메뉴 건너뛰기




Volumn 19, Issue 19, 2005, Pages 3819-3835

Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction

Author keywords

Artificial neural networks; Ensemble neural network; Ensemble streamflow prediction; Probabilistic forecasting; Rainfall runoff model

Indexed keywords

COMPUTER SIMULATION; FORECASTING; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBABILITY; RAIN; RUNOFF;

EID: 30444441291     PISSN: 08856087     EISSN: None     Source Type: Journal    
DOI: 10.1002/hyp.5983     Document Type: Article
Times cited : (161)

References (32)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II. Hydrologic applications
    • ASCE Task Committee on Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Artificial Neural Networks in Hydrology. 2000. Artificial neural networks in hydrology. II. Hydrologic applications. Journal of Hydrologic Engineering 5(2): 124-137.
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L, 1996. Bagging predictors. Machine Learning 24(2): 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probabilities
    • Brier GW. 1950. Verification of forecasts expressed in terms of probabilities. Monthly Weather Review 78: 1-3.
    • (1950) Monthly Weather Review , vol.78 , pp. 1-3
    • Brier, G.W.1
  • 5
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M, Andreussi P, Soldati A. 1999a. River flood forecasting with a neural network model. Water Resources Research 35(4): 1191-1197.
    • (1999) Water Resources Research , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 6
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low-flow periods using neural networks
    • Campolo M, Soldati A, Andreussi P. 1999b. Forecasting river flow rate during low-flow periods using neural networks. Water Resources Research 35(11): 3547-3552.
    • (1999) Water Resources Research , vol.35 , Issue.11 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 7
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models
    • Cannon AJ, Whitfield PH. 2002. Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology 259: 136-151.
    • (2002) Journal of Hydrology , vol.259 , pp. 136-151
    • Cannon, A.J.1    Whitfield, P.H.2
  • 9
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using temporal neural networks
    • Coulibaly P, Anctil F, Bobee B. 2000, Daily reservoir inflow forecasting using temporal neural networks. Journal of Hydrology 230: 244-257.
    • (2000) Journal of Hydrology , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 10
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • Coulibaly P, Anctil F, Bobee B. 2001. Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering 6(5): 367-376.
    • (2001) Journal of Hydrologic Engineering , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 15
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-rainoff process
    • Hsu KL, Gupta HV, Sorooshian S. 1995. Artificial neural network modeling of the rainfall-rainoff process. Water Resources Research 31(10): 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 17
    • 1642556291 scopus 로고    scopus 로고
    • Forecasting monthly inflow to Chungju dam using ensemble streamflow prediction
    • (in Korean)
    • Jeong DI, Kim Y-O. 2002. Forecasting monthly inflow to Chungju dam using ensemble streamflow prediction. Journal of Korean Society of Civil Engineers 22(3-B): 321-331 (in Korean).
    • (2002) Journal of Korean Society of Civil Engineers , vol.22 , Issue.3 B , pp. 321-331
    • Jeong, D.I.1    Kim, Y.-O.2
  • 19
    • 0035370678 scopus 로고    scopus 로고
    • Quantitative flood forecasting using multisensor data and neural networks
    • Kim G, Barros AP. 2001. Quantitative flood forecasting using multisensor data and neural networks. Journal of Hydrology 246: 45-62.
    • (2001) Journal of Hydrology , vol.246 , pp. 45-62
    • Kim, G.1    Barros, A.P.2
  • 20
    • 0035726532 scopus 로고    scopus 로고
    • Improving water supply outlooks in Korea with ensemble streamflow prediction
    • Kim Y-O, Jeong DI, Kim HS. 2001. Improving water supply outlooks in Korea with ensemble streamflow prediction. Water International 26(4): 563-568.
    • (2001) Water International , vol.26 , Issue.4 , pp. 563-568
    • Kim, Y.-O.1    Jeong, D.I.2    Kim, H.S.3
  • 21
    • 30444447164 scopus 로고    scopus 로고
    • Combining rainfall-runoff models for improving ensemble streamflow prediction
    • in press
    • Kim Y-O, Jeong DI, Ko IH. 2003. Combining rainfall-runoff models for improving ensemble streamflow prediction. Journal of Hydrologic Engineering, in press.
    • (2003) Journal of Hydrologic Engineering
    • Kim, Y.-O.1    Jeong, D.I.2    Ko, I.H.3
  • 22
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural network as rainfall-runoff models
    • Minns AW, Hall MJ. 1996. Artificial neural network as rainfall-runoff models. Hydrological Science Journal 41(3): 399-419.
    • (1996) Hydrological Science Journal , vol.41 , Issue.3 , pp. 399-419
    • Minns, A.W.1    Hall, M.J.2
  • 24
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • Saad M, Bigras P, Turgeon A, Duquette R. 1996. Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resources Research 32(1): 179-186.
    • (1996) Water Resources Research , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 25
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N, Thandaveswara BS. 1999. A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology 216: 32-55.
    • (1999) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 26
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin AY. 1997. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology 199: 272-294.
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 27
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches
    • Sivakumar B, Jayawardena AW, Fernando TMKG. 2002. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology 265: 225-245.
    • (2002) Journal of Hydrology , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 28
    • 0006972632 scopus 로고
    • National Research Center for Disaster Prevention: Japan
    • Sugawara M. 1974. Tank Model with Snow Component. National Research Center for Disaster Prevention: Japan.
    • (1974) Tank Model With Snow Component
    • Sugawara, M.1
  • 29
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson PA. 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering 4(3): 232-239.
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 31
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand CM, Burn DH, Simonovic SP. 1999. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 214: 32-48.
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 32
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang, B, Govindaraju RS. 2000. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resources Research 36(3): 753-762.
    • (2000) Water Resources Research , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.