메뉴 건너뛰기




Volumn 36, Issue 1, 2009, Pages 26-39

River flow forecasting using different artificial neural network algorithms and wavelet transform

Author keywords

Feed forward back propagation neural network; Forecasting; Generalized regression neural network; Monthly flow; Radial basis neural network; Wavelet transform

Indexed keywords

ARTIFICIAL NEURAL NETWORK ALGORITHMS; ARTIFICIAL NEURAL NETWORK MODELING; ARTIFICIAL NEURAL NETWORKS; FEED-FORWARD BACK-PROPAGATION METHODS; FEED-FORWARD BACK-PROPAGATION NEURAL NETWORK; GENERALIZED NEURAL NETWORKS; GENERALIZED REGRESSION NEURAL NETWORK; MEASURED DATUM; MONTHLY FLOW; NEURAL NETWORK STRUCTURES; PERFORMANCE CRITERION; PERIODIC COMPONENTS; POSITIVE EFFECTS; RADIAL BASIS NEURAL NETWORK; RIVER FLOW FORECASTING; RIVER FLOWS; WATER RESOURCES DATUM;

EID: 65249094814     PISSN: 03151468     EISSN: None     Source Type: Journal    
DOI: 10.1139/L08-090     Document Type: Article
Times cited : (66)

References (50)
  • 1
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • doi:10.1139/s03-071
    • Artetil, F., and Tape, D.G. 2004. An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. Journal of Environmental Engineering and Science, 3(S1): S121-S128. doi:10.1139/s03-071.
    • (2004) Journal of Environmental Engineering and Science , vol.3 , Issue.S1
    • Artetil, F.1    Tape, D.G.2
  • 2
    • 34250192887 scopus 로고    scopus 로고
    • Suspended sediment prediction using two different feed-forward back-propagation algorithms
    • doi:10.1139/116-111
    • Ardiçlioǧlu, M., Kişi, Ö., and Haktanir, T. 2007. Suspended sediment prediction using two different feed-forward back-propagation algorithms. Canadian Journal of Civil Engineering, 34(1): 120-125. doi:10.1139/11)6-111.
    • (2007) Canadian Journal of Civil Engineering , vol.34 , Issue.1 , pp. 120-125
    • Ardiçlioǧlu, M.1    Kişi, O.2    Haktanir, T.3
  • 3
    • 20544448454 scopus 로고    scopus 로고
    • El Niño southern-oscillation prediction using southern oscillation index and Niño3 as onset indicators: Application of artificial neural networks
    • doi: 10.1139/s04-047
    • Baawain. M.S., Nour, M.H., El-Din, A.G., and El-Din, M.G. 2005. El Niño southern-oscillation prediction using southern oscillation index and Niño3 as onset indicators: Application of artificial neural networks. Journal of Environmental Engineering and Science, 4(2): 113-121. doi: 10.1139/s04-047.
    • (2005) Journal of Environmental Engineering and Science , vol.4 , Issue.2 , pp. 113-121
    • Baawain, M.S.1    Nour, M.H.2    El-Din, A.G.3    El-Din, M.G.4
  • 4
    • 0035154671 scopus 로고    scopus 로고
    • Using wavelets for data generation
    • doi: 10.1080/ 02664760020016073
    • Bayazit. M., and Aksoy. H. 2001. Using wavelets for data generation. Journal of Applied Statistics, 28(2): 157-166. doi: 10.1080/ 02664760020016073.
    • (2001) Journal of Applied Statistics , vol.28 , Issue.2 , pp. 157-166
    • Bayazit, M.1    Aksoy, H.2
  • 5
    • 1642516440 scopus 로고    scopus 로고
    • Developing artificial neural network models of water treatment processes: A guide for utilities
    • doi:10.1139/s02-014
    • Baxter, C.W., Stanley, S.J., Zhang. Q., and Smith, D.W. 2002. Developing artificial neural network models of water treatment processes: a guide for utilities. Journal of Environmental Engineering and Science, 1(3): 201-211. doi:10.1139/s02-014.
    • (2002) Journal of Environmental Engineering and Science , vol.1 , Issue.3 , pp. 201-211
    • Baxter, C.W.1    Stanley, S.J.2    Zhang, Q.3    Smith, D.W.4
  • 6
    • 0035417233 scopus 로고    scopus 로고
    • Nonparametric stream-flow simulation by wavelet or Fourier analysis
    • Bayazit, M., Önöz, B., and Aksoy, H. 2001. Nonparametric stream-flow simulation by wavelet or Fourier analysis. Hydrological Sciences Journal, 46(4): 623-634.
    • (2001) Hydrological Sciences Journal , vol.46 , Issue.4 , pp. 623-634
    • Bayazit, M.1    Önöz, B.2    Aksoy, H.3
  • 7
    • 0000437839 scopus 로고    scopus 로고
    • Bodri, L., and Cernak, V. 2000. Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Advances in Engineering Software, 31(5): 311-321. doi: 10.1016/S0965-9978(99) 00063-0. Bromhead, D., and Lowe, D. 1988. Multivariable functional interpolation and adaptive networks. Complex Systems. 2(3): 321-355.
    • Bodri, L., and Cernak, V. 2000. Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Advances in Engineering Software, 31(5): 311-321. doi: 10.1016/S0965-9978(99) 00063-0. Bromhead, D., and Lowe, D. 1988. Multivariable functional interpolation and adaptive networks. Complex Systems. 2(3): 321-355.
  • 8
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • doi:10.1029/1998WR900086
    • Campolo, M., Andreussi, P., and Soldati, A. 1999. River flood forecasting with a neural network model. Water Resources Research. 35(4): 1191-1197. doi:10.1029/1998WR900086.
    • (1999) Water Resources Research , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 9
    • 33751401308 scopus 로고    scopus 로고
    • Cannas, B., Fanni, A., See, L., and Sias, G. 2006. Data processing for river flow forecasting using neural networks: Wavelet transforms and data partitioning. Physics and Chemistry of the Earth, Parts A/B/C, 31(18): 1164-1171.
    • Cannas, B., Fanni, A., See, L., and Sias, G. 2006. Data processing for river flow forecasting using neural networks: Wavelet transforms and data partitioning. Physics and Chemistry of the Earth, Parts A/B/C, 31(18): 1164-1171.
  • 10
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • doi:10.1623/hysj.48.3.349.45288
    • Cigizoglu. H.K. 2003a. Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrological Sciences Journal, 48(3): 349-361. doi:10.1623/hysj.48.3.349.45288.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 11
    • 0037783429 scopus 로고    scopus 로고
    • Incorporation of ARMA models into flow forecasting by artificial neural networks
    • doi:10.1002/env.596
    • Cigizoglu, H.K. 2003b. Incorporation of ARMA models into flow forecasting by artificial neural networks. Environmetries, 14(4): 417-427. doi:10.1002/env.596.
    • (2003) Environmetries , vol.14 , Issue.4 , pp. 417-427
    • Cigizoglu, H.K.1
  • 12
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • doi: 10.1016/j.advwatres. 2003.10.003
    • Cigizoglu, H.K. 2004. Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Advances in Water Resources, 27(2): 185-195. doi: 10.1016/j.advwatres. 2003.10.003.
    • (2004) Advances in Water Resources , vol.27 , Issue.2 , pp. 185-195
    • Cigizoglu, H.K.1
  • 13
    • 23044443211 scopus 로고    scopus 로고
    • Cigizoglu. H.K. 2005a. Application of the generalized regression neural networks to litermittent flow forecasting and estimation. Journal of Hydrologic Engineering, 10(4): 336-341. doi: 10.1061/(ASCE) 1084-0699(2005) 10:4(336).
    • Cigizoglu. H.K. 2005a. Application of the generalized regression neural networks to litermittent flow forecasting and estimation. Journal of Hydrologic Engineering, 10(4): 336-341. doi: 10.1061/(ASCE) 1084-0699(2005) 10:4(336).
  • 14
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • doi: 10.1080/10286600500126256
    • Cigizoglu. H.K. 2005b. Generalized regression neural network in monthly flow forecasting. Civil Engineering and Environmental Systems, 22(2): 71-84. doi: 10.1080/10286600500126256.
    • (2005) Civil Engineering and Environmental Systems , vol.22 , Issue.2 , pp. 71-84
    • Cigizoglu, H.K.1
  • 15
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu, H.K., and Kişi, O. 2005. Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrology, 36(1): 1-16.
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 1-16
    • Cigizoglu, H.K.1    Kişi, O.2
  • 16
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu, H.K., and Kişi, O. 2006. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 317(3-4): 221-238.
    • (2006) Journal of Hydrology , vol.317 , Issue.3-4 , pp. 221-238
    • Cigizoglu, H.K.1    Kişi, O.2
  • 17
    • 9444245344 scopus 로고    scopus 로고
    • Cigizoglu, H.K.. and Alp, M. 2004. Rainfall-runoff modelling using three neural network methods. In Proceedings of the 7th International Conference on Artificial Intelligence and Soft Computing - ICAISC 2004. Zakopane, Poland, 7-11 June 2004. Lecture Notes in Artificial Intelligence, subseries of Lecture Notes in Computer Science. Edited by J. G. Carbonell and J. Siekmann. Springer-Verlag, Berlin/Heidelberg, Germany. 3070. pp. 166-171.
    • Cigizoglu, H.K.. and Alp, M. 2004. Rainfall-runoff modelling using three neural network methods. In Proceedings of the 7th International Conference on Artificial Intelligence and Soft Computing - ICAISC 2004. Zakopane, Poland, 7-11 June 2004. Lecture Notes in Artificial Intelligence, subseries of Lecture Notes in Computer Science. Edited by J. G. Carbonell and J. Siekmann. Springer-Verlag, Berlin/Heidelberg, Germany. Vol. 3070. pp. 166-171.
  • 18
    • 27544493548 scopus 로고    scopus 로고
    • Generalized neural network in modelling river sediment yield
    • doi:10.1016/j.advengsoft.2005.05.002
    • Cigizoglu, H.K., and Alp, M. 2006. Generalized neural network in modelling river sediment yield. Advances in Engineering Software, 37(2): 63-68. doi:10.1016/j.advengsoft.2005.05.002.
    • (2006) Advances in Engineering Software , vol.37 , Issue.2 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 19
    • 2042453329 scopus 로고    scopus 로고
    • Coulibaly, P., and Burn, D.H. 2004. Wavelet analysis of variability in annual Canadian streamflows. Water Resources Research, 40(3): W03105.l-W03105.14.
    • Coulibaly, P., and Burn, D.H. 2004. Wavelet analysis of variability in annual Canadian streamflows. Water Resources Research, 40(3): W03105.l-W03105.14.
  • 20
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • doi: 10.1109/18.57199
    • Daubechies, I. 1990. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5): 961-1005. doi: 10.1109/18.57199.
    • (1990) IEEE Transactions on Information Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 21
    • 0036435349 scopus 로고    scopus 로고
    • Use of the wavelet transform on hydro-meteorological data. Physics and Chemistry of the Earth, Parts A/B/C
    • Drago, A.F., and Boxall, S.R. 2002. Use of the wavelet transform on hydro-meteorological data. Physics and Chemistry of the Earth, Parts A/B/C, 27(32): 1387-1399.
    • (2002) , vol.27 , Issue.32 , pp. 1387-1399
    • Drago, A.F.1    Boxall, S.R.2
  • 22
    • 14844322189 scopus 로고    scopus 로고
    • Prediction of total monthly rainfall in Jordan using feed forward backpropagation method
    • Freiwan, M., and Cigizoglu, H.K. 2005. Prediction of total monthly rainfall in Jordan using feed forward backpropagation method. Fresenius Environmental Bulletin. 14(2): 142-151.
    • (2005) Fresenius Environmental Bulletin , vol.14 , Issue.2 , pp. 142-151
    • Freiwan, M.1    Cigizoglu, H.K.2
  • 23
    • 0032710602 scopus 로고    scopus 로고
    • Precipitation forecasting using a neural network
    • doi: 10.1175/1520-0434(1999)0140338:PFUANN2.0.CO;2
    • Hall, T., Brooks, H.E., and Doswell, C.A., III. 1999. Precipitation forecasting using a neural network. Weather and Forecasting, 14(3): 338-345. doi: 10.1175/1520-0434(1999)0140338:PFUANN2.0.CO;2.
    • (1999) Weather and Forecasting , vol.14 , Issue.3 , pp. 338-345
    • Hall, T.1    Brooks, H.E.2    Doswell III, C.A.3
  • 24
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall runoff process
    • doi:10.1029/95WR01955
    • Hsu, K., Gupta, H.V., and Sorooshian, S. 1995. Artificial neural network modelling of the rainfall runoff process. Water Resources Research, 31(10): 2517-2530. doi:10.1029/95WR01955.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 25
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall-runoff models
    • doi:10.1002/hyp.5502
    • Jain, A., Sudheer, K.P., and Srinivasulu, S. 2004. Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrological Processes, 18(3): 571-581. doi:10.1002/hyp.5502.
    • (2004) Hydrological Processes , vol.18 , Issue.3 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 26
    • 0344121593 scopus 로고    scopus 로고
    • Kim, T.W., and Valdes, J.B. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering, 8(6): 319-328. doi: 10.1061/(ASCE) 1084-0699(2003)8:6(319).
    • Kim, T.W., and Valdes, J.B. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering, 8(6): 319-328. doi: 10.1061/(ASCE) 1084-0699(2003)8:6(319).
  • 27
    • 1642497522 scopus 로고    scopus 로고
    • Kişi, Ö. 2004. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering, 9(1): 60-63. doi: 10.1061/(ASCE) 1084-0699(2004)9:1 (60).
    • Kişi, Ö. 2004. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering, 9(1): 60-63. doi: 10.1061/(ASCE) 1084-0699(2004)9:1 (60).
  • 28
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • Kişi Ö 2005. Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkish Journal of Engineering and Environmental Sciences, 29(1): 9-20.
    • (2005) Turkish Journal of Engineering and Environmental Sciences , vol.29 , Issue.1 , pp. 9-20
    • Kişi, O.1
  • 30
    • 33751581359 scopus 로고    scopus 로고
    • Wavelet regression techniques for streamflow predictions
    • doi: 10.1080/02664760600744298
    • Kucuk, M., and Agiralioglu, N. 2006. Wavelet regression techniques for streamflow predictions. Journal of Applied Statistics, 33(9): 943-960. doi: 10.1080/02664760600744298.
    • (2006) Journal of Applied Statistics , vol.33 , Issue.9 , pp. 943-960
    • Kucuk, M.1    Agiralioglu, N.2
  • 31
    • 0034252982 scopus 로고    scopus 로고
    • Real-time daily flow forecasting using black-box models, diffusion processes, and neural networks
    • doi:10.1139/cjce-27-4-671
    • Lauzon, N., Rousselle, J., Birikundavyi, S., and Trung, H.T. 2000. Real-time daily flow forecasting using black-box models, diffusion processes, and neural networks. Canadian Journal of Civil Engineering, 27(4): 671-682. doi:10.1139/cjce-27-4-671.
    • (2000) Canadian Journal of Civil Engineering , vol.27 , Issue.4 , pp. 671-682
    • Lauzon, N.1    Rousselle, J.2    Birikundavyi, S.3    Trung, H.T.4
  • 32
    • 34447551450 scopus 로고    scopus 로고
    • Combing neural network models based on wavelet transform
    • In Chinese
    • Li, X., Ding, J., and Li, H. 1999. Combing neural network models based on wavelet transform. Journal of Hydraulic, 2: 1-4. [In Chinese.]
    • (1999) Journal of Hydraulic , vol.2 , pp. 1-4
    • Li, X.1    Ding, J.2    Li, H.3
  • 33
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • doi:10.1016/S1364-8152(99) 00007-9
    • Maier, H.R., and Dandy, G.C. 2000. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling & Software, 15(1):101-124. doi:10.1016/S1364-8152(99) 00007-9.
    • (2000) Environmental Modelling & Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 34
    • 0024700097 scopus 로고
    • A theory for multi resolution signal decomposition: The wavelet representation
    • doi: 10.1109/34.192463
    • Mallat, S.G. 1989. A theory for multi resolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7): 674-693. doi: 10.1109/34.192463.
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 35
    • 0003544046 scopus 로고
    • Society for Industrial and Applied Mathematics, Philadelphia, Pa
    • Meyer. Y. 1993. Wavelets algorithms and applications. Society for Industrial and Applied Mathematics, Philadelphia, Pa.
    • (1993) Wavelets algorithms and applications
    • Meyer, Y.1
  • 36
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A.W., and Hall, M.J. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal, 41(3): 399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 37
    • 2542447559 scopus 로고    scopus 로고
    • River flow forecasting using recurrent neural network
    • doi:10.1023/B:WARM. 0000024727.94701.12
    • Nagesh Kumar, D., Raju, K.S., and Sathish. T. 2004. River flow forecasting using recurrent neural network. Water Resources Management, 18(2): 143-161. doi:10.1023/B:WARM. 0000024727.94701.12.
    • (2004) Water Resources Management , vol.18 , Issue.2 , pp. 143-161
    • Nagesh Kumar, D.1    Raju, K.S.2    Sathish, T.3
  • 38
    • 0003324579 scopus 로고    scopus 로고
    • Interannual temperature events and shifts in global temperature: A "multiwavelet" correlation approach
    • Park. J., and Mann, M.E. 2000. Interannual temperature events and shifts in global temperature: a "multiwavelet" correlation approach. Earth Interactions, 4(1): 1-36.
    • (2000) Earth Interactions , vol.4 , Issue.1 , pp. 1-36
    • Park, J.1    Mann, M.E.2
  • 39
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • doi:10.1016/j.jhydrol.2007.05.026
    • Partal. T., and Kişi, O. 2007. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology, 342(1-2): 199-212. doi:10.1016/j.jhydrol.2007.05.026.
    • (2007) Journal of Hydrology , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kişi, O.2
  • 40
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long-range precipitation prediction in California
    • ANNALR〉2.0.CO;2, doi:10.1175/1520-0450(2000)039〈0057
    • Silverman, D., and Dracup, J.A. 2000. Artificial neural networks and long-range precipitation prediction in California. Journal of Applied Meteorology, 39(1): 57-66. doi:10.1175/1520-0450(2000)039〈0057: ANNALR〉2.0.CO;2.
    • (2000) Journal of Applied Meteorology , vol.39 , Issue.1 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 41
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • doi: 10.1016/S0022-1694(02)00112-9
    • Sivakumar, B., Jayawerdana, A.W., and Fernando, T.M.K.G. 2002. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 265(1-4): 225-245. doi: 10.1016/S0022-1694(02)00112-9.
    • (2002) Journal of Hydrology , vol.265 , Issue.1-4 , pp. 225-245
    • Sivakumar, B.1    Jayawerdana, A.W.2    Fernando, T.M.K.G.3
  • 42
    • 0032003006 scopus 로고    scopus 로고
    • Smith, L.C., Turcotte, 11., and Isacks, B. 1998. Stream flow characterization and feature detection using a discrete wavelet transform. Hydrological Processes, 12(2): 233-249. doi:10.1002/ (SICI)1099- 1085(199802)12:2233::AID-HYP5733.0.CO;2-3.
    • Smith, L.C., Turcotte, 1)1., and Isacks, B. 1998. Stream flow characterization and feature detection using a discrete wavelet transform. Hydrological Processes, 12(2): 233-249. doi:10.1002/ (SICI)1099- 1085(199802)12:2233::AID-HYP5733.0.CO;2-3.
  • 43
    • 0038105929 scopus 로고    scopus 로고
    • Sudheer, K.P., and Jain, S.K. 2003. Radial basis function neural network for modeling rating curve. Journal of Hydrologic Engineering, 8(3): 161-164. doi: 10.1061/(ASCE)1084-0699(2003) 8:3(161).
    • Sudheer, K.P., and Jain, S.K. 2003. Radial basis function neural network for modeling rating curve. Journal of Hydrologic Engineering, 8(3): 161-164. doi: 10.1061/(ASCE)1084-0699(2003) 8:3(161).
  • 44
    • 0033167344 scopus 로고    scopus 로고
    • Tokar, A.S., and Johnson, P.A. 1999. Rainfall-runoff modelling using artificial neural networks. Journal of Hydrologic Engineering, 4(3): 232-239. doi:10.1061/(ASCE)1084-0699(1999) 4:3(232).
    • Tokar, A.S., and Johnson, P.A. 1999. Rainfall-runoff modelling using artificial neural networks. Journal of Hydrologic Engineering, 4(3): 232-239. doi:10.1061/(ASCE)1084-0699(1999) 4:3(232).
  • 45
    • 1542680533 scopus 로고    scopus 로고
    • A practical guide to wavelet analysis
    • APGTWA〉2.0.CO;2, doi:10.1175/1520-0477(1998)079〈0061
    • Torrence, C., and Compo, G.P. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1): 61-78. doi:10.1175/1520-0477(1998)079〈0061: APGTWA〉2.0.CO;2.
    • (1998) Bulletin of the American Meteorological Society , vol.79 , Issue.1 , pp. 61-78
    • Torrence, C.1    Compo, G.P.2
  • 46
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, W., and Ding, J. 2003. Wavelet network model and its application to the prediction of hydrology. Nature and Science, 1(1): 67-71.
    • (2003) Nature and Science , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 47
    • 2442675053 scopus 로고    scopus 로고
    • Analysis of the relationship between the North Atlantic oscillation and sea level changes in northeast Europe
    • doi:10.1002/joc.l035
    • Yan, Z., Tsimplis, M.N., and Woolf, D. 2004. Analysis of the relationship between the North Atlantic oscillation and sea level changes in northeast Europe. International Journal of Climatology, 24(6): 743-758. doi:10.1002/joc.l035.
    • (2004) International Journal of Climatology , vol.24 , Issue.6 , pp. 743-758
    • Yan, Z.1    Tsimplis, M.N.2    Woolf, D.3
  • 48
    • 0034559472 scopus 로고    scopus 로고
    • Wavelet transform and neural networks for short term electrical load forecasting
    • doi:10.1016/S0196-8904(00) 00035-2
    • Yao, S.J., Song, Y.H., Zhang. L.Z., and Cheng. X.Y. 2000. Wavelet transform and neural networks for short term electrical load forecasting. Energy Conversion and Management, 41(18): 1975-1988. doi:10.1016/S0196-8904(00) 00035-2.
    • (2000) Energy Conversion and Management , vol.41 , Issue.18 , pp. 1975-1988
    • Yao, S.J.1    Song, Y.H.2    Zhang, L.Z.3    Cheng, X.Y.4
  • 49
    • 0035964832 scopus 로고    scopus 로고
    • An adaptive neural-wavelet model for short term load forecasting
    • doi:10.1016/S0378-7796(01)00138-9
    • Zhang, B.L., and Dong, Z.Y. 2001. An adaptive neural-wavelet model for short term load forecasting. Electric Power System Research, 59(2): 121-129. doi:10.1016/S0378-7796(01)00138-9.
    • (2001) Electric Power System Research , vol.59 , Issue.2 , pp. 121-129
    • Zhang, B.L.1    Dong, Z.Y.2
  • 50
    • 0033896533 scopus 로고    scopus 로고
    • A hybrid wavelet kalman filter method for load forecasting
    • doi: 10.1016/S0378-7796(99)00063-2
    • Zheng, T., Girgis. A.A., and Makram, E.B. 2000. A hybrid wavelet kalman filter method for load forecasting. Electric Power System Research, 54(1): 11-17. doi: 10.1016/S0378-7796(99)00063-2.
    • (2000) Electric Power System Research , vol.54 , Issue.1 , pp. 11-17
    • Zheng, T.1    Girgis, A.A.2    Makram, E.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.