메뉴 건너뛰기




Volumn 377, Issue 3-4, 2009, Pages 284-299

Combining single-value streamflow forecasts - A review and guidelines for selecting techniques

Author keywords

Bias; Combining forecasts; Cross correlation; Forecast error variance; Hydrologic forecasting; Stationarity

Indexed keywords

BIAS; COMBINING FORECASTS; CROSS CORRELATION; FORECAST ERROR VARIANCE; HYDROLOGIC FORECASTING; STATIONARITY;

EID: 70349765658     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2009.08.028     Document Type: Article
Times cited : (55)

References (59)
  • 1
    • 33748942107 scopus 로고    scopus 로고
    • Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results
    • Ajami N.W., Duan Q., Gao X., and Sorooshian S. Multimodel combination techniques for analysis of hydrological simulations: application to distributed model intercomparison project results. J. Hydrometeorol. 7 (2006) 755-768
    • (2006) J. Hydrometeorol. , vol.7 , pp. 755-768
    • Ajami, N.W.1    Duan, Q.2    Gao, X.3    Sorooshian, S.4
  • 3
    • 0342505598 scopus 로고
    • Combining forecasts: the end of the beginning or the beginning of the end?
    • Armstrong J.S. Combining forecasts: the end of the beginning or the beginning of the end?. Int. J. Forecast. 5 (1989) 585-588
    • (1989) Int. J. Forecast. , vol.5 , pp. 585-588
    • Armstrong, J.S.1
  • 7
    • 0002372596 scopus 로고
    • Linear constraints and the efficiency of combined forecasts
    • Clemen R.T. Linear constraints and the efficiency of combined forecasts. J. Forecast. 5 (1986) 31-38
    • (1986) J. Forecast. , vol.5 , pp. 31-38
    • Clemen, R.T.1
  • 8
    • 45249128876 scopus 로고
    • Combining forecasts: a review and annotated bibliography
    • Clemen R.T. Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5 (1989) 559-583
    • (1989) Int. J. Forecast. , vol.5 , pp. 559-583
    • Clemen, R.T.1
  • 10
    • 14844292558 scopus 로고    scopus 로고
    • Improving daily reservoir inflow forecasts with model combination
    • Coulibaly P., Hache M., Fortin V., and Bobee B. Improving daily reservoir inflow forecasts with model combination. J. Hydrol. Eng. 10 2 (2005) 91-99
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.2 , pp. 91-99
    • Coulibaly, P.1    Hache, M.2    Fortin, V.3    Bobee, B.4
  • 12
    • 84984423763 scopus 로고
    • Structural change and the combination of forecasts
    • Diebold F.X., and Pauly P. Structural change and the combination of forecasts. J. Forecast. 6 (1987) 21-40
    • (1987) J. Forecast. , vol.6 , pp. 21-40
    • Diebold, F.X.1    Pauly, P.2
  • 13
    • 0002853099 scopus 로고    scopus 로고
    • Forecast combining with neural networks
    • Donaldson R.G., and Kamstra M. Forecast combining with neural networks. J. Forecast. 15 (1996) 49-61
    • (1996) J. Forecast. , vol.15 , pp. 49-61
    • Donaldson, R.G.1    Kamstra, M.2
  • 14
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • Duan Q., Ajami N.K., Gao X., and Sorooshian S. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour. 30 5 (2007) 1371-1386
    • (2007) Adv. Water Resour. , vol.30 , Issue.5 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 15
    • 0011551178 scopus 로고
    • Optimal aggregation of money supply forecasts: accuracy, profitability and market efficiency
    • Figlewski S., and Urich T. Optimal aggregation of money supply forecasts: accuracy, profitability and market efficiency. J. Finance 28 (1983) 695-710
    • (1983) J. Finance , vol.28 , pp. 695-710
    • Figlewski, S.1    Urich, T.2
  • 17
    • 0003502435 scopus 로고
    • Gelb A. (Ed), MIT Press, Cambridge, MA
    • In: Gelb A. (Ed). Applied Optimal Estimation (1989), MIT Press, Cambridge, MA
    • (1989) Applied Optimal Estimation
  • 18
    • 4143139874 scopus 로고    scopus 로고
    • Towards the characterization of streamflow simulation uncertainty through multimodel ensembles
    • Georgakakos K.P., Seo D.-J., Gupta H., Schaake J., and Butts M.B. Towards the characterization of streamflow simulation uncertainty through multimodel ensembles. J. Hydrol. 298 (2004) 222-241
    • (2004) J. Hydrol. , vol.298 , pp. 222-241
    • Georgakakos, K.P.1    Seo, D.-J.2    Gupta, H.3    Schaake, J.4    Butts, M.B.5
  • 19
    • 0001127332 scopus 로고    scopus 로고
    • Correct or combine? Mechanically integrating judgmental forecasts with statistical methods
    • Goodwin P. Correct or combine? Mechanically integrating judgmental forecasts with statistical methods. Int. J. Forecast. 16 (2000) 261-275
    • (2000) Int. J. Forecast. , vol.16 , pp. 261-275
    • Goodwin, P.1
  • 20
    • 84984442855 scopus 로고
    • Improved methods of combining forecasts
    • Granger C.W.J., and Ramanathan R. Improved methods of combining forecasts. J. Forecast. 3 (1984) 197-204
    • (1984) J. Forecast. , vol.3 , pp. 197-204
    • Granger, C.W.J.1    Ramanathan, R.2
  • 22
    • 84984475913 scopus 로고
    • Collinearity and the use of latent root regression for combining GNP forecasts
    • Guerard J.B., and Clemen R.T. Collinearity and the use of latent root regression for combining GNP forecasts. J. Forecast. 8 (1989) 231-238
    • (1989) J. Forecast. , vol.8 , pp. 231-238
    • Guerard, J.B.1    Clemen, R.T.2
  • 23
    • 0038785220 scopus 로고    scopus 로고
    • The usefulness of heuristic N(E)RLS algorithms for combining forecasts
    • Gunter S.I., and Aksu C. The usefulness of heuristic N(E)RLS algorithms for combining forecasts. J. Forecast. 16 (1997) 439-463
    • (1997) J. Forecast. , vol.16 , pp. 439-463
    • Gunter, S.I.1    Aksu, C.2
  • 27
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong D.I., and Kim Y.-O. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Process 19 19 (2005) 3819-3835
    • (2005) Hydrol. Process , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.I.1    Kim, Y.-O.2
  • 29
    • 0001207075 scopus 로고
    • Unstable weights in the combining forecasts
    • Kang H. Unstable weights in the combining forecasts. J. Manage. Sci. 32 (1986) 683-695
    • (1986) J. Manage. Sci. , vol.32 , pp. 683-695
    • Kang, H.1
  • 30
    • 0036539312 scopus 로고    scopus 로고
    • Climate predictions with multi-model ensembles
    • Kharin V.V., and Zwiers F.W. Climate predictions with multi-model ensembles. J. Climate 15 (2002) 793-799
    • (2002) J. Climate , vol.15 , pp. 793-799
    • Kharin, V.V.1    Zwiers, F.W.2
  • 31
    • 33750125872 scopus 로고    scopus 로고
    • Combining rainfall-runoff models for improving ensemble streamflow prediction
    • Kim Y.-O., Jeong D.I., and Ko I.H. Combining rainfall-runoff models for improving ensemble streamflow prediction. J. Hydrol. Eng. 11 6 (2006) 578-588
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.6 , pp. 578-588
    • Kim, Y.-O.1    Jeong, D.I.2    Ko, I.H.3
  • 32
    • 70349757878 scopus 로고    scopus 로고
    • Korea Water Resources Corporation (KOWACO), 1996. Development of Real-Time Low-Flow Management System on the Nakdong River. KOWACO, Daejeon, Korea (in Korean)
    • Korea Water Resources Corporation (KOWACO), 1996. Development of Real-Time Low-Flow Management System on the Nakdong River. KOWACO, Daejeon, Korea (in Korean)
  • 36
    • 85039641012 scopus 로고    scopus 로고
    • Numerical prediction of typhoon tracks and intensity using a multimodel superensemble
    • Kumar T.S.V., Krishnamurti T.N., Fiorino M., and Nagata M. Numerical prediction of typhoon tracks and intensity using a multimodel superensemble. Mon. Weather Rev. 131 (2003) 574-583
    • (2003) Mon. Weather Rev. , vol.131 , pp. 574-583
    • Kumar, T.S.V.1    Krishnamurti, T.N.2    Fiorino, M.3    Nagata, M.4
  • 37
    • 0343749545 scopus 로고    scopus 로고
    • Flood simulation with the variation of runoff coefficient in tank model
    • in Korean
    • Lee S.H. Flood simulation with the variation of runoff coefficient in tank model. J. Korea Water Resour. Assoc. 31 1 (1998) 3-12 in Korean
    • (1998) J. Korea Water Resour. Assoc. , vol.31 , Issue.1 , pp. 3-12
    • Lee, S.H.1
  • 39
    • 0028669312 scopus 로고
    • A two-parameter monthly water balance model for French watersheds
    • Makhlouf Z., and Michel C. A two-parameter monthly water balance model for French watersheds. J. Hydrol. 162 (1994) 299-318
    • (1994) J. Hydrol. , vol.162 , pp. 299-318
    • Makhlouf, Z.1    Michel, C.2
  • 40
    • 0020824169 scopus 로고
    • Averages of forecasts: Some empirical results
    • Makridakis S., and Winkler R. Averages of forecasts: Some empirical results. Manage. Sci. 29 (1983) 987-996
    • (1983) Manage. Sci. , vol.29 , pp. 987-996
    • Makridakis, S.1    Winkler, R.2
  • 41
    • 34047147929 scopus 로고    scopus 로고
    • Towards dynamic catchment modeling: a Bayesian hierarchical mixtures of experts framework
    • Marshall L., Nott D.J., and Sharma A. Towards dynamic catchment modeling: a Bayesian hierarchical mixtures of experts framework. Hydrol. Processes 21 (2007) 847-861
    • (2007) Hydrol. Processes , vol.21 , pp. 847-861
    • Marshall, L.1    Nott, D.J.2    Sharma, A.3
  • 44
    • 0009829718 scopus 로고    scopus 로고
    • Review of guidelines for the use of combined forecasts
    • Menezes L.M.d., Bunn D.W., and Taylor J.W. Review of guidelines for the use of combined forecasts. Eur. J. Oper. Res. 120 (2000) 190-204
    • (2000) Eur. J. Oper. Res. , vol.120 , pp. 190-204
    • Menezes, L.M.d.1    Bunn, D.W.2    Taylor, J.W.3
  • 45
    • 0000209313 scopus 로고
    • Experience with forecasting univariate time series and the combination of forecasts
    • Newbold P., and Granger C.W.J. Experience with forecasting univariate time series and the combination of forecasts. J. Royal Stat. Soc. 137 (1974) 131-164
    • (1974) J. Royal Stat. Soc. , vol.137 , pp. 131-164
    • Newbold, P.1    Granger, C.W.J.2
  • 46
    • 0348225037 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of uncertain model predictions
    • Neuman S.P. Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch. Environ. Res. Risk Assess. 17 5 (2003) 1436-3240
    • (2003) Stoch. Environ. Res. Risk Assess. , vol.17 , Issue.5 , pp. 1436-3240
    • Neuman, S.P.1
  • 49
    • 0033393056 scopus 로고    scopus 로고
    • A real-time combining method for the outputs of different rainfall-runoff models
    • Shamseldin A.Y., and Oconnor K.M. A real-time combining method for the outputs of different rainfall-runoff models. Hydrol. Sci. 44 6 (1999) 895-912
    • (1999) Hydrol. Sci. , vol.44 , Issue.6 , pp. 895-912
    • Shamseldin, A.Y.1    Oconnor, K.M.2
  • 50
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • Shamseldin A.Y., Oconnor K.M., and Liang G.C. Methods for combining the outputs of different rainfall-runoff models. J. Hydrol. 197 (1997) 203-229
    • (1997) J. Hydrol. , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    Oconnor, K.M.2    Liang, G.C.3
  • 51
    • 34248354794 scopus 로고    scopus 로고
    • Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging
    • Sloughter J.M., Raftery A.E., Gneiting T., and Fraley C. Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging. Mon. Weather Rev. 135 9 (2007) 3209-3220
    • (2007) Mon. Weather Rev. , vol.135 , Issue.9 , pp. 3209-3220
    • Sloughter, J.M.1    Raftery, A.E.2    Gneiting, T.3    Fraley, C.4
  • 52
    • 3242746930 scopus 로고
    • Chapter 11. SSARR model
    • Singh V.P. (Ed), Water Resources Publications, Colorado, US
    • Spears D.D. Chapter 11. SSARR model. In: Singh V.P. (Ed). Computer Models of Watershed Hydrology (1995), Water Resources Publications, Colorado, US
    • (1995) Computer Models of Watershed Hydrology
    • Spears, D.D.1
  • 53
    • 0006972632 scopus 로고
    • National Research Center for Disaster Prevention, Japan
    • Sugawara, M., 1974. Tank Model With Snow Component, National Research Center for Disaster Prevention, Japan.
    • (1974) Tank Model With Snow Component
    • Sugawara, M.1
  • 55
    • 0029510470 scopus 로고
    • Improved model-output-statistics forecasts through model consensus
    • Vislocky R., and Fritsch J.M. Improved model-output-statistics forecasts through model consensus. Bull. Am. Meteorol. Soc. 76 (1995) 1157-1164
    • (1995) Bull. Am. Meteorol. Soc. , vol.76 , pp. 1157-1164
    • Vislocky, R.1    Fritsch, J.M.2
  • 56
    • 33847633276 scopus 로고    scopus 로고
    • Multi-objective calibration of forecast ensembles using Bayesian model averaging
    • 10.1029/2006GL027126
    • Vrugt J.A., Clark M.P., Diks C.G.H., Duan Q., and Robinson B.A. Multi-objective calibration of forecast ensembles using Bayesian model averaging. Geophys. Res. Lett. 33 (2006) L19817 10.1029/2006GL027126
    • (2006) Geophys. Res. Lett. , vol.33
    • Vrugt, J.A.1    Clark, M.P.2    Diks, C.G.H.3    Duan, Q.4    Robinson, B.A.5
  • 57
    • 0000847063 scopus 로고
    • Sensitivity of weights in combining forecasts
    • Winkler R.L., and Clemen R.T. Sensitivity of weights in combining forecasts. Opns. Res. 40 3 (1992) 609-614
    • (1992) Opns. Res. , vol.40 , Issue.3 , pp. 609-614
    • Winkler, R.L.1    Clemen, R.T.2
  • 59
    • 2942700220 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff
    • 10.1029/2003WR002557
    • Ye M., Neuman S.P., and Meyer P.B. Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour. Res. 40 (2004) W05113 10.1029/2003WR002557
    • (2004) Water Resour. Res. , vol.40
    • Ye, M.1    Neuman, S.P.2    Meyer, P.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.