-
1
-
-
0034174280
-
Artificial neural networks in hydrology. I: Preliminary concepts
-
ASCE Task Committee
-
ASCE Task Committee (2000a) Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Engng ASCE 5(2), 115-123.
-
(2000)
J. Hydrol. Engng ASCE
, vol.5
, Issue.2
, pp. 115-123
-
-
-
2
-
-
0034174396
-
Artificial neural networks in hydrology. II: Hydrological applications
-
ASCE Task Committee
-
ASCE Task Committee (2000b) Artificial neural networks in hydrology. II: Hydrological applications. J Hydrol. Engng ASCE 5(2), 124-137.
-
(2000)
J Hydrol. Engng ASCE
, vol.5
, Issue.2
, pp. 124-137
-
-
-
3
-
-
10944274219
-
Support vectors-based groundwater head observation networks design
-
W11509. doi:10.1029/2004WR003304
-
Asefa, T., Kemblowski, M. W., Urroz, G., McKee, M. & Khalil, A. (2004) Support vectors-based groundwater head observation networks design. Water Resour. Res. 40, W11509. doi:10.1029/2004WR003304.
-
(2004)
Water Resour. Res.
, vol.40
-
-
Asefa, T.1
Kemblowski, M.W.2
Urroz, G.3
McKee, M.4
Khalil, A.5
-
4
-
-
0004311217
-
-
Holden-Day, San Francisco, California, USA
-
Box, G. E. P. & Jenkins, G. M. (1976) Time Series Analysis, Forecasting and Control, Holden-Day, San Francisco, California, USA.
-
(1976)
Time Series Analysis, Forecasting and Control
-
-
Box, G.E.P.1
Jenkins, G.M.2
-
5
-
-
33746834358
-
Identification of support vector machines for runoff modelling
-
Bray, M. & Han, D. (2004) Identification of support vector machines for runoff modelling. J. Hydroinf. 6(4), 265-280.
-
(2004)
J. Hydroinf.
, vol.6
, Issue.4
, pp. 265-280
-
-
Bray, M.1
Han, D.2
-
6
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C, (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121-167.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
7
-
-
0742268991
-
Support vector machine with adaptive parameters in financial time series forecasting
-
Cao, L. J. & Tay, F. E. H. (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans. Neural Networks 14(6), 1506-1518.
-
(2003)
IEEE Trans. Neural Networks
, vol.14
, Issue.6
, pp. 1506-1518
-
-
Cao, L.J.1
Tay, F.E.H.2
-
8
-
-
10844233991
-
Model selection of SVMs using GA approach
-
In: IEEE, New York, USA
-
Chen, P. W., Wang, J. Y. & Lee, H. M. (2004) Model selection of SVMs using GA approach. In: 2004 IEEE International Joint Conference on Neural Networks vol. 3, 2035-2040. IEEE, New York, USA.
-
(2004)
2004 IEEE International Joint Conference on Neural Networks
, vol.3
, pp. 2035-2040
-
-
Chen, P.W.1
Wang, J.Y.2
Lee, H.M.3
-
9
-
-
0038240745
-
Artificial neural network approach to flood forecasting in the River Arno
-
Campolo, M., Soldati, A. & Andreussi, P. (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol. Sci. J. 48(3), 381-398.
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.3
, pp. 381-398
-
-
Campolo, M.1
Soldati, A.2
Andreussi, P.3
-
10
-
-
0038240755
-
Estimation, forecasting and extrapolation of river flows by artificial neural networks
-
Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-362.
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.3
, pp. 349-362
-
-
Cigizoglu, H.K.1
-
11
-
-
0032005702
-
An artificial neural network approach to rainfall-runoff modelling
-
Dawson, C. W. & Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47-66.
-
(1998)
Hydrol. Sci. J.
, vol.43
, Issue.1
, pp. 47-66
-
-
Dawson, C.W.1
Wilby, R.2
-
12
-
-
13244270060
-
Applying support vector machines to predict building energy consumption in tropical region
-
Dong, B., Cao, C. & Lee, S. E. (2005) Applying support vector machines to predict building energy consumption in tropical region. Energy and Buildings 37, 545-553.
-
(2005)
Energy and Buildings
, vol.37
, pp. 545-553
-
-
Dong, B.1
Cao, C.2
Lee, S.E.3
-
13
-
-
0027558431
-
Shuffled complex evolution approach for effective and efficient minimization
-
Duan, Q. Y., Gupta, V. K. & Sorooshian, S. (1993) Shuffled complex evolution approach for effective and efficient minimization. J. Optim. Theory Appl. 76(3), 501-521.
-
(1993)
J. Optim. Theory Appl.
, vol.76
, Issue.3
, pp. 501-521
-
-
Duan, Q.Y.1
Gupta, V.K.2
Sorooshian, S.3
-
14
-
-
0026445234
-
Effective and efficient global optimization for conceptual rainfall-runoff models
-
Duan, Q. Y., Sorooshian, S. & Gupta, V. K. (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28(4), 1015-1031.
-
(1992)
Water Resour. Res.
, vol.28
, Issue.4
, pp. 1015-1031
-
-
Duan, Q.Y.1
Sorooshian, S.2
Gupta, V.K.3
-
15
-
-
0028449781
-
Optimal use of the SCE-UA global optimization method for calibrating watershed models
-
Duan, Q. Y., Sorooshian, S. & Gupta, V. K. (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydraul. Engng 158(1), 265-284.
-
(1994)
J. Hydraul. Engng
, vol.158
, Issue.1
, pp. 265-284
-
-
Duan, Q.Y.1
Sorooshian, S.2
Gupta, V.K.3
-
16
-
-
0041494125
-
Efficient SVM training using low-rank kernel representation
-
Fine, S. & Scheinberg, K. (2001) Efficient SVM training using low-rank kernel representation. J. Machine Learning Res. 2, 243-264.
-
(2001)
J. Machine Learning Res.
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
17
-
-
20844456071
-
Improving generalization of artificial neural networks in rainfall-runoff modeling
-
Giustolisi, O. & Laucelli, D. (2005) Improving generalization of artificial neural networks in rainfall-runoff modeling. Hydrol. Sci. J. 50(3), 439-457.
-
(2005)
Hydrol. Sci. J.
, vol.50
, Issue.3
, pp. 439-457
-
-
Giustolisi, O.1
Laucelli, D.2
-
18
-
-
0003425664
-
Support vector machines for classification and regression
-
Image Speech Intelligent System Research Group, University of Southampton, Southampton, UK
-
Gunn, S. R. (1998) Support vector machines for classification and regression. ISIS Tech. Report. ISIS-1-98, Image Speech Intelligent System Research Group, University of Southampton, Southampton, UK.
-
(1998)
ISIS Tech. Report. ISIS-1-98
-
-
Gunn, S.R.1
-
20
-
-
4944228528
-
A practical guide to support vector classification
-
Tech. Report, Dept Computer Sci. & Info. Engng, National Taiwan University, Taiwan, China
-
Hsu, C. W., Chang, C. C. & Lin, C. J. (2003) A practical guide to support vector classification. Tech. Report, Dept Computer Sci. & Info. Engng, National Taiwan University, Taiwan, China.
-
(2003)
-
-
Hsu, C.W.1
Chang, C.C.2
Lin, C.J.3
-
21
-
-
0035472003
-
River flow time series prediction with range-dependent neural network
-
Hu, T. S., Lam, K. C. & Ng, S. T. (2001) River flow time series prediction with range-dependent neural network. Hydrol. Sci. J. 46(5), 729-746.
-
(2001)
Hydrol. Sci. J.
, vol.46
, Issue.5
, pp. 729-746
-
-
Hu, T.S.1
Lam, K.C.2
Ng, S.T.3
-
22
-
-
17444385970
-
A modified neural network for improving river flow prediction
-
Hu, T. S., Lam, K. C. & Ng, S. T. (2005) A modified neural network for improving river flow prediction. Hydrol. Sci. J. 50(2), 299-318.
-
(2005)
Hydrol. Sci. J.
, vol.50
, Issue.2
, pp. 299-318
-
-
Hu, T.S.1
Lam, K.C.2
Ng, S.T.3
-
23
-
-
0002714543
-
Making large-scale support vector machines learning practical
-
In: (ed. by B. Schölkopf, C. J. C. Burges & A. J. Smola), MIT Press, Cambridge, Massachusetts, USA
-
Joachims, T. (1999) Making large-scale support vector machines learning practical. In: Advances in Kernel Methods - Support Vector Learning (ed. by B. Schölkopf, C. J. C. Burges & A. J. Smola), 169-184. MIT Press, Cambridge, Massachusetts, USA.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
24
-
-
0037822222
-
Asymptotic behaviors of support vector machines with Gaussian kernel
-
Keerthi, S. S. & Lin, C. J. (2001) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation 15(7), 1667-1689.
-
(2001)
Neural Computation
, vol.15
, Issue.7
, pp. 1667-1689
-
-
Keerthi, S.S.1
Lin, C.J.2
-
25
-
-
3843050541
-
A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
-
Tech. Report, Dept of Computer Sci. & Info. Engng, National Taiwan University, Taiwan, China
-
Lin, H. T. & Lin, C. J. (2003) A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Tech. Report, Dept of Computer Sci. & Info. Engng, National Taiwan University, Taiwan, China.
-
(2003)
-
-
Lin, H.T.1
Lin, C.J.2
-
27
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Moller, M. F. (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 523-533.
-
(1993)
Neural Networks
, vol.6
, pp. 523-533
-
-
Moller, M.F.1
-
28
-
-
0000238336
-
A simplex method for function minimization
-
Nelder, J. A. & Mead, R. (1965) A simplex method for function minimization. Comput. J. 7(4), 308-313.
-
(1965)
Comput. J.
, vol.7
, Issue.4
, pp. 308-313
-
-
Nelder, J.A.1
Mead, R.2
-
29
-
-
16444383889
-
Shuffled complex evolution algorithms in infrastructure works programming
-
Nunoo, C. & Mrawira, D. (2004) Shuffled complex evolution algorithms in infrastructure works programming. J. Comput. Civil Engng 18(3), 257-266.
-
(2004)
J. Comput. Civil Engng
, vol.18
, Issue.3
, pp. 257-266
-
-
Nunoo, C.1
Mrawira, D.2
-
30
-
-
18544377981
-
Support vector machines with simulated annealing algorithms in electricity load forecasting
-
Pai, P. F. & Hong, W. C. (2005) Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Manage. 46(17), 2669-2688.
-
(2005)
Energy Conversion and Manage.
, vol.46
, Issue.17
, pp. 2669-2688
-
-
Pai, P.F.1
Hong, W.C.2
-
31
-
-
0003120218
-
Flat training of support vector machines using sequential minimal optimisation
-
(ed. by B. Schölkopf, C. J. C. Borges & A. J. Smola), MIT Press, Cambridge, Massachusetts, USA
-
Platt, J. (1999) Flat training of support vector machines using sequential minimal optimisation, Advances in Kernel Methods - Support Vector Learning (ed. by B. Schölkopf, C. J. C. Borges & A. J. Smola), 185-208. MIT Press, Cambridge, Massachusetts, USA.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
32
-
-
0023436768
-
Global optimization algorithm for a CAD workstation
-
Price, W. L. (1987) Global optimization algorithm for a CAD workstation. J. Optim. Theory Appl. 55(1), 133-146.
-
(1987)
J. Optim. Theory Appl.
, vol.55
, Issue.1
, pp. 133-146
-
-
Price, W.L.1
-
33
-
-
0141946314
-
Neural network FAQ. Periodic posting to the Usenet news group comp.ai.neural-nets
-
Available at ftp://ftp.sas.com/pub/neural/FAQ.html
-
Sarle, W. S (1997) Neural network FAQ. Periodic posting to the Usenet news group comp.ai.neural-nets. Available at: ftp://ftp.sas.com/pub/ neural/FAQ.html.
-
(1997)
-
-
Sarle, W.S.1
-
34
-
-
0034254025
-
A hybrid multi-model approach to river level forecasting
-
See, L. & Openshaw, S. (2000) A hybrid multi-model approach to river level forecasting. Hydrol. Sci. J. 45(4), 523-536.
-
(2000)
Hydrol. Sci. J.
, vol.45
, Issue.4
, pp. 523-536
-
-
See, L.1
Openshaw, S.2
-
35
-
-
4043137356
-
A tutorial on support vector regression
-
Smola, A. J. & Schölkopf, B. (2004) A tutorial on support vector regression. Statist. and Comput 14, 199-222.
-
(2004)
Statist. and Comput.
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
36
-
-
0037197571
-
A data-driven algorithm for constructing artificial neural network rainfall-runoff models
-
Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. (2002) A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Processes 16, 1325-1330.
-
(2002)
Hydrol. Processes
, vol.16
, pp. 1325-1330
-
-
Sudheer, K.P.1
Gosain, A.K.2
Ramasastri, K.S.3
-
37
-
-
32544458461
-
Modelling the infiltration process with a multi-layer perceptron artificial neural network
-
Sy, N. L. (2006) Modelling the infiltration process with a multi-layer perceptron artificial neural network. Hydrol. Sci. J. 51(1), 3-20.
-
(2006)
Hydrol. Sci. J.
, vol.51
, Issue.1
, pp. 3-20
-
-
Sy, N.L.1
-
38
-
-
0142184418
-
Using support vector machines for time series prediction
-
Thissen, U., van Brakel, R., de Weijer, A. P., Melssen, W. J. & Buydens, L. M. C. (2003) Using support vector machines for time series prediction. Chemometrics and Intelligent Laboratory Systems 69, 35-49.
-
(2003)
Chemometrics and Intelligent Laboratory Systems
, vol.69
, pp. 35-49
-
-
Thissen, U.1
van Brakel, R.2
de Weijer, A.P.3
Melssen, W.J.4
Buydens, L.M.C.5
-
39
-
-
0033167344
-
Rainfall-runoff modeling using artificial neural network
-
Tokar, A. S. & Johnson, P. A. (1999) Rainfall-runoff modeling using artificial neural network. J. Hydrol. Engng ASCE 4(3), 232-239.
-
(1999)
J. Hydrol. Engng ASCE
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
41
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
Vapnik, V., Golowich, S. & Smola, A. J. (1997) Support vector method for function approximation, regression estimation, and signal processing. Adv. Neural Info. Processing Systems 9, 281-287.
-
(1997)
Adv. Neural Info. Processing Systems
, vol.9
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.J.3
-
42
-
-
0037388711
-
Detection of conceptual model rainfall-runoff processes inside an artificial neural network
-
Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.2
, pp. 163-181
-
-
Wilby, R.L.1
Abrahart, R.J.2
Dawson, C.W.3
-
43
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
In: (ed. by T. K. Leen, T. G. S. Dietterich & V. Tresp), MIT Press, Cambridge, Massachusetts, USA
-
Williams, C. K. I. & Seeger, M. (2001) Using the Nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems (ed. by T. K. Leen, T. G. S. Dietterich & V. Tresp), vol. 13, 682-688. MIT Press, Cambridge, Massachusetts, USA.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 682-688
-
-
Williams, C.K.I.1
Seeger, M.2
-
44
-
-
84919454581
-
EC-SVM approach for real-time hydrologic forecasting
-
Yu, X. Y., Liong, S. Y. & Babovic, V. (2004) EC-SVM approach for real-time hydrologic forecasting. J. Hydroinf. 6(3), 209-233.
-
(2004)
J. Hydroinf.
, vol.6
, Issue.3
, pp. 209-233
-
-
Yu, X.Y.1
Liong, S.Y.2
Babovic, V.3
|