메뉴 건너뛰기




Volumn 51, Issue 4, 2006, Pages 599-612

Using support vector machines for long-term discharge prediction

Author keywords

Autoregressive moving average (ARMA) models; Long term discharge prediction; Neural networks; SCE UA algorithm; Support vector machine

Indexed keywords

ALGORITHMS; DISCHARGE (FLUID MECHANICS); LEARNING SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS; RANDOM PROCESSES; REGRESSION ANALYSIS; RESERVOIRS (WATER); STREAM FLOW; TIME SERIES ANALYSIS;

EID: 33746830757     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.51.4.599     Document Type: Article
Times cited : (517)

References (44)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Engng ASCE 5(2), 115-123.
    • (2000) J. Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrological applications
    • ASCE Task Committee
    • ASCE Task Committee (2000b) Artificial neural networks in hydrology. II: Hydrological applications. J Hydrol. Engng ASCE 5(2), 124-137.
    • (2000) J Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 10944274219 scopus 로고    scopus 로고
    • Support vectors-based groundwater head observation networks design
    • W11509. doi:10.1029/2004WR003304
    • Asefa, T., Kemblowski, M. W., Urroz, G., McKee, M. & Khalil, A. (2004) Support vectors-based groundwater head observation networks design. Water Resour. Res. 40, W11509. doi:10.1029/2004WR003304.
    • (2004) Water Resour. Res. , vol.40
    • Asefa, T.1    Kemblowski, M.W.2    Urroz, G.3    McKee, M.4    Khalil, A.5
  • 5
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modelling
    • Bray, M. & Han, D. (2004) Identification of support vector machines for runoff modelling. J. Hydroinf. 6(4), 265-280.
    • (2004) J. Hydroinf. , vol.6 , Issue.4 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C, (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao, L. J. & Tay, F. E. H. (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Networks 14(6), 1506-1518.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.6 , pp. 1506-1518
    • Cao, L.J.1    Tay, F.E.H.2
  • 9
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo, M., Soldati, A. & Andreussi, P. (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48(3), 381-398.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 10
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-362.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-362
    • Cigizoglu, H.K.1
  • 11
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson, C. W. & Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 12
    • 13244270060 scopus 로고    scopus 로고
    • Applying support vector machines to predict building energy consumption in tropical region
    • Dong, B., Cao, C. & Lee, S. E. (2005) Applying support vector machines to predict building energy consumption in tropical region. Energy and Buildings 37, 545-553.
    • (2005) Energy and Buildings , vol.37 , pp. 545-553
    • Dong, B.1    Cao, C.2    Lee, S.E.3
  • 13
    • 0027558431 scopus 로고
    • Shuffled complex evolution approach for effective and efficient minimization
    • Duan, Q. Y., Gupta, V. K. & Sorooshian, S. (1993) Shuffled complex evolution approach for effective and efficient minimization. J. Optim. Theory Appl. 76(3), 501-521.
    • (1993) J. Optim. Theory Appl. , vol.76 , Issue.3 , pp. 501-521
    • Duan, Q.Y.1    Gupta, V.K.2    Sorooshian, S.3
  • 14
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q. Y., Sorooshian, S. & Gupta, V. K. (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28(4), 1015-1031.
    • (1992) Water Resour. Res. , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.Y.1    Sorooshian, S.2    Gupta, V.K.3
  • 15
    • 0028449781 scopus 로고
    • Optimal use of the SCE-UA global optimization method for calibrating watershed models
    • Duan, Q. Y., Sorooshian, S. & Gupta, V. K. (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydraul. Engng 158(1), 265-284.
    • (1994) J. Hydraul. Engng , vol.158 , Issue.1 , pp. 265-284
    • Duan, Q.Y.1    Sorooshian, S.2    Gupta, V.K.3
  • 16
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representation
    • Fine, S. & Scheinberg, K. (2001) Efficient SVM training using low-rank kernel representation. J. Machine Learning Res. 2, 243-264.
    • (2001) J. Machine Learning Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 17
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modeling
    • Giustolisi, O. & Laucelli, D. (2005) Improving generalization of artificial neural networks in rainfall-runoff modeling. Hydrol. Sci. J. 50(3), 439-457.
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 18
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Image Speech Intelligent System Research Group, University of Southampton, Southampton, UK
    • Gunn, S. R. (1998) Support vector machines for classification and regression. ISIS Tech. Report. ISIS-1-98, Image Speech Intelligent System Research Group, University of Southampton, Southampton, UK.
    • (1998) ISIS Tech. Report. ISIS-1-98
    • Gunn, S.R.1
  • 20
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Tech. Report, Dept Computer Sci. & Info. Engng, National Taiwan University, Taiwan, China
    • Hsu, C. W., Chang, C. C. & Lin, C. J. (2003) A practical guide to support vector classification. Tech. Report, Dept Computer Sci. & Info. Engng, National Taiwan University, Taiwan, China.
    • (2003)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 21
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with range-dependent neural network
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2001) River flow time series prediction with range-dependent neural network. Hydrol. Sci. J. 46(5), 729-746.
    • (2001) Hydrol. Sci. J. , vol.46 , Issue.5 , pp. 729-746
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 22
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2005) A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50(2), 299-318.
    • (2005) Hydrol. Sci. J. , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 23
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machines learning practical
    • In: (ed. by B. Schölkopf, C. J. C. Burges & A. J. Smola), MIT Press, Cambridge, Massachusetts, USA
    • Joachims, T. (1999) Making large-scale support vector machines learning practical. In: Advances in Kernel Methods - Support Vector Learning (ed. by B. Schölkopf, C. J. C. Burges & A. J. Smola), 169-184. MIT Press, Cambridge, Massachusetts, USA.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 24
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi, S. S. & Lin, C. J. (2001) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation 15(7), 1667-1689.
    • (2001) Neural Computation , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 25
    • 3843050541 scopus 로고    scopus 로고
    • A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
    • Tech. Report, Dept of Computer Sci. & Info. Engng, National Taiwan University, Taiwan, China
    • Lin, H. T. & Lin, C. J. (2003) A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Tech. Report, Dept of Computer Sci. & Info. Engng, National Taiwan University, Taiwan, China.
    • (2003)
    • Lin, H.T.1    Lin, C.J.2
  • 27
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller, M. F. (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 523-533.
    • (1993) Neural Networks , vol.6 , pp. 523-533
    • Moller, M.F.1
  • 28
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder, J. A. & Mead, R. (1965) A simplex method for function minimization. Comput. J. 7(4), 308-313.
    • (1965) Comput. J. , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 29
    • 16444383889 scopus 로고    scopus 로고
    • Shuffled complex evolution algorithms in infrastructure works programming
    • Nunoo, C. & Mrawira, D. (2004) Shuffled complex evolution algorithms in infrastructure works programming. J. Comput. Civil Engng 18(3), 257-266.
    • (2004) J. Comput. Civil Engng , vol.18 , Issue.3 , pp. 257-266
    • Nunoo, C.1    Mrawira, D.2
  • 30
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai, P. F. & Hong, W. C. (2005) Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Manage. 46(17), 2669-2688.
    • (2005) Energy Conversion and Manage. , vol.46 , Issue.17 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 31
    • 0003120218 scopus 로고    scopus 로고
    • Flat training of support vector machines using sequential minimal optimisation
    • (ed. by B. Schölkopf, C. J. C. Borges & A. J. Smola), MIT Press, Cambridge, Massachusetts, USA
    • Platt, J. (1999) Flat training of support vector machines using sequential minimal optimisation, Advances in Kernel Methods - Support Vector Learning (ed. by B. Schölkopf, C. J. C. Borges & A. J. Smola), 185-208. MIT Press, Cambridge, Massachusetts, USA.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 32
    • 0023436768 scopus 로고
    • Global optimization algorithm for a CAD workstation
    • Price, W. L. (1987) Global optimization algorithm for a CAD workstation. J. Optim. Theory Appl. 55(1), 133-146.
    • (1987) J. Optim. Theory Appl. , vol.55 , Issue.1 , pp. 133-146
    • Price, W.L.1
  • 33
    • 0141946314 scopus 로고    scopus 로고
    • Neural network FAQ. Periodic posting to the Usenet news group comp.ai.neural-nets
    • Available at ftp://ftp.sas.com/pub/neural/FAQ.html
    • Sarle, W. S (1997) Neural network FAQ. Periodic posting to the Usenet news group comp.ai.neural-nets. Available at: ftp://ftp.sas.com/pub/ neural/FAQ.html.
    • (1997)
    • Sarle, W.S.1
  • 34
    • 0034254025 scopus 로고    scopus 로고
    • A hybrid multi-model approach to river level forecasting
    • See, L. & Openshaw, S. (2000) A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45(4), 523-536.
    • (2000) Hydrol. Sci. J. , vol.45 , Issue.4 , pp. 523-536
    • See, L.1    Openshaw, S.2
  • 35
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. J. & Schölkopf, B. (2004) A tutorial on support vector regression. Statist. and Comput 14, 199-222.
    • (2004) Statist. and Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 36
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Processes 16, 1325-1330.
    • (2002) Hydrol. Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 37
    • 32544458461 scopus 로고    scopus 로고
    • Modelling the infiltration process with a multi-layer perceptron artificial neural network
    • Sy, N. L. (2006) Modelling the infiltration process with a multi-layer perceptron artificial neural network. Hydrol. Sci. J. 51(1), 3-20.
    • (2006) Hydrol. Sci. J. , vol.51 , Issue.1 , pp. 3-20
    • Sy, N.L.1
  • 39
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network
    • Tokar, A. S. & Johnson, P. A. (1999) Rainfall-runoff modeling using artificial neural network. J. Hydrol. Engng ASCE 4(3), 232-239.
    • (1999) J. Hydrol. Engng ASCE , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 41
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik, V., Golowich, S. & Smola, A. J. (1997) Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Info. Processing Systems 9, 281-287.
    • (1997) Adv. Neural Info. Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.J.3
  • 42
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 43
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • In: (ed. by T. K. Leen, T. G. S. Dietterich & V. Tresp), MIT Press, Cambridge, Massachusetts, USA
    • Williams, C. K. I. & Seeger, M. (2001) Using the Nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems (ed. by T. K. Leen, T. G. S. Dietterich & V. Tresp), vol. 13, 682-688. MIT Press, Cambridge, Massachusetts, USA.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2
  • 44
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu, X. Y., Liong, S. Y. & Babovic, V. (2004) EC-SVM approach for real-time hydrologic forecasting. J. Hydroinf. 6(3), 209-233.
    • (2004) J. Hydroinf. , vol.6 , Issue.3 , pp. 209-233
    • Yu, X.Y.1    Liong, S.Y.2    Babovic, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.