메뉴 건너뛰기




Volumn 386, Issue 1-4, 2010, Pages 27-37

Advances in ungauged streamflow prediction using artificial neural networks

Author keywords

Artificial neural networks; Counterpropagation; Generalized regression neural network; Time series analysis; Ungauged streamflow prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORKS; BANKFULL DISCHARGE; BASIN DRAINAGE; CLIMATE DATA; COUNTER PROPAGATION; DATA SETS; DRAINAGE AREA; FEED-BACK LOOP; FLOW DATA; FLOW PREDICTION; GENERALIZED REGRESSION NEURAL NETWORKS; INPUT DATAS; LAG TIME; MODEL INPUTS; SCALING RATIO; SMALL STREAMS; STREAMFLOW PREDICTION; STREAMFLOW RECORDS; SUBBASINS; SYSTEMATIC METHODOLOGY; TEMPERATE CLIMATE; TRAINING ALGORITHMS; UNGAUGED BASINS; UPSCALING; US GEOLOGICAL SURVEY; VERMONT;

EID: 77952241177     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2010.02.037     Document Type: Article
Times cited : (174)

References (59)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski J.F. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of Hydrology 353 (2008) 247-266
    • (2008) Journal of Hydrology , vol.353 , pp. 247-266
    • Adamowski, J.F.1
  • 4
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
    • Alp M., and Cigizoglu H.K. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modeling & software 22 (2007) 2-13
    • (2007) Environmental Modeling & software , vol.22 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 6
    • 43149114256 scopus 로고    scopus 로고
    • An application of artificial intelligence for rainfall-runoff modeling
    • Aytek A., Asce M., and Alp M. An application of artificial intelligence for rainfall-runoff modeling. Journal of Earth System Science 117 2 (2008) 145-155
    • (2008) Journal of Earth System Science , vol.117 , Issue.2 , pp. 145-155
    • Aytek, A.1    Asce, M.2    Alp, M.3
  • 7
    • 37549060662 scopus 로고    scopus 로고
    • Stochastic simulation and spatial estimation with multiple data types using artificial neural networks
    • 10.1029/2006WR005509
    • Besaw L.E., and Rizzo D.M. Stochastic simulation and spatial estimation with multiple data types using artificial neural networks. Water Resources Research 43 (2007) W11409 10.1029/2006WR005509
    • (2007) Water Resources Research , vol.43
    • Besaw, L.E.1    Rizzo, D.M.2
  • 10
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction
    • Chang F.J., and Chen Y.-C. A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction. Journal of Hydrology 245 (2001) 153-164
    • (2001) Journal of Hydrology , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.-C.2
  • 11
    • 0035864789 scopus 로고    scopus 로고
    • Counterpropagation fuzzy-neural network for streamflow reconstruction
    • Chang F.J., Hu H.F., and Chen Y.C. Counterpropagation fuzzy-neural network for streamflow reconstruction. Hydrological Processes 15 2 (2001) 219-232
    • (2001) Hydrological Processes , vol.15 , Issue.2 , pp. 219-232
    • Chang, F.J.1    Hu, H.F.2    Chen, Y.C.3
  • 12
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F.J., Chang L.C., and Huang H.-L. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16 (2002) 2577-2588
    • (2002) Hydrological Processes , vol.16 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.-L.3
  • 13
    • 0028175307 scopus 로고
    • Application of the daily rainfall runoff model MODHYDROLOG to 28 catchments
    • Chiew F., and McMahon T. Application of the daily rainfall runoff model MODHYDROLOG to 28 catchments. Journal of Hydrology 153 1-4 (1994) 383-416
    • (1994) Journal of Hydrology , vol.153 , Issue.1-4 , pp. 383-416
    • Chiew, F.1    McMahon, T.2
  • 14
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu H.K. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrological Sciences 48 3 (2003) 349-361
    • (2003) Hydrological Sciences , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 15
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizoglu H.K. Application of generalized regression neural networks to intermittent flow forecasting and estimation. Journal of Hydrologic Engineering 10 4 (2005) 336-341
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 16
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • Cigizoglu H.K. Generalized regression neural network in monthly flow forecasting. Civil Engineering and Environmental Systems 22 2 (2005) 71-84
    • (2005) Civil Engineering and Environmental Systems , vol.22 , Issue.2 , pp. 71-84
    • Cigizoglu, H.K.1
  • 18
    • 77952236574 scopus 로고    scopus 로고
    • The Geology of Vermont
    • Doolan B. The Geology of Vermont. Rocks and Minerals 71 (1996) 218-225
    • (1996) Rocks and Minerals , vol.71 , pp. 218-225
    • Doolan, B.1
  • 19
    • 34547663115 scopus 로고    scopus 로고
    • Estimation of total sediment load concentration obtained by experimental study using artificial neural networks
    • Emrah D., Yuksel I., and Kisi O. Estimation of total sediment load concentration obtained by experimental study using artificial neural networks. Environmental fluid mechanics 7 4 (2007) 271-288
    • (2007) Environmental fluid mechanics , vol.7 , Issue.4 , pp. 271-288
    • Emrah, D.1    Yuksel, I.2    Kisi, O.3
  • 20
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • Firat M. Comparison of artificial intelligence techniques for river flow forecasting. Hydrology and Earth System Sciences 12 (2008) 123-139
    • (2008) Hydrology and Earth System Sciences , vol.12 , pp. 123-139
    • Firat, M.1
  • 21
    • 46449123911 scopus 로고    scopus 로고
    • Hydrological time-series modelling using an adaptive neuro-fuzzy inference system
    • Firat M., and Gungor M. Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrological Processes 22 (2008) 2122-2132
    • (2008) Hydrological Processes , vol.22 , pp. 2122-2132
    • Firat, M.1    Gungor, M.2
  • 23
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: hydrogeologic applications
    • Govindaraju R.S. Artificial neural networks in hydrology II: hydrogeologic applications. Journal of Hydrologic Engineering 5 2 (2000) 124-137
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
    • Govindaraju, R.S.1
  • 25
    • 77952237298 scopus 로고    scopus 로고
    • Hackett, W.R., 2009. Changing Land Use, Climate and Hydrology in the Winooski River Basin, Vermont. M.S. Thesis, Univ. of Vermont, Burlington.
    • Hackett, W.R., 2009. Changing Land Use, Climate and Hydrology in the Winooski River Basin, Vermont. M.S. Thesis, Univ. of Vermont, Burlington.
  • 26
    • 0023515080 scopus 로고
    • Counterpropagation Networks
    • Hecht-Nielsen R. Counterpropagation Networks. Applied Optics 26 23 (1987) 4979-4984
    • (1987) Applied Optics , vol.26 , Issue.23 , pp. 4979-4984
    • Hecht-Nielsen, R.1
  • 29
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31 10 (1995) 2517-2530
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 30
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
    • 10.1029/2001WR001118
    • Hsu K.L., Gupta H.V., Sorooshian G.S., and Imam B. Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research 38 12 (2002) 1312 10.1029/2001WR001118
    • (2002) Water Resources Research , vol.38 , Issue.12 , pp. 1312
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, G.S.3    Imam, B.4
  • 31
    • 0025573113 scopus 로고
    • Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments
    • Jakeman J.J., Littlewood I.G., and Whitehead P.G. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology 117 (1990) 275-300
    • (1990) Journal of Hydrology , vol.117 , pp. 275-300
    • Jakeman, J.J.1    Littlewood, I.G.2    Whitehead, P.G.3
  • 33
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modeling
    • Kingston G.B., Maier H.R., and Lambert M.F. Calibration and validation of neural networks to ensure physically plausible hydrological modeling. Journal of Hydrology 314 (2005) 158-176
    • (2005) Journal of Hydrology , vol.314 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 34
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • Kisi O. Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkish Journal of Engineering and Environmental Sciences 29 1 (2005) 9-20
    • (2005) Turkish Journal of Engineering and Environmental Sciences , vol.29 , Issue.1 , pp. 9-20
    • Kisi, O.1
  • 35
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • Kisi O. River flow forecasting and estimation using different artificial neural network techniques. Hydrology Research 39 1 (2008) 27-40
    • (2008) Hydrology Research , vol.39 , Issue.1 , pp. 27-40
    • Kisi, O.1
  • 36
    • 0034863505 scopus 로고    scopus 로고
    • A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications
    • Kokkonen T.S., and Jakeman A.J. A comparison of metric and conceptual approaches in rainfall-runoff modeling and its implications. Water Resources Research 37 9 (2001) 2345-2353
    • (2001) Water Resources Research , vol.37 , Issue.9 , pp. 2345-2353
    • Kokkonen, T.S.1    Jakeman, A.J.2
  • 37
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause P., Boyle D.P., and Base F. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5 (2005) 89-97
    • (2005) Advances in Geosciences , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.P.2    Base, F.3
  • 39
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., and Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software 15 (2000) 101-124
    • (2000) Environmental Modelling & Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 40
    • 0016047730 scopus 로고
    • Applications of seasonal parametric linear stochastic models to monthly flow data
    • McKerchar A.I., and Delleur J.W. Applications of seasonal parametric linear stochastic models to monthly flow data. Water Resources Research 10 (1974) 246-255
    • (1974) Water Resources Research , vol.10 , pp. 246-255
    • McKerchar, A.I.1    Delleur, J.W.2
  • 41
    • 52649174213 scopus 로고    scopus 로고
    • Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves
    • Mohamoud Y.M. Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves. Hydrological Sciences 53 4 (2008) 706-724
    • (2008) Hydrological Sciences , vol.53 , Issue.4 , pp. 706-724
    • Mohamoud, Y.M.1
  • 42
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H., Hsu K.-L., Gupta H.V., and Sorooshian S. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. Journal of Hydrology 295 (2004) 246-262
    • (2004) Journal of Hydrology , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.V.3    Sorooshian, S.4
  • 43
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, Part I - a discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models, Part I - a discussion of principles. Journal of Hydrology 10 (1970) 282-290
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 44
    • 0025458850 scopus 로고
    • Daily forecasting with regression analysis
    • Phien H.N., Huong B.K., and Loi P.D. Daily forecasting with regression analysis. Water SA 16 3 (1990) 179-184
    • (1990) Water SA , vol.16 , Issue.3 , pp. 179-184
    • Phien, H.N.1    Huong, B.K.2    Loi, P.D.3
  • 46
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modelling
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Artificial neural networks for daily rainfall-runoff modelling. Hydrological Sciences 47 6 (2002) 865-877
    • (2002) Hydrological Sciences , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 47
    • 0028193610 scopus 로고
    • Characterization of aquifer properties using artificial neural networks: neural kriging
    • Rizzo D.M., and Dougherty D.E. Characterization of aquifer properties using artificial neural networks: neural kriging. Water Resources Research 30 2 (1994) 483-497
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 483-497
    • Rizzo, D.M.1    Dougherty, D.E.2
  • 48
    • 31344455406 scopus 로고    scopus 로고
    • Estimation of streamflow, baseflow and nitrate-nitrogen loads in Iowa using multiple regression models
    • Schilling K.E., and Wolter C.F. Estimation of streamflow, baseflow and nitrate-nitrogen loads in Iowa using multiple regression models. Journal of American Water Resources Association 41 6 (2005) 1333-1346
    • (2005) Journal of American Water Resources Association , vol.41 , Issue.6 , pp. 1333-1346
    • Schilling, K.E.1    Wolter, C.F.2
  • 49
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh P., and Deo M.C. Suitability of different neural networks in daily flow forecasting. Applied Soft Computing 7 (2007) 968-978
    • (2007) Applied Soft Computing , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.C.2
  • 51
    • 0016942289 scopus 로고
    • Hydrology of the North Cascades region, Washington - Part 2: a proposed hydrometeorological streamflow prediction method
    • Tangborn W.V., and Rasmussen L.A. Hydrology of the North Cascades region, Washington - Part 2: a proposed hydrometeorological streamflow prediction method. Water Resources Research 12 (1976) 203-216
    • (1976) Water Resources Research , vol.12 , pp. 203-216
    • Tangborn, W.V.1    Rasmussen, L.A.2
  • 52
    • 0034982222 scopus 로고    scopus 로고
    • Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model
    • VanderKwaak J.E., and Loague K. Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resources Research 37 4 (2001) 999
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 999
    • VanderKwaak, J.E.1    Loague, K.2
  • 53
    • 33845964998 scopus 로고    scopus 로고
    • Bankfull width and morphological units in an alpine stream of dolomites (Northern Italy)
    • Vianello A., and D'Agostino V. Bankfull width and morphological units in an alpine stream of dolomites (Northern Italy). Geomorphology 83 (2007) 266-681
    • (2007) Geomorphology , vol.83 , pp. 266-681
    • Vianello, A.1    D'Agostino, V.2
  • 54
    • 12144255973 scopus 로고    scopus 로고
    • New technologies require advances in hydrologic data assimilation
    • Walker J.P., Houser P.R., and Reichle R.H. New technologies require advances in hydrologic data assimilation. EOS 84 (2003) 545-551
    • (2003) EOS , vol.84 , pp. 545-551
    • Walker, J.P.1    Houser, P.R.2    Reichle, R.H.3
  • 56
    • 67650311781 scopus 로고    scopus 로고
    • Storm-even rainfall-runoff modelling approach for ungauged sites in Taiwan
    • Wang Y.-C., Chen S.-T., Yu P.-S., and Yang T.-C. Storm-even rainfall-runoff modelling approach for ungauged sites in Taiwan. Hydrological Processes 22 (2008) 4322-4330
    • (2008) Hydrological Processes , vol.22 , pp. 4322-4330
    • Wang, Y.-C.1    Chen, S.-T.2    Yu, P.-S.3    Yang, T.-C.4
  • 59
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., and Simonovic S.P. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 214 (1999) 32-48
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.