메뉴 건너뛰기




Volumn 36, Issue 4, 2012, Pages 480-513

Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting

Author keywords

forecasting; modelling; network; neural; river

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BENCHMARKING; DATA SET; DRAINAGE NETWORK; FORECASTING METHOD; HYDROLOGICAL MODELING; PARADIGM SHIFT; RAINFALL-RUNOFF MODELING; RIVER FLOW; STREAMFLOW;

EID: 84863764389     PISSN: 03091333     EISSN: None     Source Type: Journal    
DOI: 10.1177/0309133312444943     Document Type: Article
Times cited : (247)

References (279)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart RJ,See LM.Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments.Hydrological Processes. 2000;14:2157-2172.
    • (2000) Hydrological Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.M.2
  • 2
    • 0036698601 scopus 로고    scopus 로고
    • Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments
    • Abrahart RJ,See LM.Multi-model data fusion for river flow forecasting: An evaluation of six alternative methods based on two contrasting catchments.Hydrology and Earth System Sciences. 2002;6:655-670.
    • (2002) Hydrology and Earth System Sciences , vol.6 , pp. 655-670
    • Abrahart, R.J.1    See, L.M.2
  • 3
    • 34648849221 scopus 로고    scopus 로고
    • Neural network modelling of non-linear hydrological relationships
    • Abrahart RJ,See LM.Neural network modelling of non-linear hydrological relationships.Hydrology and Earth System Sciences. 2007;11:1563-1579.
    • (2007) Hydrology and Earth System Sciences , vol.11 , pp. 1563-1579
    • Abrahart, R.J.1    See, L.M.2
  • 4
    • 69949135406 scopus 로고    scopus 로고
    • Discussion of 'An explicit neural network formulation for evapotranspiration
    • Abrahart RJ,Ab Ghani N,Swan J.Discussion of 'An explicit neural network formulation for evapotranspiration'.Hydrological Sciences Journal. 2009;54:382-388.
    • (2009) Hydrological Sciences Journal , vol.54 , pp. 382-388
    • Abrahart, R.J.1    Ab Ghani, N.2    Swan, J.3
  • 5
    • 34249794005 scopus 로고    scopus 로고
    • Timing error correction procedure applied to neural network rainfall-runoff modelling
    • Abrahart RJ,Heppenstall AJ,See LM.Timing error correction procedure applied to neural network rainfall-runoff modelling.Hydrological Sciences Journal. 2007a;52:414-431.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 414-431
    • Abrahart, R.J.1    Heppenstall, A.J.2    See, L.M.3
  • 6
    • 84856404995 scopus 로고    scopus 로고
    • Discussion of 'Reservoir Computing approach to Great Lakes water level forecasting' by P. Coulibaly
    • [J. Hydrol. 381 (2010) 76-88]
    • Abrahart RJ,Mount NJ,Shamseldin AY.Discussion of 'Reservoir Computing approach to Great Lakes water level forecasting' by P. Coulibaly [J. Hydrol. 381 (2010) 76-88].Journal of Hydrology. 2012a;422-423:76-80.
    • (2012) Journal of Hydrology , vol.422-423 , pp. 76-80
    • Abrahart, R.J.1    Mount, N.J.2    Shamseldin, A.Y.3
  • 9
    • 34547955684 scopus 로고    scopus 로고
    • Neuroevolution applied to river level forecasting under winter flood and drought conditions
    • Abrahart RJ,See LM,Heppenstall AJ.Neuroevolution applied to river level forecasting under winter flood and drought conditions.Journal of Intelligent Systems. 2007b;16:373-386.
    • (2007) Journal of Intelligent Systems , vol.16 , pp. 373-386
    • Abrahart, R.J.1    See, L.M.2    Heppenstall, A.J.3
  • 10
    • 0742267129 scopus 로고    scopus 로고
    • Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model
    • Abrahart RJ,See LM,Kneale PE.Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model.Journal of Hydroinformatics. 1999;1:103-114.
    • (1999) Journal of Hydroinformatics , vol.1 , pp. 103-114
    • Abrahart, R.J.1    See, L.M.2    Kneale, P.E.3
  • 11
    • 79953176278 scopus 로고    scopus 로고
    • Discussion of 'Evapotranspiration modelling using support vector machines
    • Abrahart RJ,Dawson CW,See LM, et al.Discussion of 'Evapotranspiration modelling using support vector machines'.Hydrological Sciences Journal. 2010a;55:1442-1450.
    • (2010) Hydrological Sciences Journal , vol.55 , pp. 1442-1450
    • Abrahart, R.J.1    Dawson, C.W.2    See, L.M.3
  • 14
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and cross-wavelet transform models
    • Adamowski JF.River flow forecasting using wavelet and cross-wavelet transform models.Hydrological Processes. 2008a;22:4877-4891.
    • (2008) Hydrological Processes , vol.22 , pp. 4877-4891
    • Adamowski, J.F.1
  • 15
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski JF.Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis.Journal of Hydrology. 2008b;353:247-266.
    • (2008) Journal of Hydrology , vol.353 , pp. 247-266
    • Adamowski, J.F.1
  • 16
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J,Sun K.Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds.Journal of Hydrology. 2010;390:85-91.
    • (2010) Journal of Hydrology , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 17
    • 28344455955 scopus 로고    scopus 로고
    • An artificial neural network model for generating hydrograph from hydro-meteorological parameters
    • Ahmad S,Simonovic SP.An artificial neural network model for generating hydrograph from hydro-meteorological parameters.Journal of Hydrology. 2005;315:236-251.
    • (2005) Journal of Hydrology , vol.315 , pp. 236-251
    • Ahmad, S.1    Simonovic, S.P.2
  • 18
    • 33947641864 scopus 로고    scopus 로고
    • An intelligent decision support system for management of flood
    • Ahmad S,Simonovic SP.An intelligent decision support system for management of flood.Water Resources Management. 2006;20:391-410.
    • (2006) Water Resources Management , vol.20 , pp. 391-410
    • Ahmad, S.1    Simonovic, S.P.2
  • 19
    • 34547728744 scopus 로고    scopus 로고
    • Discussion of 'Generalized regression neural networks for evapotranspiration modelling' by O. Kişi
    • Aksoy H,Güven A,Aytek A, et al.Discussion of 'Generalized regression neural networks for evapotranspiration modelling' by O. Kişi.Hydrological Sciences Journal. 2007;52:825-828.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 825-828
    • Aksoy, H.1    Güven, A.2    Aytek, A.3
  • 20
    • 48649088956 scopus 로고    scopus 로고
    • Evapotranspiration modelling from climatic data using neural network computing technique
    • Comment on Kişi O. 2007
    • Aksoy H,Güven A,Aytek A, et al.Comment on Kişi O. 2007 'Evapotranspiration modelling from climatic data using neural network computing technique'.Hydrological Processes. 2008;22:2715-2717.
    • (2008) Hydrological Processes , vol.22 , pp. 2715-2717
    • Aksoy, H.1    Güven, A.2    Aytek, A.3
  • 21
    • 78650584376 scopus 로고    scopus 로고
    • Fuzzy neural networks for water level and discharge forecasting with uncertainty
    • Alvisi S,Franchini M.Fuzzy neural networks for water level and discharge forecasting with uncertainty.Environmental Modelling and Software. 2011;26:523-537.
    • (2011) Environmental Modelling and Software , vol.26 , pp. 523-537
    • Alvisi, S.1    Franchini, M.2
  • 22
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • Artificial neural networks in hydrology. I: Preliminary concepts.ASCE Journal of Hydrologic Engineering. 2000a;5:115-123.
    • (2000) ASCE Journal of Hydrologic Engineering , vol.5 , pp. 115-123
  • 23
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • Artificial neural networks in hydrology. II: Hydrologic applications.ASCE Journal of Hydrologic Engineering. 2000b;5:124-137.
    • (2000) ASCE Journal of Hydrologic Engineering , vol.5 , pp. 124-137
  • 24
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • Anctil F,Lauzon N.Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions.Hydrology and Earth System Sciences. 2004;8:940-958.
    • (2004) Hydrology and Earth System Sciences , vol.8 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 25
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil F,Tape DG.An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition.Journal of Environmental Engineering and Science. 2004;3 (S1): S121-S128.
    • (2004) Journal of Environmental Engineering and Science , vol.3 , Issue.S1
    • Anctil, F.1    Tape, D.G.2
  • 26
    • 50049086912 scopus 로고    scopus 로고
    • Added gains of soil moisture content observations for streamflow predictions using neural networks
    • Anctil F,Lauzon N,Filion M.Added gains of soil moisture content observations for streamflow predictions using neural networks.Journal of Hydrology. 2008;359:225-234.
    • (2008) Journal of Hydrology , vol.359 , pp. 225-234
    • Anctil, F.1    Lauzon, N.2    Filion, M.3
  • 27
    • 1142294041 scopus 로고    scopus 로고
    • A soil moisture index as an auxiliary ANN input for stream flow forecasting
    • Anctil F,Michel C,Perrin C,Andreassian V.A soil moisture index as an auxiliary ANN input for stream flow forecasting.Journal of Hydrology. 2004a;286:155-167.
    • (2004) Journal of Hydrology , vol.286 , pp. 155-167
    • Anctil, F.1    Michel, C.2    Perrin, C.3    Andreassian, V.4
  • 29
    • 1442291113 scopus 로고    scopus 로고
    • Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models
    • Anctil F,Perrin C,Andreassian V.Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models.Environmental Modelling and Software. 2004b;19:357-368.
    • (2004) Environmental Modelling and Software , vol.19 , pp. 357-368
    • Anctil, F.1    Perrin, C.2    Andreassian, V.3
  • 30
    • 33645158824 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks technique: A Blue Nile catchment case study
    • Antar MA,Elassiouti I,Allam MN.Rainfall-runoff modelling using artificial neural networks technique: A Blue Nile catchment case study.Hydrological Processes. 2006;20:1201-1216.
    • (2006) Hydrological Processes , vol.20 , pp. 1201-1216
    • Antar, M.A.1    Elassiouti, I.2    Allam, M.N.3
  • 31
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil M,Kita I,Yano A,Nishiyama S.A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff.Journal of Hydrology. 2007;337:22-34.
    • (2007) Journal of Hydrology , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 33
    • 70350759681 scopus 로고    scopus 로고
    • Ensemble streamflow forecast: A GLUE-based neural network approach
    • Asefa T.Ensemble streamflow forecast: A GLUE-based neural network approach.Journal of the American Water Resources Association. 2009;45:1155-1163.
    • (2009) Journal of the American Water Resources Association , vol.45 , pp. 1155-1163
    • Asefa, T.1
  • 35
    • 84863863577 scopus 로고    scopus 로고
    • Data mining in hydrology
    • Babovic V.Data mining in hydrology.Hydrological Processes. 2005;19:1511-1515.
    • (2005) Hydrological Processes , vol.19 , pp. 1511-1515
    • Babovic, V.1
  • 38
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in runoff modelling
    • Behzad M,Asghari K,Eazi M,Palhang M.Generalization performance of support vector machines and neural networks in runoff modelling.Expert Systems with Applications. 2009;36:7624-7629.
    • (2009) Expert Systems with Applications , vol.36 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Eazi, M.3    Palhang, M.4
  • 39
    • 0015573239 scopus 로고
    • Development of a conceptual deterministic rainfall-runoff model
    • Bergström S,Forsman A.Development of a conceptual deterministic rainfall-runoff model.Nordic Hydrology. 1973;4:147-170.
    • (1973) Nordic Hydrology , vol.4 , pp. 147-170
    • Bergström, S.1    Forsman, A.2
  • 40
    • 77952241177 scopus 로고    scopus 로고
    • Advances in ungauged streamflow prediction using artificial neural networks
    • Besaw LE,Rizzo DM,Bierman PR,Hackett WR.Advances in ungauged streamflow prediction using artificial neural networks.Journal of Hydrology. 2010;386:27-37.
    • (2010) Journal of Hydrology , vol.386 , pp. 27-37
    • Besaw, L.E.1    Rizzo, D.M.2    Bierman, P.R.3    Hackett, W.R.4
  • 41
    • 77950360747 scopus 로고    scopus 로고
    • An experiment on the evolution of an ensemble of neural networks for streamflow forecasting
    • Boucher MA,Laliberté JP,Anctil F.An experiment on the evolution of an ensemble of neural networks for streamflow forecasting.Hydrology and Earth System Sciences. 2010;14:603-612.
    • (2010) Hydrology and Earth System Sciences , vol.14 , pp. 603-612
    • Boucher, M.A.1    Laliberté, J.P.2    Anctil, F.3
  • 42
    • 68949135430 scopus 로고    scopus 로고
    • Tools for the assessment of hydrological ensemble forecasts obtained by neural networks
    • Boucher MA,Perreault L,Anctil F.Tools for the assessment of hydrological ensemble forecasts obtained by neural networks.Journal of Hydroinformatics. 2009;11:297-307.
    • (2009) Journal of Hydroinformatics , vol.11 , pp. 297-307
    • Boucher, M.A.1    Perreault, L.2    Anctil, F.3
  • 43
    • 10644292718 scopus 로고    scopus 로고
    • Data transformation for neural network models in water resources applications
    • Bowden GJ,Dandy GC,Maier HR.Data transformation for neural network models in water resources applications.Journal of Hydroinformatics. 2003;5:245-258.
    • (2003) Journal of Hydroinformatics , vol.5 , pp. 245-258
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 44
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - background and methodology
    • Bowden GJ,Dandy GC,Maier HR.Input determination for neural network models in water resources applications. Part 1 - background and methodology.Journal of Hydrology. 2005a;301:75-92.
    • (2005) Journal of Hydrology , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 45
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden GJ,Maier HR,Dandy GC.Optimal division of data for neural network models in water resources applications.Water Resources Research. 2002;38:1010.
    • (2002) Water Resources Research , vol.38 , pp. 1010
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 46
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 2 - Case study: Forecasting salinity in a river
    • Bowden GJ,Maier HR,Dandy GC.Input determination for neural network models in water resources applications. Part 2 - Case study: Forecasting salinity in a river.Journal of Hydrology. 2005b;301:93-107.
    • (2005) Journal of Hydrology , vol.301 , pp. 93-107
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 47
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and non-parametric methods for improving realtime flood forecasting through conceptual hydrological models
    • Brath A,Montanari A,Toth E.Neural networks and non-parametric methods for improving realtime flood forecasting through conceptual hydrological models.Hydrology and Earth System Sciences. 2002;6:627-640.
    • (2002) Hydrology and Earth System Sciences , vol.6 , pp. 627-640
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 48
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressor
    • Breiman L.Stacked regressor.Machine Learning. 1996;24:49-64.
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 50
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning
    • Cannas B,Fanni A,See L,Sias G.Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning.Physics and Chemistry of the Earth. 2006;31:1164-1171.
    • (2006) Physics and Chemistry of the Earth , vol.31 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 52
    • 84954358683 scopus 로고    scopus 로고
    • Jordan recurrent neural network versus IHACRES in modelling daily streamflows
    • Carcano EC,Bartolini P,Muselli M,Piroddi L.Jordan recurrent neural network versus IHACRES in modelling daily streamflows.Journal of Hydrology. 2008;362:291-307.
    • (2008) Journal of Hydrology , vol.362 , pp. 291-307
    • Carcano, E.C.1    Bartolini, P.2    Muselli, M.3    Piroddi, L.4
  • 53
    • 72149129445 scopus 로고    scopus 로고
    • A statistical rainfall-runoff mixture model with heavy-tailed components
    • Carreau J,Naveau P,Sauquet E.A statistical rainfall-runoff mixture model with heavy-tailed components.Water Resources Research. 2009;45:W10437.
    • (2009) Water Resources Research , vol.45
    • Carreau, J.1    Naveau, P.2    Sauquet, E.3
  • 54
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang F-J,Chen Y-C.A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction.Journal of Hydrology. 2001;245:153-164.
    • (2001) Journal of Hydrology , vol.245 , pp. 153-164
    • Chang, F.-J.1    Chen, Y.-C.2
  • 55
    • 47949123659 scopus 로고    scopus 로고
    • Counterpropagation fuzzy-neural network for city flood control system
    • Chang F-J,Chang K-Y,Chang L-C.Counterpropagation fuzzy-neural network for city flood control system.Journal of Hydrology. 2008;358:24-34.
    • (2008) Journal of Hydrology , vol.358 , pp. 24-34
    • Chang, F.-J.1    Chang, K.-Y.2    Chang, L.-C.3
  • 56
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F-J,Chang L-C,Huang HL.Real-time recurrent learning neural network for stream-flow forecasting.Hydrological Processes. 2002;16:2577-2588.
    • (2002) Hydrological Processes , vol.16 , pp. 2577-2588
    • Chang, F.-J.1    Chang, L.-C.2    Huang, H.L.3
  • 57
    • 33947502845 scopus 로고    scopus 로고
    • Enforced self-organizing map neural networks for river flood forecasting
    • Chang F-J,Chang L-C,Wang Y-S.Enforced self-organizing map neural networks for river flood forecasting.Hydrological Processes. 2007;21:741-749.
    • (2007) Hydrological Processes , vol.21 , pp. 741-749
    • Chang, F.-J.1    Chang, L.-C.2    Wang, Y.-S.3
  • 58
    • 0035864789 scopus 로고    scopus 로고
    • Counterpropagation fuzzy-neural network for streamflow reconstruction
    • Chang F-J,Hu H-F,Chen Y-C.Counterpropagation fuzzy-neural network for streamflow reconstruction.Hydrological Processes. 2001;15:219-232.
    • (2001) Hydrological Processes , vol.15 , pp. 219-232
    • Chang, F.-J.1    Hu, H.-F.2    Chen, Y.-C.3
  • 59
    • 0842349306 scopus 로고    scopus 로고
    • A two-step-ahead recurrent neural network for stream-flow forecasting
    • Chang L-C,Chang F-J,Chiang Y-M.A two-step-ahead recurrent neural network for stream-flow forecasting.Hydrological Processes. 2004;18:81-92.
    • (2004) Hydrological Processes , vol.18 , pp. 81-92
    • Chang, L.-C.1    Chang, F.-J.2    Chiang, Y.-M.3
  • 60
    • 68749110869 scopus 로고    scopus 로고
    • Auto-configuring radial basis function networks for chaotic time series and flood forecasting
    • Chang L-C,Chang F-J,Wang Y-P.Auto-configuring radial basis function networks for chaotic time series and flood forecasting.Hydrological Processes. 2009;23:2450-2459.
    • (2009) Hydrological Processes , vol.23 , pp. 2450-2459
    • Chang, L.-C.1    Chang, F.-J.2    Wang, Y.-P.3
  • 61
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau KW.Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River.Journal of Hydrology. 2006;329:363-367.
    • (2006) Journal of Hydrology , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 62
    • 35349010023 scopus 로고    scopus 로고
    • A split-step particle swarm optimization algorithm in river stage forecasting
    • Chau KW.A split-step particle swarm optimization algorithm in river stage forecasting.Journal of Hydrology. 2007;346:131-135.
    • (2007) Journal of Hydrology , vol.346 , pp. 131-135
    • Chau, K.W.1
  • 64
    • 77950867287 scopus 로고    scopus 로고
    • Development and application of a decision group Back-Propagation Neural Network for flood forecasting
    • Chen C-S,Chen BP-T,Chou FN-F,Yang C-C.Development and application of a decision group Back-Propagation Neural Network for flood forecasting.Journal of Hydrology. 2010a;385:173-182.
    • (2010) Journal of Hydrology , vol.385 , pp. 173-182
    • Chen, C.-S.1    Chen, B.P.-T.2    Chou, F.N.-F.3    Yang, C.-C.4
  • 65
    • 77957714558 scopus 로고    scopus 로고
    • Spatial information-based back-propagation neural network modeling for outflow estimation of ungauged catchment
    • Chen C-S,Chou FN-F,Chen BP-T.Spatial information-based back-propagation neural network modeling for outflow estimation of ungauged catchment.Water Resources Management. 2010b;24:4175-4197.
    • (2010) Water Resources Management , vol.24 , pp. 4175-4197
    • Chen, C.-S.1    Chou, F.N.-F.2    Chen, B.P.-T.3
  • 66
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • Chen J,Adams BJ.Integration of artificial neural networks with conceptual models in rainfall-runoff modeling.Journal of Hydrology. 2006a;318:232-249.
    • (2006) Journal of Hydrology , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 67
    • 33747308412 scopus 로고    scopus 로고
    • Semidistributed form of the tank model coupled with artificial neural networks
    • Chen J,Adams BJ.Semidistributed form of the tank model coupled with artificial neural networks.ASCE Journal of Hydrologic Engineering. 2006b;11:408-417.
    • (2006) ASCE Journal of Hydrologic Engineering , vol.11 , pp. 408-417
    • Chen, J.1    Adams, B.J.2
  • 68
  • 69
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen Y-H,Chang F-J.Evolutionary artificial neural networks for hydrological systems forecasting.Journal of Hydrology. 2009;367:125-137.
    • (2009) Journal of Hydrology , vol.367 , pp. 125-137
    • Chen, Y.-H.1    Chang, F.-J.2
  • 70
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic feedback neural networks for rainfall-runoff modeling
    • Chiang Y-M,Chang LC,Chang FJ.Comparison of static-feedforward and dynamic feedback neural networks for rainfall-runoff modeling.Journal of Hydrology. 2004;290:297-311.
    • (2004) Journal of Hydrology , vol.290 , pp. 297-311
    • Chiang, Y.-M.1    Chang, L.C.2    Chang, F.J.3
  • 71
    • 65949120718 scopus 로고    scopus 로고
    • Developing a hybrid multi-model for peak flood forecasting
    • Chidthong Y,Tanaka H,Supharatid S.Developing a hybrid multi-model for peak flood forecasting.Hydrological Processes. 2009;23:1725-1738.
    • (2009) Hydrological Processes , vol.23 , pp. 1725-1738
    • Chidthong, Y.1    Tanaka, H.2    Supharatid, S.3
  • 72
    • 77955266359 scopus 로고    scopus 로고
    • Improving event-based rainfall-runoff modeling using a combined artificial neural network-kinematic wave approach
    • Chua LHC,Wong TSW.Improving event-based rainfall-runoff modeling using a combined artificial neural network-kinematic wave approach.Journal of Hydrology. 2010;390:92-107.
    • (2010) Journal of Hydrology , vol.390 , pp. 92-107
    • Chua, L.H.C.1    Wong, T.S.W.2
  • 73
    • 17444403520 scopus 로고    scopus 로고
    • An application of pruning in the design of neural networks for real time flood forecasting
    • Corani G,Guariso G.An application of pruning in the design of neural networks for real time flood forecasting.Neural Computing and Applications. 2005;14:66-77.
    • (2005) Neural Computing and Applications , vol.14 , pp. 66-77
    • Corani, G.1    Guariso, G.2
  • 74
    • 34249775808 scopus 로고    scopus 로고
    • Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting
    • Corzo G,Solomatine D.Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting.Hydrological Sciences Journal. 2007a;52:491-507.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 491-507
    • Corzo, G.1    Solomatine, D.2
  • 75
    • 34249885607 scopus 로고    scopus 로고
    • Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting
    • Corzo G,Solomatine D.Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting.Neural Networks. 2007b;20:528-536.
    • (2007) Neural Networks , vol.20 , pp. 528-536
    • Corzo, G.1    Solomatine, D.2
  • 76
    • 77951856333 scopus 로고    scopus 로고
    • Combining semi-distributed process-based and data-driven models in flow simulation: A case study of the Meuse river basin
    • Corzo GA,Solomatine DP,Hidayat, et al.Combining semi-distributed process-based and data-driven models in flow simulation: A case study of the Meuse river basin.Hydrology and Earth System Sciences. 2009;13:1619-1634.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 1619-1634
    • Corzo, G.A.1    Solomatine, D.P.2    Hidayat3
  • 77
    • 73649127943 scopus 로고    scopus 로고
    • Reservoir computing approach to Great Lakes water level forecasting
    • Coulibaly P.Reservoir computing approach to Great Lakes water level forecasting.Journal of Hydrology. 2010;381:76-88.
    • (2010) Journal of Hydrology , vol.381 , pp. 76-88
    • Coulibaly, P.1
  • 78
    • 0032829433 scopus 로고    scopus 로고
    • Hydrological forecasting using artificial neural networks: The state of the art (in French)
    • Coulibaly P,Anctil F,Bobée B.Hydrological forecasting using artificial neural networks: The state of the art (in French).Canadian Journal of Civil Engineering. 1999;26:293-304.
    • (1999) Canadian Journal of Civil Engineering , vol.26 , pp. 293-304
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 79
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P,Anctil F,Bobée B.Daily reservoir inflow forecasting using artificial neural networks with stopped training approach.Journal of Hydrology. 2000;230:244-257.
    • (2000) Journal of Hydrology , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 81
    • 0035876630 scopus 로고    scopus 로고
    • Improving extreme hydrologic events forecasting using a new criterion for ANN selection
    • Coulibaly P,Anctil B,Bobée B.Improving extreme hydrologic events forecasting using a new criterion for ANN selection.Hydrological Processes. 2001b;15:1533-1536.
    • (2001) Hydrological Processes , vol.15 , pp. 1533-1536
    • Coulibaly, P.1    Anctil, B.2    Bobée, B.3
  • 83
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson CW,Wilby R.An artificial neural network approach to rainfall-runoff modelling.Hydrological Sciences Journal. 1998;43:47-65.
    • (1998) Hydrological Sciences Journal , vol.43 , pp. 47-65
    • Dawson, C.W.1    Wilby, R.2
  • 84
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson CW,Wilby RL.Hydrological modelling using artificial neural networks.Progress in Physical Geography. 2001;25:80-108.
    • (2001) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 85
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson CW,Abrahart RJ,See LM.HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts.Environmental Modelling and Software. 2007;22:1034-1052.
    • (2007) Environmental Modelling and Software , vol.22 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 86
    • 77957751049 scopus 로고    scopus 로고
    • HydroTest: Further development of a web resource for the standardised assessment of hydrological models
    • Dawson CW,Abrahart RJ,See LM.HydroTest: Further development of a web resource for the standardised assessment of hydrological models.Environmental Modelling and Software. 2010;25:1481-1482.
    • (2010) Environmental Modelling and Software , vol.25 , pp. 1481-1482
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 87
    • 0036698154 scopus 로고    scopus 로고
    • An evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China
    • Dawson CW,Harpham C,Wilby RL,Chen Y.An evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China.Hydrology and Earth Systems Sciences. 2002;6:619-626.
    • (2002) Hydrology and Earth Systems Sciences , vol.6 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 88
    • 33645996016 scopus 로고    scopus 로고
    • Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England
    • Dawson CW,See LM,Abrahart RJ,Heppenstall AJ.Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England.Neural Networks. 2006;19:236-247.
    • (2006) Neural Networks , vol.19 , pp. 236-247
    • Dawson, C.W.1    See, L.M.2    Abrahart, R.J.3    Heppenstall, A.J.4
  • 91
    • 34249810384 scopus 로고    scopus 로고
    • Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model
    • De Vos NJ,Rientjes THM.Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model.Hydrological Sciences Journal. 2007;52:397-413.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 397-413
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 92
    • 53849113979 scopus 로고    scopus 로고
    • Multi-objective training of artificial neural networks for rainfall-runoff modelling
    • De Vos NJ,Rientjes THM.Multi-objective training of artificial neural networks for rainfall-runoff modelling.Water Resources Research. 2008;44:W08434.
    • (2008) Water Resources Research , vol.44
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 93
    • 33645989739 scopus 로고    scopus 로고
    • Temporal neural networks for downscaling climate variability and extremes
    • Dibike YB,Coulibaly P.Temporal neural networks for downscaling climate variability and extremes.Neural Networks. 2006;19:135-144.
    • (2006) Neural Networks , vol.19 , pp. 135-144
    • Dibike, Y.B.1    Coulibaly, P.2
  • 95
    • 79959802286 scopus 로고    scopus 로고
    • The search for orthogonal hydrological modelling metrics: A case study of 20 monitoring stations in Colombia
    • Domínguez E,Dawson CW,Ramírez A,Abrahart RJ.The search for orthogonal hydrological modelling metrics: A case study of 20 monitoring stations in Colombia.Journal of Hydroinformatics. 2011;13:429-442.
    • (2011) Journal of Hydroinformatics , vol.13 , pp. 429-442
    • Domínguez, E.1    Dawson, C.W.2    Ramírez, A.3    Abrahart, R.J.4
  • 96
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A,Taha MR,Noureldin A.A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam.Water Resources Management. 2007;21:533-556.
    • (2007) Water Resources Management , vol.21 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 97
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology
    • Elshorbagy A,Corzo G,Srinivasulu S,Solomatine DP.Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology.Hydrology and Earth System Sciences. 2010a;14:1931-1941.
    • (2010) Hydrology and Earth System Sciences , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 98
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
    • Elshorbagy A,Corzo G,Srinivasulu S,Solomatine DP.Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application.Hydrology and Earth System Sciences. 2010b;14:1943-1961.
    • (2010) Hydrology and Earth System Sciences , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 99
    • 60649110244 scopus 로고    scopus 로고
    • Investigation of internal functioning of the radial-basis-function neural network river flow forecasting models
    • Fernando DAK,Shamseldin AY.Investigation of internal functioning of the radial-basis-function neural network river flow forecasting models.ASCE Journal of Hydrologic Engineering. 2009;14:286-292.
    • (2009) ASCE Journal of Hydrologic Engineering , vol.14 , pp. 286-292
    • Fernando, D.A.K.1    Shamseldin, A.Y.2
  • 100
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • Firat M.Comparison of artificial intelligence techniques for river flow forecasting.Hydrology and Earth System Sciences. 2008;12:123-139.
    • (2008) Hydrology and Earth System Sciences , vol.12 , pp. 123-139
    • Firat, M.1
  • 101
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • Firat M,Güngör M.River flow estimation using adaptive neuro fuzzy inference system.Mathematics and Computers in Simulation. 2007;75:87-96.
    • (2007) Mathematics and Computers in Simulation , vol.75 , pp. 87-96
    • Firat, M.1    Güngör, M.2
  • 102
    • 46449123911 scopus 로고    scopus 로고
    • Hydrological time-series modelling using an adaptive neuro-fuzzy inference system
    • Firat M,Güngör M.Hydrological time-series modelling using an adaptive neuro-fuzzy inference system.Hydrological Processes. 2008;22:2122-2132.
    • (2008) Hydrological Processes , vol.22 , pp. 2122-2132
    • Firat, M.1    Güngör, M.2
  • 104
    • 0029659801 scopus 로고    scopus 로고
    • Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach
    • Freer J,Beven K,Ambroise B.Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach.Water Resources Research. 1996;32:2161-2173.
    • (1996) Water Resources Research , vol.32 , pp. 2161-2173
    • Freer, J.1    Beven, K.2    Ambroise, B.3
  • 105
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalisation of on-line learning and an application of boosting
    • Freund Y,Schapire R.A decision-theoretic generalisation of on-line learning and an application of boosting.Journal of Computer and System Sciences. 1997;55:119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 106
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH.Multivariate adaptive regression splines.Annals of Statistics. 1991;19:1-67.
    • (1991) Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 107
    • 31044452344 scopus 로고    scopus 로고
    • Using neural networks for parameter estimation in ground water
    • Garcia LA,Shigidi A.Using neural networks for parameter estimation in ground water.Journal of Hydrology. 2006;318:215-231.
    • (2006) Journal of Hydrology , vol.318 , pp. 215-231
    • Garcia, L.A.1    Shigidi, A.2
  • 108
    • 1642414601 scopus 로고    scopus 로고
    • Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?
    • Gaume E,Gosset R.Over-parameterisation, a major obstacle to the use of artificial neural networks in hydrology?.Hydrology and Earth Systems Sciences. 2003;7:693-706.
    • (2003) Hydrology and Earth Systems Sciences , vol.7 , pp. 693-706
    • Gaume, E.1    Gosset, R.2
  • 109
    • 11144315254 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using adaptive neuro-fuzzy systems
    • Gautam DK,Holz KP.Rainfall-runoff modelling using adaptive neuro-fuzzy systems.Journal of Hydroinformatics. 2001;3:3-10.
    • (2001) Journal of Hydroinformatics , vol.3 , pp. 3-10
    • Gautam, D.K.1    Holz, K.P.2
  • 110
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • Giustolisi O,Laucelli D.Improving generalization of artificial neural networks in rainfall-runoff modelling.Hydrological Sciences Journal. 2005;50:439-457.
    • (2005) Hydrological Sciences Journal , vol.50 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 121
    • 0027306481 scopus 로고
    • Kuo CY, ed., New York: American Society of Civil Engineers
    • Hjelmfelt AT,Wang MEngineering Hydrology (1993). Kuo CY, ed. New York: American Society of Civil Engineers; 1993:756-759.
    • (1993) Engineering Hydrology (1993) , pp. 756-759
    • Hjelmfelt, A.T.1    Wang, M.2
  • 122
    • 70749121051 scopus 로고    scopus 로고
    • Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data
    • Holländer HM,Blume T,Bormann H, et al.Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data.Hydrology and Earth System Sciences. 2009;13:2069-2094.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 2069-2094
    • Holländer, H.M.1    Blume, T.2    Bormann, H.3
  • 123
    • 57349188393 scopus 로고    scopus 로고
    • Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
    • Hong Y-ST,White PA.Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm.Advances in Water Resources. 2009;32:110-119.
    • (2009) Advances in Water Resources , vol.32 , pp. 110-119
    • Hong, Y.-S.T.1    White, P.A.2
  • 124
    • 0002941592 scopus 로고
    • Implicit niching in a learning classifier system: Nature's way
    • Horn J,Goldberg DE,Deb K.Implicit niching in a learning classifier system: Nature's way.Evolutionary Computation. 1994;2:27-66.
    • (1994) Evolutionary Computation , vol.2 , pp. 27-66
    • Horn, J.1    Goldberg, D.E.2    Deb, K.3
  • 125
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis
    • Hsu K-L,Gupta HV,Gao X, et al.Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis.Water Resources Research. 2002;38:1302.
    • (2002) Water Resources Research , vol.38 , pp. 1302
    • Hsu, K.-L.1    Gupta, H.V.2    Gao, X.3
  • 126
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K-L,Gupta HV,Sorooshian S.Artificial neural network modeling of the rainfall-runoff process.Water Resources Research. 1995;31:2517-2530.
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 127
    • 77953710276 scopus 로고    scopus 로고
    • Longitudinal stage profiles forecasting in rivers for flash floods
    • Hsu M-H,Lin S-H,Fu J-C, et al.Longitudinal stage profiles forecasting in rivers for flash floods.Journal of Hydrology. 2010;388:426-437.
    • (2010) Journal of Hydrology , vol.388 , pp. 426-437
    • Hsu, M.-H.1    Lin, S.-H.2    Fu, J.-C.3
  • 128
    • 34547265730 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using principal component analysis and neural network
    • Hu T,Wu F,Zhang X.Rainfall-runoff modeling using principal component analysis and neural network.Nordic Hydrology. 2007;38:235-248.
    • (2007) Nordic Hydrology , vol.38 , pp. 235-248
    • Hu, T.1    Wu, F.2    Zhang, X.3
  • 129
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu TS,Lam KC,Ng ST.River flow time series prediction with a range-dependent neural network.Hydrological Sciences Journal. 2001;46:729-745.
    • (2001) Hydrological Sciences Journal , vol.46 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 130
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • Huang W,Xu B,Chan-Hilton A.Forecasting flows in Apalachicola River using neural networks.Hydrological Processes. 2004;18:2545-2564.
    • (2004) Hydrological Processes , vol.18 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Chan-Hilton, A.3
  • 131
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalisation beyond the calibration range
    • Imrie CE,Durucan S,Korre A.River flow prediction using artificial neural networks: Generalisation beyond the calibration range.Journal of Hydrology. 2000;233:138-153.
    • (2000) Journal of Hydrology , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 132
    • 0015142058 scopus 로고
    • Polynomial theory of complex system. IEEE Transactions on Systems
    • Ivakhnenko AG.Polynomial theory of complex system. IEEE Transactions on Systems.Man and Cybernetics. 1971;SMCI-1:364-378.
    • (1971) Man and Cybernetics , vol.SMCI-1 , pp. 364-378
    • Ivakhnenko, A.G.1
  • 133
    • 68949105694 scopus 로고    scopus 로고
    • Review of the application of fuzzy inference systems in river flow forecasting
    • Jacquin AP,Shamseldin AY.Review of the application of fuzzy inference systems in river flow forecasting.Journal of Hydroinformatics. 2009;11:202-210.
    • (2009) Journal of Hydroinformatics , vol.11 , pp. 202-210
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 135
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A,Kumar AM.Hybrid neural network models for hydrologic time series forecasting.Applied Soft Computing. 2007;7:585-592.
    • (2007) Applied Soft Computing , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 136
    • 69249158084 scopus 로고    scopus 로고
    • Dissection of trained neural network hydrologic models for knowledge extraction
    • Jain A,Kumar S.Dissection of trained neural network hydrologic models for knowledge extraction.Water Resources Research. 2009;45:W07420.
    • (2009) Water Resources Research , vol.45
    • Jain, A.1    Kumar, S.2
  • 137
    • 0034920919 scopus 로고    scopus 로고
    • A decision support system for drought characterization and management
    • Jain A,Ormsbee LE.A decision support system for drought characterization and management.Civil Engineering and Environmental Systems. 2001;18:105-140.
    • (2001) Civil Engineering and Environmental Systems , vol.18 , pp. 105-140
    • Jain, A.1    Ormsbee, L.E.2
  • 138
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • Jain A,Srinivasulu S.Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques.Water Resources Research. 2004;40:W04302.
    • (2004) Water Resources Research , vol.40
    • Jain, A.1    Srinivasulu, S.2
  • 139
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and physically techniques
    • Jain A,Srinivasulu S.Integrated approach to model decomposed flow hydrograph using artificial neural network and physically techniques.Journal of Hydrology. 2006;317:291-306.
    • (2006) Journal of Hydrology , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 141
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A,Sudheer KP,Srinivasulu S.Identification of physical processes inherent in artificial neural network rainfall runoff models.Hydrological Processes. 2004;18:571-581.
    • (2004) Hydrological Processes , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 143
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong D-I,Kim Y-O.Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction.Hydrological Processes. 2005;19:3819-3835.
    • (2005) Hydrological Processes , vol.19 , pp. 3819-3835
    • Jeong, D.-I.1    Kim, Y.-O.2
  • 144
    • 70349765658 scopus 로고    scopus 로고
    • Combining single-value streamflow forecasts - a review and guidelines for selecting techniques
    • Jeong D-I,Kim Y-O.Combining single-value streamflow forecasts - a review and guidelines for selecting techniques.Journal of Hydrology. 2009;377:284-299.
    • (2009) Journal of Hydrology , vol.377 , pp. 284-299
    • Jeong, D.-I.1    Kim, Y.-O.2
  • 145
    • 77957016230 scopus 로고    scopus 로고
    • Application of radial basis function neural networks to short-term streamflow forecasting
    • Kagoda PA,Ndiritu J,Ntuli C,Mwakab B.Application of radial basis function neural networks to short-term streamflow forecasting.Physics and Chemistry of the Earth. 2010;35:571-581.
    • (2010) Physics and Chemistry of the Earth , vol.35 , pp. 571-581
    • Kagoda, P.A.1    Ndiritu, J.2    Ntuli, C.3    Mwakab, B.4
  • 150
    • 67649135194 scopus 로고    scopus 로고
    • Artificial models for interbasin flow prediction in southern Turkey
    • Keskin ME,Taylan D.Artificial models for interbasin flow prediction in southern Turkey.ASCE Journal of Hydrologic Engineering. 2009;14:752-758.
    • (2009) ASCE Journal of Hydrologic Engineering , vol.14 , pp. 752-758
    • Keskin, M.E.1    Taylan, D.2
  • 151
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
    • Keskin ME,Taylan D,Terzi O.Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series.Hydrological Sciences Journal. 2006;51:588-598.
    • (2006) Hydrological Sciences Journal , vol.51 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, O.3
  • 152
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfall-runoff modeling
    • Khan MS,Coulibaly P.Bayesian neural network for rainfall-runoff modeling.Water Resources Research. 2006;42:W07409.
    • (2006) Water Resources Research , vol.42
    • Khan, M.S.1    Coulibaly, P.2
  • 153
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modelling
    • Kingston GB,Maier HR,Lambert MF.Calibration and validation of neural networks to ensure physically plausible hydrological modelling.Journal of Hydrology. 2005;314:158-176.
    • (2005) Journal of Hydrology , vol.314 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 154
    • 33745367041 scopus 로고    scopus 로고
    • A probabilistic method to assist knowledge extraction from artificial neural networks used for hydrological prediction
    • Kingston GB,Maier HR,Lambert MF.A probabilistic method to assist knowledge extraction from artificial neural networks used for hydrological prediction.Mathematical and Computer Modelling. 2006;44:499-512.
    • (2006) Mathematical and Computer Modelling , vol.44 , pp. 499-512
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 155
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • Kişi Ö.River flow forecasting and estimation using different artificial neural network techniques.Hydrology Research. 2008a;39:27-40.
    • (2008) Hydrology Research , vol.39 , pp. 27-40
    • Kişi, Ö.1
  • 156
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kişi Ö.Stream flow forecasting using neuro-wavelet technique.Hydrological Processes. 2008b;22:4142-4152.
    • (2008) Hydrological Processes , vol.22 , pp. 4142-4152
    • Kişi, Ö.1
  • 157
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kişi Ö.Neural networks and wavelet conjunction model for intermittent streamflow forecasting.ASCE Journal of Hydrological Engineering. 2009;14:773-782.
    • (2009) ASCE Journal of Hydrological Engineering , vol.14 , pp. 773-782
    • Kişi, Ö.1
  • 159
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T.Self-organized formation of topologically correct feature maps.Biological Cybernetics. 1982;43:59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 161
    • 34547756974 scopus 로고    scopus 로고
    • Discussion of 'generalized regression neural networks for evapotranspiration modelling' by O. Kişi
    • Koutsoyiannis D.Discussion of 'generalized regression neural networks for evapotranspiration modelling' by O. Kişi.Hydrological Sciences Journal. 2007;52:832-835.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 832-835
    • Koutsoyiannis, D.1
  • 164
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1 - A review of concepts
    • Labat D.Recent advances in wavelet analyses: Part 1 - A review of concepts.Journal of Hydrology. 2005;314:275-288.
    • (2005) Journal of Hydrology , vol.314 , pp. 275-288
    • Labat, D.1
  • 165
    • 28444486059 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 2. - Amazon, Parana, Orinoco and Congo discharges time scale variability
    • Labat D,Ronchail J,Guyot JL.Recent advances in wavelet analyses: Part 2. - Amazon, Parana, Orinoco and Congo discharges time scale variability.Journal of Hydrology. 2005;314:289-311.
    • (2005) Journal of Hydrology , vol.314 , pp. 289-311
    • Labat, D.1    Ronchail, J.2    Guyot, J.L.3
  • 166
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • Leahy P,Kiely G,Corcoran G.Structural optimisation and input selection of an artificial neural network for river level prediction.Journal of Hydrology. 2008;355:192-201.
    • (2008) Journal of Hydrology , vol.355 , pp. 192-201
    • Leahy, P.1    Kiely, G.2    Corcoran, G.3
  • 167
    • 0000873069 scopus 로고
    • A method for the solution of certain non-linear problems in least squares
    • Levenberg K.A method for the solution of certain non-linear problems in least squares.The Quarterly of Applied Mathematics. 1944;2:164-168.
    • (1944) The Quarterly of Applied Mathematics , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 168
  • 169
    • 0034403006 scopus 로고    scopus 로고
    • Evolutionary Monte Carlo sampling: Applications to Cp model sampling and change-point problem
    • Liang F,Wong WH.Evolutionary Monte Carlo sampling: Applications to Cp model sampling and change-point problem.Statistica Sinica. 2001;10:317-342.
    • (2001) Statistica Sinica , vol.10 , pp. 317-342
    • Liang, F.1    Wong, W.H.2
  • 170
  • 171
    • 0031581519 scopus 로고    scopus 로고
    • Development and test of the distributed HBV-96 hydrological model
    • Lindström G,Gardelin M,Johansson B, et al.Development and test of the distributed HBV-96 hydrological model.Journal of Hydrology. 1997;201:272-288.
    • (1997) Journal of Hydrology , vol.201 , pp. 272-288
    • Lindström, G.1    Gardelin, M.2    Johansson, B.3
  • 174
    • 77953656483 scopus 로고    scopus 로고
    • Impacts of climate change and human activities on surface runoff in the Dongjiang River basin of China
    • Liu D,Chen X,Lian Y,Lou Z.Impacts of climate change and human activities on surface runoff in the Dongjiang River basin of China.Hydrological Processes. 2010;24:1487-1495.
    • (2010) Hydrological Processes , vol.24 , pp. 1487-1495
    • Liu, D.1    Chen, X.2    Lian, Y.3    Lou, Z.4
  • 175
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • Lukoševičius M,Jaeger H.Reservoir computing approaches to recurrent neural network training.Computer Science Review. 2009;3:127-149.
    • (2009) Computer Science Review , vol.3 , pp. 127-149
    • Lukoševičius, M.1    Jaeger, H.2
  • 176
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier HR,Dandy GC.Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications.Environmental Modelling and Software. 2000;15:101-123.
    • (2000) Environmental Modelling and Software , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 177
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resources variables: Current status and future directions
    • Maier HR,Jain A,Dandy GC,Sudheer KP.Methods used for the development of neural networks for the prediction of water resources variables: Current status and future directions.Environmental Modelling and Software. 2010;25:891-909.
    • (2010) Environmental Modelling and Software , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 178
    • 80055000731 scopus 로고    scopus 로고
    • Flood forecasting and river monitoring system in the Mekong River Basin
    • Bali, Indonesia, 29 August-3 September. Available at
    • ManusthiparomCApirumanekulCMahaxayM (2005) Flood forecasting and river monitoring system in the Mekong River Basin. In: Proceedings 2nd Southeast Asia Water Forum, Bali, Indonesia, 29 August-3 September. Available at: http://ns1.mrcmekong.org/download/Papers/flood-Forecast-river-Monitor-Sys.pdf.
    • (2005) Proceedings 2nd Southeast Asia Water Forum
    • Manusthiparom, C.1    Apirumanekul, C.2    Mahaxay, M.3
  • 179
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt D.An algorithm for least-squares estimation of nonlinear parameters.SIAM Journal on Applied Mathematics. 1963;11:431-441.
    • (1963) SIAM Journal on Applied Mathematics , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 180
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural networks using SOM-based stratified sampling
    • May RJ,Maier HR,Dandy GC.Data splitting for artificial neural networks using SOM-based stratified sampling.Neural Networks. 2010;23:283-294.
    • (2010) Neural Networks , vol.23 , pp. 283-294
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 181
    • 44749087316 scopus 로고    scopus 로고
    • Nonlinear variable selection for artificial neural networks using partial mutual information
    • May R,Maier H,Dandy G,Fernando T.Nonlinear variable selection for artificial neural networks using partial mutual information.Environmental Modelling and Software. 2008;23:1312-1326.
    • (2008) Environmental Modelling and Software , vol.23 , pp. 1312-1326
    • May, R.1    Maier, H.2    Dandy, G.3    Fernando, T.4
  • 182
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns AW,Hall MJ.Artificial neural networks as rainfall-runoff models.Hydrological Sciences Journal. 1996;41:399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 183
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller MF.A scaled conjugate gradient algorithm for fast supervised learning.Neural Networks. 1993;6:525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 185
    • 78649520577 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks
    • Hydrological Processes 23: 213-223, Comment on 'Kişi, Ö. 2009
    • Moreno J,Abudu S,Bawazir AS,King JP.Comment on 'Kişi, Ö. 2009. Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrological Processes 23: 213-223'.Hydrological Processes. 2010;24:3115-3118.
    • (2010) Hydrological Processes , vol.24 , pp. 3115-3118
    • Moreno, J.1    Abudu, S.2    Bawazir, A.S.3    King, J.P.4
  • 186
    • 78650170082 scopus 로고    scopus 로고
    • Discussion of 'River flow estimation from upstream flow records by artificial intelligence methods
    • by M.E. Turan and M.A. Yurdusev [J. Hydrol. 369 (2009) 71-77]
    • Mount NJ,Abrahart RJ.Discussion of 'River flow estimation from upstream flow records by artificial intelligence methods' by M.E. Turan and M.A. Yurdusev [J. Hydrol. 369 (2009) 71-77]'.Journal of Hydrology. 2011a;396:193-196.
    • (2011) Journal of Hydrology , vol.396 , pp. 193-196
    • Mount, N.J.1    Abrahart, R.J.2
  • 187
    • 80052924174 scopus 로고    scopus 로고
    • Load or concentration, logged or unlogged? Addressing ten years of uncertainty in neural network suspended sediment prediction
    • Mount NJ,Abrahart RJ.Load or concentration, logged or unlogged? Addressing ten years of uncertainty in neural network suspended sediment prediction.Hydrological Processes. 2011b;25:3144-3157.
    • (2011) Hydrological Processes , vol.25 , pp. 3144-3157
    • Mount, N.J.1    Abrahart, R.J.2
  • 195
    • 0000740380 scopus 로고
    • Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network
    • Nie J,Linkens DA.Fast self-learning multivariable fuzzy controllers constructed from a modified CPN network.International Journal of Control. 1994;60:369-393.
    • (1994) International Journal of Control , vol.60 , pp. 369-393
    • Nie, J.1    Linkens, D.A.2
  • 196
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: Comparing and combining conceptual and neural network models
    • Nilsson P,Uvo CB,Berndtsson R.Monthly runoff simulation: Comparing and combining conceptual and neural network models.Journal of Hydrology. 2006;321:344-363.
    • (2006) Journal of Hydrology , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 197
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modelling
    • Nourani V,Komasi M,Mano A.A multivariate ANN-wavelet approach for rainfall-runoff modelling.Water Resources Management. 2009;23:2877-2894.
    • (2009) Water Resources Management , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 198
    • 33745142167 scopus 로고    scopus 로고
    • Canham CDWCole JLauenroth WK, ed., N: Princeton University Press: Princeton
    • Oreskes NModels in Ecosystem Science. Canham CDWCole JLauenroth WK, ed. N: Princeton University Press: Princeton; 2003:13-31.
    • (2003) Models in Ecosystem Science , pp. 13-31
    • Oreskes, N.1
  • 199
    • 28944448665 scopus 로고    scopus 로고
    • Using recurrent neural networks to reconstruct rainfall-runoff processes
    • Pan T,Wang R.Using recurrent neural networks to reconstruct rainfall-runoff processes.Hydrological Processes. 2005;19:3603-3619.
    • (2005) Hydrological Processes , vol.19 , pp. 3603-3619
    • Pan, T.1    Wang, R.2
  • 200
    • 33845600932 scopus 로고    scopus 로고
    • Cluster-based hydrologic prediction using genetic algorithm-trained neural networks
    • Parasuraman K,Elshorbagy A.Cluster-based hydrologic prediction using genetic algorithm-trained neural networks.ASCE Journal of Hydrologic Engineering. 2007;12:52-62.
    • (2007) ASCE Journal of Hydrologic Engineering , vol.12 , pp. 52-62
    • Parasuraman, K.1    Elshorbagy, A.2
  • 201
    • 33745435792 scopus 로고    scopus 로고
    • Spiking modular neural networks: A neural network modeling approach for hydrological processes
    • Parasuraman K,Elshorbagy A,Carey SK.Spiking modular neural networks: A neural network modeling approach for hydrological processes.Water Resources Research. 2006;42:W05412.
    • (2006) Water Resources Research , vol.42
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 202
    • 65249094814 scopus 로고    scopus 로고
    • River flow forecasting using different artificial neural network algorithms and wavelet transform
    • Partal T.River flow forecasting using different artificial neural network algorithms and wavelet transform.Canadian Journal of Civil Engineering. 2009;36:26-39.
    • (2009) Canadian Journal of Civil Engineering , vol.36 , pp. 26-39
    • Partal, T.1
  • 206
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik N,Panda RK.Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction.Hydrological Sciences Journal. 2009;54:247-260.
    • (2009) Hydrological Sciences Journal , vol.54 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 208
    • 79953294437 scopus 로고    scopus 로고
    • Developing of Halil River rainfall-runoff model, using conjunction of wavelet transform and artificial neural networks
    • Rahnama MB,Noury M.Developing of Halil River rainfall-runoff model, using conjunction of wavelet transform and artificial neural networks.Research Journal of Environmental Sciences. 2008;2:385-292.
    • (2008) Research Journal of Environmental Sciences , vol.2 , pp. 292-385
    • Rahnama, M.B.1    Noury, M.2
  • 209
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman H,Sunilkumar N.Multivariate modelling of water resources time series using artificial neural networks.Hydrological Sciences Journal. 1995;40:145-163.
    • (1995) Hydrological Sciences Journal , vol.40 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 212
  • 213
    • 40349103399 scopus 로고    scopus 로고
    • Estimation of parameters of the transient storage model by means of multi-layer perceptron neural networks
    • Rowinski PM,Piotrowski A.Estimation of parameters of the transient storage model by means of multi-layer perceptron neural networks.Hydrological Sciences Journal. 2008;53:165-178.
    • (2008) Hydrological Sciences Journal , vol.53 , pp. 165-178
    • Rowinski, P.M.1    Piotrowski, A.2
  • 215
    • 84863739765 scopus 로고    scopus 로고
    • A hybrid least squares support vector machines and GMDH approach for river flow forecasting
    • Samsudin R,Saad P,Shabri A.A hybrid least squares support vector machines and GMDH approach for river flow forecasting.Hydrology and Earth System Sciences Discussions. 2010;7:3691-3731.
    • (2010) Hydrology and Earth System Sciences Discussions , vol.7 , pp. 3691-3731
    • Samsudin, R.1    Saad, P.2    Shabri, A.3
  • 216
    • 0003271452 scopus 로고
    • Stopped training and other remedies for overfitting
    • Pittsburgh, 21-24 June, Available at
    • SarleWS (1995) Stopped training and other remedies for overfitting. In: Proceedings 27th Symposium on the Interface: Computing Science and Statistics, Pittsburgh, 21-24 June, 352-360. Available at: ftp://ftp.sas.com/pub/neural/inter95.ps.Z.
    • (1995) Proceedings 27th Symposium on the Interface: Computing Science and Statistics , pp. 352-360
    • Sarle, W.S.1
  • 219
    • 58749115999 scopus 로고    scopus 로고
    • Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting
    • Sedki A,Ouazar D,El Mazoudi E.Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting.Expert Systems with Applications. 2009;36:4523-4527.
    • (2009) Expert Systems with Applications , vol.36 , pp. 4523-4527
    • Sedki, A.1    Ouazar, D.2    El Mazoudi, E.3
  • 220
    • 0035480406 scopus 로고    scopus 로고
    • Multi-model data fusion for hydrological forecasting
    • See LM,Abrahart RJ.Multi-model data fusion for hydrological forecasting.Computers and Geosciences. 2001;27:987-994.
    • (2001) Computers and Geosciences , vol.27 , pp. 987-994
    • See, L.M.1    Abrahart, R.J.2
  • 221
    • 0033381989 scopus 로고    scopus 로고
    • Applying soft computing approaches to river level forecasting
    • See LM,Openshaw S.Applying soft computing approaches to river level forecasting.Hydrological Sciences Journal. 1999;44:763-778.
    • (1999) Hydrological Sciences Journal , vol.44 , pp. 763-778
    • See, L.M.1    Openshaw, S.2
  • 222
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See LM,Openshaw S.A hybrid multi-model approach to river level forecasting.Hydrological Sciences Journal. 2000;45:523-536.
    • (2000) Hydrological Sciences Journal , vol.45 , pp. 523-536
    • See, L.M.1    Openshaw, S.2
  • 224
    • 34249884476 scopus 로고    scopus 로고
    • Comment on 'Flow forecasting for a Hawaii stream using rating curves and neural networks' by G.B. Sahoo and C. Ray [Journal of Hydrology 317 (2006) 63-80]
    • Sha W.Comment on 'Flow forecasting for a Hawaii stream using rating curves and neural networks' by G.B. Sahoo and C. Ray [Journal of Hydrology 317 (2006) 63-80].Journal of Hydrology. 2007;340:119-121.
    • (2007) Journal of Hydrology , vol.340 , pp. 119-121
    • Sha, W.1
  • 225
    • 75149184952 scopus 로고    scopus 로고
    • Artificial neural network model for river flow forecasting in a developing country
    • Shamseldin AY.Artificial neural network model for river flow forecasting in a developing country.Journal of Hydroinformatics. 2010;12:22-35.
    • (2010) Journal of Hydroinformatics , vol.12 , pp. 22-35
    • Shamseldin, A.Y.1
  • 226
    • 0035701248 scopus 로고    scopus 로고
    • A non-linear neural network technique for updating of river flow forecasts
    • Shamseldin AY,O'Connor KM.A non-linear neural network technique for updating of river flow forecasts.Hydrology and Earth Systems Sciences. 2001;5:577-597.
    • (2001) Hydrology and Earth Systems Sciences , vol.5 , pp. 577-597
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 227
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecast combination
    • Shamseldin AY,Ahmed EN,O'Connor KM.Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecast combination.Hydrology and Earth System Sciences. 2002;6:671-684.
    • (2002) Hydrology and Earth System Sciences , vol.6 , pp. 671-684
    • Shamseldin, A.Y.1    Ahmed, E.N.2    O'Connor, K.M.3
  • 228
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • Shamseldin AY,O'Connor KM,Liang GC.Methods for combining the outputs of different rainfall-runoff models.Journal of Hydrology. 1997;197:203-229.
    • (1997) Journal of Hydrology , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 230
    • 0034694877 scopus 로고    scopus 로고
    • Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1 - a strategy for system predictor identification
    • Sharma A.Seasonal to interannual rainfall probabilistic forecasts for improved water supply management: Part 1 - a strategy for system predictor identification.Journal of Hydrology. 2000;239:232-239.
    • (2000) Journal of Hydrology , vol.239 , pp. 232-239
    • Sharma, A.1
  • 231
    • 68349123741 scopus 로고    scopus 로고
    • Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment
    • Sharma SK,Tiwari KN.Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment.Journal of Hydrology. 2009;374:209-222.
    • (2009) Journal of Hydrology , vol.374 , pp. 209-222
    • Sharma, S.K.1    Tiwari, K.N.2
  • 233
    • 75749099728 scopus 로고    scopus 로고
    • A novel approach to parameter uncertainty analysis of hydrological models using neural networks
    • Shrestha DL,Kayastha N,Solomatine DP.A novel approach to parameter uncertainty analysis of hydrological models using neural networks.Hydrology and Earth System Sciences. 2009;13:1235-1248.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 1235-1248
    • Shrestha, D.L.1    Kayastha, N.2    Solomatine, D.P.3
  • 235
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • Shu C,Burn D.Artificial neural network ensembles and their application in pooled flood frequency analysis.Water Resources Research. 2004;40:W09301.
    • (2004) Water Resources Research , vol.40
    • Shu, C.1    Burn, D.2
  • 236
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh P,Deo MC.Suitability of different neural networks in daily flow forecasting.Applied Soft Computing. 2007;7:968-978.
    • (2007) Applied Soft Computing , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.C.2
  • 237
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B,Jayawardena AW,Fernando TMGH.River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches.Journal of Hydrology. 2002;265:225-245.
    • (2002) Journal of Hydrology , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.G.H.3
  • 240
    • 4143059262 scopus 로고    scopus 로고
    • The distributed model intercomparison project (DMIP): Motivation and experiment design
    • Smith MB,Seo D-J,Koren VI, et al.The distributed model intercomparison project (DMIP): Motivation and experiment design.Journal of Hydrology. 2004;298:4-26.
    • (2004) Journal of Hydrology , vol.298 , pp. 4-26
    • Smith, M.B.1    Seo, D.-J.2    Koren, V.I.3
  • 243
    • 72149087074 scopus 로고    scopus 로고
    • A novel method to estimate model uncertainty using machine learning techniques
    • Solomatine DP,Shrestha DL.A novel method to estimate model uncertainty using machine learning techniques.Water Resources Research. 2009;45:W00B11.
    • (2009) Water Resources Research , vol.45
    • Solomatine, D.P.1    Shrestha, D.L.2
  • 244
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China
    • Solomatine DP,Xue Y.M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China.ASCE Journal of Hydrologic Engineering. 2004;9:491-501.
    • (2004) ASCE Journal of Hydrologic Engineering , vol.9 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 247
    • 36749007877 scopus 로고    scopus 로고
    • A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    • Srivastav RK,Sudheer KP,Chaubey I.A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models.Water Resources Research. 2007;43:W10407.
    • (2007) Water Resources Research , vol.43
    • Srivastav, R.K.1    Sudheer, K.P.2    Chaubey, I.3
  • 249
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • Sudheer KP.Knowledge extraction from trained neural network river flow models.ASCE Journal of Hydrologic Engineering. 2005;10:264-269.
    • (2005) ASCE Journal of Hydrologic Engineering , vol.10 , pp. 264-269
    • Sudheer, K.P.1
  • 250
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer KP,Jain A.Explaining the internal behaviour of artificial neural network river flow models.Hydrological Processes. 2004;18:833-844.
    • (2004) Hydrological Processes , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 251
    • 77955716349 scopus 로고    scopus 로고
    • A novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling
    • Talei A,Chua LHC,Quek C.A novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling.Expert Systems with Applications. 2010;37:7456-7468.
    • (2010) Expert Systems with Applications , vol.37 , pp. 7456-7468
    • Talei, A.1    Chua, L.H.C.2    Quek, C.3
  • 253
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • Tiwari MK,Chatterjee C.Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs).Journal of Hydrology. 2010;382:20-33.
    • (2010) Journal of Hydrology , vol.382 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 254
  • 256
    • 72049104241 scopus 로고    scopus 로고
    • Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting
    • Toth E.Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting.Hydrology and Earth System Sciences. 2009;13:1555-1566.
    • (2009) Hydrology and Earth System Sciences , vol.13 , pp. 1555-1566
    • Toth, E.1
  • 258
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modelling
    • Toth E,Brath A.Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modelling.Water Resources Research. 2007;43:W11405.
    • (2007) Water Resources Research , vol.43
    • Toth, E.1    Brath, A.2
  • 259
    • 1542442237 scopus 로고    scopus 로고
    • Effective and efficient algorithm for multiobjective optimization of hydrologic models
    • Vrugt JA,Gupta HV,Bastidas LA,Bouten W.Effective and efficient algorithm for multiobjective optimization of hydrologic models.Water Resources Research. 2003;39:1214.
    • (2003) Water Resources Research , vol.39 , pp. 1214
    • Vrugt, J.A.1    Gupta, H.V.2    Bastidas, L.A.3    Bouten, W.4
  • 260
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang W,Ding J.Wavelet network model and its application to the prediction of hydrology.Nature and Science. 2003;1:67-71.
    • (2003) Nature and Science , vol.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 261
    • 70349237925 scopus 로고    scopus 로고
    • Prediction of inflow at three gorges dam in Yangtze River with wavelet network model
    • Wang W,Jin J,Li Y.Prediction of inflow at three gorges dam in Yangtze River with wavelet network model.Water Resources Management. 2009;23:2791-2803.
    • (2009) Water Resources Management , vol.23 , pp. 2791-2803
    • Wang, W.1    Jin, J.2    Li, Y.3
  • 264
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby RL,Abrahart RJ,Dawson CW.Detection of conceptual model rainfall-runoff processes inside an artificial neural network.Hydrological Sciences Journal. 2003;48:163-181.
    • (2003) Hydrological Sciences Journal , vol.48 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 269
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu CL,Chau KW,Li YS.Methods to improve neural network performance in daily flows prediction.Journal of Hydrology. 2009;372:80-93.
    • (2009) Journal of Hydrology , vol.372 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 270
    • 18844480083 scopus 로고    scopus 로고
    • Comparison of four updating models for real-time river flow forecasting
    • Xiong L,O'Connor KM.Comparison of four updating models for real-time river flow forecasting.Hydrological Sciences Journal. 2002;47:621-639.
    • (2002) Hydrological Sciences Journal , vol.47 , pp. 621-639
    • Xiong, L.1    O'Connor, K.M.2
  • 271
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system
    • Xiong L,Shamseldin AY,O'Connor KM.A non-linear combination of the forecasts of rainfall-runoff models by the first-order Takagi-Sugeno fuzzy system.Journal of Hydrology. 2001;245:196-217.
    • (2001) Journal of Hydrology , vol.245 , pp. 196-217
    • Xiong, L.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 272
    • 65449144705 scopus 로고    scopus 로고
    • Application of integrated back-propagation network and self organizing map for flood forecasting
    • Yang C-C,Chen C-S.Application of integrated back-propagation network and self organizing map for flood forecasting.Hydrological Processes. 2009;23:1313-1323.
    • (2009) Hydrological Processes , vol.23 , pp. 1313-1323
    • Yang, C.-C.1    Chen, C.-S.2
  • 274
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • Yonaba H,Anctil F,Fortin V.Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting.ASCE Journal of Hydrologic Engineering. 2010;15:275-283.
    • (2010) ASCE Journal of Hydrologic Engineering , vol.15 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3
  • 275
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B,Govindaraju RS.Prediction of watershed runoff using Bayesian concepts and modular neural networks.Water Resources Research. 2000;36:753-762.
    • (2000) Water Resources Research , vol.36 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2
  • 276
  • 277
    • 45749149637 scopus 로고    scopus 로고
    • A hybrid fuzzy and neural network model for hydrological forecasting in ungauged basins
    • Zhao R,Chen S.A hybrid fuzzy and neural network model for hydrological forecasting in ungauged basins.IAHS-AISH Publication. 2008;319:39-48.
    • (2008) IAHS-AISH Publication , vol.319 , pp. 39-48
    • Zhao, R.1    Chen, S.2
  • 278
    • 34848823126 scopus 로고    scopus 로고
    • An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling
    • Zou R,Lung W-S,Wu J.An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling.Water Resources Research. 2007;43:W08427.
    • (2007) Water Resources Research , vol.43
    • Zou, R.1    Lung, W.-S.2    Wu, J.3
  • 279
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • Zounemat-Kermani M,Teshnehlab M.Using adaptive neuro-fuzzy inference system for hydrological time series prediction.Applied Soft Computing. 2008;8:928-936.
    • (2008) Applied Soft Computing , vol.8 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.