메뉴 건너뛰기




Volumn 7, Issue 2, 2007, Pages 585-592

Hybrid neural network models for hydrologic time series forecasting

Author keywords

Artificial neural networks; Hybrid models; Hydrology; Rainfall runoff process; Streamflow forecasting; Time series modelling

Indexed keywords

MATHEMATICAL MODELS; NEURAL NETWORKS; STREAM FLOW; TIME SERIES ANALYSIS; WEATHER FORECASTING;

EID: 33846813334     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2006.03.002     Document Type: Article
Times cited : (394)

References (43)
  • 1
    • 0008071910 scopus 로고
    • Time series prediction with neural nets application to airborne pollen forecasting
    • Arizmendi C.M., Sanchez J.R., Ramos N.E., and Ramos G.I. Time series prediction with neural nets application to airborne pollen forecasting. Int. J. Biometeorol. 37 3 (1993) 139-144
    • (1993) Int. J. Biometeorol. , vol.37 , Issue.3 , pp. 139-144
    • Arizmendi, C.M.1    Sanchez, J.R.2    Ramos, N.E.3    Ramos, G.I.4
  • 3
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra I., and Boyd M. Designing a neural network for forecasting financial and economic time series. Neurocomputing 10 3 (1996) 215-236
    • (1996) Neurocomputing , vol.10 , Issue.3 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 5
    • 0032133950 scopus 로고    scopus 로고
    • Neural network forecasting of the British pound US dollar exchange rate
    • Zhang G., and Hu M.Y. Neural network forecasting of the British pound US dollar exchange rate. Omega-Int. J. Manage. Sci. 26 4 (1998) 495-506
    • (1998) Omega-Int. J. Manage. Sci. , vol.26 , Issue.4 , pp. 495-506
    • Zhang, G.1    Hu, M.Y.2
  • 6
    • 0033104431 scopus 로고    scopus 로고
    • Radial basis function neural networks for the characterization of heart rate variability dynamics
    • Bezerianos A., Papadimitriou S., and Alexopoulos D. Radial basis function neural networks for the characterization of heart rate variability dynamics. Artif. Intell. Med. 15 3 (1999) 215-234
    • (1999) Artif. Intell. Med. , vol.15 , Issue.3 , pp. 215-234
    • Bezerianos, A.1    Papadimitriou, S.2    Alexopoulos, D.3
  • 7
    • 0034075622 scopus 로고    scopus 로고
    • Damping in buildings: its neural network model and AR model
    • Li Q.S., Liu D.K., Fang J.Q., Jeary A.P., and Wong C.K. Damping in buildings: its neural network model and AR model. Eng. Struct. 22 9 (2000) 1216-1223
    • (2000) Eng. Struct. , vol.22 , Issue.9 , pp. 1216-1223
    • Li, Q.S.1    Liu, D.K.2    Fang, J.Q.3    Jeary, A.P.4    Wong, C.K.5
  • 8
    • 2342458952 scopus 로고    scopus 로고
    • Multiple neural networks for a long term time series forecast
    • Nguyen H.H., and Chan C.W. Multiple neural networks for a long term time series forecast. Neural Comput. Appl. 13 1 (2004) 90-98
    • (2004) Neural Comput. Appl. , vol.13 , Issue.1 , pp. 90-98
    • Nguyen, H.H.1    Chan, C.W.2
  • 9
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: a synergistic combination in state economic forecasts
    • Hansen J.V., and Nelson R.D. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Trans. Neural Networks 8 4 (1997) 863-873
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.4 , pp. 863-873
    • Hansen, J.V.1    Nelson, R.D.2
  • 10
    • 0037191007 scopus 로고    scopus 로고
    • Short-term load forecasting based on artificial neural networks parallel implementation
    • Kalaitzakis K., Stavrakakis G.S., and Anagnostakis E.M. Short-term load forecasting based on artificial neural networks parallel implementation. Electr. Power Syst. Res. 63 3 (2002) 185-196
    • (2002) Electr. Power Syst. Res. , vol.63 , Issue.3 , pp. 185-196
    • Kalaitzakis, K.1    Stavrakakis, G.S.2    Anagnostakis, E.M.3
  • 11
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using hybrid ARIMA and neural network models
    • Zhang G.P. Time series forecasting using hybrid ARIMA and neural network models. Neurocomputing 50 (2003) 159-175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 12
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: feed-forward and recurrent fuzzy neural network approaches
    • Gao Y., and Er M.J. NARMAX time series model prediction: feed-forward and recurrent fuzzy neural network approaches. Fuzzy Sets Syst. 150 2 (2005) 331-350
    • (2005) Fuzzy Sets Syst. , vol.150 , Issue.2 , pp. 331-350
    • Gao, Y.1    Er, M.J.2
  • 13
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using bayesian concepts and modular neural networks
    • Zhang B., and Govindaraju S. Prediction of watershed runoff using bayesian concepts and modular neural networks. Water Resour. Res. 36 3 (2000) 753-762
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, S.2
  • 14
    • 0027038056 scopus 로고
    • Physically based hydrologic modelling. 2. Is the concept realistic
    • Grayson R.B., Moore I.D., and McMahon T.A. Physically based hydrologic modelling. 2. Is the concept realistic. Water Resour. Res. 28 10 (1992) 2659-2666
    • (1992) Water Resour. Res. , vol.28 , Issue.10 , pp. 2659-2666
    • Grayson, R.B.1    Moore, I.D.2    McMahon, T.A.3
  • 15
    • 0026954346 scopus 로고
    • Forecasting the behaviour of the multivariate time series using neural networks
    • Chakraborty K., Mehrotra K., Mohan C.K., and Ranka S. Forecasting the behaviour of the multivariate time series using neural networks. Neural Networks 5 (1992) 961-970
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 17
    • 0029416249 scopus 로고
    • Neural network models of the rainfall runoff process
    • Smith J., and Eli R.N. Neural network models of the rainfall runoff process. J. Water Resour. Plan. Manage. ASCE 121 (1995) 499-508
    • (1995) J. Water Resour. Plan. Manage. , vol.ASCE 121 , pp. 499-508
    • Smith, J.1    Eli, R.N.2
  • 18
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns A.W., and Hall M.J. Artificial neural networks as rainfall runoff models. Hydrol. Sci. J. 41 3 (1996) 399-417
    • (1996) Hydrol. Sci. J. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 19
    • 0342506462 scopus 로고    scopus 로고
    • Application of neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of neural network technique to rainfall-runoff modelling. J. Hydrol. 199 (1997) 272-294
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 20
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson D.W., and Wilby R. An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43 1 (1998) 47-65
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-65
    • Dawson, D.W.1    Wilby, R.2
  • 21
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low-flow periods using neural networks
    • Campolo M., Soldati A., and Andreussi P. Forecasting river flow rate during low-flow periods using neural networks. Water Resour. Res. 35 11 (1999) 3547-3552
    • (1999) Water Resour. Res. , vol.35 , Issue.11 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 22
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques
    • 10.1029/2003WR002355
    • Jain A., and Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques. Water Resour. Res. 40 4 (2004) W04302 10.1029/2003WR002355
    • (2004) Water Resour. Res. , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 23
    • 0001855442 scopus 로고
    • Mathematical synthesis of streamflow sequences for the analysis of river basin by simulation
    • Mass A., et al. (Ed), Harvard University Press, Cambridge, MA
    • Thomas H.A., and Fiering M.B. Mathematical synthesis of streamflow sequences for the analysis of river basin by simulation. In: Mass A., et al. (Ed). Design of Water Resources Systems (1962), Harvard University Press, Cambridge, MA 459-493
    • (1962) Design of Water Resources Systems , pp. 459-493
    • Thomas, H.A.1    Fiering, M.B.2
  • 26
    • 0000649310 scopus 로고
    • Application of linear models to four annual streamflow series
    • Carlson R.F., MacCormick A.J.A., and Watts D.G. Application of linear models to four annual streamflow series. Water Resour. Res. 6 4 (1970) 1070-1078
    • (1970) Water Resour. Res. , vol.6 , Issue.4 , pp. 1070-1078
    • Carlson, R.F.1    MacCormick, A.J.A.2    Watts, D.G.3
  • 27
    • 0016047730 scopus 로고
    • Application of seasonal parametric stochastic models for monthly flow data
    • McKerchar A.I., and Delleur J.W. Application of seasonal parametric stochastic models for monthly flow data. Water Resour. Res. (1974) 246-255
    • (1974) Water Resour. Res. , pp. 246-255
    • McKerchar, A.I.1    Delleur, J.W.2
  • 28
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R.E. A new approach to linear filtering and prediction problems. ASME Trans. Basic Eng. 82 2 (1960) 35-45
    • (1960) ASME Trans. Basic Eng. , vol.82 , Issue.2 , pp. 35-45
    • Kalman, R.E.1
  • 29
    • 0019039869 scopus 로고
    • Adaptive real-time forecast of river flow rates from rainfall data
    • Bolzern P.M., Ferrario G., and Fronza G. Adaptive real-time forecast of river flow rates from rainfall data. J. Hydrol. 47 (1980) 251-267
    • (1980) J. Hydrol. , vol.47 , pp. 251-267
    • Bolzern, P.M.1    Ferrario, G.2    Fronza, G.3
  • 30
    • 0021639809 scopus 로고
    • Synthetic streamflow forecast generation
    • Lettenmaier D.P. Synthetic streamflow forecast generation. J. Hydraul. Eng. ASCE 110 3 (1984) 277-289
    • (1984) J. Hydraul. Eng. , vol.ASCE 110 , Issue.3 , pp. 277-289
    • Lettenmaier, D.P.1
  • 31
    • 0022266166 scopus 로고
    • River flow forecasting model for Sturgeon River
    • Burn D.H., and McBean E.A. River flow forecasting model for Sturgeon River. J. Hydraul. Eng. ASCE 111 2 (1985) 316-333
    • (1985) J. Hydraul. Eng. , vol.ASCE 111 , Issue.2 , pp. 316-333
    • Burn, D.H.1    McBean, E.A.2
  • 32
    • 0028667119 scopus 로고
    • Time series modeling for long-range streamflow forecasting
    • Bender M., and Simonivic S. Time series modeling for long-range streamflow forecasting. J. Water Resour. Plan. Manage. ASCE 118 6 (1992) 857-869
    • (1992) J. Water Resour. Plan. Manage. , vol.ASCE 118 , Issue.6 , pp. 857-869
    • Bender, M.1    Simonivic, S.2
  • 33
    • 0028667967 scopus 로고
    • Streamflow forecasting for Han River basin Korea
    • Awwad H., Valdes J., and Restrepo P. Streamflow forecasting for Han River basin Korea. J. Water Resour. Plan. Manage. ASCE 120 5 (1994) 651-673
    • (1994) J. Water Resour. Plan. Manage. , vol.ASCE 120 , Issue.5 , pp. 651-673
    • Awwad, H.1    Valdes, J.2    Restrepo, P.3
  • 34
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural network forecasting techniques-case study: river flow forecasting
    • Atiya A.F., El-Shoura S.M., Shaheen S.I., and El-Sherif M.S. A comparison between neural network forecasting techniques-case study: river flow forecasting. IEEE Trans. Neural Networks 10 2 (1999) 402-409
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.F.1    El-Shoura, S.M.2    Shaheen, S.I.3    El-Sherif, M.S.4
  • 35
    • 0035494446 scopus 로고    scopus 로고
    • Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks
    • Jain A., Varshney A.K., and Joshi U.C. Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks. Water Resour. Manage. 15 5 (2001) 299-321
    • (2001) Water Resour. Manage. , vol.15 , Issue.5 , pp. 299-321
    • Jain, A.1    Varshney, A.K.2    Joshi, U.C.3
  • 36
    • 0036640826 scopus 로고    scopus 로고
    • Evaluation of short-term water demand forecast modeling techniques: conventional v/s artificial intelligence
    • Jain A., and Ormsbee L.E. Evaluation of short-term water demand forecast modeling techniques: conventional v/s artificial intelligence. J. Am. Water Works Assoc. 94 7 (2002) 64-72
    • (2002) J. Am. Water Works Assoc. , vol.94 , Issue.7 , pp. 64-72
    • Jain, A.1    Ormsbee, L.E.2
  • 37
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
    • Jain A., and Indurthy S.K.V.P. Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks. J. Hydrol. Eng. ASCE 8 2 (2003) 93-98
    • (2003) J. Hydrol. Eng. , vol.ASCE 8 , Issue.2 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 38
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly P., Anctil F., and Bobee B. Multivariate reservoir inflow forecasting using temporal neural networks. J. Hydrol. Eng. ASCE 6 5 (2001) 367-376
    • (2001) J. Hydrol. Eng. , vol.ASCE 6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 40
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representations by back-propagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 41
    • 12244280869 scopus 로고    scopus 로고
    • An evaluation of the available techniques for estimating missing fecal coliform data
    • Jain A., and Ormsbee L.E. An evaluation of the available techniques for estimating missing fecal coliform data. J. Am. Water Resour. Assoc. 40 6 (2004) 1617-1630
    • (2004) J. Am. Water Resour. Assoc. , vol.40 , Issue.6 , pp. 1617-1630
    • Jain, A.1    Ormsbee, L.E.2
  • 42
    • 33644655239 scopus 로고    scopus 로고
    • An evaluation of artificial neural network technique for the determination of infiltration model parameters
    • Jain A., and Kumar A. An evaluation of artificial neural network technique for the determination of infiltration model parameters. J. Appl. Soft Comput. 6 3 (2006) 272-282
    • (2006) J. Appl. Soft Comput. , vol.6 , Issue.3 , pp. 272-282
    • Jain, A.1    Kumar, A.2
  • 43
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff modeling
    • Srinivasulu S., and Jain A. A comparative analysis of training methods for artificial neural network rainfall-runoff modeling. J. Appl. Soft Comput. 6 3 (2006) 295-306
    • (2006) J. Appl. Soft Comput. , vol.6 , Issue.3 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.