 5
    • 70350418625 scopus 로고    scopus 로고
    • MTOR signaling at a glance
    • Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(Pt 20): 3589-3594
    • (2009) J Cell Sci , vol.122 , Issue.PART 20 , pp. 3589-3594
    • Laplante, M.1    Sabatini, D.M.2
  • 6
    • 84874961313 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis
    • Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339(6125):1320-1323
    • (2013) Science , vol.339 , Issue.6125 , pp. 1320-1323
    • Robitaille, A.M.1
  • 7
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339(6125): 1323-1328
    • (2013) Science , vol.339 , Issue.6125 , pp. 1323-1328
    • Ben-Sahra, I.1    Howell, J.J.2    Asara, J.M.3    Manning, B.D.4
  • 8
    • 84894523716 scopus 로고    scopus 로고
    • Making new contacts: The mTOR network in metabolism and signalling crosstalk
    • Shimobayashi M, Hall MN (2014) Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15(3):155-162
    • (2014) Nat Rev Mol Cell Biol , vol.15 , Issue.3 , pp. 155-162
    • Shimobayashi, M.1    Hall, M.N.2
  • 9
    • 82555166000 scopus 로고    scopus 로고
    • MTOR signaling in disease
    • Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23(6): 744-755
    • (2011) Curr Opin Cell Biol , vol.23 , Issue.6 , pp. 744-755
    • Dazert, E.1    Hall, M.N.2
  • 10
    • 84877927481 scopus 로고    scopus 로고
    • MTOR in aging, metabolism, and cancer
    • Cornu M, Albert V, Hall MN (2013) mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23(1):53-62
    • (2013) Curr Opin Genet Dev , vol.23 , Issue.1 , pp. 53-62
    • Cornu, M.1    Albert, V.2    Hall, M.N.3
  • 11
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274-293
    • (2012) Cell , vol.149 , Issue.2 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 12
    • 80155142474 scopus 로고    scopus 로고
    • Rapamycin passes the torch: A new generation of mTOR inhibitors
    • Benjamin D, Colombi M, Moroni C, Hall MN (2011) Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat Rev Drug Discov 10(11):868-880
    • (2011) Nat Rev Drug Discov , vol.10 , Issue.11 , pp. 868-880
    • Benjamin, D.1    Colombi, M.2    Moroni, C.3    Hall, M.N.4
  • 13
    • 84896692038 scopus 로고    scopus 로고
    • Rapamycin: One drug, many effects
    • Li J, Kim SG, Blenis J (2014) Rapamycin: One drug, many effects. Cell Metab 19(3): 373-379
    • (2014) Cell Metab , vol.19 , Issue.3 , pp. 373-379
    • Li, J.1    Kim, S.G.2    Blenis, J.3
  • 14
    • 66249107072 scopus 로고    scopus 로고
    • Effects of nocturnal light on (clock) gene expression in peripheral organs: A role for the autonomic innervation of the liver
    • Cailotto C, et al. (2009) Effects of nocturnal light on (clock) gene expression in peripheral organs: A role for the autonomic innervation of the liver. PLoS ONE 4(5): e5650
    • (2009) PLoS ONE , vol.4 , Issue.5
    • Cailotto, C.1
  • 15
    • 77951889295 scopus 로고    scopus 로고
    • The mammalian circadian timing system: Organization and coordination of central and peripheral clocks
    • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517-549
    • (2010) Annu Rev Physiol , vol.72 , pp. 517-549
    • Dibner, C.1    Schibler, U.2    Albrecht, U.3
  • 16
    • 6344221991 scopus 로고    scopus 로고
    • The mammalian circadian timing system: From gene expression to physiology
    • Gachon F, Nagoshi E, Brown SA, Ripperger J, Schibler U (2004) The mammalian circadian timing system: From gene expression to physiology. Chromosoma 113(3): 103-112
    • (2004) Chromosoma , vol.113 , Issue.3 , pp. 103-112
    • Gachon, F.1    Nagoshi, E.2    Brown, S.A.3    Ripperger, J.4    Schibler, U.5
  • 17
    • 0037125939 scopus 로고    scopus 로고
    • Rhythms of mammalian body temperature can sustain peripheral circadian clocks
    • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12(18):1574-1583
    • (2002) Curr Biol , vol.12 , Issue.18 , pp. 1574-1583
    • Brown, S.A.1    Zumbrunn, G.2    Fleury-Olela, F.3    Preitner, N.4    Schibler, U.5
  • 18
    • 84858321758 scopus 로고    scopus 로고
    • Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators
    • Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26(6):567-580
    • (2012) Genes Dev , vol.26 , Issue.6 , pp. 567-580
    • Saini, C.1    Morf, J.2    Stratmann, M.3    Gos, P.4    Schibler, U.5
  • 19
    • 0033637383 scopus 로고    scopus 로고
    • Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
    • Damiola F, et al. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23): 2950-2961
    • (2000) Genes Dev , vol.14 , Issue.23 , pp. 2950-2961
    • Damiola, F.1
  • 20
    • 0035910387 scopus 로고    scopus 로고
    • Entrainment of the circadian clock in the liver by feeding
    • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490-493
    • (2001) Science , vol.291 , Issue.5503 , pp. 490-493
    • Stokkan, K.A.1    Yamazaki, S.2    Tei, H.3    Sakaki, Y.4    Menaker, M.5
  • 21
    • 33745329809 scopus 로고    scopus 로고
    • The circadian PARdomain basic leucine zipper transcription factors DBP TEF, and HLF modulate basal and inducible xenobiotic detoxification
    • Gachon F, Olela FF, Schaad O, Descombes P, Schibler U (2006) The circadian PARdomain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4(1):25-36
    • (2006) Cell Metab , vol.4 , Issue.1 , pp. 25-36
    • Gachon, F.1    Olela, F.F.2    Schaad, O.3    Descombes, P.4    Schibler, U.5
  • 22
    • 79952121986 scopus 로고    scopus 로고
    • The role of circadian timing system on drug metabolism and detoxification
    • Gachon F, Firsov D (2011) The role of circadian timing system on drug metabolism and detoxification. Expert Opin Drug Metab Toxicol 7(2):147-158
    • (2011) Expert Opin Drug Metab Toxicol , vol.7 , Issue.2 , pp. 147-158
    • Gachon, F.1    Firsov, D.2
  • 23
    • 84871655682 scopus 로고    scopus 로고
    • Dissociating fatty liver and diabetes
    • Sun Z, Lazar MA (2013) Dissociating fatty liver and diabetes. Trends Endocrinol Metab 24(1):4-12
    • (2013) Trends Endocrinol Metab , vol.24 , Issue.1 , pp. 4-12
    • Sun, Z.1    Lazar, M.A.2
  • 24
    • 75849136095 scopus 로고    scopus 로고
    • Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression
    • Vollmers C, et al. (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA 106(50):21453-21458
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.50 , pp. 21453-21458
    • Vollmers, C.1
  • 25
    • 79957906685 scopus 로고    scopus 로고
    • Circadian rhythms, sleep, and metabolism
    • Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121(6):2133-2141
    • (2011) J Clin Invest , vol.121 , Issue.6 , pp. 2133-2141
    • Huang, W.1    Ramsey, K.M.2    Marcheva, B.3    Bass, J.4
  • 26
    • 15044341917 scopus 로고    scopus 로고
    • Cellular oscillators: Rhythmic gene expression and metabolism
    • Schibler U, Naef F (2005) Cellular oscillators: Rhythmic gene expression and metabolism. Curr Opin Cell Biol 17(2):223-229
    • (2005) Curr Opin Cell Biol , vol.17 , Issue.2 , pp. 223-229
    • Schibler, U.1    Naef, F.2
  • 27
    • 84859459231 scopus 로고    scopus 로고
    • Coordination of the transcriptome and metabolome by the circadian clock
    • Eckel-Mahan KL, et al. (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci USA 109(14):5541-5546
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.14 , pp. 5541-5546
    • Eckel-Mahan, K.L.1
  • 28
    • 84893444129 scopus 로고    scopus 로고
    • Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides
    • Adamovich Y, et al. (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19(2):319-330
    • (2014) Cell Metab , vol.19 , Issue.2 , pp. 319-330
    • Adamovich, Y.1
  • 29
    • 77955420486 scopus 로고    scopus 로고
    • AKT and TOR signaling set the pace of the circadian pacemaker
    • Zheng X, Sehgal A (2010) AKT and TOR signaling set the pace of the circadian pacemaker. Curr Biol 20(13):1203-1208
    • (2010) Curr Biol , vol.20 , Issue.13 , pp. 1203-1208
    • Zheng, X.1    Sehgal, A.2
  • 30
    • 79953683670 scopus 로고    scopus 로고
    • Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus
    • Cao R, Anderson FE, Jung YJ, Dziema H, Obrietan K (2011) Circadian regulation of mammalian target of rapamycin signaling in the mouse suprachiasmatic nucleus. Neuroscience 181:79-88
    • (2011) Neuroscience , vol.181 , pp. 79-88
    • Cao, R.1    Anderson, F.E.2    Jung, Y.J.3    Dziema, H.4    Obrietan, K.5
  • 31
    • 45649084209 scopus 로고    scopus 로고
    • Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock
    • Cao R, Lee B, Cho HY, Saklayen S, Obrietan K (2008) Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock. Mol Cell Neurosci 38(3): 312-324
    • (2008) Mol Cell Neurosci , vol.38 , Issue.3 , pp. 312-324
    • Cao, R.1    Lee, B.2    Cho, H.Y.3    Saklayen, S.4    Obrietan, K.5
  • 32
    • 84882626496 scopus 로고    scopus 로고
    • Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling
    • Cao R, et al. (2013) Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79(4):712-724
    • (2013) Neuron , vol.79 , Issue.4 , pp. 712-724
    • Cao, R.1
  • 33
    • 84862008430 scopus 로고    scopus 로고
    • Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
    • Hatori M, et al. (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848-860
    • (2012) Cell Metab , vol.15 , Issue.6 , pp. 848-860
    • Hatori, M.1
  • 34
    • 84873872342 scopus 로고    scopus 로고
    • The circadian clock coordinates ribosome biogenesis
    • Jouffe C, et al. (2013) The circadian clock coordinates ribosome biogenesis. PLoS Biol 11(1):e1001455
    • (2013) PLoS Biol , vol.11 , Issue.1
    • Jouffe, C.1
  • 35
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia KA, et al. (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326(5951):437-440
    • (2009) Science , vol.326 , Issue.5951 , pp. 437-440
    • Lamia, K.A.1
  • 36
    • 84893460020 scopus 로고    scopus 로고
    • BMAL1-dependent regulation of the mTOR signaling pathway delays aging
    • Khapre RV, et al. (2014) BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging (Albany, NY Online) 6(1):48-57
    • (2014) Aging (Albany, NY Online) , vol.6 , Issue.1 , pp. 48-57
    • Khapre, R.V.1
  • 37
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G, et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317-328
    • (2008) Cell , vol.134 , Issue.2 , pp. 317-328
    • Asher, G.1
  • 38
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCKmediated chromatin remodeling and circadian control
    • Nakahata Y, et al. (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCKmediated chromatin remodeling and circadian control. Cell 134(2):329-340
    • (2008) Cell , vol.134 , Issue.2 , pp. 329-340
    • Nakahata, Y.1
  • 39
    • 79551534130 scopus 로고    scopus 로고
    • Crosstalk between components of circadian and metabolic cycles in mammals
    • Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13(2):125-137
    • (2011) Cell Metab , vol.13 , Issue.2 , pp. 125-137
    • Asher, G.1    Schibler, U.2
  • 40
    • 84864309100 scopus 로고    scopus 로고
    • Clocks, metabolism, and the epigenome
    • Feng D, Lazar MA (2012) Clocks, metabolism, and the epigenome. Mol Cell 47(2): 158-167
    • (2012) Mol Cell , vol.47 , Issue.2 , pp. 158-167
    • Feng, D.1    Lazar, M.A.2
  • 41
    • 84872334045 scopus 로고    scopus 로고
    • Metabolism and the circadian clock converge
    • Eckel-Mahan K, Sassone-Corsi P (2013) Metabolism and the circadian clock converge. Physiol Rev 93(1):107-135
    • (2013) Physiol Rev , vol.93 , Issue.1 , pp. 107-135
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 42
    • 0034697846 scopus 로고    scopus 로고
    • Identification of a novel FGF, FGF-21, preferentially expressed in the liver
    • Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492(1):203-206
    • (2000) Biochim Biophys Acta , vol.1492 , Issue.1 , pp. 203-206
    • Nishimura, T.1    Nakatake, Y.2    Konishi, M.3    Itoh, N.4
  • 43
    • 48249113959 scopus 로고    scopus 로고
    • Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators
    • Kornmann B, Schaad O, Reinke H, Saini C, Schibler U (2007) Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators. Cold Spring Harb Symp Quant Biol 72:319-330
    • (2007) Cold Spring Harb Symp Quant Biol , vol.72 , pp. 319-330
    • Kornmann, B.1    Schaad, O.2    Reinke, H.3    Saini, C.4    Schibler, U.5
  • 44
    • 53949110053 scopus 로고    scopus 로고
    • Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver
    • Oishi K, Uchida D, Ishida N (2008) Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Lett 582(25-26):3639-3642
    • (2008) FEBS Lett , vol.582 , Issue.25-26 , pp. 3639-3642
    • Oishi, K.1    Uchida, D.2    Ishida, N.3
  • 45
    • 78449244924 scopus 로고    scopus 로고
    • Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding
    • Tong X, et al. (2010) Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem 285(47):36401-36409
    • (2010) J Biol Chem , vol.285 , Issue.47 , pp. 36401-36409
    • Tong, X.1
  • 46
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARalphamediated induction of fibroblast growth factor 21
    • Inagaki T, et al. (2007) Endocrine regulation of the fasting response by PPARalphamediated induction of fibroblast growth factor 21. Cell Metab 5(6):415-425
    • (2007) Cell Metab , vol.5 , Issue.6 , pp. 415-425
    • Inagaki, T.1
  • 47
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
    • Badman MK, et al. (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5(6):426-437
    • (2007) Cell Metab , vol.5 , Issue.6 , pp. 426-437
    • Badman, M.K.1
  • 48
    • 34447265235 scopus 로고    scopus 로고
    • PPARalpha is a key regulator of hepatic FGF21
    • Lundåsen T, et al. (2007) PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 360(2):437-440
    • (2007) Biochem Biophys Res Commun , vol.360 , Issue.2 , pp. 437-440
    • Lundåsen, T.1
  • 49
    • 63449112017 scopus 로고    scopus 로고
    • Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
    • Purushotham A, et al. (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9(4): 327-338
    • (2009) Cell Metab , vol.9 , Issue.4 , pp. 327-338
    • Purushotham, A.1
  • 50
    • 67649823642 scopus 로고    scopus 로고
    • FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
    • Potthoff MJ, et al. (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 106(26):10853-10858
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.26 , pp. 10853-10858
    • Potthoff, M.J.1
  • 51
    • 84883778996 scopus 로고    scopus 로고
    • FGF21 regulates metabolism and circadian behavior by acting on the nervous system
    • Bookout AL, et al. (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19(9):1147-1152
    • (2013) Nat Med , vol.19 , Issue.9 , pp. 1147-1152
    • Bookout, A.L.1
  • 52
    • 84893849860 scopus 로고    scopus 로고
    • Interplay between FGF21 and insulin action in the liver regulates metabolism
    • Emanuelli B, et al. (2014) Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest 124(2):515-527
    • (2014) J Clin Invest , vol.124 , Issue.2 , pp. 515-527
    • Emanuelli, B.1
  • 53
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577-590
    • (2003) Cell , vol.115 , Issue.5 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.L.3
  • 54
    • 77952562382 scopus 로고    scopus 로고
    • Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
    • Choo AY, et al. (2010) Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38(4):487-499
    • (2010) Mol Cell , vol.38 , Issue.4 , pp. 487-499
    • Choo, A.Y.1
  • 55
    • 84864931233 scopus 로고    scopus 로고
    • Glutaminolysis activates Rag-mTORC1 signaling
    • Durán RV, et al. (2012) Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47(3): 349-358
    • (2012) Mol Cell , vol.47 , Issue.3 , pp. 349-358
    • Durán, R.V.1
  • 56
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi A, et al. (2013) The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153(4):840-854
    • (2013) Cell , vol.153 , Issue.4 , pp. 840-854
    • Csibi, A.1
  • 57
    • 0025454459 scopus 로고
    • Total parenteral nutrition, glutamine, and tumor growth
    • Fischer JE, Chance WT (1990) Total parenteral nutrition, glutamine, and tumor growth. JPEN J Parenter Enteral Nutr 14(Suppl 4):86S-89S
    • (1990) JPEN J Parenter Enteral Nutr , vol.14 , Issue.SUPPL. 4
    • Fischer, J.E.1    Chance, W.T.2
  • 58
    • 0027145124 scopus 로고
    • Glutamine and cancer
    • Souba WW (1993) Glutamine and cancer. Ann Surg 218(6):715-728
    • (1993) Ann Surg , vol.218 , Issue.6 , pp. 715-728
    • Souba, W.W.1
  • 59
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11-20
    • (2008) Cell Metab , vol.7 , Issue.1 , pp. 11-20
    • Deberardinis, R.J.1    Lum, J.J.2    Hatzivassiliou, G.3    Thompson, C.B.4
  • 60
    • 33646854721 scopus 로고    scopus 로고
    • TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase
    • Chong-Kopera H, et al. (2006) TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J Biol Chem 281(13):8313-8316
    • (2006) J Biol Chem , vol.281 , Issue.13 , pp. 8313-8316
    • Chong-Kopera, H.1
  • 61
    • 34250626014 scopus 로고    scopus 로고
    • A mouse model of tuberous sclerosis: Neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival
    • Meikle L, et al. (2007) A mouse model of tuberous sclerosis: Neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 27(21):5546-5558
    • (2007) J Neurosci , vol.27 , Issue.21 , pp. 5546-5558
    • Meikle, L.1
  • 62
    • 4544220704 scopus 로고    scopus 로고
    • Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity
    • Um SH, et al. (2004) Absence of S6K1 protects against age-and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200-205
    • (2004) Nature , vol.431 , Issue.7005 , pp. 200-205
    • Um, S.H.1
  • 63
    • 16844370268 scopus 로고    scopus 로고
    • Regulation of insulin signalling by hyperinsulinaemia: Role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway
    • Ueno M, et al. (2005) Regulation of insulin signalling by hyperinsulinaemia: Role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway. Diabetologia 48(3): 506-518
    • (2005) Diabetologia , vol.48 , Issue.3 , pp. 506-518
    • Ueno, M.1
  • 64
    • 4544343980 scopus 로고    scopus 로고
    • Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies
    • Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14(18):1650-1656
    • (2004) Curr Biol , vol.14 , Issue.18 , pp. 1650-1656
    • Shah, O.J.1    Wang, Z.2    Hunter, T.3
  • 65
    • 5644231992 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
    • Ozcan U, et al. (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457-461
    • (2004) Science , vol.306 , Issue.5695 , pp. 457-461
    • Ozcan, U.1
  • 66
    • 84860468095 scopus 로고    scopus 로고
    • Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling
    • Appenzeller-Herzog C, Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22(5):274-282
    • (2012) Trends Cell Biol , vol.22 , Issue.5 , pp. 274-282
    • Appenzeller-Herzog, C.1    Hall, M.N.2
  • 67
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies JL, et al. (2011) Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 14(1):21-32
    • (2011) Cell Metab , vol.14 , Issue.1 , pp. 21-32
    • Yecies, J.L.1
  • 68
    • 78650848337 scopus 로고    scopus 로고
    • MTORC1 controls fasting-induced ketogenesis and its modulation by ageing
    • Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM (2010) mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 468(7327): 1100-1104
    • (2010) Nature , vol.468 , Issue.7327 , pp. 1100-1104
    • Sengupta, S.1    Peterson, T.R.2    Laplante, M.3    Oh, S.4    Sabatini, D.M.5
  • 69
    • 79953177846 scopus 로고    scopus 로고
    • Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation
    • Kenerson HL, Yeh MM, Yeung RS (2011) Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 6(3):e18075
    • (2011) PLoS ONE , vol.6 , Issue.3
    • Kenerson, H.L.1    Yeh, M.M.2    Yeung, R.S.3
  • 70
    • 0037178787 scopus 로고    scopus 로고
    • The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
    • Preitner N, et al. (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251-260
    • (2002) Cell , vol.110 , Issue.2 , pp. 251-260
    • Preitner, N.1
  • 71
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-α
    • Cho H, et al. (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-α. Nature 485(7396):123-127
    • (2012) Nature , vol.485 , Issue.7396 , pp. 123-127
    • Cho, H.1
  • 72
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher G, et al. (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142(6):943-953
    • (2010) Cell , vol.142 , Issue.6 , pp. 943-953
    • Asher, G.1
  • 73
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng D, et al. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315-1319
    • (2011) Science , vol.331 , Issue.6022 , pp. 1315-1319
    • Feng, D.1
  • 74
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
    • Yoon JC, et al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131-138
    • (2001) Nature , vol.413 , Issue.6852 , pp. 131-138
    • Yoon, J.C.1
  • 75
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
    • Puigserver P, et al. (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423(6939):550-555
    • (2003) Nature , vol.423 , Issue.6939 , pp. 550-555
    • Puigserver, P.1
  • 76
    • 0242349197 scopus 로고    scopus 로고
    • Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis
    • Rhee J, et al. (2003) Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): Requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 100(7):4012-4017
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.7 , pp. 4012-4017
    • Rhee, J.1
  • 77
    • 34249275727 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
    • Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447(7143):477-481
    • (2007) Nature , vol.447 , Issue.7143 , pp. 477-481
    • Liu, C.1    Li, S.2    Liu, T.3    Borjigin, J.4    Lin, J.D.5
  • 78
    • 21144446106 scopus 로고    scopus 로고
    • PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
    • Leone TC, et al. (2005) PGC-1alpha deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3(4):e101
    • (2005) PLoS Biol , vol.3 , Issue.4
    • Leone, T.C.1
  • 79
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20(5):1868-1876
    • (2000) Mol Cell Biol , vol.20 , Issue.5 , pp. 1868-1876
    • Vega, R.B.1    Huss, J.M.2    Kelly, D.P.3
  • 80
    • 2442701392 scopus 로고    scopus 로고
    • PGC-1 promotes insulin resistance in liver through PPAR-alphadependent induction of TRB-3
    • Koo SH, et al. (2004) PGC-1 promotes insulin resistance in liver through PPAR-alphadependent induction of TRB-3. Nat Med 10(5):530-534
    • (2004) Nat Med , vol.10 , Issue.5 , pp. 530-534
    • Koo, S.H.1
  • 81
    • 84874664386 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 is induced by endoplasmic reticulum stress
    • Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC (2013) Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 95(4):692-699
    • (2013) Biochimie , vol.95 , Issue.4 , pp. 692-699
    • Schaap, F.G.1    Kremer, A.E.2    Lamers, W.H.3    Jansen, P.L.4    Gaemers, I.C.5
  • 82
    • 84858311217 scopus 로고    scopus 로고
    • Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation
    • De Sousa-Coelho AL, Marrero PF, Haro D (2012) Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J 443(1): 165-171
    • (2012) Biochem J , vol.443 , Issue.1 , pp. 165-171
    • De Sousa-Coelho, A.L.1    Marrero, P.F.2    Haro, D.3
  • 83
    • 84872057896 scopus 로고    scopus 로고
    • Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
    • Kim KH, et al. (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19(1):83-92
    • (2013) Nat Med , vol.19 , Issue.1 , pp. 83-92
    • Kim, K.H.1
  • 84
    • 78650174233 scopus 로고    scopus 로고
    • The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis
    • Kang YJ, Lu MK, Guan KL (2011) The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis. Cell Death Differ 18(1):133-144
    • (2011) Cell Death Differ , vol.18 , Issue.1 , pp. 133-144
    • Kang, Y.J.1    Lu, M.K.2    Guan, K.L.3
  • 85
    • 84876074055 scopus 로고    scopus 로고
    • Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress
    • Yang C, et al. (2013) Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol 13:67
    • (2013) BMC Gastroenterol , vol.13 , pp. 67
    • Yang, C.1
  • 86
    • 84872272443 scopus 로고    scopus 로고
    • Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex
    • Kim SG, et al. (2013) Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49(1):172-185
    • (2013) Mol Cell , vol.49 , Issue.1 , pp. 172-185
    • Kim, S.G.1
  • 87
    • 84864878724 scopus 로고    scopus 로고
    • Modulation of glutamine metabolism by the PI(3)KPKB-FOXO network regulates autophagy
    • van der Vos KE, et al. (2012) Modulation of glutamine metabolism by the PI(3)KPKB-FOXO network regulates autophagy. Nat Cell Biol 14(8):829-837
    • (2012) Nat Cell Biol , vol.14 , Issue.8 , pp. 829-837
    • Van Der Vos, K.E.1
  • 88
    • 54849426651 scopus 로고    scopus 로고
    • Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
    • Bentzinger CF, et al. (2008) Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8(5): 411-424
    • (2008) Cell Metab , vol.8 , Issue.5 , pp. 411-424
    • Bentzinger, C.F.1
  • 89
    • 36749081539 scopus 로고    scopus 로고
    • MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
    • Cunningham JT, et al. (2007) mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450(7170):736-740
    • (2007) Nature , vol.450 , Issue.7170 , pp. 736-740
    • Cunningham, J.T.1
  • 90
    • 76049093949 scopus 로고    scopus 로고
    • PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis
    • Estall JL, et al. (2009) PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis. Proc Natl Acad Sci USA 106(52): 22510-22515
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.52 , pp. 22510-22515
    • Estall, J.L.1
  • 91
    • 77952334180 scopus 로고    scopus 로고
    • Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha
    • Wang Y, Solt LA, Burris TP (2010) Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J Biol Chem 285(21): 15668-15673
    • (2010) J Biol Chem , vol.285 , Issue.21 , pp. 15668-15673
    • Wang, Y.1    Solt, L.A.2    Burris, T.P.3
  • 92
    • 84859090262 scopus 로고    scopus 로고
    • Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice
    • Menon S, et al. (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5(217):ra24.
    • (2012) Sci Signal , vol.5 , Issue.217
    • Menon, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.