메뉴 건너뛰기




Volumn 14, Issue 1, 2009, Pages 75-83

River flow prediction using an integrated approach

Author keywords

Algorithms; Forecasting; Hybrid methods; Hydrology; Predictions; Rainfall; River flow; Runoff; Water resources

Indexed keywords

BACKPROPAGATION; COMPUTER NETWORKS; FLOW OF WATER; GENETIC ALGORITHMS; HYBRID SENSORS; HYDROLOGY; INTEGRATED CONTROL; MANAGEMENT; NEURAL NETWORKS; RAIN; RESOURCE ALLOCATION; RIVERS; RUNOFF; STREAM FLOW; STRESS INTENSITY FACTORS; WATER; WATER MANAGEMENT; WATER RESOURCES;

EID: 57949116748     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)1084-0699(2009)14:1(75)     Document Type: Article
Times cited : (39)

References (35)
  • 1
    • 11144345954 scopus 로고    scopus 로고
    • "An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition"
    • JEESAX1496-2551
    • Anctil, F., and Tape, D. G. (2004). "An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition." J. Environ. Eng. Sci. JEESAX1496-2551, 3(1), S121-S128.
    • (2004) J. Environ. Eng. Sci. , vol.3 , Issue.1
    • Anctil, F.1    Tape, D.G.2
  • 2
    • 0036715707 scopus 로고    scopus 로고
    • "Performance of neural networks in daily streamflow forecasting"
    • JHYEFF1084-069910.1061/(ASCE)1084-0699(2002)7:5(392)
    • Birikundavyi, S., Labib, R., Trung, H. T., and Rousselle, J. (2002). "Performance of neural networks in daily streamflow forecasting." J. Hydrol. Eng. JHYEFF1084-069910.1061/ (ASCE)1084-0699(2002)7:5(392), 7(5), 392-398.
    • (2002) J. Hydrol. Eng. , vol.7 , Issue.5 , pp. 392-398
    • Birikundavyi, S.1    Labib, R.2    Trung, H.T.3    Rousselle, J.4
  • 3
    • 0032688155 scopus 로고    scopus 로고
    • "River flood forecasting with neural network model"
    • WRERAQ0043-139710.1029/1998WR900086
    • Campolo, M., Andreussi, P., and Soldati, A. (1999). "River flood forecasting with neural network model." Water Resour. Res. WRERAQ0043-139710.1029/1998WR900086, 35(4), 1191-1197.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 4
    • 31044455061 scopus 로고    scopus 로고
    • "Integration of artificial neural networks with conceptual models in rainfall-runoff modeling"
    • JHYDA70022-169410.1016/j.jhydrol.2005.06.017
    • Chen, J., and Adams, B. J. (2005). "Integration of artificial neural networks with conceptual models in rainfall-runoff modeling." J. Hydrol. JHYDA70022-169410.1016/j.jhydrol.2005.06.017, 318(1-4), 232-249.
    • (2005) J. Hydrol. , vol.318 , Issue.1-4 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 6
    • 0031068057 scopus 로고    scopus 로고
    • "Neural network: A need for caution"
    • Curry, B., and Morgan, P. (1997). "Neural network: A need for caution." Omega-Int. J. Manage. Sci., 25(1), 123-133.
    • (1997) Omega-Int. J. Manage. Sci. , vol.25 , Issue.1 , pp. 123-133
    • Curry, B.1    Morgan, P.2
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • "An artificial neural network approach to rainfall-runoff modeling"
    • HSJODN0262-6667
    • Dawson, D. W., and Wilby, R. (1998). "An artificial neural network approach to rainfall-runoff modeling." Hydrol. Sci. J. HSJODN0262-6667, 43(1), 47-65.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-65
    • Dawson, D.W.1    Wilby, R.2
  • 8
    • 0033729054 scopus 로고    scopus 로고
    • "An efficient constraint handling method for genetic algorithms"
    • CMMECC0045-782510.1016/S0045-7825(99)00389-8
    • Deb, K. (2001). "An efficient constraint handling method for genetic algorithms." Comput. Methods Appl. Mech. Eng.CMMECC0045-782510.1016/S0045-7825(99)00389-8, 186, 311-338.
    • (2001) Comput. Methods Appl. Mech. Eng. , vol.186 , pp. 311-338
    • Deb, K.1
  • 9
    • 0000991259 scopus 로고
    • "Simulated binary crossover for continuous search space"
    • CPSYEN0891-2513
    • Deb, K., and Agarwal, R. B. (1995). "Simulated binary crossover for continuous search space." Complex Syst. CPSYEN0891-2513, 9, 115-148.
    • (1995) Complex Syst. , vol.9 , pp. 115-148
    • Deb, K.1    Agarwal, R.B.2
  • 10
    • 0040445957 scopus 로고    scopus 로고
    • "A combined genetic adaptive search (GeneAS) for engineering design"
    • CSINET0254-7813
    • Deb, K., and Goyal, M. (1996). "A combined genetic adaptive search (GeneAS) for engineering design." Comput. Sci. Inform. CSINET0254-7813, 26(4), 30-45.
    • (1996) Comput. Sci. Inform. , vol.26 , Issue.4 , pp. 30-45
    • Deb, K.1    Goyal, M.2
  • 11
    • 0004534895 scopus 로고
    • "A water yield model for small watersheds"
    • WRERAQ0043-1397
    • Haan, C. T. (1972). "A water yield model for small watersheds." Water Resour. Res. WRERAQ0043-1397, 8(1), 58-69.
    • (1972) Water Resour. Res. , vol.8 , Issue.1 , pp. 58-69
    • Haan, C.T.1
  • 12
    • 0036998831 scopus 로고    scopus 로고
    • "Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis"
    • WRERAQ0043-139710.1029/2001WR000795 10.1029/2001WR000795
    • Hsu, K.-L., Gupta, H. V., Gao, X., Sorooshian, S., and Imam, B. (2002). "Self-organizing linear output map (SOLO): An artificial neural network suitable for hydrologic modeling and analysis." Water Resour. Res. WRERAQ0043-139710.1029/2001WR000795, 38(12), 1302 10.1029/ 2001WR000795.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1302
    • Hsu, K.-L.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4    Imam, B.5
  • 13
    • 0029413797 scopus 로고
    • "Artificial neural network modeling of the rainfall-runoff process"
    • WRERAQ0043-139710.1029/95WR01955
    • Hsu, K.-L., Gupta, H. V., and Sorooshian, S. (1995). "Artificial neural network modeling of the rainfall-runoff process." Water Resour. Res. WRERAQ0043-139710.1029/95WR01955, 31(10), 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 15
    • 0037340658 scopus 로고    scopus 로고
    • "Comparative analysis of event based rainfall-runoff modeling techniques-Deterministic, statistical, and artificial neural networks"
    • JHYEFF1084-069910.1061/(ASCE)1084-0699(2003)8:1(1)
    • Jain, A., and Indurthy, S. K. V. P. (2003). "Comparative analysis of event based rainfall-runoff modeling techniques-Deterministic, statistical, and artificial neural networks." J. Hydrol. Eng. JHYEFF1084-069910.1061/(ASCE)1084-0699(2003)8:1(1), 8(2), 1-6.
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.2 , pp. 1-6
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 16
    • 33644655239 scopus 로고    scopus 로고
    • "An evaluation of artificial neural network technique for the determination of infiltration model parameters"
    • Jain, A., and Kumar, A. (2006). "An evaluation of artificial neural network technique for the determination of infiltration model parameters." J. Appl. Soft Comput., 6(3), 272-282.
    • (2006) J. Appl. Soft Comput. , vol.6 , Issue.3 , pp. 272-282
    • Jain, A.1    Kumar, A.2
  • 17
    • 33846813334 scopus 로고    scopus 로고
    • "Hybrid neural network models for hydrologic time series forecasting"
    • Jain, A., and Kumar, A. M. (2007). "Hybrid neural network models for hydrologic time series forecasting." J. Appl. Soft Comput., 7(2), 585-592.
    • (2007) J. Appl. Soft Comput. , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 18
    • 0036640826 scopus 로고    scopus 로고
    • "Evaluation of short-term water demand forecast modeling techniques: Conventional methods versus AI"
    • JAWWA50003-150X
    • Jain, A., and Ormsbee, L. E. (2002). "Evaluation of short-term water demand forecast modeling techniques: Conventional methods versus AI." J. Am. Water Works Assoc. JAWWA50003-150X, 94(7), 64-72.
    • (2002) J. Am. Water Works Assoc. , vol.94 , Issue.7 , pp. 64-72
    • Jain, A.1    Ormsbee, L.E.2
  • 19
    • 12244280869 scopus 로고    scopus 로고
    • "An evaluation of the available techniques for estimating missing fecal coliform data"
    • JWRAF51093-474X
    • Jain, A., and Ormsbee, L. E. (2004). "An evaluation of the available techniques for estimating missing fecal coliform data." J. Am. Water Resour. Assoc. JWRAF51093-474X, 40(6), 1617-1630.
    • (2004) J. Am. Water Resour. Assoc. , vol.40 , Issue.6 , pp. 1617-1630
    • Jain, A.1    Ormsbee, L.E.2
  • 20
    • 2442639370 scopus 로고    scopus 로고
    • "Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded GA, and ANN techniques"
    • WRERAQ0043-139710.1029/2003WR002355 W04302.10.1029/2003WR002355
    • Jain, A., and Srinivasulu, S. (2004). "Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded GA, and ANN techniques." Water Resour. Res. WRERAQ0043-139710.1029/2003WR002355, 40(4), W04302.10.1029/2003WR002355
    • (2004) Water Resour. Res. , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 21
    • 28844473522 scopus 로고    scopus 로고
    • "Integrated approach to modelling decomposed flow hydrograph using artificial neural network and conceptual techniques"
    • JHYDA70022-1694
    • Jain, A., and Srinivasulu, S. (2006). "Integrated approach to modelling decomposed flow hydrograph using artificial neural network and conceptual techniques." J. Hydrol. JHYDA70022-1694, 317(3-4), 291-306.
    • (2006) J. Hydrol. , vol.317 , Issue.3-4 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 22
    • 0035494446 scopus 로고    scopus 로고
    • "Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks"
    • WRMAEJ0920-474110.1023/A:1014415503476
    • Jain, A., Varshney, A. K., and Joshi, U. C. (2001). "Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks." Water Resour. Manage. WRMAEJ0920-474110.1023/ A:1014415503476, 15(5), 299-321.
    • (2001) Water Resour. Manage. , vol.15 , Issue.5 , pp. 299-321
    • Jain, A.1    Varshney, A.K.2    Joshi, U.C.3
  • 23
    • 57949113121 scopus 로고    scopus 로고
    • "Neural network based solutions for locating groundwater pollution sources"
    • Kumar, J., Jain, A., and Srivastava, R. (2006). "Neural network based solutions for locating groundwater pollution sources." Hydrol. J., 29(1-2), 55-66.
    • (2006) Hydrol. J. , vol.29 , Issue.1-2 , pp. 55-66
    • Kumar, J.1    Jain, A.2    Srivastava, R.3
  • 24
    • 0033957764 scopus 로고    scopus 로고
    • "Neural networks for the prediction and forecasting of water resource variables: A review of modeling issues and applications"
    • EMSOFT1364-815210.1016/S1364-8152(99)00007-9
    • Maier, H. R., and Dandy, G. C. (2000). "Neural networks for the prediction and forecasting of water resource variables: A review of modeling issues and applications." Environ. Modell. Software EMSOFT1364-815210.1016/S1364-8152(99)00007-9, 15, 101-124.
    • (2000) Environ. Modell. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 0030159380 scopus 로고    scopus 로고
    • "Artificial neural networks as rainfall runoff models"
    • HSJODN0262-6667
    • Minns, A. W., and Hall, M. J. (1996). "Artificial neural networks as rainfall runoff models." Hydrol. Sci. J. HSJODN0262-6667, 41(3), 399-417.
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 26
    • 0029414285 scopus 로고
    • "Runoff prediction by simple tank model using recession curves"
    • JHEND80733-942910.1061/(ASCE)0733-9429(1995)121:11(812)
    • Mizumara, K. (1995). "Runoff prediction by simple tank model using recession curves." J. Hydraul. Eng. JHEND80733-942910.1061/ (ASCE)0733-9429(1995)121:11(812), 121(11), 812-817.
    • (1995) J. Hydraul. Eng. , vol.121 , Issue.11 , pp. 812-817
    • Mizumara, K.1
  • 27
    • 0035879624 scopus 로고    scopus 로고
    • "Multivariate nonlinear prediction of river flows"
    • JHYDA70022-1694
    • Porporato, A., and Ridolfi, L. (2001). "Multivariate nonlinear prediction of river flows." J. Hydrol. JHYDA70022-1694, 248, 109-122.
    • (2001) J. Hydrol. , vol.248 , pp. 109-122
    • Porporato, A.1    Ridolfi, L.2
  • 28
    • 0029413038 scopus 로고
    • "Multivariate modeling of water resources time series using artificial neural networks"
    • HSJODN0262-6667
    • Raman, H., and Sunilkumar, N. (1995). "Multivariate modeling of water resources time series using artificial neural networks." Hydrol. Sci. J. HSJODN0262-6667, 40(2), 145-163.
    • (1995) Hydrol. Sci. J. , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 29
    • 0022471098 scopus 로고
    • "Learning representations by back-propagating errors"
    • NATUAS0028-083610.1038/323533a0
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). "Learning representations by back-propagating errors." Nature NATUAS0028-083610.1038/323533a0, 323, 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 0033535432 scopus 로고    scopus 로고
    • "A non-linear rainfall-runoff model using an artificial neural network"
    • JHYDA70022-169410.1016/S0022-1694(98)00273-X
    • Sajikumar, N., and Thandaveswara, B. S. (1999). "A non-linear rainfall-runoff model using an artificial neural network." J. Hydrol. JHYDA70022-169410.1016/S0022-1694(98)00273-X, 216, 32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 31
    • 0342506462 scopus 로고    scopus 로고
    • "Application of a neural network technique to rainfall-runoff modeling"
    • JHYDA70022-169410.1016/S0022-1694(96)03330-6
    • Shamseldin, A. Y. (1997). "Application of a neural network technique to rainfall-runoff modeling." J. Hydrol. JHYDA70022-169410.1016/S0022-1694(96)03330-6, 199, 272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 32
    • 0029416249 scopus 로고
    • "Neural network models of the rainfall runoff process"
    • JWRMD50733-949610.1061/(ASCE)0733-9496(1995)121:6(499)
    • Smith, J., and Eli, R. N. (1995). "Neural network models of the rainfall runoff process." J. Water Resour. Plann. Manage. JWRMD50733-949610.1061/(ASCE)0733-9496(1995)121:6(499), 121(6), 499-508.
    • (1995) J. Water Resour. Plann. Manage. , vol.121 , Issue.6 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 33
    • 33644636765 scopus 로고    scopus 로고
    • "A comparative analysis of training methods for artificial neural network rainfall-runoff modeling"
    • Srinivasulu, S., and Jain, A. (2006). "A comparative analysis of training methods for artificial neural network rainfall-runoff modeling." J. Appl. Soft Comput., 6(3), 295-306.
    • (2006) J. Appl. Soft Comput. , vol.6 , Issue.3 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 34
    • 0034174397 scopus 로고    scopus 로고
    • "Precipitation runoff modeling using artificial neural network and conceptual models"
    • JHYEFF1084-069910.1061/(ASCE)1084-0699(2000)5:2(156)
    • Tokar, A. S., and Markus, M. (2000). "Precipitation runoff modeling using artificial neural network and conceptual models." J. Hydrol. Eng. JHYEFF1084-069910.1061/(ASCE)1084-0699(2000)5:2(156), 5(2), 156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 35
    • 0034100712 scopus 로고    scopus 로고
    • "Prediction of watershed runoff using bayesian concepts and modular neural networks"
    • WRERAQ0043-139710.1029/1999WR900264
    • Zhang, B., and Govindaraju, S. (2000). "Prediction of watershed runoff using bayesian concepts and modular neural networks." Water Resour. Res. WRERAQ0043-139710.1029/1999WR900264, 36(3), 753-762.
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.